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RESUME EN FRANCAIS

Les réseaux de neurones artificiels se sont rapidement développés dans de nombreux
domaines ces dernieres années, tels que la vision par ordinateur, le traitement du langage
naturel ou le traitement audio. Cependant, la plupart des réseaux actuels sont entrainés
de fagon supervisée ce qui requiert des données annotées, particulierement pour les gros
réseaux qui ont beaucoup de parametres a optimiser.

Obtenir des données annotées en larges quantités peut se révéler compliqué car le pro-
cessus d’annotation est souvent manuel ce qui rend la tache cotiteuse. De plus, certaines
annotations, notamment celles en lien avec des données 3D nécessitent un équipement coti-
teux tels que des scanners ou des dispositifs multicaméras. Cela implique également un en-
vironnement de capture controlé ce qui limite le nombre de sujets et donc la variété du jeu
de données. Le manque de données annotées restreint le développement de ’apprentissage
profond dans de nombreux domaines. Pour pallier ce probleme, les chercheurs en appren-
tissage profond s’intéressent de plus en plus a ’apprentissage avec peu ou méme sans don-
nées annotées. L’avantage des données non annotées est qu’elles peuvent étre récupérées
en grandes quantités, notamment sur Internet, et donc qu’il est facile d’obtenir des jeux de
données d’entrainement tres variés. Récemment, les modeles autosupervisés qui peuvent
s’entrainer sur des données non annotées ont eu beaucoup de succes. Ces modeles tirent
parti de leur large jeu de données d’entrainement pour apprendre des représentations com-
pactes des données. Ils peuvent ensuite étre adaptés a une tache supervisée en utilisant
peu de données annotées. Ce processus est appelé apprentissage par transfert car il y a
un transfert des connaissances apprises par le réseau durant I’apprentissage autosupervisé
avec la tache supervisée.

Parmi les méthodes autosupervisées ayant émergé ces dernieres années, la plupart
d’entre elles réalisent un apprentissage par transfert a partir de représentations de pe-
tite dimension apprises lors de 'entrainement sur des données non annotées [Che+20a;
Car+20]. Généralement, apres cette premiere étape d’entrainement, un petit réseau aux-
iliaire, utilisant ces représentations apprises comme entrée, est entrainé de maniere su-
pervisée sur la tache finale. Cette approche convient bien aux taches ou la prédiction du

réseau auxiliaire est également de petite dimension, comme la classification d’images, mais



Sélectionner un modéle génératif Entrainer le modéle adapté

autosupervisé pré-entrainé sur la nouvelle tache

Figure A — Notre méthodologie GMDA pour entrainer un réseau avec peu de données
annotées.

elle est moins efficace lorsque cette prédiction est de haute dimension, par exemple une
image, car le réseau auxiliaire a entrainer est beaucoup plus grand. Celui nécessite donc un
plus grand nombre d’échantillons annotés d’entrainement pour obtenir des performances
convenables.

Cette these CIFRE, en collaboration avec I'entreprise InterDigital, a pour objectif
de résoudre le probleme de l'entrainement des réseaux de neurones, avec des données
annotées limitées, pour des domaines d’intérét d’InterDigital tels 1’analyse faciale. En
effet, de nombreuses taches de ce domaine souffrent d’'un manque d’annotations ce qui
limite le développement de méthodes basées sur 'apprentissage profond pour ces taches.

Nous proposons dans ce manuscrit une nouvelle approche permettant d’entrainer des
réseaux de neurones avec des données annotées limitées pour certaines taches type image-
vers-image (la prédiction du réseau est une image). Nous suggérons d’utiliser non seule-
ment des représentations de petite dimension, mais aussi des caractéristiques de grande
dimension, issues du décodeur de modeles génératifs autosupervisés, lors de 'apprentissage
par transfert. Nous avons appelé cette méthodologie I’Adaptation de Décodeur de Modele
Génératif (Generative Model Decoder Adaptation en anglais, GMDA). Nous démontrons
également comment les prédictions et vérités terrain de certaines taches d’analyse faciale
supervisées peuvent étre transformées en images, ce qui rend notre méthodologie applica-
ble a ces taches.

Notre méthodologie GMDA se décompose en plusieurs étapes.

— Choisir un réseau génératif autosupervisé pré-entrainé.

— Adapter 'architecture du réseau a la nouvelle tache supervisée image-vers-image.

— Entrainer ce réseau sur la tache image-vers-image en utilisant peu de données

annotées.

Ces différentes étapes sont résumées dans la Figure A.

Dans un premier temps, nous avons appliqué notre méthodologie a la détection de
points d’intérét faciaux. Cette tache consiste a prédire la position de points d’intérét du

visage tels que la position des yeux, du bout du nez ou des coins de la bouche. Annoter une



image pour la détection de points d’intérét faciaux est fastidieux ce qui a pour conséquence
que les jeux de données pour cette tache sont relativement petits et donc les modeles
appris dessus sont sujet au sur-apprentissage. Avec notre méthodologie, nous avons tenté

de contourner ce probleme du manque d’annotations.

Pour le réseau génératif, nous avons testé deux architectures, la version GMDA-R qui
utilise un autoencodeur basé sur ResNet [He+16] proposé par Browatzki et al. [BW20] et
la version GMDA-S qui utilise un autoencodeur basé sur StyleGAN [KLA19]. Le réseau
StyleGAN possede une plus grosse capacité et est donc possiblement capable de modéliser
des taches plus complexes. Cependant il posséde plus de parametres a optimiser si un
affinage (fine-tuning en anglais) est nécessaire lors de l'apprentissage supervisé, ce qui
augmente le risque de sur-apprentissage si le nombre de données lors de cet apprentissage

est trop faible.

Pour I'adaptation du réseau génératif a la tadche image-vers-image supervisée, nous
utilisons les Couches de Transfert Entrelacées (Interleaved Transfer Layers en anglais,
ITL) proposées par Browatzki et al. [BW20] dans leur architecture 3FabRec. Les ITL
sont des couches de convolution ajoutées entre les couches du décodeur du réseau génératif
et qui sont entrainées lors de I'apprentissage supervisé. Elles permettent de réutiliser les
activations des couches du décodeur tout en les adaptant a la tache supervisée. Seules
les ITL ont besoin d’étre entrainées a partir de zéro (I’encodeur peut éventuellement étre

affiné) ce qui permet d’entrainer le réseau avec peu de données annotées.

Nous proposons également des versions améliorées de ces ITL en rajoutant un flux
direct entre les différentes ITL. De plus, nous suggérons d’améliorer les réseaux génératifs
en rajoutant des connexions directes (skip-connections en anglais) entre les couches de

I’encodeur et du décodeur.

Nous avons entrainé nos différents modeles sur différents jeux de données et avec
différents nombres de données annotées d’entrainement. Puis nous avons comparé leurs
performances entre eux ainsi qu’avec les méthodes de I’état de 'art existantes, en par-
ticulier celles qui s’entrainent avec peu de données annotées. Nous avons aussi testé
I'utilisation de 'apprentissage actif pendant l’entrainement afin de réduire encore plus
le nombre de données annotées nécessaire. Pour ce faire, nous proposons une nouvelle
fonction d’acquisition, la Magnitude Négative de Voisinage (Negative Neighborhood Mag-
nitude en anglais, NNM), pour évaluer les prédictions du réseau lors de I'apprentissage
actif. La version GMDA-S obtient globalement des meilleurs résultats sauf quand le nom-

bre de données annotées d’entrainement est tres limité et les images de visage sont difficiles
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(occultations, basse résolution...). Nos versions améliorées des I'TL améliorent 1égerement
les résultats pour I'architecture GMDA-R. L’ajout des connexions directes bénéficie égale-
ment & l'architecture GMDA-R. Enfin, 'usage de 'apprentissage actif permet d’améliorer
les performances, en particulier pour les images difficiles ol il permet sur certains jeux
de données de diviser par deux le nombre de données annotées d’entrainement tout en
obtenant la méme performance en test. Comparés aux méthodes de 1'état de I’art, nos
modeles les surpassent sur de nombreux jeux de données quand le nombre de données

d’apprentissage est limité.

Dans un second temps, nous avons testé notre méthodologie pour améliorer les méth-
odes autosupervisées de reconstruction faciale 3D. Cette tache consiste a prédire la struc-
ture 3D d’un visage a partir d’'une image. Obtenir des annotations de qualité pour cette
tache nécessite d’utiliser un scanner ce qui implique un environnement contrélé et donc un
nombre restreint de sujets. Pour contourner ce probleme, des méthodes autosupervisées
ont été développées ces dernieres années. Cependant, comme leur fonction de cofit est
principalement basée sur la reconstruction de I'image, et qu’elles n’ont acces a aucune

information 3D, elles ont tendance a prédire une mauvaise pose et échelle pour le visage

3D.

Pour aider ces méthodes, nous proposons d’ajouter de I'information 3D a I’entrée du
réseau de prédiction du visage 3D. Nous ajoutons cette information 3D sous la forme
du Projected Normalized Coordinate Code (PNCC) [Zhu+16] que nous concaténons avec
I'image. Afin de prédire ces PNCC, tout en utilisant le moins de données annotées possi-
ble, nous utilisons notre méthodologie et adaptons un réseau génératif a la prédiction de
PNCC. Nous avons utilisé I'architecture GMDA-R utilisée précédemment pour la tache
de détection de points d’intérét faciaux, équipée d’ITL et de connexions directes entre
I’encodeur et le décodeur. Grace a cette architecture, nous avons pu entrainer notre pré-
dicteur de PNCC avec uniquement 50 exemples d’apprentissage. Une fois celui-ci entrainé,
nous I’avons utilisé pour annoter un jeu de données de visage. Ensuite, nous avons entrainé
une méthode autosupervisée de reconstruction faciale 3D sur ces données en ajoutant le
PNCC a l’entrée de son réseau. Nos expériences ont montré que ’ajout du PNCC améliore

la pose prédite du visage.

En conclusion, nous proposons une méthodologie, basée sur I'apprentissage par trans-
fert, pour entrainer un réseau de neurones avec peu de données annotées pour cer-
taines taches de type image-vers-image. Cette méthodologie consiste a adapter un réseau

génératif autosupervisé a cette tdche afin de réutiliser les activations de ses couches de



haute dimension. Nous avons appliqué cette méthodologie a deux taches d’analyse faciale:
la détection de points d’intérét faciaux et la reconstruction de visage 3D. Nos différentes

expériences ont montré 'efficacité de notre méthodologie pour ces deux applications.
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INTRODUCTION

Context

The rise of Deep Learning

Artificial neural networks are not a recent invention, the Perceptron [Ros58], usually
referred as the first artificial neural network, was proposed in 1958 by psychologist Frank
Rosenblatt. However, they were long discarded by the machine learning community who
preferred other methods such as Support Vector Machines [CV95]. This changed in 2012
when the neural network AlexNet [KSH12] proposed by Alex Krizhevsky in collaboration
with Ilya Sutskever and Geoffrey E. Hinton won the 2012 object recognition challenge
ImageNet LSVRC by a significant margin. From this moment, a craze for neural networks
began in the machine learning community and they quickly spread into many research
domains, such computer vision, natural language processing or audio processing, greatly

improving the state-of-the-art of these domains.

Artificial neural networks are composed of several layers of neurons put together. The
input signal, (i.e. an image for a computer vision task) goes through the layers of the
network and is progressively transformed into network features. The last layer outputs

the network prediction.

The success of neural networks comes from their ability to learn automatically optimal
features. Instead of relying on hand-crafted features such as HOG [DT05] or SIFT [Low04],
that might be sub-optimal depending on the task, the first layers of the networks act
as the feature extractor whereas the last layers focus on resolving the task using these
learned features as input. By stacking more layers, the learned features can model more
complex data, improving the ability of the network to resolve complex tasks. Because
neural networks gained more and more layers (their depth increasing) over the years, the

term Deep Learning was coined to refer to artificial neural networks.
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Introduction

The annotation issue

Neural networks are trained by minimizing a training loss (also called cost function)
using a training dataset. Traditionally, training is based on the supervised learning prin-
ciple. Supervised learning trains a model to map an input data to a target value. In this
case, the training loss is based on the error between the predicted labels and the ground
truth labels. Common training losses are the Mean Squared Error for regression tasks and
the Cross-Entropy for classification tasks. It is the most straight forward way to train a
neural network but it requires annotated (we may also use the term labeled interchange-
ably in this manuscript) training data. For example, if you are training a model for image
classification, you need training images to classify and for each image, the class of the
image. A human is usually required to annotate the training samples.

Bigger neural networks can model more complex functions, thus solving more complex
tasks but the larger the network, the more parameters need to be optimized. If the training
dataset is not large enough, there is a risk of overfitting. Overfitting happens when a model
learns to perform very well on the training data, but its performance on unseen or new
data is significantly worse. This can be spotted using a validation set. If the training
loss keeps decreasing but the validation loss increases in the meantime, it usually means
that the model is overfitting. The model essentially memorizes the training data rather
than learning the general patterns that would allow it to make accurate predictions on
new data. Large neural networks are more prone to overfitting because they have many
parameters that they can adjust to perfectly fit the training data.

While some techniques, such as dropout [Sri+14], regularization or data augmenta-
tion, can in some extent prevent overfitting and improve the network performance, the
best way is still to increase the training dataset size. However, in the case of supervised
learning, gathering large annotated dataset can be difficult. It usually requires an human
to annotate the data which can be time-consuming when many sampled need to be anno-
tated. For image classification, the annotation task is rather simple, the human only needs
to select the correct class label of the image but it can be more tedious for other tasks.
For example, in the case of object detection, the annotations are the bounding boxes and
the object class of all the objects of interest in the image. If there are many objects in the
image, annotating a single image might require dozens of minutes. Also, annotators are
not error-proof, they might miss some objects or assign incorrect class labels which leads
to incorrect and noisy annotations. For some tasks, annotating the data necessitate costly

material. This is usually the case for tasks where the model must predict 3D data such
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as depth estimation or 3D object reconstruction. This requires the use of depth sensor,
3D scanner or multiple cameras. This also imposes a controlled environment which limits
the variety of the dataset.

Thus, the lack of large annotated datasets is one of the main limiting factors to the
development of Deep Learning in many possible applications. To circumvent this issue,
in the recent years, researchers have experimented ways to train neural networks without
annotated data. Unlike annotated data, non-annotated data can be easily gathered in
large quantities. For computer vision tasks, images can be retrieved from image databases
such as Flicker and videos from YouTube. For natural language processing, Wikipedia
provides billions of word sentences. Models trained that way are not directly usable but
they learn implicit patterns and representations from the training data. They can be then
trained again on a specific task using annotated data. Because they have already learned
implicit patterns from their previous training, the number of annotated samples needed to
train them on the specific task can be greatly reduced compared to a supervised training
from scratch. The principle of adapting a model trained on a task to another task is called

transfer learning.

Our goal and proposed method

While methods training with limited data have emerged in the recent years, most
of them perform transfer learning from low-dimensional representations learned during
the training on non-annotated data. After this first training, usually, a small network
with these learned representations as input is trained in a supervised manner. While this
approach is well suited for tasks where the target value is also low-dimensional, such as
image classification, it is less effective if the target value is high-dimensional, like an image
for example, because the additional network to train is much larger and thus requires more
samples to be trained sufficiently.

This CIFRE PhD, in collaboration with the company InterDigital, aims to solve the
problem of training neural networks, with limited annotated data, for areas of interest
to InterDigital such as facial analysis. Indeed, many tasks in this field suffer from a lack
of annotations, which limits the development of deep learning-based methods for these
tasks.

In this thesis, we propose another approach, called Generative Model Decoder Adap-

tation (GMDA) to tackle the issue of training neural networks with constrained anno-
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tated data. We propose to use not only low-dimensional representations but also high-
dimensional features from unsupervised generative model decoders during transfer learn-
ing when the target value is high-dimensional. By doing so, we only need to add a few
additional layers to adapt the generative model to the downstream task and thus, we can
train with only a few annotated samples. For example, for the face alignment task we
trained some of our models with only 50 annotated samples instead of a few thousands
and still got decent results. We also demonstrate how the target value of some supervised
facial analysis tasks can be transformed into a high-dimensional value which makes our

proposed method applicable to these tasks.

Manuscript organization

The rest of this manuscript is organized as follows.

In Chapter 1, we briefly present several learning schemes to train without or with
reduced annotated data. Then, we introduce the application of self-supervised learning in
the context of transfer learning. We present two distinct model types employed for this
purpose: encoder-like models and generative models. Furthermore, we describe the concept
of active learning, an alternative approach to minimize the requirement for annotated
samples in model training. Subsequently, we narrow our focus to two specific applications:
face alignment and 3D face reconstruction. We present existing methods in these domains,
with a particular emphasis on techniques that try to achieve effective training using a
constrained amount of annotated data.

In Chapter 2, we present our GMDA methodology to train with limited annotated
data for supervised image-to-image translation tasks. To do so, we adapt a pre-trained
generative model to the image-to-image translation using only a few annotated samples.
We present in this chapter, several possible generative models and different ways to adapt
the model to the supervised image-to-image translation task with the goal of training
with as fewer as possible annotated samples.

Chapter 3 presents the application of our general method to face alignment. We de-
scribe how our GMDA methodology can be applied to this task and present the results
our experiments for the different generative models and model adaptations, described in
Chapter 2, on several face alignment datasets with variable training set size. Our models
can be trained with even only 50 samples. We also compare our models to existing face

alignment methods, especially the ones who train with limited annotated data. On sev-
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eral datasets, our models outperform all of them in multiple low training data settings.
Additionally, we propose an active learning scheme to select the best samples to annotate.
On some datasets, it makes it possible to halve the amount of training data while still
obtaining the same test performance.

In Chapter 4, we apply our general method to the 3D face reconstruction. We use
our method to adapt a generative model to make it predict an image-like representation
which encodes some head pose and face geometry information, again training it with lim-
ited annotated data. Using this adapted model, we annotate a face image dataset with
this image-like representation. Then, we modify a self-supervised 3D face reconstruction
by adding this image-like representation to the input of the network. The modified archi-
tecture predicts better head pose compared to the baseline.

