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General Introduction 
Nowadays, catalysis is the key technology for the synthesis of molecular materials, organic 

building blocks, fine chemicals, natural products, pharmaceuticals and all kinds of bio-active 

compounds.[1] In general, by the use of catalysts, chemical reactions can be conducted in a safer, 

more efficient, and environmentally benign manner. Most importantly, catalysts may permit to 

control the selectivity of a given reaction usually under milder reaction conditions. ‑urthermore, 

improved cost-effective and more environmentally benign chemical synthesis will rely on the 

continuing development of new and more efficient catalyst systems. 

In the past few decades, due to their importance especially in pharmaceuticals, much effort has 

been devoted to the development of the eco-designed catalytic processes for the production of 

fine chemicals such as alcohols, amines, or N-heteroaromatics via hydrogenation, transfer 

hydrogenation, hydrosilylation of the corresponding unsaturated compounds. 

Hydrogenation with molecular dihydrogen is a clean, atom-economic and efficient reaction 

that has drawn a huge interest for more than a century from the Nobel Prize of Sabatier in 1λ1β 

for heterogeneous hydrogenation of fatty acid derivatives to the one of Noyori and Knowles in 

β001 for asymmetric homogeneous hydrogenation.[β] In addition to hydrogenation reactions 

performed with gaseous hydrogen in appropriate high pressure apparatus, transfer 

hydrogenation reactions are conducted using easy-to-handle and cheap liquid hydrogen donors 

such as alcohols and formic acid without special equipment, being thus helpful alternative 

procedures for the reduction of unsaturated compounds.[γ] Homogeneous 

(transfer)hydrogenation catalysts are usually complexes based on late transition metals 

including ruthenium, rhodium, iridium, palladium and nickel. 

Additionally, in reduction area, hydrosilylation[4] is another promising alternative for the 

selective catalytic transformation of organic molecules compared to (transfer)hydrogenation 

reactions, or the stoichiometric reduction with metal hydrides[5] (e.g. aluminium and boron 

hydride reagents). Thus, the use of hydrosilanes is often interesting owing to its operational 

simplicity, mild conditions and excellent chemoselectivity notably towards reducible 

functional groups. Therefore, hydrosilanes can be considered as interesting alternative 

reductants, even if they produced in fine wastes. 

Among hydroelementation reactions, (dehydrogenative)hydroboration is one of the most 

important and efficient methods to prepare alkyl boronic esters which are valuable boron 

derivatives, widely used in both Suzuki-Miyaura cross-coupling[6] and Petasis reactions.[7]  
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On the other hand, there is still less attention devoted to the earth-abundant, low cost and eco-

friendly metals in comparison to noble ones. Nevertheless, homogeneous catalysis based on 

non-noble metals has drawn a huge attention during the last few decades as it offers an abundant, 

cheap and low-toxic alternative to noble-metal catalysts. Iron, as one of the most abundant and 

inexpensive transition metals on the ‐arth, has emerged as a powerful sustainable alternative 

candidate, notably in catalyzed reduction reactions.[κ] Actually, the level of the activity, and 

chemo- and enantio-selectivities obtained by iron catalytic systems can be now compared to 

the ones involving noble transition metals.  

‑urthermore, manganese is ranking the third most abundant transition metals after iron and 

titanium, and has tremendous potential applications in organic synthesis, on account of its 

numerous oxidation states (-III to +VII). Traditionally, high-valence manganese compounds, 

represented by KMnO4, are widely used in oxidation reactions. Moreover, in the beginning of 

this β1st century, manganese has been brought to people’s attention for catalytic applications. 

More particularly, until β016 and the beginning of this PhD thesis, it was scarcely used in 

catalytic hydrogenation and hydrogen transfer. Nevertheless, since few years, a huge 

international competition permitted to demonstrate that it can be a suitable transition metal for 

the design of efficient hydrogenation and hydrogen borrowing catalysts.[λ] In line with our 

interest in developing group 7 metals based catalysts for reduction reactions, the well-defined 

rhenium catalysts for (de)hydrogenative synthesis will be also targeted in this work. 

