Structural and functional interplay in anxiety related classification: a graph signal processing approach - Université de Rennes
Communication Dans Un Congrès Année : 2021

Structural and functional interplay in anxiety related classification: a graph signal processing approach

Résumé

Anxiety disorders are one of the most common mental health conditions with a high rate of everyday life disability. Connectivity is steadily gaining relevance to increase our knowledge of psychiatric diseases. Graph signal processing (GSP) is a new framework to integrate structural connectivity and brain function. We propose here a graph-based analysis using GSP metrics and classification procedure, to identify anxiety biomarkers. Results suggest that the joint consideration of structure-function features improves their discriminatory accuracy, and our understanding of the pathophysiology of anxiety.
Fichier principal
Vignette du fichier
ISBI_2021_Orru.pdf (378.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03450470 , version 1 (26-11-2021)

Identifiants

  • HAL Id : hal-03450470 , version 1

Citer

Giovanna Orrù, Pierre Maurel, Julie Coloigner. Structural and functional interplay in anxiety related classification: a graph signal processing approach. ISBI 2021 - IEEE International Symposium on Biomedical Imaging, Apr 2021, Nice, France. pp.1-4. ⟨hal-03450470⟩
93 Consultations
213 Téléchargements

Partager

More