Finally, we conclude this manuscript in the last chapter and propose some possible

future work directions.
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CHAPTER 1

RELATED WORK

In this chapter, we first present several kinds of learning principles to train neural
networks with limited annotated data and why we have chosen to focus on self-supervised
learning. Then, we present the use of self-supervised learning for transfer learning, we
define and compare two kinds of models used for this task: encoder-like models and gen-
erative models, explaining their differences and listing existing methods for both of them.
We particularly detail how generative models can be used for image-to-image translation
tasks. We also present the principle of active learning, another way to reduce the number
of annotated samples needed to train a model. We then focus on our two applications:
face alignment and 3D face reconstruction by presenting existing methods, especially those

who try to use limited annotated data during the training.

1.1 Training with limited annotated data

In the introduction of this manuscript, we described the principle of supervised learning
and its main issue: the need for annotated data. But machine learning is not limited to
supervised learning, there are other kinds of learning, which are dedicated to the training

of models without or with limited annotated data:

1. Unsupervised learning. This type of learning involves training a model on un-
labeled data to identify patterns, structures, and relationships in the data without
explicit supervision. In unsupervised learning, the model is typically given a task
of clustering or dimensionality reduction. Examples of unsupervised learning algo-

rithms include k-means clustering [L1082] and principal component analysis (PCA).

2. Semi-supervised learning. Semi-supervised learning falls in between supervised
and unsupervised learning. In semi-supervised learning, a model is trained on a
combination of labeled and unlabeled data. The main idea behind semi-supervised

learning is that a model can learn more efficiently and accurately when it has access
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to both labeled and unlabeled data. The labeled data helps the model learn the cor-
rect output for certain inputs, while the unlabeled data helps the model generalize
to new and unseen data. When the training on labeled and unlabeled data happens
simultaneously, we use, in this manuscript, the term joint semi-supervised learn-
ing. As common approaches in semi-supervised learning we can cite pseudo-labeling
[Lee+13; DY19] which uses predicted labels of unlabeled samples as ground truth
labels and consistency regularization which imposes consistency between predic-

tions of augmentations of the same unlabeled sample [BAP14; Hon+18].

3. Weakly-supervised learning. This is a type of machine learning technique where
a model is trained using only partial or incomplete labels. Unlike supervised learn-
ing, where the model is trained using fully labeled data, in weakly supervised
learning, the labels provided are noisy or vaguely related to the task. For example,

an object detector can be trained using only weak labels such as image-level tags

[Zho+16].

4. Self-supervised learning. This kind of learning involves training a model on a
task that can be automatically generated from the data itself, without the need for
human annotations. Self-supervised learning can be seen as a special case of unsu-
pervised learning, where the model is given a pretext task. This can include tasks
like reconstructing the input of the model [KW14], predicting the next word in
a sentence [Rad+18], filling in a missing word [Dev+18] or image patch [He+22],
or solving jigsaw puzzles [NF16]. By solving these pretext tasks, the model can
learn useful representations of the input data that can be transferred to other
downstream tasks, such as image classification. It can also be used to train gen-
erative models like image or text generators. Self-supervised learning followed by

supervised learning can be also seen as a form of semi-supervised learning.

Compared to joint semi-supervised learning, self-supervised learning is agnostic to the
downstream task since no annotated data is used during the training. Thus, the self-
supervised trained model can be fine-tuned for different downstream tasks or on different
datasets which reduces the training time and power consumption compared to joint semi-
supervised learning where the whole training on unlabeled and labeled samples must be

done for each downstream task or dataset.

Compared to weakly-supervised learning, self-supervised learning does not require any

kind of annotated, even weakly, data thus the model can be trained on very large unlabeled
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datasets and can learn better representations. Also weakly-supervised learning is prone
to overfitting if the labels are too noisy [Zha+17; Shu+19].

Because of these several advantages for self-supervised learning, we have chosen to
focus our work on this kind of learning to solve the issue of training with limited annotated
data.

1.2 Self-supervised learning for transfer learning

Transfer learning is a machine learning technique where a model that has been trained
on one task is re-used as a starting point for a new task. Instead of training a model from
scratch, which can be time-consuming and requires a large amount of labeled data, transfer
learning leverages the knowledge that a pre-trained model has learned from a previous
“source” task to accelerate learning on a new “downstream” task or to reduce the number
of annotated training samples needed for the learning of the downstream task. The pre-
trained model is used as a starting point for a new model, either by using the pre-trained
model as a feature extractor or by fine-tuning the pre-trained model on the downstream
task. One common example is using a network trained for image classification on the

dataset ImageNet [Den+09] for another image-related task.

The source task learning can be supervised, as illustrated previously using the example
of image classification. However, this is not a requirement, actually supervised tasks train-
ing datasets are always limited because of the need of annotations which can constrain the
generalization ability of trained models and thus their performance for transfer learning.
On the other hand, self-supervised learning does not rely on labeled data, which allows
for the use of much larger training datasets, sometimes containing over a billion sam-
ples. Consequently, the generalization performance of self-supervised models can surpass
that of supervised models. This leads to a subdomain to machine learning: self-supervised
representation learning. This kind of learning aims to learn, in a self-supervised manner,

useful features, e.g., interpretable or that can be used for transfer learning.

The two main families of models used for self-supervised representation learning for
images are encoder-like models [DGE15; NF16; Che+20a; Che+20b; Car+20; Li422] and
generative models [Dum+17; DKD17; DS19; He+22].

Defining the autoencoder architecture will help us understand these models.

25



Chapter 1 — Related work
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Figure 1.1 — An autoencoder for face reconstruction.

1.2.1 Autoencoders

An autoencoder is composed of two main components: an encoder E and a decoder
D. The encoder is a neural network that maps the input data x € X to a low-dimensional
latent representation z = F(x) € Z. The decoder is another neural network that maps
the latent representation back to the original high-dimensional data & = D(z) € X.
The architecture is summarized in Figure 1.1. A traditional autoencoder is trained by
minimizing the reconstruction error between the original data and the reconstructed data.
As we can see, autoencoders are trained in a self-supervised manner since the pretext task

is the training data reconstruction, and does not need annotations.

1.2.2 Encoder-like models for representation learning

In the self-supervised setting, we define encoder-like models as neural networks mainly
composed only of an encoder. As in the autoencoder architecture, the encoder takes as
input the data and outputs a low-dimensional vector. A small fully connected network is
usually added after the encoder to resolve the self-supervised pretext task but is unused

for the transfer learning task. Figure 1.2 sums up the process.

Because of the lack of decoder, the network can’t be trained using the reconstruction
error. Pretext tasks for this kind of models are varied. Doersch et al. [DGE15] predict
relative orientation of image patches while Noroozi et al. [NF16] solve jigsaw puzzles of
image patches. Many recent methods are based on contrastive instance learning [Che+20a;
Che+20b; Car+20; Li+22]| which encourages the neural network to learn representations

that pull similar instances closer together and push dissimilar instances further apart (see
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Stage 1: Self-supervised learning Stage 2: Transfer learning

MLP pretext

I trained from scratch
[ pre-trained

Figure 1.2 — Transfer learning from self-supervised learning encoder-like models for su-
pervised tasks such as image classification or object detection. The pre-trained encoder
can be re-used during the transfer learning.

Figure 1.3). These methods can obtain performances close to fully-supervised methods

while using only a fraction of the labeled training data.

1.2.3 Generative models

In this thesis, we don’t consider the statistical formal definition and simply define
generative models as neural networks that can generate new instances of data. A gener-
ative model must contain at least a decoder (also called generator), ie, a network which
must generate an new instance of data from a low-dimensional input (it can even be just
a scalar (seed)). We will see in Section 1.2.3.4 how generative models can be used for
transfer learning.

In the domain of face generation, the two main network architectures for face im-
age generation are Variational Autoencoders (VAEs) [KW14] and Generative Adversarial
Networks (GANs) [Goo+14].

1.2.3.1 Variational Autoencoders

A Variational Autoencoder (VAE) [KW14] is a type of neural network that can learn
to generate new data by encoding and decoding input data such as images.

The VAE is a special kind of autoencoder designed for data generation. A traditional
autoencoder minimizes the reconstruction error of the training samples but there is no
guarantee that a random vector from the latent space generates a meaningful data when
fed to the decoder. Compared to a traditional autoencoder, a VAE introduces a proba-

bilistic component into the model, where the encoder maps the input data to a probability
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Contrastive
training

Figure 1.3 — Contrastive training pulls closer representations of transformations of the
same image while pushing them apart from representations of different images.

distribution p(z|z) over the latent space rather than to a single vector z, and the decoder
samples from this distribution to generate new data. During the training, it minimizes the
reconstruction error but also constrains the latent space to have a specific distribution,
typically a Gaussian distribution, which encourages the latent space to have a smooth
structure that can be easily sampled. However, vanilla VAEs for images, tend to generate

images a bit blurry.

1.2.3.2 Generative Adversarial Networks

A Generative Adversarial Network (GAN) [Goo+14] consists of two main components:
a generator network G and a discriminator network D. The generator takes a random noise
vector z as input and produces a synthetic data point G(z). The discriminator takes either
a real data point x or a synthetic data point G(z) as input and produces a binary output
indicating whether the input is real or synthetic. The whole architecture can be visualized
in Figure 1.4.

During training, the generator tries to produce synthetic data points that are similar

to the real data points, while the discriminator tries to distinguish between real and
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Discriminator

Random
noise

Fake image

Figure 1.4 — The GAN framework: a generator tries to fool a discriminator with generated
images. Both networks are trained concurrently.

synthetic data points. The training is done in an adversarial manner, with the generator
and discriminator playing a minimax game. Specifically, the generator tries to maximize
the probability that the discriminator will classify its synthetic data points as real, while
the discriminator tries to maximize the probability that it will correctly classify real data
points as real and synthetic data points as synthetic.

This process continues for many iterations until the generator learns to produce syn-
thetic data points that are indistinguishable from the real data points according to the
discriminator. Once the GAN is trained, we can use the generator to generate new data
points that are similar to the real data points. To generate a new data point, we simply
feed a random noise vector z into the generator and obtain the synthetic data point G(z).

In the image domain, the generated images are usually sharper compared to VAEs.

1.2.3.3 StyleGAN

StyleGAN [KLA19; Kar+20; Kar+21] differs from previous GAN architectures by its
generative process (see Figure 1.5). Instead of starting from a latent code z € Z and
progressively increasing the spatial dimensions through the generator layers, z is first

projected to an intermediate latent space W via a mapping network f : Z — W which
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produces an intermediate code w € W. Unlike, Z, VW does not have to support sampling
from a fixed distribution (usually Gaussian), its sampling distribution is induced from
the mapping network f. This mapping can disentangle the factors of variation from Z to
make them more linear.

Instead of z, the input of the generator is a constant learned vector ¢;. At each layer,
w is transformed by an affine transformation into a style vector y; and injected into the
current feature map via an Adaptive Instance Normalization (AdaIN) [HB17]. Each style
vector controls a specific global (image-level) aspect of the generated image such as the
object pose, shape or background. Also, to account for local stochastic variations, random
noise is added, pixel-wise, at each layer. Thus the latent space can focus on global factors
of variation.

With all these properties StyleGAN can generate varied high quality images.

1.2.3.4 Generative models for representation learning

Initially, GANs can generate images from a latent code but lack a way to obtain
the latent code of a real image which make them, at first, inadequate for representation
learning. To solve this issue, some methods add an encoder to the GAN architecture to
get the latent code of real images [Dum+17; DKD17; DS19] so they can use the model
for transfer learning on tasks such as image classification.

Generative models for representation learning are not necessarily convolutional net-
works. He et al. [He+22] use an autoencoder based on transformers [Vas+17] trained to
predict masked image patches. As in convolutional networks, the encoder is then used for
transfer learning.

Usually, only the encoder is used for transfer learning so the process is very similar to

encoder-like models (see Figure 1.6).

1.2.4 Image-to-image translation tasks

Image-to-image translation is a computer vision domain that involves converting an
input image into an output image with a different appearance or style while preserv-
ing certain semantic properties. In contrast to image classification or regression tasks,
which only output a low-dimensional vector representing the label or target value, image-
to-image translation aims to generate a high-dimensional output image that is visually

consistent with the input image.
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(a) Traditional (b) Style-based generator

Figure 1.5 — StyleGAN generator (right) compared to a traditional GAN generator (left).
Figure from StyleGAN paper © 2021 IEEE [KLA19].
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Stage 1: Self-supervised learning Stage 2: Transfer learning

MLP transfer
X —> z Xrec X —> ‘Al — Y transfer

I trained from scratch
I pre-trained

Figure 1.6 — Transfer learning from self-supervised generative models for supervised tasks
such as image classification or object detection. Only generative models with an encoder
(like VAEs) can be used. The encoder can be re-used during transfer learning but the
generator is usually left aside.

Inpainting Super-resolution

Figure 1.7 — Examples of self-supervised image-to-image translation tasks.

Image-to-image translation tasks can be divided into tasks that can be solved with

self-supervised learning and tasks that need annotated data.

1.2.4.1 Self-supervised image-to-image translation tasks

For self-supervised image-to-image translation tasks, we can cite inpainting. The goal
of inpainting is to remove occlusions from an input image (see Figure 1.7). It can be
solved in a self-supervised manner by masking parts of the training images and training
the network to fill the gaps using the unmasked images as supervision. Another example
of self-supervised image-to-image translation task is super-resolution. The task aims to
increase the resolution of input images. Again, it can be trained in a self-supervised fashion
by providing downsampled versions of the training images to the network and using the

original high-resolution images for supervision.

32



1.2. Self-supervised learning for transfer learning

1.2.4.2 Transfer learning for self-supervised image-to-image translation tasks

While many architectures are specifically designed to solve self-supervised image-to-
image translation tasks [Don+15; Led+17; Zhu+17; Sha+20], generative models such
GANs or VAESs, initially trained for image reconstruction or generation, can be used
for downstream image-to-image translation task such as attribute edition, inpainting or
super-resolution [Tov+21; Ric+21; KKC21; Yao+22; Chi+22]. Transfer learning for self-
supervised image-to-image translation might seem odd since the downstream task (the
image-to-image translation task) is also self-supervised so there is no lack of annotations.
However, even self-supervised training can be difficult (time-consuming, unstable, ...)
so training from pre-trained weights can speed up the process and even achieve better
performance compared to training from scratch.

During the transfer learning, the target images of the self-supervised image-to-image
translation task usually lies inside the decoder output distribution but the input data
distribution changes. For example, in the case of super-resolution, if the decoder has been
trained to generate high-resolution images, the goal is now to find the high-resolution
image latent code given only the low-resolution image. The same goes for inpainting,
the goal is now to find the latent code of the unmasked image given the masked image.
Thus, the decoder does not need to be trained anymore, the task is basically a latent
code approximation task. For GANs, an encoder must be trained from scratch to retrieve
to latent code [Tov+21; Ric+21; KKC21; Yao+22] but also for VAEs [Chi+22], because
the encoder is not adapted anymore to the new task since the input distribution has
changed. For example, in the case of super-resolution, the VAE encoder has been trained
on high-resolution images but it must now find the latent code of low-resolution images.
It might be possible to find a way to re-use the original encoder but the downstream task
is self-supervised anyway, so there is no lack of annotated data and it is just simpler to
train a new encoder. Figure 1.8 displays the self-supervised and transfer learning (also
self-supervised) stages, and which network modules are trained or re-used during each
stage.

This kind of transfer learning differs from representation learning previously presented
in Section 1.2.2 and Section 1.2.3.4. In these sections, the goal of the self-supervised
learning is to train a network to obtain low-dimensional features of the input image
which can be then used for downstream tasks such as image classification. These features
are obtained through the encoder part of the neural network which is usually almost

the whole network for encoder-like models. Even for generative models, once the self-
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Stage 1: Self-supervised learning Stage 2: Transfer learning

I trained from scratch
[ pre-trained
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Figure 1.8 — Transfer learning from self-supervised generative models for also self-
supervised image-to-image translation tasks such as inpainting or super-resolution. The
input data distribution changes so the encoder (if it exists) is not fitted anymore. Hence,
a new encoder must be trained but the target image remains inside the generator output
distribution so the generator can be re-used without any changes. (a) Generative models
with an encoder (i.e. VAEs). (b) Generative models without an encoder (i.e. GANS).

supervised training is done, only the encoder is used for the transfer learning [DKD17;
Dum+17; DS19] and the decoder is left aside. It makes sense to only use the encoder for
downstream tasks such as image classification since both the encoder output (the latent
representation) and the target value (the image label for image classification) are low-
dimensional. If the latent representation is of high quality, it is possible to train a small

fully connected network to predict the target value.

In the case of transfer learning for self-supervised image-to-image translation tasks, it

is usually the opposite, the encoder (if it exists) is left aside and the decoder is re-used.

1.2.4.3 Supervised image-to-image translation tasks

Supervised image-to-image translation tasks are supervised tasks where the target
value is an image. An example is semantic segmentation (see Figure 1.9). The goal of
semantic segmentation is to assign a object class to each pixel of an input image. The
target value is an array of segmentation maps, one for each object class. Thus, the seg-
mentation task becomes is an image-to-image translation task since the target value is
an image (without the same number of channels as the input image but with the same

spatial dimensions). Another example of supervised image-to-image translation task is
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Figure 1.9 — Semantic segmentation: a supervised image-to-image translation task.

face alignment through the use of landmark heatmaps (this will be explained in detail in
Section 1.4).

1.2.4.4 Transfer learning for supervised image-to-image translation tasks

Transfer learning from generative models for supervised image-to-image translation
tasks is very different from transfer learning for self-supervised image-to-image translation
tasks because this time, the input data distribution remains the same but the target image
distribution does not lies inside the decoder generative distribution anymore. For example,
in the case of semantic segmentation of faces, if we take the example of a VAE which has
been trained on a face image dataset, the encoder still receives face images as input but
the decoder must now generate segmentation maps instead of face images. Thus, is the
decoder of any use for the supervised task or should a new decoder be trained from scratch
to generate the target image?

Because the target value is high dimensional, this new decoder can’t just be a small
MLP like in Section 1.2.2 and Section 1.2.3.4 so its number of parameters to optimize will
be high. If the number of annotated training data is constrained, this might lead to poor
model performance.

While the target image and the original decoder output are not the same anymore,
they still share common information. For example, for semantic segmentation, the face
shapes of spatially aligned (face parts are at the same pixel locations for both images),
thus it might be possible to re-use some decoder activations to generate the segmentation
maps, and thus maybe reduce the number of new parameters to optimize for the new
task, but this is not trivial. To the best of our knowledge, the only existing method which

uses transfer learning from generative models for a supervised image-to-image translation
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Stage 1: Self-supervised learning Stage 2: Transfer learning
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Figure 1.10 — Transfer learning from self-supervised generative models for supervised
image-to-image translation tasks. Unlike self-supervised image-to-image translation tasks,
this time the target image does not belong inside the generator output distribution so a
new generator must be trained (option (a)) or the generator must be modified (option

(b)).

tasks, and also re-uses the pre-trained decoder is 3FabRec [BW20] for the face alignment
task (detailed in Section 1.4.4). Figure 1.10 shows the possible approaches to perform
transfer learning from self-supervised generative models for supervised image-to-image

translation tasks.

