Spontaneous Decoration of Silicon Surfaces with MoOx Nanoparticles for Sunlight-Assisted Hydrogen Evolution Reaction - Université de Rennes Access content directly
Journal Articles Nanoscale Year : 2017

Spontaneous Decoration of Silicon Surfaces with MoOx Nanoparticles for Sunlight-Assisted Hydrogen Evolution Reaction

Abstract

The immersion of oxide-free Si surfaces in MoS42- aqueous solutions induces their spontaneous decoration with isolated MoOx nanoparticles (NPs). The process is versatile and was used on planar Si (100) as well as on antireflective Si (111) micro-pyramid (SimPy) arrays. The NP decoration does not affect the optical properties of the surface in the visible range and improves the performances of hydrogen evolution reaction (HER) under simulated sunlight. The simplicity and the scalability of the technique make it highly promising for the fabrication of catalytically active photoelectrodes. More specifically, the MoOx-decorated SimPy produced H2 at a rate of 11 μmol cm-2 min-1 with a faradaic efficiency higher than 90 % at -0.35 V vs RHE. Furthermore, this process can be of strong interest for other applications in high-performance electronic devices.
No file

Dates and versions

hal-01437851 , version 1 (17-01-2017)

Identifiers

Cite

Thai Giang Truong, Cristelle Mériadec, Bruno Fabre, Jean-François Bergamini, Olivier de Sagazan, et al.. Spontaneous Decoration of Silicon Surfaces with MoOx Nanoparticles for Sunlight-Assisted Hydrogen Evolution Reaction. Nanoscale, 2017, 9 (5), pp.1799-1804. ⟨10.1039/C6NR08408G⟩. ⟨hal-01437851⟩
286 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More