Black Phases of CsPbI3: Structural and Theoretical Studies - Université de Rennes
Communication Dans Un Congrès Année : 2018

Black Phases of CsPbI3: Structural and Theoretical Studies

Résumé

In less than 10 years, hybrid organic-inorganic perovskites have emerged as a new generation of absorber materials for high-efficiency and low-cost solar cells [1], [2]. More recently, fully inorganic perovskite quantum dots (QD) also led to promising efficiencies [3], [4] and then become a serious alternative to hybrid organic-inorganic perovskites. Currently, the record efficiency for QD solar cells is obtained with CsPbI 3. High resolution in-situ synchrotron XRD measurements have been performed on CsPbI 3 as a function of the temperature and revealed a highly anisotropic variation of the lattice parameters. Moreover, CsPbI 3 can be temporarily maintained in a perovskite-like structure down to room temperature, stabilizing a metastable perovskite polytype (black-phase) crucial for photovoltaic applications. Structural, vibrational and electronic properties of the three experimentally observed black phases are further scrutinized using theoretical approaches [5], [6]. A symmetry-based tight-binding model, calibrated with self-consistent GW calculations including spin-orbit coupling, affords further insight into their electronic properties. A Rashba effect is thus predicted for both cubic and tetragonal phases when using the symmetry breaking structures obtained through frozen phonon calculations.
Abstract_NanoGe_Fall2018_Laurent_HAL.pdf (27.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01908983 , version 1 (14-11-2018)

Identifiants

Citer

Laurent Pedesseau, Arthur Marronnier, Guido Roma, Soline Boyer-Richard, Jean-Marc Jancu, et al.. Black Phases of CsPbI3: Structural and Theoretical Studies. nanoGe Fall Meeting 2018 (NGFM18), Oct 2018, Torremolinos, Spain. ⟨10.29363/nanoge.fallmeeting.2018.218⟩. ⟨hal-01908983⟩
400 Consultations
148 Téléchargements

Altmetric

Partager

More