1.2.4.5 Inverting StyleGAN for image-to-image translation

Because of its strong and disentangled generative power, StyleGAN have been used
for image generation but also image-to-image translation tasks such as semantic attribute
edition or inpainting [Tov+21; Ric+21; KKC21; Yao+22]. However, StyleGAN lacks an
encoder which makes such tasks not trivial.

It is possible to semantically edit a synthetic image generated by StyleGAN by mod-
ifying some of its style vectors. However, when editing a real image, we need to first ap-
proximate its StyleGAN latent vector, which requires performing a StyleGAN inversion.
StyleGAN inversion methods can be categorized into three main families: optimization-
based, encoder-based and hybrid methods. Optimization-based methods iteratively refine a
latent code by minimizing the reconstruction error [GSZ20; KKC21], while encoder-based
methods train an encoder to predict the latent code [Tov+21; Ric+21; Xu+21; Nit+22;
Yao+22; Wan+22|. Finally, hybrid methods train an encoder to predict an initial latent
code which is then refined through optimization [Cha+21]. Although optimization-based
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Figure 1.11 — Different kinds of StyleGAN inversion methods. (a) a pre-trained StyleGAN
generator can generate faces from random codes. (b) optimization-based: inversion is
done by iteratively optimizing a latent code to minimize the reconstruction error. (b)
encoder-based: a network is trained to predict the latent codes of face images. (c)
hybrid-based: a network is trained to generate an initial latent code which is refined
through optimization. Figure from Xia et al. paper © 2023 IEEE [Xia+22].

and hybrid methods generally provide superior results in terms of image quality, they
are much slower than encoder-based methods. The different configurations can be seen in
Figure 1.11.

Rather than predicting the true latent code z or the intermediate latent code w, many
methods predict an extended latent code which contains a different latent code for each
style: w* = (wy, wo, ..., w,), n being the number of styles [Nit+22; Ric+21]. This extended
latent code gives more flexibility and improves the reconstruction quality. Some methods
predict along with w* a feature map f which replaces the first layers of the generator
[KKC21; Yao+22]. This feature map improves the image quality but also makes it possible
to encode unaligned images, like rotated or translated images, even though these kinds of

images do not exist in the original StyleGAN generative distribution.
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1.3 Active learning

1.3.1 Presentation

In academic research, authors typically demonstrate the effectiveness of their proposed
method in the settings of low training data by randomly selecting labeled data from the
fully annotated training set. But for real-world applications, there may not be labeled
data available initially. In such scenarios, carefully selecting which samples to annotate

may lead to better trained models, compared to random sampling.

The goal of active learning is to select the best samples to annotate to get the best
possible model with a constrained training set. It is very useful when annotating samples is
very time-consuming or costly. It follows an iterative procedure described in Algorithm 1.
From an unlabeled dataset U and an initial labeled dataset L, the goal is to find the
best samples of U to annotate and add to L. A model M is first trained on L, then each
sample from U is ranked using an acquisition function which depends of the prediction of
M for this sample. The top-k samples are annotated, removed from U and added to L.
The model is then trained again on the updated L, etc. The procedure goes on until the

annotation budget is exhausted.

Algorithm 1: Active Learning process

Input:
The initial labeled dataset L
The unlabeled labeled dataset U
The annotation budget n
Result: The trained model M
1+ 0;
Train a machine learning model M on L;
while ¢ < n do
Use M to predict labels for all unlabeled examples in U;
Rank each example in U using the acquisition function;
Select the top-k ranked examples from U,
Ask an expert to label the selected examples;
Remove the labeled examples from U;
Add the labeled examples to L;
Train M on the updated L;
11+ k;
end
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The crucial part of active learning is the choice of the acquisition function. These
functions can be categorized into two families, although some methods combine both
[KVG19]. The first family is called uncertainty sampling [RR08; GIG17; YK19], in this case
the acquisition function tries to find the samples where the model is the least confident.
It mimics the training loss which is not available for the unlabeled samples. The second
family is called diversity sampling [SS17], and tries to select samples that represent the
diversity of the unlabeled dataset. This approach is particularly useful for classification

tasks, where having a class-balanced dataset is important.

1.3.2 Strengths and weaknesses
1.3.2.1 Strengths

As stated previously, active learning can reduce the amount of annotated data needed
to train a model by selecting the best samples to annotate, thus reducing the annotation
cost. For example, Gal et al. [GIG17] reduce by more than 50% the number of annotated
samples need to obtain 5% error rate on MNIST [LeC98]. It can also lead to faster model
convergence and improved model performance because the model is trained on the most
informative samples. Finally, active learning facilitates human involvement in the machine
learning process, allowing domain experts to guide the learning process, correct model

errors, and improve model interpretations.

1.3.2.2 Weaknesses

On the other hand, active learning depends heavily on the choice of the acquisition
function. An inappropriate one can lead to model bias and poor generalization, for example
if the selected samples are too similar. It is an issue that can arise particularly for the
acquisition functions based on the uncertainty principle. Also, active learning increases
the complexity and the computational overhead of the learning process as the model has

to be retrained multiple times.

1.4 Face alignment

The goal of face alignment is to localize specific points on the face, like the mouth
corners, the boundaries of the eyes or the tip of the nose. Localizing accurately these

keypoints is essential for various applications such emotion recognition or face swapping.
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Figure 1.12 — Facial landmark annotations. Top: 2D landmarks. Bottom: 3D landmarks.

However, annotating images for face alignment is time-consuming, especially for images
with occlusions or low resolution. Also, some landmarks such as the ones on the outline
of the face are ambiguous which may lead to inconsistent annotations among annotators.
Supervised face alignment methods need large amounts of training data to achieve good
performance in terms of accuracy and generalization. However face alignment datasets, for
all the reasons stated above, rarely exceed a few thousand samples making these methods

prone to overfitting on the specific training dataset.

Face alignment task involves detecting either 2D or 3D landmarks. 3D landmarks
contain depth information but also their 2D position remains at the same anatomical
position. For example, for landmarks on the outline of the face, 3D landmarks may be
occluded for profile faces whereas 2D landmarks will “slide” to match the visible (but
not anatomical) outline of the face. Figure 1.12 shows the differences between 2D and 3D

landmarks.

Prior to the development of deep learning techniques in computer vision, face align-
ment algorithms primarily utilized parametric models such as active shape models [Coo+95]
or active appearance models [MB04], or employed cascade regression [Cao+14; Yan+13;
XD13]. However, today the vast majority of these methods are based on artificial neural

networks.
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Figure 1.13 — Five heatmaps (overlayed with the face image) corresponding to five different
landmarks. The landmark position can be inferred from the heatmap maximum.

1.4.1 Heatmaps for face alignment

Although some recent methods still attempt to directly regress the landmark coordi-
nates [Fen+18b], most methods now utilize heatmap regression [NYD16; BT17b; Wu+18;
WBF19; DBC19; Kum+20]. The network is trained to predict a probabilistic heatmap for
each landmark (see Figure 1.13), the landmark coordinates can be inferred from the best
local maximum. Since heatmaps are images, face alignment can be seen as a supervised

image-to-image translation task.

1.4.2 Hourglass networks

A commonly used architecture for face alignment is the Stacked Hourglass Network
[INYD16] which consists of multiple stacked hourglass modules, each of which is composed
of an encoder-decoder subnetwork. The encoder and the decoder in each hourglass module
are connected via skip-connections that allow for information to be passed between the
encoder and decoder layers (see Figure 1.14). This design allows the network to capture
features at different scales and resolutions, which is important for accurately estimating
the landmark positions. Each module generates landmark heatmaps that are fed to the
next hourglass along with the original image. Stacking the hourglass modules progressively
improves the quality of the generated heatmaps.

To improve robustness to large poses and occlusions, Wu et al. [Wu+18] replace land-
mark heatmaps with facial boundary heatmaps, improving both landmark localization
precision and failure rate on multiple datasets. To account for occlusions, Kumar et al.
model [Kum+20] landmark uncertainty and visibility as a mixture of random variables,
while Zhu et al. [Zhu+19] incorporate weights based on occlusion probability into their

model.
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Figure 1.14 — Tllustration of skip-connections (in red) in a network.

1.4.3 3D face alignment

For 3D face alignment, some methods try to detect the landmarks directly by pre-
dicting heatmaps [BT17b]. But relying only on heatmaps is difficult for occluded 3D
landmarks commonly found for profile faces, that’s why most methods prefer to fit a
3D face model (this concept will discussed in depth on Section 1.5) [Zhu+16; Guo+20;
Rua+21]. Wu et al. [WXN21] learn both tasks simultaneously.

1.4.4 Semi-supervised methods

Semi-supervised methods are used to address the problem of limited annotated training
data by incorporating non-annotated into the learning process. To achieve this, various
methods have been developed. Qian et al. [Qia+19] generate images with different styles
from an input pose image. Honari et al. [Hon+18] enforce the equivariance of landmark
predictions over multiple transformations of a face image. Dong et al. [Don+18] transform
images into style-aggregated images to deal with the large variance of different image

styles. Robinson et al. [Rob+19] generate fake landmark heatmaps from unlabeled images

42



1.4. Face alignment

using a GAN. Dong et al. [DY19] train a teacher to evaluate the quality of student
predicted landmarks, and the best samples are added, along with real data, to the next

training set for retraining the student detectors.

Some methods are based on transfer learning: VGG-F [Bul+22] trains a neural net-
work, in a self-supervised manner using a contrastive clustering approach [Car+20], on
a massive collection of face images. Afterward, the model is adapted by fine-tuning for
various facial analysis downstream tasks. FaRL [Zhe+22] leverages masked image model-
ing and image-text contrastive learning on a large text/image pair dataset to pre-train a

network, which can then be utilized for multiple facial downstream tasks.

As stated in Section 1.4.1, predicting landmark heatmaps from a face image can be seen
as an image-to-image translation task. 3FabRec [BW20] is also based on transfer learn-
ing. It trains an autoencoder to reconstruct face images (self-supervised stage) and then
modify its decoder by adding additional convolutional layers, called Interleaved Transfer
Layers (ITLs), interleaved with the decoder ones to generate landmark heatmaps instead
(supervised stage). Although heatmaps are quite different from face images they still share
much information. They can be seen as face images where only information about the face
shape as been kept. Thus, their method re-uses both the pre-trained encoder and decoder
to generate the heatmaps and can be trained only with a few annotated samples. The
supervised stage includes an optional fine-tuning of the encoder and ITLs after training
only the ITLs. The 3FabRec framework is presented in Figure 1.15. To the best of our
knowledge, it is the only approach based on transfer learning for face alignment which
proposes not only a self-supervised learning scheme but also an innovative transfer learn-
ing architecture designed to be trained with limited annotated data with the use of the
ITLs in the decoder. Other methods based on transfer focus more on the self-supervised
learning stage to obtain good representations and use existing convolutional architectures
to predict the heatmaps (a simple convolutional network for VGG-F [Bul+22|, UpperNet
[Xia+18] for FaRL [Zhe+22]).

While 3FabRec architecture can’t compete with fully-supervised methods when train-
ing with many annotated samples, they are able to train their model with only a few
annotated samples. They obtain decent results on many test images even when training
with only one annotated sample. On the other hand, for challenging images with low reso-
lution or occlusions, their encoder which is relatively small (Resnet-18 [He+16]) struggles
to generate a good latent code which leads to not so accurate heatmaps and thus poor

landmarks predictions.
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Figure 1.15 — Overview of the 3FabRec pipeline, including the architecture of the autoen-
coder, as well as the training paths for self-supervised, supervised, and the fine-tuning
stages. Figure from 3FabRec paper © 2020 IEEE [BW20].

1.5 3D face reconstruction

3D face reconstruction is the process of creating a three-dimensional digital model
of a person’s face from two-dimensional images or video footage. The goal is to capture
the geometry of a person’s face accurately (also the appearance depending on the appli-
cation). It finds applications in various fields such as facial animation, virtual try-on of
cosmetics or accessories, virtual avatars in gaming or other virtual reality applications. In
this manuscript, we focus on 3D face reconstruction using only a single monocular face
image (see Figure 1.16), so in the rest of this manuscript, every time we refer to the term

“3D face reconstruction”; this kind of 3D face reconstruction task is implied.

However, getting annotations for 3D face reconstruction is very tedious. It requires a
scanner to obtain a 3D face scans so the total number of people in the dataset is very
limited. Some datasets are annotated by fitting a face model to an image [Zhu+16]. This
makes it possible to obtain datasets with more variety but the annotation quality is quite

poor.
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3D face reconstruction

2D face image 3D face mesh

Figure 1.16 — The 3D face reconstruction pipeline.

1.5.1 3D Morphable Model

Most methods for 3D face reconstruction are parametric methods which aim to regress
parameters of a 3D Morphable Model (3DMM) [BV03].
A 3DMM is a parametric model that represents a 3D face rig i.e. the possible variations

of a 3D face mesh. It can be used to describe the face geometry and color.

1.5.1.1 3DMM for geometry

The 3DMM of face geometry is usually described using two sets of PCA coefficients:

S = S + Aidaid + Aezpaexp ) (11)

where S € R3 is a 3D mesh (a set of N vertices), S € R*V the mean face, A;; €
R3V*Nia i5 the matrix of the N4 principal axes trained on 3D face scans with neutral
expression, ;g € RV are the corresponding shape coefficients, A.,, € R3"*Newr i the
matrix of the N, principles axes trained on the offsets between expression scans and
neutral shapes and o), € RNesr are the expression coefficients.

To align the 3D face with the input view, methods usually predict a 3 x 3 rotation
matrix T € SO(3) (or the pitch, yaw and roll rotation angles), a 2D translation vector
tog € R? and a scaling factor f € R. The 3D face can then be projected into the image

plane using Weak Perspective Projection:

%d(p) = f * Pr * T % (S + A-idaid + Aezpaexp) + t2d ’ (12)

where Voq(p) € R? is the 2D projection of the vertices, P, the orthographic projection

matrix and p = (g, Qeap, [, T, t24)-
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Compared to directly regressing the face vertices, the advantage of using a 3DMM
is that it disentangles face shape and expression so it is easy to generate new plausible
faces with different expressions of the same person. The trade off is that face geometry is
restricted to the PCA shape and expression spaces so it is hard to regress (or generate)

faces with shape or expression very different from the ones of the training 3D scan dataset.

1.5.1.2 3DMM for appearance

A 3DMM can also be used to describe the face skin color. The skin reflectance (also
known as albedo) R = {r; € R*|1 <7 < N} is modeled as:

R=R+E/}, (1.3)

where R € R?V is the average skin reflectance, E, € R3V*Nr the matrix of the N,
principal axes of the skin reflectance and 3 € R™" the corresponding PCA coefficients.
To fit the skin color with the one of the image, an illumination model is usually used.

The most common is the Spherical Harmonics (SH) model [Ml66].

1.5.2 Supervised methods

Supervised methods for 3D face reconstructions aim to recover the 3D face geometry
(a 3D face mesh composed of vertices) from an input face image. They are trained using
annotations provided by the training dataset.

Some methods predict the 3DDM parameters from which they can recover the face
mesh. 3DDFA [Zhu+16] uses a cascaded framework, it trains a neural network to predict
the parameter update Ap* from the concatenation of the input face image I and a Pro-

jected Normalized Coordinate Code (PNCC) derived from the current parameter estimate

p*:

Ap"* = Net*(I, PNCC(p")) . (1.4)
The PNCC is based on the Normalized Coordinate Code (NCC). The NCC is the 3D
mean face normalized to [0-1] in z, y, 2z axis:
gd — min (gd)
max (S;) — min (Sy)

NCC,; = (d==x,y,2), (1.5)
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Z-Buffer
(a) NCC (b) PNCC

Figure 1.17 — The Normalized Coordinate Code (NCC) and the Projected Normalized
Coordinate Code (PNCC). (a) The normalized mean face, which is also displayed with

NCC as its texture (NCC, = R, NCC, = G, NCC, = B). (b) The generation of PNCC:
The projected 3D face is rendered by Z-Buffer with NCC as its colormap. Figure from
3DDFA paper © 2016 IEEE [Zhu+16].

where S is the mean shape of the 3DMM. Since the NCC has three channels like
RGB, it can be seen as texture. The PNCC is rendered by coloring the projected vertices
of a model with parameter p with the NCC colormap. The projection is done using the
Z-buffer algorithm [Str74] (see Figure 1.17).

PNCC(p) = Z-buffer(Vsa(p), NCC) ,
Vaa(p) = f T %S + [tag,0]7 (1.6)
S = (g + Aidaid + Aempaezp) .

As training losses, the network uses the error between the groundtruth and predicted
vertices positions (Vertex Distance Cost, VDC) and the error between the ground truth
and predicted 3DMM parameters (Paramter Distance Cost, PDC).

The training of the network is later improved in 3DDFA-V2 [Guo+20] by adding a

meta-joint optimization of the VDC and PDC, and also by using landmark regularization.

SADRNet [Rua+21] regresses both a pose-dependent 3D face and a pose-independent
3D face which are aligned to get the final 3D face. It also handles occlusions using attention
maps. SynergyNet [WXN21] trains a network to predicts SDMM parameters from a face
image but also another network which predicts SDMM parameters from 3D face landmarks

to add a consistency loss in the training process.
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@
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Figure 1.18 — The illustration of UV position maps. Left: 3D plot of input image and its
ground truth 3D point cloud. Right: The first row is the input 2D image, extracted UV
texture map and corresponding UV position map. The second row is the x, y, z channel
of the UV position map. Figure from PRN [Fen+18a] paper, reproduced with permission
from Springer Nature.

Not all methods are based on 3SDMM. PRN [Fen+18a] encodes a face geometry into a
UV position map. Each vertex of the 3D face is assigned a pixel in the UV map and the
color of the pixel is the normalized 3D position of the vertex (see Figure 1.18). It trains
a network to predict the UV position map from an input image. From the predicted UV
map, the face geometry can be inferred. Jung et al.[JOL21] use a Free-Form Deformation

model which encodes the 3D face into a set of controls points.

