Article Dans Une Revue Communications Biology Année : 2024

Predicting creative behavior using resting-state electroencephalography

Résumé

Neuroscience research has shown that specific brain patterns can relate to creativity during multiple tasks but also at rest. Nevertheless, the electrophysiological correlates of a highly creative brain remain largely unexplored. This study aims to uncover resting-state networks related to creative behavior using high-density electroencephalography (HD-EEG) and to test whether the strength of functional connectivity within these networks could predict individual creativity in novel subjects. We acquired resting state HD-EEG data from 90 healthy participants who completed a creative behavior inventory. We then employed connectome-based predictive modeling; a machine-learning technique that predicts behavioral measures from brain connectivity features. Using a support vector regression, our results reveal functional connectivity patterns related to high and low creativity, in the gamma frequency band (30-45 Hz). In leave-one-out cross-validation, the combined model of high and low networks predicts individual creativity with very good accuracy (r = 0.36, p = 0.00045). Furthermore, the model’s predictive power is established through external validation on an independent dataset (N = 41), showing a statistically significant correlation between observed and predicted creativity scores (r = 0.35, p = 0.02). These findings reveal large-scale networks that could predict creative behavior at rest, providing a crucial foundation for developing HD-EEG-network-based markers of creativity.
Fichier principal
Vignette du fichier
s42003-024-06461-6-1.pdf (1) Télécharger le fichier
42003_2024_6461_MOESM1_ESM.pdf (431) Télécharger le fichier
42003_2024_6461_MOESM2_ESM.pdf (38) Télécharger le fichier
42003_2024_6461_MOESM3_ESM.xlsx (11) Télécharger le fichier
42003_2024_6461_MOESM4_ESM.xlsx (10) Télécharger le fichier
42003_2024_6461_MOESM5_ESM.xlsx (11) Télécharger le fichier
42003_2024_6461_MOESM6_ESM.xlsx (9) Télécharger le fichier
42003_2024_6461_MOESM7_ESM.pdf (1) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04634487 , version 1 (24-09-2024)

Licence

Identifiants

Citer

Fatima Chhade, Judie Tabbal, Véronique Paban, Manon Auffret, Mahmoud Hassan, et al.. Predicting creative behavior using resting-state electroencephalography. Communications Biology, 2024, 7 (1), pp.790. ⟨10.1038/s42003-024-06461-6⟩. ⟨hal-04634487⟩
55 Consultations
21 Téléchargements

Altmetric

Partager

More