The aim of this PhD work is the use of earth abundant metals such as iron and manganese, and 

its related Group 7 rhenium in hydrogenation, hydrogen transfer, hydrogen borrowing, 

hydrosilylation and (dehydrogenative)borylation reactions. The thesis is thus structured into 

six chapters and each chapter mainly focus on one type of reaction.  

The Chapter I gives a general introduction on iron catalyzed reduction reactions. 

The Chapter II describes emerging dehydrogenative borylation reactions, notably the highly 

selective catalytic direct C-H borylation of styrene derivatives and terminal alkynes with 

pinacolborane, using ‑e(PMeγ)4 and ‑e(OTf)β/DABCO catalytic systems, respectively. 

The Chapter III will be dedicated to hydrosilylation reactions. It first reports N-heterocyclic 

carbene (NHC) based iron complexes ‑e(CO)4(IMes) and [Cp‑e(CO)β(IMes)][I] able to 

efficiently catalyze the catalytic reductive amination reactions with hydrosilanes to access 

cyclic amines. In a second part, using commercially available Mnβ(CO)10 and Reβ(CO)10 as 
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catalysts and ‐tγSiH as hydrosilane, the reduction of carboxylic acids, esters and amides can 

be achieved chemo-specifically. 

The Chapter IV highlights the application of a series of well-defined manganese pre-catalysts 

featuring readily available bidendate pyridinyl-phosphine and β-picolylamine ligands in 

efficient hydrogenation reactions. 

The Chapter V demonstrates that a series of rhenium pincer catalysts bearing amino-

bisphosphino ligands can efficiently promote the hydrogenation of carbonyl derivatives and 

the selective mono N-methylation of anilines with methanol via hydrogen borrowing process. 

‑urthermore, acceptorless dehydrogenative synthesis of substituted quinolines can be also 

performed using such catalysts. 

‑inally, the Chapter IV is devoted to the development of a Mn-catalyzed ligand- and additive-

free aerobic oxidation of amines to prepare aldimines, N-heteroaromatics and benzoimidazole 

derivatives. 
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Chapter I - General Introduction on Fe-Catalyzed Reductions  
Contributions in this partμ Literature surveyμ Duo Wei. 

Adapted from publicationμ D. Wei, C. Darcel, Chem. Rev, 2019, 119, β550-β610ν  

D. Wei, C. Netkaew, C. Darcel, Eur. J. Inorg. Chem., 2019, 20, β471-β4κ7. 

1. Introduction 

The development of more efficient and sustainable methodologies for the construction of 

diversely functionalized molecules using homogeneous transition-metal catalysis is nowadays 

a cornerstone in green chemistry, mainly explained by the outstanding regio-, chemo- and 

stereoselectivity observed. Indeed, regarding the current important concerns about climate 

changes and the associated green chemistry principles, the replacement of noble transition 

metals by more benign ones, such as the first row transition metals is absolutely required and 

is definitively one of the important challenges of the beginning of this millennium. Thus, the 

beginning of the β1st century has witnessed an interest in the use of iron in homogeneous 

catalysis which is a highly valuable alternative to classical precious metals such as platinum, 

rhodium or palladium for catalyzing a wide range of organic transformations, including the 

efficient and chemoselective reduction processes and hydrofunctionalization of unsaturated  

C-C or C-heteroatom bonds.[1] 
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Figure 1. Iron catalysis in reduction and hydrometalation reactions. 
Although this area of research is now well established, it is amazing that until recently, there 

were only scarce examples of large-scale applications of iron catalysts, such as the classical 
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‑ischer-Tropsch and Haber-Bosch processes. Thus, the development of new efficient catalytic 

systems is still attractive and necessary for both academic and industrial applications. Several 

reviews have treated iron-catalyzed transformations[β], and reduction[1a, 1b, γ] in the last decade. 