Most of the supervised methods train on datasets with low quality 3D annotations,
notably the 300-W-LP dataset [Zhu+16], which extends the 300-W dataset [Sag+13]
with larger face poses using pixel warping and uses 3DMM fitting [RV05] to obtain 3D
annotations. Thus, the annotations are not so accurate since they are obtained through
optimization. Consequently, the predictions of the supervised methods are also not so

accurate.

1.5.3 Self-supervised methods

Self-supervised methods don’t have access to ground truth 3D face geometry during
training, so they mostly rely on image reconstruction loss. They need to model the whole
face (geometry and appearance) and project the rendered face in the image space to

compare it with the input image. Landmark regularization is also usually used: sparse 2D
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landmarks inferred from the predicted 3D face mesh are compared to landmarks predicted

by a pre-trained landmark detector.

MoFa [Tew+17] uses a convolutional network to predict the whole 3DMM face and
scene parameters from an input face image. The face parameters are the PCA coefficients
for the shape and expression: a;q and o, and the PCA coefficients for skin reflectance:
[. They render the scene using a pinhole camera model under a full perspective projection
IT : R? — R2. They predict the position and orientation of the camera in the world through
a rigid transformation parameterized with rotation T € SO(3) and a global translation
t € R3. The functions &1 = T !(t — v) and IT o g 4(v) map a point v from the world
to the camera space and then to screen space. As illumination model, they use Spherical
Harmonics (SH). They assume the illumination as distant and low-frequency, and skin as
a Lambertian surface. Thus, the radiosity at vertex v; with a surface normal n; and a

skin reflectance r; is:

B2

Clrymn;,y) =r1;- > wHy(n) (1.7)

b=1

The H, : R?> — R are SH basis functions and the B? = 9 coefficients 7, € R?
(B = 3 bands) parameterize colored illumination using the red, green and blue channel.
Thus, the whole semantic code vector to predict to render the reconstructed face is p =
(Qid; Qeap, B, T 8, 7).

MoFa uses a differentiable renderer to render the reconstructed face so that they can
backpropagate gradients for losses based on the reconstructed image. As losses, they use
a photometric loss which compares the rendered image with the input image, a landmark
loss which compares 2D landmarks inferred from the predicted mesh to landmarks pre-
dicted with a pre-trained landmark detector and a L2 regularization loss on the predicted
3DMM coefficients (shape, expression and skin reflectance) to encourage the network to

predict faces that stay close to the average face. MoFa framework can be visualized in
Figure 1.19.

RingNet [San+19] builds on MoFa but with some improvements. They use a better
3DMM: FLAME [Li+17], which allows to model more varied facial shapes and expressions.
They also impose consistency on the predicted shape 3SDMM coefficients a;4 for images of
the same person during training. Deep3DFaceReconstruction [Den+19] adds a perceptual
loss which compare features from a pre-trained face recognition network for the input and

reconstructed image. They also use a skin detector to compute the photometric loss only
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Differentiable
renderer

Encoder

Figure 1.19 — MoFa architecture [Tew+17]. The encoder predicts the semantic code vector
p of an input face image. From this code, the differentiable renderer renders the recon-
structed face.

on skin pixels. DECA [Fen+-21] predicts person specific detailed shape in addition to the
classical 3DMM parameters to improve the reconstructed shape. FOCUS [Li+23] learns
jointly face reconstruction and segmentation to better handle occlusions.

Most of the methods use a ResNet50 [He+16] as encoder. The evaluation used to
be qualitative because of the lack of datasets with quality ground truth. Nowadays, the
standard evaluation dataset for quantitative evaluation is the NoW dataset [San-+19].
This dataset only includes validation and test splits so the lack of quality annotations for

training is still an issue. Also it only evaluates the predicted face shape, not the expression.

1.5.4 Hybrid methods

An issue with self-supervised methods is that their training does not take into account
the scale the 3D face. A large face far away from the camera would appear the same in
a 2D image as a small face close to the camera. Because they don’t have access 3D data
during training, they can’t learn to predict metrical faces (faces with the real scale), they
also tend to predict faces with incorrect head pose. MICA [ZBT22] notices this issue and
proposes an hybrid method. A pre-trained face recognition network is adapted and trained
in a supervised manner on 3D data to predict the 3DMM shape coefficients (only shape,
not expression) from a face image. Then, they use Analysis-by-Synthesis from Thies et
al. [Thi+16], a self-supervised optimization scheme, to predict the other face and scene
parameters. Their framework is designed for 3D face reconstruction on videos but can
also be used on still images.

This architecture improves the estimation of face scales compared to self-supervised

methods. However the training of the shape predictor requires a lot of 3D annotated data.
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1.6 Conclusion

In this chapter, we have seen that to reduce the number of annotated samples needed
to train a model, self-supervised learning followed by transfer learning is a possible so-
lution. We have presented two types of models for self-supervised learning: encoder-like
models which focus on learning a good low-dimensional representation of the data using
pretext tasks such as contrastive learning, and generative models which also include a
decoder and are trained mostly by reconstructing the input data. Encoder-like models are
efficient for downstream tasks which expect a low-dimensional target value (such as image
classification), but in the case of supervised image-to-image translation tasks where target
value is high-dimensional, using only the low-dimensional representation as input requires
to train a whole new convolutional network which could prove difficult if the available
annotated data is constrained.

Methods using transfer learning from generative models for image-to-image translation
tasks exist but most of them focus on self-supervised image-to-image translation tasks
where they can re-use the decoder because the target image distribution (of the new
image-to-image translation task) remains inside the decoder output distribution. In the
case of supervised image-to-image translation tasks, the target image distribution changes
so the decoder can’t be used directly. However, finding a way to re-use this decoder could
be an effective way to avoid the need to train from scratch a new decoder during the
supervised stage, and thus an effective way to reduce the number of annotated samples
needed to train the model. We only found one method doing it, in the application of face
alignment. We think that this approach can be extended to other supervised image-to-
image translation tasks, that different generative models can used, and that the way they
adapt the decoder to the supervised task can be improved.

We also presented the active learning principle which is a effective way to reduce the
need of annotated samples, and that could be applied to image-to-image translation tasks.

Finally, we presented two possible applications, face alignment and 3D face recon-
struction, where annotations are scarce and may benefit from transfer learning schemes

to alleviate the lack of annotations.
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CHAPTER 2

GENERAL METHODOLOGY

2.1 Introduction

In this thesis, we propose a methodology, called Generative Model Decoder Adap-
tation (GMDA), to train a supervised image-to-image translation task with few anno-
tated data. To do so, we re-utilize not only the latent representation but also the decoder
layers of a pre-trained self-supervised generative model to generate the target image.
Unlike methods which only use the latent representation, this methodology requires to
modify the decoder to adapt it to the supervised image-to-image translation task. This
principle is inspired from 3FabRec [BW20] which uses it for face alignment but in this
thesis, we generalize this principle to other image-to-image translation tasks. We study
two generative models, the one used by 3FabRec but also another one using a StyleGAN
[KLA19; Kar420; Kar+21] encoder and decoder. We also propose other ways to adapt
the decoder to the supervised image-to-image translation task. Finally, we also propose
to add skip-connections between the encoder and the decoder to improve the network

precision.

Our method pipeline can be seen in Figure 2.1.

Select a pre-trained
self-supervised

Train the adapted model

generative model on the new task

Figure 2.1 — Our GMDA methodology pipeline to train a network on a task with limited
annotated data.
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2.2 The generative model architecture

The generative model architecture should follow several criteria to maximize the trans-

fer learning performance.

1. The generative model should already have a pre-trained encoder so we don’t need

to train it from scratch during the supervised training.

2. The output of the encoder (the latent representation) should contain enough in-

formation for the downstream task.

3. Since we would like to perform the transfer learning with limited annotated data,
the architecture should be easy enough to adapt to the downstream task without
the need to add many new layers or fine-tune a lot of pre-trained parameters during

the supervised training.

We study two possible architectures for the generative model: an autoencoder based
on the ResNet architecture [He+16] and a model based on StyleGAN [KLA19]. Both
architectures used convolutional layers but are still quite different making them interesting
cases to study. The next paragraphs explain their differences and why we choose these

two architectures.

2.2.1 GMDA-R

Our first generative model studied is the one proposed by 3FabRec [BW20]. It is
an autoencoder with a ResNet-18 [He+16] as encoder and an inverted ResNet, using
deconvolutions, as decoder. Thus, we call this version of our methodology: GMDA-R (R
for ResNet). The autoencoder is trained to reconstruct face images in a self-supervised
manner using millions of face images. Similarly to 3FabRec, we also use a GAN [Goo+14]
discriminator and latent code regularization [Mak-+16] to improve the reconstruction and
smooth the latent space. This GAN discriminator is only used during the self-supervised
training and is discarded afterwards. The training face images are very varied thus the
latent representation is robust to many factors such as face pose, age or skin color. The
architecture can be seen in Figure 2.2

3FabRec gets good results with this architecture for the face alignment task but the
generative model has several limitations. The quality of the face reconstruction or gener-
ation is mediocre. This is due to the fact that the generative model architecture (based

on ResNet18) is quite small compared to current generative models [KLA19; Kar+20;
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Self-supervised generative model used in our GMDA-R models

Input image

Reconstruction

Encoder E Generator G

ResNet Inverted
block ResNet
block

Figure 2.2 — The self-supervised generative model, based on the ResNet autoencoder, used
in our GMDA-R models. Similar to the one used by 3FabRec [BW20].

Kar+21; SSG22]. Also, the latent code dimension is only 99. While our primary goal is
not the face reconstruction quality but maximizing the performance of the supervised
downstream task with as few annotated data as possible, the former may be correlated
to the latter.

2.2.2 GMDA-S

We try to alleviate the possible weaknesses of the previous architecture by using the
state-of-the-art face generator: StyleGAN [KLA19; Kar+20; Kar+21] as our decoder. This
network has a much bigger capacity compared to a ResNet18 and the latent code, of size
512, is introduced not at the start of the generator but at each layer block of the generator
(see Section 1.2.3.3). It obtains spectacular results for face generation, capturing both
local and global details. It has already been used for image-to-image translation tasks
(see Section 1.2.4) so we test how well this architecture works in our framework. Since we
don’t want to train an encoder during the supervised stage (as discussed at the beginning

of this section), we also use a pre-trained StyleGAN encoder.
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2.2. The generative model architecture

Self-supervised generative model usd in our GMDA-S models

StyleGAN inversion encoder

Average pooling I EfylekGAN generator
oc

[ 1 ResNet block

Conv. layer

Concat

FC: fully-connected layer
Input image
Conv
Feature code prediction Latent code prediction
Fcl Fcl Fc Fcl Fcl FC| FC| Fcl Fc
Wi Wz W3 Wi Vllk+1 W|1+2 Wiz Wpg Wy
v \

) ,- ...... Bl B B I e
StyleGAN generator Reconstruction

Figure 2.3 — The self-supervised generative model, based on StyleGAN, used in our GMSA-
S models. This StyleGAN encoder [Yao+22] predicts 2 codes: a feature code which replaces
the first layers of the generator, and the latent code. From these 2 codes, the generator
reconstructs the face image.
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Chapter 2 — General methodology

Because the images used for our different downstream tasks do not necessarily follow
the alignment used to train the StyleGAN generator, we need an encoder which can encode
unaligned images. That’s why we use the Feature-Style encoder [Yao+22]. This encoder
predicts 2 codes: the feature code f and the extended latent vector w* (of size 18 x 512).
During image generation, the first k — 1 layers of the generator are replaced by the feature
code f. Then, each latent vector w; (i > k) from w™ is transformed into a style vector
by an affine transformation and injected into the corresponding StyleGAN layer through
AdalN. The last block outputs the reconstructed image.

This new architecture has a better face reconstruction results and a bigger latent repre-
sentation, however it is more complex than the ResNet and a bigger capacity means more
parameters to optimize if we fine-tune the encoder during the supervised training. The
architecture is displayed in Figure 2.3. We call our models based on StyleGAN GMDA-S
(S for StyleGAN).

2.3 Adapting the generative model to the image-to-

image translation task

We need to adapt the generative model to the downstream image-to-image translation
task so that it generates our target image-like value instead of the reconstruction of the
face image. The adaptation should add as fewer new parameters to optimize as possible
to make it easier to train it with few annotated data. Since the target is an image closely
related to the reconstructed image (the output of the decoder), we would like to re-use
the generative power of the pre-trained decoder for our new task. This means finding a

way to re-use the decoder layers activations.

2.3.1 Original Interleaved Transfer Layers

Our baseline to adapt the generative model uses the Interleaved Transfer Layers (ITLs)
from 3FabRec [BW20]. An ITL is a convolution layer located after a decoder block. It
takes as input the the output of the decoder block and, apart from the last ITL, outputs
a new feature map with the same spatial dimensions and channel number of the input.
This new feature map is fed to the next decoder block. The last I'TL generates the target

image. When generating this target image, the latent representation from the encoder
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Adaptation and supervised training of the generative model used in our GMDA-R models

Ground truth
target image
(e.g. heatmaps)

v

‘Ctarget

A

g

Inputimage

ResNet block Inverted ResNet Interleaved
|:|(pre-tra|ned) block (pre-trained) (T;:\r/lvs)fer Layer Predicted

target image
(e.g. heatmaps)

Figure 2.4 — GMDA-R version of the generative model modified for the supervised image-
to-image translation task. The encoder and generator layers are already pre-trained from
the self-supervised training of the generative model. Interleaved Transfer Layers (ITLs)
are added between the decoder layers and are trained in a supervised manner to generate
the target image of the supervised image-to-image translation task. Here, target images
are landmark heatmaps but the method can be applied to other tasks. In the case of
landmark heatmaps, this architecture is the same as 3FabRec [BW20].

goes through both the decoder layers and ITLs. The ITLs re-use the activations of the
decoder layers but adapt them to the target image-to-image translation task.

The GMDA-R and GMDA-S architectures with the added I'TLs can be seen in Figure
2.4 and Figure 2.5 respectively.

The ITLs satisfy the conditions enumerated previously in Section 2.2 and 3FabRec
has proved their efficiency for training with limited data on the face alignment task.
However their configuration might still restrict the ability of the network to adapt to the
downstream task. Indeed, each ITL, apart from the last one, has two tasks to perform,
retrieve the useful information for the downstream task from the previous decoder layer
output while still maintaining a meaningful input for the next decoder layer. One could
try to fine-tune the decoder layers alongside training the I'TLs to remove pressure on the
ITLs but it increases the number of parameters to optimize and our experiments showed

that it actually hurt the model performance.
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Adaptation and supervised training of the generative model used in our GMDA-S models

StyleGAN inversion encoder
I StyleGAN generator block (pre-trained)

Average pooling

Concat

[ ResNet block (pre-trained)

Conv. layer (pre-trained)

FC: fully-connected layer (pre-trained)
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Figure 2.5 — GMDA-S version of the generative model modified for the supervised image-
to-image translation task. Similar to the GMDA-R version, Interleaved Transfer Layers
(ITLs) are added between the generator layers and are trained in a supervised manner to
generate the target image of the supervised image-to-image translation task.
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Original ITL Two-flow ITL (TF-ITL) Hybrid ITL (H-ITL)

Emm— [nterleaved Transfer

Layer (ITL)
® Fusion operation:

- Decoder block
Channel concatenation (TF-ITL,
Batch Norm. + leaky ReLu or
*Up_| +Upsampling Summation (TF-ITLy,,,)

© Channel concat.

Figure 2.6 — The original ITL configuration [BW20] (left) and our two new configurations
(middle and right).

To resolve these issues, we try two other ways to insert the I'TLs in the decoder.

2.3.2 Two-flow Interleaved Transfer Layers (TF-ITL)

In this version, we add a direct flow between the ITLs. There are now 2 different
flows: the face reconstruction flow through the decoder layers to generate the face image,
which is this time remains untouched after the self-supervised training and this new
“ITL flow” between the ITLs. Before each ITL, the original flow is merged with the
ITL flow through either channel concatenation (TF-ITLypcq¢) Or element-wise summation
(TF-ITLgy) depending on our experiment setup. Before this fusion operation, the ITL
flow goes through Batch Normalization and Leaky ReLu operations and is upsampled to
match the spatial dimensions of the original flow.

In this new version, the I'TLs can still incorporate information from the decoder layers

but they have more freedom to generate an optimal flow for the downstream task.

2.3.3 Hybrid Interleaved Transfer Layers (H-ITL)

We also test a hybrid approach. This version is a middle ground between the original
version of the ITLs and the two-flow version. Like the two-flow version, there is a direct
flow between the I'TLs but like the original version, the flow through the decoder layers
is changed (the face reconstruction flow). Basically, the output of an ITL is fed to both
the next ITL and decoder layer. The output of the decoder layer is merged with the ITL

flow using channel concatenation (we can’t use summation because the number of output
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Chapter 2 — General methodology

channels of the previous ITL must be equal to the number of input channels of the decoder
layer which has a different number of output channels).

The three different versions of ITLs are displayed in Figure 2.6.

2.4 Adding skip-connections (SC)

In the encoder, the spatial dimensions of the feature maps are gradually reduced
as global information emerges in the encoder, resulting in a compact representation of
the face image. While this representation contains valuable information that is useful
for reconstructing the whole face, it may not contain sufficient local details for tasks
that need precise detection. To resolve the issue, we take inspiration into the Hourglass
Network [NYD16] by adding skip-connections between the encoder and the decoder prior
to the supervised training, so that local details from the high-resolution encoder feature
maps can improve the quality of the I'TLs feature maps. In our modified architecture
the input of an ITL is the element-wise sum of the output of the previous layer block of
the decoder and the output of the corresponding encoder layer (the one with the same
spatial dimensions) transformed by a set of convolution layers called “bottleneck block”.
For the two-flow and hybrid versions of the ITLs, the summation happens with the ITL
flow before the fusion of the ITL flow and face reconstruction flow. Figure 2.7 displays

how the skip-connections are added to our models depending on the ITL version.

