A page-hinkley based method for HFOs detection in epileptic depth-EEG
Abstract
Interictal High Frequency Oscillations, (HFOs [30-600 Hz]), recorded from intracerebral electroencephalo-graphy (iEEG) in epileptic brain, showed to be potential biomarkers of epilepsy. Hence, their automatic detection has become a subject of high interest. So far, all detection algorithms consisted of comparing HFOs energy, computed in bands of interest, to a threshold. In this paper, a sequential technique was investigated. Detection was based on a variant of the Cumulative Sum (CUSUM) test, the so-called Page-Hinkley algorithm showing optimal results for detecting abrupt changes in the mean of a normal random signal. Experiments on simulated and real datasets showed the good performance of the method in terms of sensitivity and false detection rate. Compared to the classical thresholding, Page-Hinkley showed better performance.