Loss Analysis of a Reflectarray Cell Using ANNs with Accurate Magnitude Prediction - Université de Rennes Access content directly
Conference Papers Year :

Loss Analysis of a Reflectarray Cell Using ANNs with Accurate Magnitude Prediction

Abstract

This paper proposes a design methodology to improve the Artificial Neural Networks (ANNs) modeling of reflectarray (RA) cells with regards to the prediction of reflection coefficients magnitude. It is applied to model both types of RA cells (capacitive and inductive) with 5 inputs parameters. The results demonstrate that the final ANNs models are reliable and accurate with an average error on the reflection coefficient magnitude of the scattering matrix (|R11|) of -66dB and -69dB respectively for the capacitive and inductive cells. This accurate prediction of magnitude allows rejecting a priori any cell with loss exceeding a prescribed threshold. Comparison of two canonical RA layouts shows the benefit that could be expected in a synthesis process.
Not file

Dates and versions

hal-01622070 , version 1 (24-10-2017)

Identifiers

  • HAL Id : hal-01622070 , version 1

Cite

V. Richard, Renaud Loison, R. Gillard, H. Legay, M. Romier. Loss Analysis of a Reflectarray Cell Using ANNs with Accurate Magnitude Prediction. 11th European Conference on Antennas and Propagation (EUCAP), Mar 2017, Paris, France. pp.10.23919/EuCAP.2017.7928256. ⟨hal-01622070⟩
86 View
0 Download

Share

Gmail Facebook Twitter LinkedIn More