2.5 Conclusion

In this Chapter, we have presented our methodology called Generative Model Decoder
Adaptation (GMDA) to train a deep learning model with limited annotated training data
for a supervised image-to-image translation task. We adapt a pre-trained generative model
to the target task by re-using both the latent representation and the decoder layers for the
target task. To re-use the decoder layer activations, we interleave additional convolution
layers between the decoder layers and train them to generate the target image. By doing
so, we can train the model with limited annotated data. We have presented two generative
models that can be used: the GMDA-R version of our method uses an autoencoder based
on ResNet as generative model and the GMDA-S versions uses StyleGAN. We have also
proposed different ways to insert the additional convolutional layers. Finally, we have also

proposed to add skip-connections between the encoder and the decoder layers to improve
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Figure 2.7 — Our models enhanced with skip-connections (SC) between the encoder and
the I'TLs. Top: skip-connections with the original ITLs. Middle: skip-connections with the
two-flow I'TLs. Bottom skip-connections with the hybrid I'TLs. Skip-connections can be
added to both GMDA-R or GMDA-S versions.
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local details of the generated target image. In the following two chapters, we will present
the results of experiments made with our methodology applied to two applications. Face

alignment in Chapter 3 and 3D face reconstruction in Chapter 4.
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CHAPTER 3

APPLICATION TO FACE ALIGNMENT

As explained in Section 1.4, annotating face images with landmark annotations is time-
consuming. Also, because some landmarks, especially the ones on the outline of the face
or occluded landmarks, are ambiguous, it introduces inconsistency between face images,
particularly if there are multiple annotators. Most face alignment datasets suffer from
these annotation errors which make the training of models with limited annotation even

harder.

Having prior knowledge about what is a face should make a model easier to train, in
terms of number of annotated samples needed, but also more robust to annotation errors.
That is why we apply our Generative Model Decoder Adaptation (GMDA) methodology
proposed in Chapter 2 to the face alignment task, in order to reduce the number of
annotated samples needed to train a model, and increase its robustness. In this chapter
we test the GMDA-R version (which uses a ResNet autoencoder as generative model)
and the GMDA-S (which uses a StyleGAN autoencoder as generative model). We also
test the different versions of the Interleaved Transfer Layers described in Section 2.3: the
original version and our proposed two-flow (TF-ITL) and hybrid (H-ITL) versions. For
the TF-ITL version, we test the two possible fusion operations between the ITL flow and
reconstruction flow (refer to Section 2.3 for more details). The TF-ITL,,.q: version uses
channel concatenation as fusion operation and the TF-ITL,,, version uses element-wise
summation. Finally, we also test if the addition of skip-connections (SC) between the
encoder and the decoder improves the model performance. This gives 16 settings to test.
We also present in this chapter an active learning scheme dedicated to the face alignment

task with limited training data
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3.1 Application specificities

3.1.1 Adapting GMDA to face alignment

In Chapter 2, we detailed our GMDA methodology to train a model with limited
annotated data. This principle involves adapting a pre-trained generative model, especially
the decoder, to train it on a supervised image-to-image translation task using only a few

annotated data.

As explained in Section 1.4.1, the face alignment task can be transformed into a
supervised image-to-image translation task by making the network predict landmarks
heatmaps instead of landmark positions. Thus, using a pre-trained generative model,
we modify its decoder with the addition of Interleaved Transfer Layers [BW20]. Using
landmarks annotations (transformed into landmark heatmaps), we train the modified
generative model to predict landmark heatmaps in a supervised manner. Since most of
the network parameters are already pre-trained, the training can be done using only a

few annotations.

3.1.2 Active learning for face alignment

As presented in Section 1.3, active learning can be used to select the best samples to
annotate to maximize the performance of the model even though it is trained on a small
annotated dataset. These samples are selected using an acquisition function. We propose
a new function called Negative Neighborhood Magnitude (NNM), based on uncertainty
sampling, to assess the quality of the predicted heatmaps. During our experiments we
have noticed that when the model is not confident, the magnitude of predicted heatmap
near the predicted landmark location is low (see Figure 3.1). Adding these samples with
low magnitude to the training set should increase the model performance. The NNM is
designed to select this kind of samples, it is also designed to be fast to compute. To do
so, we don’t analyze the magnitude of the whole heatmap but only around the predicted
landmark location (the peak of the heatmap). The computation of the NNM is as follows:
First, for each predicted heatmap H, we compute the sum of the heatmap pixels within a
square window W; of size s centered around the predicted landmark position ;. Next, we
sum up all these sums and take the negative of the total sum. By doing this, the NNM’s

behavior becomes analogous to entropy, meaning that the higher the NNM value, the less
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Figure 3.1 — Original image with ground truth (green dots) and predicted landmarks (blue
dots), ground truth heatmaps and predicted heatmaps. Wrong landmarks predictions are
usually associated with low magnitude heatmaps. Adding these samples to the training set
should improve the model performance. Our proposed acquisition function, the Negative
Neighborhood Magnitude (NNM), is designed to select this kind of samples.

confident the model is in its predictions, similar to how uncertainty increases with higher

entropy. Thus, the formula is:

NNM(H EL: Z H;(u,v) . (3.1)

3.2 Datasets

To prove the effectiveness of our method and compare it to existing methods, we
train and test our method on several face alignment datasets for both 2D and 3D facial

landmarks.

3.2.1 Datasets for 2D face alignment

300-W. The 300-W dataset [Sag+13] is the aggregation of multiple 2D facial landmark
datasets that have been re-annotated with 68 landmarks. The dataset is divided into 2
sets: a training set of 3148 face images and a Full test set of 689 face images. The Full
test set is further divided into a Common test set of 554 face images where detecting
the landmarks is fairly easy, and a Challenging test set of 135 with more challenging face
images (occlusion, low-resolution...).

AFLW. This dataset [Koe+11] contains 24,386 face images annotated with 21 2D
landmarks. Following usual practice [DY19; BW20], we ignore the landmarks of the ears

and use 20,000 training images and 4,386 testing images. We evaluate our models on the
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Full test set and the Frontal test set, a subset that contains only face images with a
frontal view.

WFLW. This challenging dataset presented in Wu et al’s publication [Wu+18] com-
prises a total of 10,000 images, including 7,500 training images and 2,500 testing images.
Each image is annotated with 98 2D landmarks. The testing set is further divided into
multiple subsets, which partially overlap with each other. Each subset emphasizes a spe-

cific characteristic, such as pose, expression, illumination, make-up, occlusion, or blur.

3.2.2 Datasets for 3D face alignment

300-W-LP: This is a synthetic dataset [Zhu+16] created from 300-W images using the
profiling method of [Zhu+16] to render its faces into larger poses. This dataset contains
122,450 face images with a face pose yaw angle ranging from -90° to 90°. 68 2D and 3D
landmarks annotations are provided for each face. We train our models on this dataset to
predict the 3D landmarks.

AFLW2000-3D. This dataset [Zhu+16] was constructed by re-annotating the first
2,000 images of AFLW with 68 3D landmarks consistent with the ones of 300-W-LP. The
face pose also ranges from -90° to 90°. We use this dataset to evaluate our models trained
on 300-W-LP. The dataset can be divided into 3 subsets according to the absolute face
pose (yaw angle): a subset with almost frontal faces ([0°, 30°]), another one with medium
poses ([30°, 60°]) and the last one with profile views ([60°, 90°]).

While these two datasets are widely used, they have been annotated using a semi-
automatic process [Zhu+16] so the quality of the annotations is poor on many images, as
noticed by Bulat et al. [BT17b].

3.3 Experimental settings

3.3.1 Model architectures

Our models generate landmark heatmaps. Input images are resized to 256 x 256. We
use 5 ITLs and output heatmaps of size 128 x 128 (3Fabrec [BW20] showed that the last
convolution layer of the generator contains almost no face shape information). Landmark
positions are computed as the argmax of each corresponding heatmap. The type of ITL
used; original, our proposed two-flow (TF-ITL) or our proposed hybrid (H-ITL); depends

on the experiment setting.
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The GMDA-R version of our models uses the ResNet autoencoder proposed by 3Fab-
Rec [BW20] as generative model. The encoder is a ResNet18 and the decoder is an in-
verted ResNetl8 using deconvolutions instead of convolutions. . We don’t perform the
self-supervised training ourselves but re-use pre-trained weights provided by the authors
at the address https://github. com/browatbn2/3FabRec. The latent code dimension is
99 (3Fabrec authors’ choice). For the skip-connections convolution blocks we use the hi-
erarchical, parallel, and multi-scale block from [BT17a].

The GMDA-S version of our models use as decoder a StyleGAN2 [Kar+20] genera-
tor pre-trained on the FFHQ dataset [KLA19]. The encoder is a Feature-Style encoder
[Yao+-22] pre-trained on the same dataset.

3.3.2 Training

We use a traditional Mean Squared Error loss between the predicted and ground truth
heatmaps as training loss. We train our models with Adam optimizer [KB15] using a batch
size of 8. The ITLs and the pre-trained encoder are trained simultaneously.

For the GMDA-R version, the learning rate for the I'TLs is 0.0004 and the learning
rate for the pre-trained encoder is 0.00002. The number of epochs depends on the dataset

and training set size. Except for Tables 3.7 and 3.8, the formula for the number of epochs

[T run
300 — 3.2
X T ) ( )

where T, is the total number of samples of the full training set and 7" is the number

is:

of samples from this training set used for training.

This formula is empiric and was used to reduce the number of cross-validation exper-
iments to run in order to find the optimal number of epochs since we had many settings
to test.

For the the GMDA-S version, the learning rate for the I'TLs is 0.0001 and the learning
rate for the pre-trained encoder is 0.00002. For all the results, except the ones from Table
3.7 and Table 3.8, the models are trained for 200,000 steps and both learning rates are
decreased by a factor 0.995 every 10 epochs.

When training with active learning, the initial training set size is 10. The number of
annotated samples added to the training set after a training depends on the final training

set size, we make it large enough so that there is no more than 5 trainings in total. We use
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the Negative Neighborhood Magnitude as acquisition function. We discard the top-10%
ranked samples to avoid selecting outliers (this choice is explained in Section 3.4.2).
We use random vertical flip, rotation, translation, scaling, occlusions, Gaussian blur,

brightness and contrast changes as data augmentations.

3.3.3 Evaluation

To evaluate our models, we use as main metric the commonly used Normalized Mean
Error (NME). We also use the Area Under Curve (AUC) of the Cumulative Error Distri-
bution (CED) and the Failure Rate (FR). The NME is defined as:

NME (%) = — Z“Sl Sill 4100 (3.3)

where s; and §; are the ground truth and predicted location of landmark ¢, N the
number of landmarks and d a normalization distance.

For 300-W and WFLW, we use the distance between the outer eye corners as the
normalization distance for the NME (NME;,er-ocutar). We report the FR and AUC at 10%
NME (FRS AUCO For AFLW, because of the large number of profile
faces, we report both the NME normalized with the diagonal of the ground truth bounding
box (NMEgi,e) and the square root of the ground truth bounding box area (NME},.). We
also report the AUC at 7% NMEy., (AUCT ). For AFLW2000-3D, we also use NMEy .
Because no bounding box is provided for this dataset, it is computed from the ground
truth 3D landmarks.

When training with limited data (without active learning), we average the results of

inter-ocular inter- ocular)

5 five runs with random training samples (potentially overlapping). However, to obtain
a better comparison between our different models, these 5 random training sets are the

same across all models.

3.4 Results on 2D face alignment

We have mainly tested GMDA-R and GMDA-S architectures with the original ITLs
(two-flow and hybrid versions were invented later during the PhD) so we have more
results to provide with these two architectures. The skip-connections in the GMDA-S
architecture were also introduced later. Also, some initial architecture results published

were later refined through better hyper-parameter tuning. That is why results for the
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same architecture might differ across different tables. When this happens, we explain the

discrepancy.

3.4.1 Comparison with state-of-the-art
3.4.1.1 Fully-supervised

Although it is not our primary goal, we compare our models to fully-supervised face
alignment when training on the whole training dataset.

Table 3.1 reports our results for the 300-W and WFLW datasets. We have tested
our GMDA-R and GMDA-S versions with the original ITLs plus the enhanced GMDA-
R version with skip-connections (SC) (also with original ITLs). The GMDA-R version
without skip-connections shares the same architecture as 3FabRec [BW20] but it is our
implementation with different learning size and training epochs.

For this version we obtain worse results compared to the ones of 3FabRec on 300-W
but slightly better on WFLW. The addition of the skip-connections improves the results
on both 300-W and WFLW but the most noticeable gap happens when we switch to the
GMDA-S architecture with a reduction of 15% of the NME on the 300-W Full test set
and 17% on the WFLW Full test set.

While our models don’t obtain results as good as recent fully-supervised methods we
are more interested in their results when training limited annotated data (presented later
in this section).

The results on AFLW are presented in Table 3.2. Again the addition of skip-connections
to the GMDA-R architecture improves the performance but the GMDA-S version still ob-
tain the best results among the 3 configurations. This time, our models are closer to
the state-of-the-art, GMDA-R with skip-connections and GMDA-S are only surpassed by
FaRL [Zhe+22], another approach based on transfer learning but which does not use a

generative model (refer to Section 1.4.4 for more details).

3.4.1.2 Semi-supervised

We also compare our models to other methods trained with limited annotated data. On
300-W (Table 3.3), while our GMDA-R obtains worse results than 3FabRec [BW20] when
training on the whole training dataset, our model is better on small training datasets. The
addition of the skip-connections to the GMDA-R architecture improves the NME except

for training set size of 50 although this last result will be nuanced later (see Table 3.7).
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300-W WFLW
Method Com. Chal. Full Full
LAB [Wu+18] 2.98 519 3.49 5.27
AVS [Qia+19] 3.21 6.49 3.86 4.39
AWing [WBF19] 272 452 3.07 4.36
LUVLi [Kum+-20] 2.76  5.16 3.23 4.37
SHR-FAN [BST21] 261 4.13 294 3.72
ADNet [Hua+21] 2.53 4.58 2.93 4.14
FaRL [Zhe+22] 2.56 4.45 2.93 3.96

Wood et al.* [Woo+22] | 3.03 4.80 3.38 -
3.20 4.57

VGG-F [Bul+22] - ;

3FabRec [BW20] 336 574 382 | 5.62
GMDA-R*™ (Ours) 354 593 4.0l | 558
GMDA-R+SC (Ours) | 3.48 583 3.95 | 550
GMDA-S (Ours) 297 530 342 | 4.62

Table 3.1 — Comparison with state-of-the-art face alignment methods when training with
the whole training set of 300-W or WFLW (except for Wood et al.). The scores displayed
are the NME; ter-ocular o0 the 300-W Common, Challenging and Full test sets, and on
the WFLW Full test set. Compared to fully-supervised methods, our models, designed to
be trained with limited annotated data, fall behind when the training data is abundant.
GMDA-S performs better than GMDA-R. *Trained on a synthetic dataset. **Same ar-
chitecture as 3FabRec but our implementation. “SC” is skip-connections.

AFLW dataset

NMEdis } | NMEpo | AUCT, 1
Method Full Frontal Full Full
LAB [Wu+18] 1.25 1.14 - -
HR-Net [Sun+19] 1.57 1.46 - -
LUVLi [Kum+-20] 1.39 1.19 2.28 0.680
3FabRec [BW20) - - 1.84 -
SHR-FAN [BST21] 1.31 1.19 2.14 0.700
VGG-F [Bul+22] 1.54 - - -
FaRL [Zhe+22] 0.94 0.82 1.33 0.813
GMDA-R (Ours) 1.28 1.09 1.81 0.740
GMDA-R+SC (Ours) | 1.19 1.03 1.68 0.759
GMDA-S (Ours) 1.02 0.90 1.45 0.791

Table 3.2 — Comparison with state-of-the-art methods on the AFLW Full and Frontal test
sets when training on the whole AFLW training set. Our models are better than many
fully-supervised methods. Again, GMDA-S performs better than GMDA-R.
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300-W dataset

Method Training set size

3148 630 315 168 50

(100%) (20%) (10%) (5%) (1.59%)

Com. Ch. Full |Com. Ch. Full |Com. Ch. Full [Com. Ch. Full [Com. Ch. Full

RCN+ [Hon+18| 3.00 4.98 3.46 - 6.12 4.15 - 6.63 4.47 - 9.95 5.11 - - -
AVS [Qia+19] 3.21 6.49 3.86| 3.85 - 427 - - 1632 - - - - -
TS? [DY19] 2.91 590 3.49|4.31 7.97 5.03|4.67 9.26 5.64| - - - - - -
3FabRec [BW20] 3.36 5.74 3.82|3.76 6.53 4.31| 3.88 6.88 4.47| 4.22 6.95 4.75| 4.55 7.39 5.10
VGG-F* [Bul+22] - - 3.20| - - - - 3.48| - - - - - 413
GMDA-R (Ours) 3.54 593 4.01|3.79 6.33 4.29| 3.93 6.70 4.47| 4.10 6.86 4.64| 4.27 7.23 4.85
GMDA-R+SC (Ours) 3.48 5.89 3.95|3.66 6.23 4.17| 3.87 6.60 4.40| 3.93 6.84 4.50| 4.33 7.60 4.97
GMDA-R+SC+AL (Ours)| - - - - - - 3.99 6.49 4.48|4.19 6.78 4.70| 4.29 6.93 4.81
GMDA-S (Ours) 2.97 5.30 3.42|3.14 5.66 3.64|3.22 5.87 3.74| 3.33 6.05 3.86| 3.57 6.62 4.16
GMDA-S+AL (Ours) - - - [3.12 5.53 3.59|3.20 5.67 3.68|3.32 5.83 3.81|3.54 6.24 4.06

Table 3.3 — Comparison (NMEiyter-ocular) With other semi-supervised methods on the 300-
W on the Common, Challenging and Full test sets when training with limited annotated
data. “AL” is Active Learning, “SC” is skip-connections. Bold is best, underlined is sec-
ond best. GMDA-S is better than GMDA-R and almost all existing methods. *Hyper-
parameters fine-tuned for each training size.

Switching to the GMDA-S architecture greatly improves the NME, even on small training
set sizes meaning that the StyleGAN encoder can be correctly fine-tuned with only a few
annotated samples.

Apart from VGG-F [Bul+22], our GMDA-S model outperforms other semi-supervised
methods. As explained in their paper, VGG-F fined-tuned the learning rate, learning rate
scheduler and number of epochs for each dataset and training set size which led to an
extraordinary number of experiments to run as the admit. In our case, because we didn’t
want to spend too much time on hyper-parameter fine-tuning, our GMDA-S models used,
apart for the number of epochs, the same hyper-parameters (see Section 3.3.2). When
using active learning, we surpass VGG-F on the 50 training samples setting.