In addition, numerous reviews, book chapters, and accounts have been published focusing on 

thematic aspects of iron catalysis such as hydrogenation,[4] and hydrofunctionalization[5]. This 

chapter will summarize the use of iron in hydrogenation, transfer hydrogenation, and 

hydrosilylation of carbonyl derivatives, imines and carboxylic derivatives. It will also focuss 

on hydroboration and dehydroboration of alkynes and alkenes. 

2. Hydrogenation and transfer hydrogenation 

2.1. Carbonyl derivatives 

2.1.1. Hydrogenation of aldehydes and ketones.  
Selective hydrogenation and hydrogen transfer reactions of carbonyl derivatives (aldehydes 

and ketones) are relevant transformations in both bulk and fine chemistry. ‑or a few decades, 

there is an increasing interest in an economic and sustainable point of view in the replacement 

of expensive noble transition-metal catalysts with iron-based ones. In 1λκγ, Markó described 

the first pioneering report on iron-catalyzed hydrogenation of aldehydes and ketones using 

10 mol% of ‑e(CO)5 (1)[6] under drastic conditions [triethylamine, at 150 °C under 100 bar of 

a mixture Hβ/CO (λκ.5/1.5)]. In β007, Casey[7] reported the use of the Knölker complex 2[κ] as 

the catalyst to perform one of the first valuable iron-catalyzed hydrogenation of aldehydes and 

ketones under mild conditions (γ atm of Hβ at r.t. for 1–6κ h) with TO‑ up to β7γ h-1 (Scheme 1). 

Noteworthy, C=C and C≡C located remotely from the carbonyl were tolerated and unsaturated 

alcohols were selectively obtained whereas the reduction of α, -unsaturated ketones led to a 

mixture of compounds due to the reduction of both the C=O and/or the C=C bond after 6 days. 

Additionally, 2 can also catalyze the transfer hydrogenation of acetophenone using β-propanol 

as the hydrogen donor (κ7 % isolated yield using 1.0 mol% of catalyst at 75 °C in 16 h). 

 

Scheme 1. Knölker type complexes for the hydrogenation of ketones. 
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Beller et al.[λ] used a series of air-stable Knölker type complexes such as 3[10] able to catalyze 

the hydrogenation of aldehydes and ketones under γ0 atm of Hβ at 100 °C in a mixture of 

iPrOH/water (Scheme 1). It must be underlined that the similar efficiency (TO‑ up to β17 h-1) 

and the nice functional group tolerance as esters, amides and heterocycles remained intact 

under such conditions. ‑urthermore, α, -unsaturated aldehydes were selectively reduced to the 

corresponding allylic alcohols. 3 was also an efficient catalyst for the reduction of aldehydes 

under water-gas shift conditions [10 atm of CO, DMSO/water, 100 °C[11] or paraformaldehyde 

(10 equiv.), NaβCOγ (γ equiv.), DMSO/water, 1β0 °C, β4 h[1β]].  

Renaud simultaneously designed Knölker type complexes bearing ionic fragments such as 

ammonium salts 4[1γ] which were active in the catalytic hydrogenation of carbonyl derivatives 

in water under 10 atm of Hβ at κ5 °C, even if the efficiency decreased as TO‑ up to 6.1 h-1 were 

observed (Scheme 1). ‐ven if cyano moieties were tolerated, by contrast, the hydrogenation of 

α, -unsaturated ketones led in the majority of the cases to a mixture of compounds resulting of 

simultaneous reduction of the C=C and C=O bonds. Additionally, the hydrogenation of C=N 

bonds of water-soluble imines was also performed in water at 100 °C leading to the 

corresponding amines with 61–λκ% isolated yields.  

 
Scheme 2. Knölker type complexes for the reduction of α, -unsaturated ketones. 

