Smart brute-force approach for distribution feeder reconfiguration problem
Résumé
The massive introduction of generation at the distribution level changes the electric network operation paradigm. According to the rules that govern the relationship between the distribution system operator and the transmission system operator, it becomes interesting to reconfigure the distribution system to control the power consumption and injection at each substation and to determine the switch configuration that optimizes this behaviour at substations. This paper proposes a method to solve this distribution feeder reconfiguration (DFR) problem. First, an offline computation, based on a graph-oriented approach, finds all valid radial configurations and their similarities, then, according to a load setting, a sub approximation of the operating cost is computed and used with electrical constraints detection to reduce the number of necessary load flow computations in a brute-force approach to choose the optimal configuration. This method is exemplified on a test case including 4 substations, 124 nodes, 115 uncontrolled lines and 23 switch controlled lines. © 2019 Elsevier B.V.
Origine | Fichiers produits par l'(les) auteur(s) |
---|