Results for WFLW are reported in Table 3.4. Like 300-W results, the use of skip-
connections improves the NME except when training with 50 examples (this result will be
nuanced later in Table 3.7). The GMDA-S obtains better results than GMDA-R except
when training with 50 samples. This may be explained by the fact that the images of
WFLW are sometimes very different in terms of pose or resolution compared to the ones
found in the FFHQ dataset (80K images) that has been used to train the StyleGAN
encoder and generator of GMDA-S. In comparison, the ResNet autoencoder of GMDA-
R has been trained on more varied images (2M images). Thus, GMDA-S needs more
annotated samples to adapt its predictions.

For AFLW (Table 3.5) , we only test our GMDA-S because it was the one which
obtains the best results on 300-W and WFLW. Since existing methods present their
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WPFLW dataset

Method Training set size

7500 1500 750 375 50

(100%) (20%) (10%) (5%) (0.67%)

AVS [Qia+19] 4.39 6.00 7.20 - -
3FabRec [BW20] 5.62 6.51 6.73  7.68 8.39
VGG-F* [Bul+-22] 4.57 - 5.44 - 7.11
GMDA-R (Ours) 5.58 6.23 6.42 6.84 7.74
GMDA-R+SC (Ours) 5.50 6.07 6.28  6.72 8.06
GMDA-R+SC+AL (Ours) - - 6.24  6.59 7.60
GMDA-S (Ours) 4.62 5.09 544  5.80 7.78
GMDA-S+AL (Ours) - 4.94 5.18 5.45 7.30

Table 3.4 — Comparison (NMEiyerocular) With other semi-supervised methods on the
WFLW Full test set when training with limited annotated data. “AL” is Active Learn-
ing. Bold is best, underlined is second best. GMDA-S performs better than GMDA-R.
*Hyper-parameters fine-tuned for each training size.

results using NMEg;,, or NMEy,, we compute both metrics. Regarding NMEg;,s, our
approach outperforms other semi-supervised methods across all training set sizes for both
the Full and Frontal test sets. For NME,,,, we compare our method against two other
semi-supervised approaches, FaRL [Zhe+22] and VGG-F [Bul+22]. We surpass VGG-
F on all training sizes even though they performed heavy hyper-parameter fine-tuning.
As for the comparison with FaRL, although they perform better when training on the
full training set, we obtain similar results for the 10% training size and surpass their

performance when training with only 1% of the training dataset.

3.4.2 Training with active learning
3.4.2.1 Selecting the acquisition function

To study the effectiveness of our proposed Negative Neighborhood Magnitude (NNM),
we have conducted experiments using three distinct acquisition functions for the GMDA-R
architecture with and without skip-connections. Two of these functions relies on uncer-
tainty sampling: the NNM and the mean of the spatial entropy of the heatmaps. The third
function, based on diversity sampling, is K-center-greedy algorithm described in [SS18].

Table 3.6 presents the NME; ter-ocular results on WFEFLW for the different acquisition
functions. We chose this dataset for his numerous number of challenging images in both

training and test sets which makes it a good candidate to test the efficiency of active

72



3.4. Results on 2D face alignment

AFLW dataset

Method Training set size
20000 4000 2000 1000 200 50
(100%) (20%) (10%) (5%) (1%) (0.25%)
Full Fr. \Full Fr. \Full Fr. \Full Fr. \Full Fr. \Full Fr.
NMEyox
RCN+ [Hon+18] | 1.61 - - - - - 1217 - |288 - - -
TS? [DY19) - - 1199 1.86|2.14 194|219 2.03| - - - -
3FabRec [BW20] |1.87 1.59|1.96 1.74|2.03 1.74|2.13 1.86|2.38 2.03|2.74 2.23
GMDA-S 1.45 1.28(1.60 1.39(1.63 1.41(1.66 1.43|1.79 1.53|2.05 1.71
GMDA-S+AL - - - - - - 11.66 1.49|1.77 1.56 |2.03 1.75
NMEdiag
FaRL [Zhe+22] 0.94 0.82| - - |1.15 - - - |13 - - -
VGG-F* [Bul+22]| 1.54 - - - | L70 - - - 191 - - -
GMDA-S 1.02 0.90{1.13 0.98|1.15 1.00|1.17 1.01|1.27 1.08|1.45 1.21
GMDA-S+AL - - - - - - 11.17 1.05|1.25 1.11|1.44 1.24

Table 3.5 — Comparison with other semi-supervised methods on AFLW on the Full and
Frontal (Fr.) test sets when training with limited annotated data. Our GMDA-S mod-
els outperform all other methods when training with small training set sizes.*Hyper-
parameters fine-tuned for each training size.

learning. Except for GMDA-R without skip-connections with a final training size of 50, the
K-center-greedy method consistently outperforms random sampling. On the other hand,
when using NNM or Entropy to select samples from all the unlabeled data and when the
final training size is small (<200), the results are either worse or only marginally better

than random sampling.

Nonetheless, a significant improvement can be achieved by excluding the top 10%
ranked samples during the sample selection process, leading to better NME scores com-
pared to random and K-center-greedy sampling. These improved methods are referred
to as NNM;jq% and Entropy;gy in Table 3.6. This finding indicates that very challenging
samples in the WFLW training dataset are actually outliers and should be avoided since

their inclusion does not contribute to the model’s generalization to unseen data.

As the final training set size increases, the advantage of excluding the worst examples
tends to diminish. This is because with the addition of more samples, the proportion
of outliers decreases, and a more representative set of “normal” challenging samples is
introduced into the training set. Thus, their inclusion becomes beneficial for the model’s

performance.

Fig. 3.2 illustrates the top-5 ranked samples based on the NNM (Negative Neighbor-

hood Magnitude) after training our model on 10 randomly selected samples from the
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Acquisition function comparison

Acquisition GMDA-R GMDA-R+SC
function Final training set size Final training set size

50 100 200 5% 10% | 50 100 200 5% 10%
Random 774 744 704 684 642 | 8.06 7.40 6.88 6.72 6.28
NNM 827 757 715 6.77 636 | 8.04 744 7.01 6.63 6.22
Entropy 817 753 7.06 6.71 632|795 744 7.02 6.61 6.22
NNM; gy 7.63 720 682 6.62 6.31| 7.60 6.99 6.72 6.59 6.24
Entropyio% 771 7.12 6.83 6.62 6.34 | 7.53 6.96 6.73 6.62 6.22
K-center-greedy | 7.85 7.36 6.95 6.65 6.32 | 7.74 7.18 6.82 6.61 6.28

Table 3.6 — NMEi ter-ocular ©n WFLW Full test set for different active learning methods
and different training set sizes (5% = 375 examples and 10% = 750 examples), for our
GMDA-R architectures. Entropy;o and our proposed NNMjgy have the best results
by excluding the top-10% ranked samples to avoid selecting outliers while still selecting
challenging examples.

WFLW training set. In the top row, we observe the top-5 samples selected from all the
unlabeled samples. These five images stand out as outliers: blue faces, the second image
displays a distorted face, and the last image is of a non-human face. Including such outlier
images in the training set is unlikely to significantly benefit the model’s generalization
to unseen data. On the other hand, in the bottom row, we see the top-5 images after
removing the top-10% ranked images from the unlabeled dataset. Despite their challeng-
ing nature, such as low resolution, occlusion, and baby faces, these five images are more
“normal” images compared to ones of the top row. Consequently, the model is likely to

gain better predictive capabilities if these samples are added to the training dataset.

Entropy and NNM demonstrate close NME results in our experiments. However, there
is a noteworthy difference in their computation requirements. For Entropy, the entire
heatmaps must be normalized before computing the entropy, while NNM only requires
summing heatmap values within small windows. As a consequence, computing the En-
tropy on average took approximately 0.042 seconds using an Intel Core i7-9850H CPU,
whereas computing the NNM only required 0.012 seconds. Therefore, the NNM is approx-
imately 3.5 times faster to compute compared to Entropy, while still achieving comparable
performance results in terms of NME. This computational advantage makes NNM a more
efficient choice for sample selection, which can be especially beneficial when dealing with

large datasets.

4



3.4. Results on 2D face alignment

Figure 3.2 — Top-5 ranked images for NNM after training the model on 10 random samples
of WFLW. Ground truth landmarks are displayed with green dots while blue ones are the
predicted landmarks. Top row shows the top-5 ranked images among all the unlabeled
samples while bottom row displays the top-5 ranked images after removing the top-10%
images. Top images are clearly outliers while bottom images are more natural but still
challenging images (low-resolution, occlusion,..).

3.4.2.2 Results with active learning

For 300-W (see Table 3.3), when using Active Learning to select the training samples,
results differ between GMDA-R and GMDA-S models. For GMDA-R, the NME decreases
on the Challenging test set which contains difficult face images (up to a 9% decrease for
the training size of 50) while it increases for the Common test set with easy face images
(less than a 7% NME increase at most). This means that the active learning procedure
samples mainly difficult images thus the model predictions improves on this kind of images
but with the cost of a slightly reduced accuracy on easy faces. In the case of the GMDA-S,
the NME is improved on the Challenging test set but also slightly on the Common test set.
This suggests that the model does not need many easy training faces to predict correctly
this kind of faces and benefits from having more hard faces in the training set. One could
notice that GMDA-S trained with active learning using 5% of 300-W training dataset has
a better NME on the Challenging test set compared to GMDA-S trained without active
learning using 10% of 300-W training dataset. Thus, thanks to active learning, it makes
it possible, in some cases, to halve the number of training samples to obtain similar or

even better performance.
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Figure 3.3 — Images of 300-W selected by active learning, after an initial training on 10
random images. Top left: ground truth (GT) landmarks. Top right: predicted landmarks.
Bottom left: GT heatmaps. Bottom right: predicted heatmaps. The active learning acqui-
sition function successfully detects inaccurate predictions.

In the case of WFLW (see Table 3.4) using active learning always improves the per-
formance of both GMDA-R and GMDA-S architectures (up to a 6% NME decrease). For
AFLW (Table 3.5), training with active learning does not lead to substantial performance
improvements on the Full test set. However, it does result in a slight decrease in perfor-
mance on the Frontal test set. This indicates that active learning enhances the model’s
performance on challenging images, particularly those with profile faces, but comes at the
expense of a slightly reduced accuracy when dealing with frontal faces.

Figure 3.3 displays examples of images selected using the Negative Neighborhood Mag-
nitude (NNM), the active learning acquisition function. Heatmaps with low magnitude
can be attributed to several factors, such as network confusion between the outline of the
face and hair or beard, unusual face poses, or nearly closed eyes. Moreover, landmarks lo-
cated on the outline of the face tend to be the most ambiguous, resulting in their heatmap

values being the lowest among all landmarks.

3.4.3 Architecture selection

To evaluate our proposed versions of the Interleaved Transfer Layers (ITLs) (see Chap-
ter 3, Section 2.3) we have conducted multiple experiments on WFLW with different model
architectures and training set sizes. Our results are reported in Table 3.7. We also test how
skip-connections perform in the StyleGAN architecture. The training hyper-parameters
are same as the ones presented in Section 3.3.2 except for number of epochs. We fine-
tune it using 5-fold-cross-validation on the first samples of the training set. For example,

when training with only 50 samples, we use the first 50 samples of the dataset for the
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Model selection results

Method Training set size
50 375 750
(0.67%) (5%) (10%)

Mean NME Med. NME | Mean NME Med. NME | Mean NME Med. NME
GMDA-R 7.61+0.14 595+0.10 | 6.47+£0.09 5.23+£0.03| 6.18£0.06 5.05+0.07
GMDA-R w/ TF-ITLsum 7.57+0.19 587+0.09| 6.39+£0.09 5.17+£0.03| 6.15£0.06 5.02+0.06
GMDA-R w/ TF-ITLconcat 7.62+0.12 590+£0.08 | 6.43+£0.12 5.20£0.05| 6.14£0.05 5.03+£0.06
GMDA-R w/ H-ITL 7.57+0.16 592+0.08| 648+0.12 5.24+0.04 | 6.13£0.06 5.01+£0.04
GMDA-R + SC 7.36+0.08 5.754+0.08| 6.184+0.10 5.02+0.04 | 5.93+0.09 4.85+0.09

GMDA-R w/ TF-ITLsym + SC 7.36+0.09 574+0.16 | 6.17£0.10 4.98+0.02 | 5.84 +0.04 4.78 £0.04
GMDA-R w/ TF-ITLconcat + SC | 7.26 £0.17 5.62+0.14 | 6.06 £0.07 4.90+£0.04 | 5.79 £0.04 4.70 £0.01

GMDA-R w/ H-ITL + SC 7.15+0.11 557+0.10 | 6.04£0.09 4.90+0.04 | 5.78 £0.04 4.71 £0.03
GMDA-S 7.78+0.20 5.32£0.09 | 593+£0.15 4.46+0.03 | 5.52+0.04 4.24+£0.03
GMDA-S w/ TF-ITLsum 7.34+£024 535+0.07 | 591+£0.08 4.46+0.02 | 5.54+0.06 4.26=£0.01
GMDA-S w/ TF-ITLconcat 743+0.24 533£0.07| 590£0.08 4.46+0.01 | 5.54+0.06 4.26=£0.03
GMDA-S w/ H-ITL 7.41+0.08 534+0.08 | 599+0.08 4.46+0.02| 5.53+0.09 4.25+£0.05
GMDA-S + SC 8.25+0.33 544+0.10 | 5.87£0.05 4.44+0.04 | 5444+0.04 4.25+£0.01

GMDA-S w/ TF-ITLsum + SC 8.26+0.28 5.44+0.07 | 5.86£0.07 4.47+0.03 | 545+0.05 4.26£0.03
GMDA-S w/ TF-ITLconcat + SC | 828 £0.31 5.444+0.08 | 5.80 +£0.07 4.48+0.03 | 548 £0.10 4.26 £+ 0.02
GMDA-S w/ H-ITL + SC 8.13+0.13 5.444+0.07 | 596 £0.07 4.46=£0.01 | 5.58+0.11 4.25+0.02

Table 3.7 — Comparison of our different versions of our architecture when training with
different training set sizes. Training samples are sampled from the WFLW training set.
Mean and median NME; terocular On the WFLW Full test set are reported. “TF-ITL”
stands for Two-flow ITL, “H-ITL” for Hybrid ITL and “SC” for skip-connections.

cross-validation. If we train with 100 samples, we would use the 100 first samples of the
dataset for the cross-validation. We also use constant learning rates. These different hyper-
parameters explain the discrepancy between the results presented in Table 3.7 compared
to the ones from previous tables. With all these experiments we hope to find the optimal
combination of model parameters.

The three factors of variation are the generative model, the use of skip-connections
and the different versions of the I'TLs.

3.4.3.1 Generative model: GMDA-R vs GMDA-S

According to Table 3.7 which reports results for models trained and tested on WFLW,
for the small training size 50, the GMDA-R versions (with skip-connections) obtain better
results in terms of Mean NME; e ocular compared to the GMDA-S versions (with or with-
out skip-connections). However, the GMDA-S versions have better Median NME;er-ocular
meaning they usually predict more accurate landmarks but have large NME on some im-
ages. This assumption is corroborated when looking at the Failure Rate for several thresh-
olds (see Figure 3.4). While the GMDA-S version (original ITL, no skip-connections in
the figure) has slightly fewer images with a NME superior to 10, it has many more images
with a NME superior to 20 or 30.
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Figure 3.4 — Failure rate on WFLW Full test set depending on the failure rate threshold.
Models have been trained on 50 samples. GMDA-S has more images with a very high NME
than GMDA-R meaning that GMDA-S completely fails on some images but is generally
more accurate than GMDA-R.

Figure 3.5 displays the predictions of GMDA-R and GMDA-S, trained with 50 images,
on some test images of WFLW. We can see that GMDA-S predictions are sometimes com-
pletely off, especially for low-resolution images, but better for frontal and high-resolution
images. This may be explained by the fact that low-resolution images are not present in
FFHQ), the dataset used to train the generative model used by GMDA-S.

However, if we look at Table 3.8 which also reports results for models trained and
tested on 300-W, a dataset which contains fewer challenging images compared to WFLW,|
this time GMDA-S (fine-tuned) has a better Mean NME than GMDA-R, even when
training with only 50 samples. This last table does not test all the versions of the ITLs

but focuses on encoder fine-tuning that we will discuss later.

When the training size increases, the GMDA-S versions obtain better Mean NME in
addition to better Median NME since the model has a bigger capacity and can better

adapt its representations to challenging face images.
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Image Ground truth GMDA-R GMDA-S

Figure 3.5 — Comparison of the landmarks predictions of GMDA-R and GMDA-S ver-
sions trained on 50 samples from WFLW. GMDA-S struggles on low resolution or profile
images (top 3 images) but performs better on frontal and high resolution images (bottom
3 images). Green dots: ground truth landmarks, purple dots: predicted landmarks. For
better visualization, the landmarks from a same semantic part of the face (mouth, eye,
...) are connected with lines.
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3.4.3.2 Addition of skip-connections

Unlike the results presented in Tables 3.3 and 3.4, this time (Table 3.7), with our
better hyper-parameters, the skip-connections in the GMDA-R architecture improve the
results for all training sizes, even 50 samples. The mean NME decreases between 3% and
5%. However for the GMDA-S architecture, the skip-connections greatly increase the test
NME when training with 50 samples. When the training size increases, the influence of
skip-connections for the GMDA-S architecture fades away and it obtains similar results
to the GMDA-S architecture without skip-connections. As conclusion, when training with
limited data, skip-connections are useful in the GMDA-R architecture but not in the
GMDA-S architecture. This might be due to StyleGAN unusual network flow (the latent
code is added at multiple layers through Adaptive Normalization [HB17]). With additional
work, it might be possible to find a better way to incorporate the skip-connections into

the architecture.

3.4.3.3 Interleaved Transfer Layers

For the GMDA-R architecture without skip-connections, the different versions of the
ITLs obtain similar results for every training set size. However, when skip-connections
are added, the two-flow ITL version, with channel concatenation has fusion operation
between the ITL and reconstruction flow (TF-ITLppeat), and even more the hybrid ITL
version (Hyb. ITL) get better results with a 3% decrease of the mean NME in average.
For the GMDA-S architecture, for the small training size of 50 the variances are quite
high so it is hard to draw any conclusion but two-flow and hybrid versions seem to
have a better Mean NME although the Median NME is the same. There is almost no
difference between the different versions of the I'TLs for the GMDA-S architecture when
the training size is high (superior to 50). As conclusion, the hybrid ITL version gives the
best results when combined with the GMDA-R architecture and with skip-connections.
The gain is noticeable for all training sizes. Outside of this particular architecture, the

different versions of ITLs give similar results.