Noticeably, in β01κ, the same authors have shown that the nature of the catalytic system have 

drastic effects on the chemoselectivity of the reduction of α, -unsaturated ketones into 

saturated ketones using similar iron complexes. Indeed, using β.0 mol% of 6 in isopropanol at 

70 °C for 16 h in the presence of β.5 mol% of CsβCOγ, aromatic unsaturated ketones Ar-CO-

C=C-Ar (11 examples, 4κ–λλ% yields) (Scheme β). To promote the reaction with aliphatic 

unsaturated ketones R-CO-C=C-R, the reaction has to be conducted at λ0 °C (11 examples 

including steroidic derivatives, γκ–λλ% yields).[14] 

In β017, Piarulli, Berkessel and Gennari reported the preparation of new 

[bis(hexamethylene)cyclopentadienone]iron tricarbonyl (5) by the reaction of cyclooctyne with 

[‑e(CO)5] (1) and showed that upon in situ activation with MeγNO (β.0 mol%), 5 (1.0 mol%) 

promoted the catalytic hydrogenation of various ketones and aldehydes at 70 °C under γ0 bar 

of Hβ in a mixture iPrOH/HβO (5μβ) (Scheme 1). Noticeably, 5 exhibited better TO‑ than the 

Knölker parent complex 3 under similar conditions (γ5.λ vs 7.5 h-1).[15] Interestingly 5 can also 
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reduce activated trifluoromethyl esters as well as catalyzing the transfer hydrogenation of 

ketones.  

In order to explain the catalytic transformation, an outer-sphere mechanism was proposed 

(Scheme γ).[16] Based on a concerted hydride/proton transfer from the hydroxyl and the iron 

hydride to the carbonyl moiety, the species (I-1) was obtained. (I-1) then led to (I-2) and the 

alcohol. The 16 electron species (I-2) could be also generated from 3 by the labelization of CO. 

‑inally, the catalytic active species 2 was reformed by heterolytic Hβ cleavage via (I-3). This 

mechanism was supported by Density ‑unctional Theory (D‑T) calculations and kinetic 

studies.[17] 

 

Scheme 3. Proposed outer-sphere mechanism for hydrogenation catalyzed by Knölker type 
catalysts.  
In β011, in the continuation of on his previous work on ruthenium-pincer complexes 

highlighting an original mode of cooperation ligand-metal center involving aromatization-

dearomatization of the ligand,[1κ] Milstein described an elegant contribution on the 

hydrogenation of ketones catalyzed by a novel iron(II) diphosphino-pyridine pincer complex 

[‑e(Br)(H)(CO)(iPrPNP)] (7).[1λ] The complex 7 exhibited high activity when the reaction was 

performed at 40 °C under 4.1 atm of hydrogen in ethanol. γλ–λ7% Conversion, TONs up to 

1κκ0 and TO‑ up to 4β5 h-1 were observed for a huge scope of several aromatic and aliphatic 

ketones (Scheme 4). Noticeably, inhibition of the reaction was observed with cyano, or amino 

groups and the reduction of α, -unsaturated ketones was not chemoselective.  

Milstein et al. also described an iron(II) pincer complex bearing a hydride and a borohydride 

ligands [‑e(η1-BH4)(H)(CO)(iPrPNP)] (8) showing catalytic activities comparable to 7 in the 

hydrogenation of acetophenones, notably with very low catalyst loading (0.05 mol%)[β0] 

(Scheme 4). Importantly, the hydrogenation of ketones can be promoted without the use of 

additional base. The complex 8 is also highly active and exhibited a high TON of 17κ0 for the 
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reduction of β-acetylpyridine in ethanol at 40 °C under 4.1 bar of Hβ. Nevertheless, 8 is less 

active than the parent complex 7 as the TO‑ was up to βλ6 h-1 (vs 4β5 h-1).  

 

Scheme 4. Hydrogenation of ketones catalyzed by iron pincer complexes. 

Modifying the backbone and using NH- instead of CHβ-linkers, Kirchner and co-workers 

developed a series of complexes such as 9, which showed rather good activities for the 

hydrogenation of aldehydes (TO‑ up to 1β0 h-1) and ketones (0.5 mol% 9, 1.0 mol% KOtBu, 

5 atm Hβ, ‐tOH, r.t.ν TO‑ up to 770 h-1) [β1] (Scheme 4). Interestingly, the analogous complex 

bearing a NMe-spacer (X=NMe) led to a drastic loss of activity in ketone hydrogenation 

activity, but exhibited high activity for the hydrogenation of aldehydes with TON and TO‑ up 

to κ0000 and β0000 h-1, respectively with a very low loading of catalyst (down to 1β.5 ppm).[ββ] 

Notably, this catalyst permitted to perform selective reduction of aldehydes in the presence of 

ketones, epoxides, and other reducible groups. Noticeably, Kirchner then reported a supported 

ionic-liquid-phase (SILP) system containing this analogous complex bearing a NMe-spacer 

used as catalyst in the hydrogenation of aldehydes to alcohols.[βγ] This SILP catalyst was used 

with low loadings (0.1–0.05 mol%) at β5 °C under 50 bar of hydrogen in heptane in the 

presence of 5.0 mol% of DBU exhibiting TONs and TO‑s of up to 1000 and 4000 h−1, 

respectively. No significant leaching of both the complex and the IL was detected. 

In a similar fashion, Hu developed β,6-bis-(phosphinito)pyridine iron pincer complexes such 

as 10 as a catalyst (10 mol%) able to selectively hydrogenate aldehydes with 60–λ0% yields 
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under κ bar of Hβ, in methanol at r.t. for β4 h[β4] (Scheme 4). Noticeably, the hydrogenation 

was accelerated when using 10 mol% of sodium formate as an additive and 5.0 mol% of 10. 

‑urthermore, it has been shown that the pincer phosphino(imino)pyridine complex 11[β5] 

catalyzed the hydrogenation of ketones at r.t. under 4 atm of Hβ in the presence of a catalytic 

amount of base with good activities (TO‑ up to γ00 h-1, Scheme 4). Jones and Schneider also 

described an active hydride amido pincer iron complex 12 able to efficiently catalyze the 

reduction of ketones without an additional base (TO‑ up to 500 h-1)[β6] (Scheme 4). 

 

Scheme 5. Proposed mechanism for the hydrogenation of ketones catalyzed by diphosphine 
pyridine iron complexes. 
To rationalize the effect of such PNP ligands on the high reactivity of the corresponding iron 

complexes in hydrogenation, a first plausible mechanism via an aromatization-dearomatization 

process of the diphosphine pyridine ligand, which assisted the activation of dihydrogen in a 

synergistic metal-ligand fashion was illustrated with the complex 7 (Scheme 5).[β7] A reactive, 

dearomatized species (II-1) was first produced by action of KOtBu and then coordinated the 

carbonyl generating the intermediate (II-2). Noteworthy the use of tert-butyloxide is an 

interesting and general activation pathway of iron halides in order to generate active catalytic 

species.[βκ] The insertion of the coordinated C=O moiety into the ‑e-H bond gave the species 

(II-3) which has then the ability to activate efficiently Hβ leading to the hydrido alkoxy complex 

(II-4). In a last step, the elimination of the alcohol permitted the regeneration of the 

dearomatized species II-1. 

Another plausible mechanism is based on the attack of the hydride on the substrate in the outer 

sphere process. (Scheme 6). The reaction of the starting complex 13 with a base generates a 

hydride amide complex (III-1) via the deprotonation of of the NH of ligand. The addition of 

dihydrogen to III-1 in trans to the hydride leads to the trans-dihydride species (III-3). III-3 
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transfers then a proton from the nitrogen and a hydride from the iron to the carbonyl of the 

ketone to lead to the alcohol and regenerate the active amide complex III-1.[βλ] 

 

Scheme 6. Proposed mechanism for the hydrogenation of ketones catalyzed by diphosphine 
amino iron complexes. 
Iron complexes associated to multidentate ligands are also good candidates for 

hydrogenation of carbonyl compounds. The cationic tetraphosphine iron fluoride 

complex 14 (0.β–1.0 mol%) promoted the hydrogenation of aromatic and aliphatic 

aldehydes in the presence of 1.0–5.0 mol% of trifluoroacetic acid (T‑A) in isopropanol 

under β0 atm of Hβ at 1β0 °C for β–5 h in λ5–λλ% yields and TO‑ up to γ60 h-1[γ0] 

(Scheme 7).  