3.4.3.4 Encoder fine-tuning

By default, we fine-tune the encoder while training the ITLs. However, when the train-
ing set size is too small, there is a risk that this fine-tuning might degrade the performance

because of the increased number of parameters to optimize (although the encoder layers
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300-W WFLW
Training set size Training set size
3148 315 50 7500 750 50
(100%) (10%) (1.59%) (100%) (10%) (0.67%)
GMDA-R w/o FT 4.27+0.07 448+0.07 5.24+0.13 | 6.51£0.04 6.92+0.03 8.42+0.16
GMDA-R w/ FT 4.01+£0.07 4.45+0.08 4.95+0.08 | 5.44+£0.08 6.18£0.06 7.61£0.14

GMDA-R+SC w/o FT | 3.97+0.05 4.31+0.04 4.87+0.11 | 5.65+0.03 6.32+0.08 7.82£0.19
GMDA-R+SC w/ FT 3.90+0.11 4.19£0.02 4.72+0.03 | 521 +0.02 5.93 £0.09 7.36 + 0.08
GMDA-S w/o FT 4.54+0.02 486+0.03 599+£0.06 | 8.94+0.08 9.42+0.06 14.36+0.33
GMDA-S w/ FT 3.424+0.02 3.74+0.03 4.16+£0.07 | 462£0.03 5.52£0.04 7.78£0.20

Table 3.8 — Mean NME; ter-ocutar 00 300-W and WFLW Full test sets for different training
set sizes with and without encoder fine-tuning (FT). “SC” is skip-connections. Fine-tuning
the encoder improves the NME in any case, especially for GMDA-S.

are already pre-trained and the learning rate is smaller for them). To check if this hap-
pens, we have experimented on 300-W and WFLW with three different architectures: the
GMDA-R architecture, the GMDA-R architecture with skip-connections and the GMDA-
S architecture. We use the original I'TLs. The results of our experiments are reported in
Table 3.8. For all three architectures, the fine-tuning of the encoder improves the model
performance even when the training set size is very small (50 examples). For the GMDA-S
architecture, without fine-tuning, the model performs poorly. We suppose that this is due
to the fact that the images from the face alignment datasets, especially WFLW, may be
very different from the ones found in FFHQ), the dataset on which the StyleGAN encoder
and generator of the GMDA-S architecture have been trained. In this dataset, the face is
aligned and the images are high-resolution. On the contrary, images from face alignment
datasets are more varied (low resolution, occlusions, rotated face...). So, without fine-
tuning, the StyleGAN representation struggles to encode the face in a way useful for the

face alignment task although only a few annotated samples are needed for the fine-tuning.

3.5 Results on 3D face alignment

3.5.1 Comparison with fully-supervised methods

We have not found any existing method training on a reduced set of 300-W-LP so
we compare our models to models which train on the whole dataset (we also train on
the whole dataset for a fair comparison). We evaluate on the AFLW2000-3D dataset.
Table 3.9 reports our results. If we compare our models with each other, the GMDA-S
models obtains better results on frontal images (yaw angle inferior to 30°) compared to the

GMDA-R models. However for profile images (yaw angle superior to 60°), the GMDA-
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AFLW2000-3D dataset

Method 0-30° 30-60° 60-90° Balanced Mean
3DDFA [Zhu+16] 3.78  4.54 7.93 5.42 6.03
3D-FAN [BT17b] 3.16  3.53 4.60 3.79 -

PRNet [Fen+18a)] 2.75  3.51 4.61 3.62 3.26

3DDFAV2 [Guo+20] | 2.63 342 448  3.51 ]
SADRNet [Rua+21] 2.66 3.30 4.42 3.46 3.0
SynergyNet [WXN21] | 2.65 3.30  4.27 3.41 -

GMDA-R (Ours) 277 357 474 3690  3.22
GMDA-R+SC (Ours) | 2.74  3.57  4.78 370 321
GMDA-S (Ours) 2.65 3.62  4.89 372 3.14

Table 3.9 — Comparison (NME,) with fully-supervised methods on subsets of
AFLW2000-3D divided by face pose (yaw angle). “Balanced” column is the average of
the first 3 columns. “Mean” column reports the mean NME over the whole AFLW2000-
3D dataset. All the models have been trained on the 300-W-LP dataset. Our models are
close to state-of-the-art for profile faces but fall behind for larger face poses.

R models perform better. We suppose that because the self-supervised training of the
ResNet autoencoder of the GMDA-R models was done on more varied images (2 millions
images) compared to the self-supervised training of the StyleGAN of the GMDA-S models
on FFHQ (80,000 images) which mainly contains frontal images, the GMDA-R models
can better encode profile images which leads to more accurate landmark predictions. On
the opposite, the GMDA-S reconstruction of frontal images is better so the landmark
predictions are better for this kind of images. Compared to existing methods, our models
obtains competitive results on frontal images but fall behind for images with a larger yaw
face angle. This can also be explained that our model does not predict a 3D face model
as most existing methods do but relies on landmark heatmaps which are not really well

suited for large poses since many landmarks are occluded.

3.5.1.1 Results when training with limited data

We evaluate our model (only the GMDA-S version because of lack of time) on AFLW2000-
3D after training on data sampled from 300-W-LP. We use three different sampling meth-
ods, “Random”: fully random sampling, “Balanced”: random sampling but the low (0-
30°), medium (30-60°) and large pose (60-90°) subsets must have equal size and “Active”:
sampling using active learning (same procedure as used for 2D face alignment). We use

different training set sizes, 300, 150, and 48, all divisible by 3 so we can have perfectly bal-
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300-W-LP/AFLW2000-3D

Sampling method Training set size (300-W-LP)
300 150 48
0-30° 30-60° 60-90°|0-30° 30-60° 60-90°|0-30° 30-60° 60-90°
Test NMEpoy (AFLW2000-3D)
Random 2777 3.73 500 | 290 3.92 525 |3.43 4.73 6.08
std dev. 0.04 0.06 0.09 [0.05 0.08 0.11 |0.18 0.12 0.21
Balanced 2.74 3.76 5.05 |{2.86 393 5.25 [3.23 4.538 6.35
std dev. 0.03 0.04 0.06 |0.03 0.06 0.09 |0.06 0.08 0.27
Active 2.81 3.75 4.92 | 298 394 5.09 |3.45 4.70 5.59
std dev. 0.03 0.06 0.06 |0.05 0.08 0.10 |0.05 0.03 0.08
Training face pose yaw distribution (300-W-LP)

Random 0.25 038 037 |0.28 037 035 [0.26 0.38 0.38
std dev. 0.01 0.02 0.02 |0.02 0.03 0.02 |0.03 0.03 0.04
Balanced 033 033 0.33 {033 0.33 0.33 |0.33 0.33 0.33
std dev. 0 0 0 0 0 0 0 0 0
Active 0.16 0.34 0.50 |0.15 0.33 0.52 | 0.20 0.26 0.54
std dev. 0.01 0.03 0.04 |0.02 0.02 0.02 |0.05 0.02 0.06

Table 3.10 — Comparison of sampling methods for several training set sizes according to
the face pose yaw angle. This table reports the NME,,, of GMDA-S models trained on
some 300-W-LP samples and evaluated on the AFLW2000-3D subsets. It also reports the
face pose yaw distribution of the training datasets. Active learning favors large face poses,
improving the performance of the trained models on this kind of images.

anced training sets for the “Balanced” sampling method. Table 3.10 reports the NMEy, .
of the models on the AFLW2000-3D pose subsets. It also reports the face pose distribu-
tion of the training datasets sampled from 300-W-LP. The whole 300-W-LP contains 25%
low pose images, 37% medium pose images, and 38% large pose images so our “Random”
samplings are close to this distribution. “Balanced” samplings have by definition a (33%,
33%, 33%) pose distribution. In the case of “Active” sampling, the table shows that active
learning heavily favors the large pose images when selecting samples. Thus, models trained
with active learning perform better on AFLW2000-3D large pose subset, especially when
training with 48 samples, but a bit worse on the low pose and medium pose subsets. Also,
compared to training with the 122,450 images of the whole 300-W-LP, the performance
of the models does not degrade much. For example, there is only a 0.6% increase of NME
on the large pose subset of AFLW2000-3D when training with 300 samples (0.25% of
300-W-LP size) with active learning compared to training on the whole dataset, meaning

the model performs almost the same with 400 times fewer training samples.
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3.6 Conclusion

In this Chapter, we have presented the application of our general method to the face
alignment task. Our method can successfully re-use the generative power of a pre-trained
generative model to predict facial landmark heatmaps using limited (and also sometimes
not so accurate) annotated training data. When only 50 training samples are available
and the dataset contains very difficult face images such as WFLW, the light-weighted
GMDA-R architecture works a bit better but GMDA-S surpasses it otherwise.

The addition of the skip-connections and our proposed hybrid I'TL version improve the
performance of the GMDA-R architecture, up to 5% (in terms of mean NME decrease)
for the skip-connections, and by 3% in average for the hybrid ITL. Also, our proposed ac-
quisition function for active learning, the Negative Neighborhood Magnitude, successfully
detects face images where the model struggles to predict accurate landmarks. It makes
it possible to select the best samples to annotate and it sometimes halves the number of
training samples needed to obtain a similar performance. Our models also work for 3D
face alignment when training with limited data. Their performance remain almost the
same even when the the number of training samples is divided by 400. However, they

might struggle for faces with large pose but using active learning alleviates this issue.

84



CHAPTER 4

APPLICATION TO 3D FACE
RECONSTRUCTION

As described in Section 1.5, getting good annotations for 3D face reconstruction re-
quires the use of costly equipment such as a scanner which imposes a controlled envi-
ronment and limits the size and variety of the training dataset. We want to apply our
general method to this task to reduce the number of annotated data needed to train
a 3D face reconstruction model. In Section 1.5 we also have presented both supervised
and self-supervised methods for this task. While self-supervised methods do not require

annotations, they tend to predict wrong face scale and head pose.

4.1 Application specificities

4.1.1 Adapting GMDA to 3D face reconstruction

We propose to help self-supervised methods with additional supervised information.
We follow our Generative Model Decoder Adaption (GMDA) framework described in
Chapter 2 to limit the number of training annotated data needed to add this supervised
information. We use the Projected Normalized Coordinate Code [Zhu+16] (PNCC, see
Section 1.5.2) as this additional supervised information. The PNCC applies the NCC col-
ormap to the projected vertices of a 3D face. Each color in the NCC colormap corresponds
to a position of the 3DMM mean mesh, effectively representing a unique vertex index.
By examining the PNCC, it becomes possible to determine the vertex index of each face
pixel in the image, enabling a estimation of the head pose and face shape (refer to Figure
4.1). Although the PNCC doesn’t encompass all the 3D details of a particular 3D face,
such as the exact vertex positions, it still conveys a significant amount of 3D information.

For the 3D face reconstruction application of our method, generating this PNCC

becomes our supervised image-to-image translation task. Unlike the application to face
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Chapter 4 — Application to 3D face reconstruction

ﬂ; N \

Figure 4.1 — Face images (top) and their corresponding PNCC (bottom).

alignment (Chapter 3) where generating the heatmaps was the final task since the land-
mark positions can be inferred from them, in this case the PNCC does not contain all
the information to reconstruct a 3D face. We propose a two-stage framework: we first use
our GMDA method to predict PNCC using only a few annotated data, then we enhance
a self-supervised 3D face reconstruction method by adding the predicted PNCC as addi-
tional input to the network to help the method predict better head pose and face shape.

Figure 4.2 sums up our two-stage framework.

4.1.2 The PNCC predictor

For the PNCC predictor, we use our GMDA-R architecture (see Section 2.2.1) with
the original Interleaved Transfer Layers (ITLs) and skip-connections between the encoder
and the decoder. We don’t use the GMDA-S version because it had trouble generating
accurate PNCCs when training with limited data during early experiments. We used the
original I'TLs because the our proposed two-flow and hybrid versions were not invented
yet. Instead of landmark heatmaps like in Chapter 3, this time the last I'TL generates the
PNCC. The network architecture can be visualized in Figure 4.3.
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Image Predicted PNCC

Stage 1: GMDA

Predicted
face mesh

Stage 2: self-supervised training

Figure 4.2 — Our two-stage framework for 3D face reconstruction training. We first use our
GMDA method to adapt a pre-trained generative model to the PNCC prediction task,
using limited annotated data. Then, we train a 3D face reconstruction model with the
predicted PNCCs as additional input.
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Predicted
PNCC

Input v
image — L1 Loss
- A
T
B
Convolution Deconvolution Interleaved I:I Skip-connection Ground truth
block block Transfer block (new) PNCC
(pre-trained) (pre-trained) Layer (new)

Figure 4.3 — Our PNCC predictor architecture. We use the GMDA-R version with skip-
connections. The model is trained to generate the PNCC.

4.1.3 The 3D face reconstruction model

Our self-supervised 3D face reconstruction model is built upon the MoFa frame-
work [Tew+17]. As detailed in Section 1.5.3, the model is composed of a neural network
that predicts a vector p containing all necessary parameters for reconstructing a facial
image, including 3DMM parameters, illumination, and head pose. To render the face,
a differentiable renderer is utilized, allowing for the back-propagation of training loss.
We keep the same architecture and training loss as MoFa, except for one modification:
the predicted PNCC (from our PNCC predictor) is stacked channel-wise with the face
image at the network input (visualized in Figure 4.4), improving the network ability to

accurately predict head pose and face shape.

4.2 Experimental settings

4.2.1 Training datasets

We train our PNCC predictor on the 300-W-LP dataset [Zhu+16]. This dataset con-
tains 3D landmarks annotation (see Chapter 3) but also 3D face reconstruction annota-
tions obtained through 3DMM fitting [RV05]. Since the 3DMM annotations are obtained

using optimization, their quality is variable but the dataset comes with the benefit of
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Photometric

Loss
A

Differentiable

Encoder
renderer

Rendered
image

@ Channel concatenation

PNCC

Figure 4.4 — Our 3D face reconstruction architecture. As input, we stack (channel-wise)
the face image with the PNCC predicted from our PNCC predictor. The encoder predicts
the parameter vector p. The differentiable renderer renders from p the reconstructed face
image.
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having a large number of samples (122,450 face images). The 3D face annotations use the

Basel face topology [Pay+09].

We train our 3D face reconstruction model on CelebA [Liu+15]. This dataset contains
more than 200,000 face images of celebrities. Once our PNCC predictor is trained, we use
it to annotate this dataset with PNCC annotations.

4.2.2 Architectures and training parameters
4.2.2.1 PNCC predictor

As stated in Section 4.1.2, we use the GMDA-R architecture equipped with the In-
terleaved Transfer Layers (original version) with skip-connections between the encoder
and the decoder for our PNCC predictor. The architecture is similar to the GMDA-R one
used for face alignment (see Chapter 3). The encoder is a ResNet-18 and the decoder is an
inverted ResNet-18 with convolutions replaced with deconvolutions, both pre-trained us-
ing the 3FabRec [BW20] weights available at https://github.com/browatbn2/3FabRec.
The input and output image size is 256 x 256. The I'TLs are 3 x 3 convolution layers and for
the skip-connections blocks, we use the hierarchical, parallel, and multi-scale block from
[BT17a]. We use 5 ITLs and output PNCC of size 128 x 128. As training loss we use the
L1 error between the predicted and ground truth PNCCs. The batch size is 8. We train
from scratch the ITLs and the skip-connections blocks using the Adam optimizer [KB15]
with a fixed learning rate of 4e-4. In the same time, we fine-tune the encoder using again
the Adam optimizer with a fixed learning rate of 2e-5. The decoder layers weights are
frozen. As data augmentations, we use random rotations, translations, contrast changes,
brightness changes and occlusions. The number of training steps depends on the training

set size and is chosen using cross-validation.

4.2.2.2 3D face reconstruction model

For the 3D face reconstruction, the encoder is a ResNet-50 [He+16] pre-trained on
ImageNet [Den+09]. Before being processed by the encoder, the input face images are
first cropped and aligned using a landmark detector [Guo+20]. We use the same training
losses as in MoFa [Tew+17], we train the network for 200 epochs using the Adam optimizer

with a learning rate of 4e-5 and a batch size of 128.
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4.2. Bxperimental settings

4.2.3 Evaluation metrics

We are interested into evaluating the predicted face shape but also the predicted head
pose. To do so, we use several metrics. To evaluate the face shape we use the Normalized

Mean Error (NME):

1

NME =
N

a [[vi — V]|
E £ U= 4.1
=1 d ’ ( )

where v; and ¥; are the ground truth and predicted vertices positions respectively. N
is the number of vertices and d is a normalization distance. From the NME we can derive
several metrics. The 2D Dense Alignment metric computes the NME on the 2D positions
of the vertices. The 3D Dense Alignment metric is the NME on the 3D positions of the
vertices. Following common practices [Fen+18a; Guo+20; Rua+21], for both metrics the
normalization distance is the face bounding box size. We also compute a third metric
called 3D Face Reconstruction metric. This time, the predicted face mesh is first aligned
with the ground truth mesh using Procrustes Analysis before computing the NME. In
this case, again following common practices [Fen+18a; Guo+20; Rua+21], we use the
3D interocular distance (3D distance between the outer eye corners) as normalization
distance. Unlike the previous two, this metric is invariant to the predicted head pose, it
only evaluates the predicted face shape.

To better evaluate the predicted head orientation, we also compute the Mean Absolute
Error (MAE) (see Equation 4.2) between the predicted p and ground truth p rotation
parameters. Since our model operates on aligned images, we only compute the MAE for

the yaw angle (invariant to the alignment).
1 N
i=1

4.2.4 Evaluation dataset

We assess the 3D face reconstruction task using the AFLW2000-3D dataset [Zhu+16]
as evaluation dataset. This dataset was created by re-annotating the initial 2,000 images
of AFLW [Koe+11] with annotations consistent with 300-W-LP. While many recent self-
supervised methods evaluate their performance on the NoW dataset [San+-19], this dataset
does not evaluate the predicted head pose because predicted face meshes are aligned with

ground truth prior to computing metrics. In contrast, our objective is to showcase the

91



Chapter 4 — Application to 3D face reconstruction

enhanced performance of predicted head pose with the addition of the PNCC input.
Hence, we choose to employ the AFLW2000-3D dataset for our evaluation.