 

Scheme 7. Iron-catalyzed selective hydrogenation of α, -unsaturated aldehydes. 

Interestingly, the transformation tolerated reducible functional substituents such as C=C 

bonds, esters, and even ketones. ‑urthermore, allylic alcohols were selectively obtained 

in λ4–λλ% yields by reduction of α, -unsaturated aldehydes. Supported by NMR and 

D‑T investigations, a mechanism was proposed suggesting the formation of a 

catalytically active species [(P4)‑e-H][B‑4] (15) generated from the iron fluoride 

complex 14 via an oxidative addition of Hβ followed by a reductive elimination of H‑.  
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Beller succeeded to reduce selectively α-ketoesters to produce the corresponding α-

hydroxyesters using in a consecutive way two different iron pre-catalysts, ‑eγ(CO)1β (16, 

6.7 mol%) and ‑e(OTf)β (17, 7.β mol%) in the presence of phenanthridine 18 (β0 mol%) 

(Scheme κ).[γ1] ‑eγ(CO)1β first catalyzed the hydrogenation of 18 to the corresponding 

hydrogenated reagent 19, then used as the hydride source to selectively reduce the α-keto C=O 

moiety via a ‑e(OTf)β catalyzed hydrogen transfer reaction. 

 

Scheme 8. ‑eγ(CO)1β/ ‑e(OTf)β catalyzed hydrogenation of α-ketoesters.  

A useful application of the iron-catalyzed hydrogenation is the conversion of levulinic acid to 

-valerolactone. Song et al. described an efficient and useful application of the iron-catalyzed 

hydrogenation for the conversion of both methyl levulinate and levulinic acid (LA) to -

valerolactone (GVL) (Scheme λ).[γβ]  

Indeed, using several pincer iron complexes7, 9 and 13 in low loading (0.05 mol%), LA was 

transformed in GVL performing the reaction in methanol at 100 °C for β–5 h under 50 bar of 

Hβ in the presence of 1 equiv. of KOH. The optimized conditions using 9 as the catalyst to 

produce GVL from levulinic acid in higher efficiency was the use of 0.00β mol% of 9 under 

100 bar of Hβ in methanol at 100 °C for 1β h (TON = βγ000ν TO‑ = 1λ17 h-1 when the reaction 

was performed on 50 mmol scale). Both methyl levulinate and levulinic acid were transformed 

in GVL performing the reaction in methanol at 100 °C for β–1β h under 100 bar of Hβ in the 

presence of 1 equiv. of KOH (Scheme λ). GVL was then obtained in high TON and TO‑ of 

βγ000 and 1λ17 h-1, respectively from levulinic acid. 

 

Scheme 9. Iron-catalyzed hydrogenation of levulinate derivatives to -valerolactone. 
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2.1.2. Transfer hydrogenation of aldehydes and ketones.  
In the 1λκ0’s, Vancheesen et al. described pioneering contributions dealing with iron-catalyzed 

transfer hydrogenation of ketones, mainly using iron carbonyl complexes. The most efficient 

system was based on the use of ‑eγ(CO)1β 16 (4.0 mol%) in the presence of 1-phenylethanol 

or isopropanol as the hydride source and benzyltriethyl-ammonium chloride and 1κ-crown-6 

as phase transfer agents. The reaction performed at βκ °C for β.5 h led to the corresponding 

alcohols with moderate β0–60% conversion and moderate TO‑s up to 1γ h–1.[γγ]  

N
N N

21 terpy

Beller 2006: Fe3(CO)12 or FeCl2/21 /PPh3 (1.0 mol%)
NaO-iPr (5 mol%), 8 examples, 63-99% yields

Beller 2006: Fe3(CO)12 (0.17 mol%)/22 (0.5 mol%)
NaO-iPr (25 mol%), 8 examples, 22-99% conv.

Beller 2008: FeCl12 (0.19 mol%)/23 (0.19 mol%)
NaOH (25 mol%), 9 examples, 43-99% conv.