4.3 Results

4.3.1 PNCC prediction

In Figure 4.5, a comparison is presented between the ground truth PNCC of selected
images from AFWL2000-3D [Zhu+16] and the predictions generated by our PNCC pre-
dictor. The figure shows the results of two models: one trained on the entire 300-W-LP
dataset [Zhu+16] referred to as PNCCy,y, and another trained on only 50 samples from
300-W-LP, denoted as PNCCy,,,. Due to the semi-automatic annotation process used for
AFLW2000-3D and the limited shape and expression spaces of the 3DMM, some of the
PNCC annotations may not be entirely accurate. Thus, our model predictions are some-
times better than ground truth annotations. When the model is trained on a substantially
smaller subset of the 300-W-LP dataset, specifically just 50 samples (0.04% of the total
dataset), the predictions become slightly blurrier compared to the PNCCy,; model. How-
ever, despite this heavy reduction of the training data, the head pose and overall facial

shape predictions remain generally accurate in most cases.

4.3.2 3D face reconstruction

We compare our self-supervised model with MoFa [Tew+17], adopting the same ar-
chitecture and training parameters, with the exception of the PNCC input. A direct
comparison with newer self-supervised models is challenging due to the prevalent use of
the FLAME face topology [Li+17] in most recent models [San+19; Fen+21], whereas our
model, based on MoFa, and the AFLW2000-3D annotations use the Basel face topology
[Pay+09]. The primary objective of this section is to show the performance improvement
achieved by incorporating PNCC as an additional input into a 3D face reconstruction
model. While this principle could theoretically extend to more modern methods, the lack
of an evaluation dataset under the FLAME topology, which also includes head pose pre-
diction evaluation, prevented us from extending the comparison.

Table 4.1 shows the results of dense alignment, 3D face reconstruction and head pose
estimation evaluation conducted on the AFLW2000-3D dataset [Zhu+16]. The nomencla-

ture MoFaPNCCy.,, represents our 3D face reconstruction model trained with predictions
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[\
Image GT PNCCq,, PNCCse

Figure 4.5 — Comparison between ground truth and predicted PNCCs of some images of
AFLW2000-3D. Far left: input images. Middle left: ground truth PNCCs. Middle right:
PNCCs predicted by our model PNCCy,; trained on the whole 300-W-LP dataset. Far
right: PNCCs predicted by our model PNCCy,,, trained on only 50 samples of 300-W-LP
(0.04% of the dataset). Our predictions are sometimes even better than the ground truth
(the mouth openings of the middle and bottom images are wrong in the ground truth).
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from PNCCy.,,, while MoFaPNCCy,; means that the model has been trained using PNCC
predictions from PNCCy,;. In the evaluation phase on AFLW2000-3D, the second and
third rows utilize the predictions of PNCCy,,, and PNCCy,; respectfully. Regarding the
dense alignment metrics, both MoFaPNCCy,; and MoFaPNCCy,,, yield superior results
in comparison to the original MoFa [Tew+17]. For MoFaPNCCy,;; the 2D and 3D dense
alignment errors are reduced by 4% and 6% respectively. For MoFaPNCCy,,,, the reduc-

tions is around 3% for both metrics.

These results prove that augmenting the model input with PNCC leads to enhanced
head pose predictions, even in instances where PNCC predictions are not flawless. In
terms of the 3D face reconstruction metric, which includes a rigid alignment prior to error
computation, the baseline MoFa exhibits slightly better performance. It’s important to
note that this metric doesn’t consider the predicted head pose, whereas our architecture’s
core objective revolves around improving the predicted head pose through the inclusion
of PNCC in the input.

We further explore the impact of PNCC quality at test time. The results of these
investigations are presented in the lower segment of Table 4.1. Our evaluation still uses
the two 3D face reconstruction models, denoted as MoFaPNCCy,,, and MoFaPNCCy,,
but with variations in the PNCC input used during testing. Specifically, we assess the
models with predictions from PNCCy.,,, PNCCy,y, and ground truth PNCCs (PNCCgr).

For the dense alignment metrics, interesting patterns emerge. MoFaPNCCy,,, yields
nearly equivalent outcomes to MoFaPNCCy,; when both models are evaluated using
the predictions from PNCCy,;. This finding underscores that even if a model is trained
with suboptimal PNCCs, its performance benefits from access to superior PNCCs during
testing. Conversely, when both models are tested using the predictions from PNCCy.,,
MoFaPNCCy,; demonstrates notably poorer results compared to MoFaPNCCy,,,. Em-
ploying ground truth PNCCs considerably enhances dense alignment results for both

models.

The results for the 3D face reconstruction metric are more puzzling. Unlike the dense
alignment metrics, utilizing PNCCy,; alongside MoFaPNCCy,,, leads to inferior out-
comes, while coupling PNCCy,,, with MoFaPNCCy,;; improves the metric. Intriguingly,
employing ground truth PNCCs enhances results for MoFaPNCCy,;; but doesn’t exhibit
the same effect for MoFaPNCCy,,,. All these observations suggest that the PNCC pre-
dominantly conveys information related to head pose rather than accurate facial geometry

which is evaluated by the 3D face reconstruction metric.
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Method Dense 2D Dense 3D Face. Rec. Yaw MAE
MoFa [Tew+17] 4.31 5.85 7.49 4.97
MoFaPNCC; w/ PNCCy,,, 4.20 5.66 7.61 4.95
MoFaPNCCy,; w/ PNCCyyy  4.12 5.48 7.55 4.66
MoFaPNCCy,,, w/ PNCCy,;  4.14 5.50 7.93 4.76
MoFaPNCCyy,; w/ PNCCy.,  4.69 6.59 7.05 6.14
MoFaPNCCy,,, w/ PNCCqr 3.82 5.08 7.73 4.26
MoFaPNCCy,; w/ PNCCqr 3.58 4.88 7.46 3.93

Table 4.1 — Dense alignment, 3D face reconstruction and head pose metrics on AFLW2000-
3D. MoFaPNCCy,; has been trained with PNCCy,,; predictions and MoFaPNCCy.,, with
PNCCyey. Bottom part displays results of our models depending on the PNCCs used at
test time. PNCCgr denotes the ground truth PNNCs of AFLW2000-3D.

4.3.3 Head pose rotation estimation

The results concerning head pose rotation estimation are detailed in the last column
of Table 4.1. As previously mentioned in Section 4.2.2, our model functions on aligned
images, thereby we only present the Mean Absolute Error (MAE) for the yaw angle
which is unaffected by the alignment process. We observe outcomes in line with those
of the dense alignment metrics. The incorporation of PNCC yields enhancements in the
predicted yaw angle. The Yaw MAE metric is reduced by 6% with the MoFaPNCC g,
compared to the original MoFa. The improvement is relatively modest for MoFaPNCCy,,
when evaluated with the predictions from PNCCy,,, (0.4% MAE reduction) but only 50
annotated training samples have been used in this configuration. Similar to the dense
alignment metrics, utilizing superior PNCCs during testing leads to enhancements in
results for both MoFaPNCCy,,, and MoFaPNCCg,;.

4.3.4 Qualitative results

Figure 4.6 visually displays the face meshes, focusing solely on geometry without tex-
ture, generated by MoFa [Tew+17] and our models across various facial images. Notably,
our models exhibit improved predictions for head pose parameters, specifically the face

yaw angle in the top image and face scale in the middle and bottom images.
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Image MoFa MoFaPNCC,,, MoFaPNCC,
[Tewari et al. 2017] (Ours) (Ours)

Figure 4.6 — Comparison of some 3D face reconstruction predictions (only geometry). Our
models predict better face scale (middle and bottom images) and rotation parameters (top
and bottom images).
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4.4 Conclusion

In this Chapter, we have applied our general method to improve 3D face reconstruc-
tion. We used our GMDA framework to adapt a pre-trained generative model to the
PNNC prediction task. Even with limited, and not so accurate, training data, our model
can predict decent PNCCs, sometimes better than the ground truth. This proves that our
method is not restricted to facial landmark heatmaps (see Chapter 3) and can be applied
to other facial image-to-image translation tasks. Our experiments shows that adding the
PNCC to the input of a self-supervised 3D face reconstructions improves the predicted
head pose, even with PNNCs predicted by a PNNC predictor trained with only 50 anno-

tated samples.
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CONCLUSION AND PERSPECTIVES

Conclusion

The goal of this PhD was to propose an original approach to overcome the issue
of the lack of annotated training data which plagues many possible applications of Deep
Learning. Among these applications, we focused on facial analysis tasks, which is a domain
of interest for InterDigital, because many of them suffer from this problem by either lack
of annotated data or having only access to poor annotations. This degrades the quality
of the models trained on this kind of data.

To resolve this issue, we based our work on transfer learning from self-supervised
models. This kind of models learns, using pretext tasks, from non-annotated data which
can be found in large quantities. Hence they learn powerful representations robust to
many factors of variations. These learned representations can then be used for other
applications with only a few annotated data needed to adapt them to the downstream
task. While this approach is not novel, most existing models use for transfer learning only
low-dimensional representations derived from self-supervised encoder-like models. Even in
the case of generative models, usually only the encoder is kept during the transfer learning

and the decoder is discarded.

In this PhD, we proposed a new approach: the Generative Model Decoder Adapta-
tion (GMDA) which performs transfer learning using high-dimensional features from a
self-supervised generative model decoder. This approach is particularly well suited for
downstream tasks where the model prediction must be a high-dimensional value such as
supervised image-to-image translation tasks, since it avoids the need to train a large neural
network for the downstream task which would require many annotated training samples.
Unlike methods which only use the low-dimensional representations, our approach necessi-
tates to make creative architecture changes inside the generative model, and particularly
the decoder, during the transfer learning to adapt it to the supervised image-to-image

translation task.
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Evaluation of the proposed architecture options

We proposed several architecture options for this approach. For the generative model,
we tried a ResNet [He+16] autoencoder (GMDA-R version) and StyleGAN [KLA19]
(GMDA-S version). To adapt the generative model, we took inspiration from Interleaved
Transfer Layers [BW20] which are convolutional layers interleaved with the decoder lay-
ers, but we also proposed two improved versions of them: the two-flow ITL and the hybrid
ITL. Adding skip-connections between the encoder and the decoder was also tested.

We tested these architecture choices on our first facial analysis task: face alignment.
This task aims to predict the positions of facial anatomical landmarks on a face. This
task can be seen as an image-to-image translation task if the positions of the landmarks
are encoded into heatmaps so we applied our GMDA method to this task.

Each architecture option was tested with different training set sizes, sometimes also on
different datasets, to see how this particular option behaves depending on the number of
available training samples. Each reported result is the mean of 5 runs with random initial
parameters and random training samples to account for the possible statistical variance
of the tested setting. Thus, all the presented results necessitated hundreds of runs. From

our experiments with our different architectures we could draw several conclusions.

1. For almost all tested datasets and training set sizes, the GMDA-S architecture with
its increased capacity and generative quality works better than the light-weighted
GMDA-R models except when only a few annotated samples are available for
training (GMDA-S is always better in our experiments when the training size is

strictly superior to 50) and the test face images are very challenging.

2. Skip-connections between the encoder and the decoder improve the accuracy of
the model for the GMDA-R architecture, up to 5% in terms of NME reduction,
but do not seem to work well for the GMDA-S architecture. This might be due to
StyleGAN unusual way to feed the latent code to the generator.

3. Our proposed hybrid ITL improves the performance of the GMDA-R models with
skip-connections compared to the original ITL with a 3% NME reduction in aver-
age.

Face alignment results

We also proposed a novel acquisition function, the Negative Neighborhood Magnitude,

for active learning which assesses the quality of the predicted heatmaps. Thanks to this
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function, when constructing a face alignment dataset, one can select the best samples to
annotate rather than annotating random face images, which improves the performance of
the model with equal number of training samples. In some cases, a model trained with
active learning obtained better performance compared to a model trained with the double
of its number of training samples but without active learning.

Annotating an image for face alignment is time-consuming so face alignment datasets
are usually quite small which makes the learned model prone to overfitting. Also, an-
notations can be ambiguous (e.g. the positions of the landmarks on the outline of the
face) which may lead to inconsistent annotations again hurting the trained model perfor-
mance. However, using our method with the proposed architecture and training scheme
improvements, we were able to successfully adapt the generative model to face alignment
using only limited annotated data during training, even only 50 samples, outperforming
state-of-the-art for many low data settings on many datasets. For example, on the AFLW
dataset, our models outperform all other existing methods if the training set size is infe-
rior to 10% of the whole training dataset size. In the case of 3D face alignment, for some
settings, even if we divide the number of training samples by 400, the performance of our

model remains almost the same.

3D face reconstruction results

The other task on which we experimented our approach was 3D face reconstruction
which aims to retrieve the 3D face rig parameters from a single monocular face image. This
task also lacks large and accurately annotated dataset because 3D face annotations require
the use of face scanner or multi-camera setup which imposes a controlled environment.
Most existing training datasets are annotated in a semi-automatic way which leads to
poor annotations.

Rather than directly predicting the 3D face rig parameters, we used our method to
improve self-supervised methods which tends to predict wrong head pose of face scale
due to the lack of 3D annotations during their training. We proposed to add supervised
information, through the use of the PNCC [Zhu+16], to the input of the self-supervised
model, in addition to the face image.

We used our GMDA framework to train a PNCC predictor using limited annotated
data. Once our predictor trained, we annotated a face dataset with PNCCs and trained the
self-supervised 3D face reconstruction on the augmented dataset. As PNCC predictor, we

used our GMDA-R architecture with Interleaved Transfer Layers (original version) and
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skip-connections between the encoder and the decoder. Even when training with only
50 samples, our predictor could predict decent PNCCs, sometimes even better than the
ground truth annotations.

Our experiments proved that the self-supervised 3D face reconstruction model indeed
benefits from the PNNC information and predicts better head pose and face scale. Both
the 3D dense alignment metric and the Yaw MAE are reduced by up to 6% compared
to the original self-supervised method. However, the PNCC does not seem to improve
the predicted face geometry which indicates that the PNCC mostly contains head pose
information. Our experiments also showed that even models trained on not so accurate
PNCCs benefit from having access to better PNCCs at test time.

Perspectives

The self-supervised 3D face reconstruction method [Tew+17] used as baseline in Chap-
ter 4 is relatively old but we chose it because recent methods use the FLAME face topology
[Li+17] which is different from the one, based on Basel [Pay+09], used in our selected
annotated dataset AFLW2000-3D. If we had time, we would have liked to convert the
dataset annotations to the FLAME topology to see if the predicted head pose improve-
ment provided with the addition to the PNCC still holds for recent self-supervised 3D
face reconstruction methods.

We applied our method to two facial analysis tasks: face alignment and 3D face recon-
struction but it could be interesting to test it for other supervised image-image translation
tasks such as semantic face segmentation. Also, expanding the approach beyond the facial
domain with images of other kinds of objects such as animals, buildings or even scene im-
ages containing multiple objects could also work. Could it also be applied to images with
symbols (text documents, music sheets, ...)? Generative models already exist for these
kinds of images so it should be possible to adapt them to the downstream task if they
share similar structures as the ones used in this PhD.

Also, even though our methodology is initially only applicable to image-to-image trans-
lation tasks, we have seen in Chapter 4 that by using intermediary image-like represen-
tation such as the PNCC, our method can also be used to help during the training of
tasks which are not image-to-image translation tasks like 3D face reconstruction. Thus,
our method might be applicable to tasks such as object detection or image classification

if we can find an image-like representation of the target data.
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For the generative model, we only experimented on convolutional networks but many
recent models are based on transformers [Zha+21; Zha+22] which have shown great per-
formance in many domains. Whether and how they can be adapted to another image-
to-image translation task, like we did for GMDA-R and GMDA-S, is an open question.
Especially, is it possible to interleave new layers between the decoder blocks like we did
with Interleaved Transfer Layers? Or other strategies must be applied to re-use the de-
coder layers? Since convolutional layers are not used in transformers, simply interleaving
the decoder blocks with linear layers could be a first experiment to test.

Finally, self-supervised models can learn powerful representations using large non an-
notated datasets. The success of models such as ChatGPT, and most of our experiments
in this PhD are proofs of that. But there is still no guaranty that these representations
are useful for any downstream task. In the domain of computer vision, with the progress
of computer graphics, we think that the increasing quality of synthetic samples may be
another solution to handle the lack of annotated samples. While synthetic data is not with-
out limitations such as potential domain shift and limited variety, improving on these two
factors might be the key to obtain large annotated datasets almost as good a real ones

and make supervised training relevant for tasks that currently lack annotated data.
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reposent toujours sur I'apprentissage super-
visé qui requiert des données annotées. Or,
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ler difficile. Dans ce mémoire, nous présen-
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sage par transfert, pour I'entrainement de ré-
seaux de neurones avec un faible volume de
données annotées. Notre approche consiste
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connexions un réseau génératif autosuper-
visé pré-entrainé, pour I'adapter a une tache
image-vers-image supervisée. Contrairement
a la plupart des méthodes basées sur I'ap-
prentissage par transfert, nous utilisons I'en-
semble du modele génératif, notamment le
décodeur, pour la tache supervisée. Notre

méthodologie s’inspire du réseau 3FabRec
proposé par Browatzki et al. pour l'aligne-
ment facial que nous avons étendu a diffé-
rentes taches supervisées et réseaux généra-
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différentes fagons d’augmenter le réseau gé-
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truction 3D de visage. Pour la premiere appli-
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nombre de données d’entrainement est limite.
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Abstract: Deep learning has developed con-
siderably in recent years. However, many ex-
isting methods are still based on supervised
learning, which requires annotated data. Ob-
taining such data can be difficult. In this thesis,
we present a methodology, based on trans-
fer learning, for training neural networks with
a low volume of annotated data. Our ap-
proach consists in augmenting a pre-trained
self-supervised generative network with new
layers and connections, to adapt it to a super-
vised image-to-image task. Unlike most meth-
ods based on transfer learning, we use the en-
tire generative model, including the decoder,
for the supervised task. Our methodology is
inspired by the 3FabRec network proposed

by Browatzki et al. for face alignment, which
we have extended to other supervised tasks
and generative networks. We have also pro-
posed and studied different ways of augment-
ing the generative network for the supervised
task. We applied our methodology to two su-
pervised tasks: face alignment and 3D face
reconstruction. For the first application, our
models outperformed the state-of-the-art on
many datasets when the number of training
data is limited. For 3D face reconstruction, we
were able to improve the predictions of a self-
supervised network via the addition of super-
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