NH N

HNN

R

RR

R
22, R = 4-pyridyl
23, R = 4-Cl-C6H4

R R'

O

R R'

OH(pre-)cat.
+ iPrOH 100 °C, 2-7 h

 

Scheme 10. N-containing ligand iron-catalyzed transfer hydrogenation of ketones. 

The combination of the commercially available triphenylphosphine, β,β'μ6',β''-terpyridine 

(terpy, 21) and ‑eγ(CO)1β (16) or ‑eClβ (20) led to efficient catalytic systems (1.0 mol%) active 

for transfer hydrogenation of aliphatic and aromatic ketones, in the presence of NaOiPr 

(5.0 mol%) in isopropanol at high temperature (100 °C) (Scheme 10).[γ4] In a similar fashion, 

with in situ catalysts prepared from either ‑eγ(CO)1β 16 or ‑eClβ (20) in association with 

porphyrins (22-23), very good activity was obtained in the transfer hydrogenation of numerous 

ketones including α-substituted alkoxyketones (ββ–λλ% conversion and TO‑s up to 64β h–1, 

Scheme 10).[γ5] Noteworthy, in the light of reports demonstrating that simple bases such as 

NaOH, KOH or KOtBu are able to promote the transfer hydrogenation of aldehydes and 

ketones at lower temperatures,[γ6] the high reaction temperatures (κ0–100 °C) and the base-

dependent reactivity are the main drawbacks of these catalytic systems. 

Le ‑loch finely designed a series of related iron complexes bearing tetradentate ligands bearing 

two iminophosphorane moieties with two phosphines, thiophosphino, and phosphine oxide 

substituents for TH of acetophenone (Scheme 11).[γ7] The versatile coordination of these 

ligands to iron(II) precursor such as [‑eClβ(TH‑)1.5] (24) gave to the corresponding complexes 

[‑eClβ(PβNβ)] (25), [‑eCl(OβNβ)] (26) and [‑eClβ(Nβ)] (27). Using 0.1 mol% of those 

complexes 25-27, acetophenone was reduced in κ0–λ1% conversion in the presence of  

4.0 mol% NaOiPr in isopropanol at κβ °C for 6–κ h. 
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Scheme 11. Iminophosphorane diorganophosphorus based iron complexes for catalytic TH of 
acetophenone. 
Cyclopentadienyl (Cp) functionalized NHC ligand based iron(II) complexes were also active 

pre-catalyst for TH of ketones. In β010, Royo described tethered Cp-NHC iron complexes (e.g. 

28)[γκ] as efficient catalysts for transfer hydrogenation of ketones (e.g. acetophenone, 

benzophenone and cyclohexanone) in the presence of a stoichiometric amount of KOH in 

isopropanol at κ0 °C for β–1κ h (Scheme 1β). [‑e(Cp)(NHC)(CO)β][I] complexes (29-31)[γλ] 

with 1,γ-dialkylated NHC were also used as efficient catalysts for transfer hydrogenation of 

cyclohexanone under similar conditions (Scheme 1β). Noteworthy, the active species 

(0.5 mol%) can be obtained in situ by reaction of imidazolium salts with the Cp‑e(CO)βI (32) 

precursor and used for the TH of various ketones in β1–λλ% conversion under similar 

conditions. 

 

Scheme 12. NHC-‑e piano-stool complexes for catalytic TH of ketones. 

In comparison to hydrogenation reaction, Knölker type complexes were less used in TH of 

ketones. Nitrile-ligated complexes previously developed by Knölker[40] were shown to be 

efficient catalysts for TH as demonstrated by ‑unk. The best activity in the TH of aldehydes 

and ketones was obtained performing the reaction at κ0 °C for 1κ h using the acetonitrile 

complex (33), (aldehyde, β.0 mol%ν ketones, 5.0 mol%, Scheme 1γ). Interestingly, the catalyst 

33 showed similar activities than the air-sensitive iron hydride complex 2 (1.0 mol%, 75 °C, 

16 h).[41] The same author reported a [β,5-bis(γ,5-dimethylphenyl)-γ,4-

diphenylcyclopentadienone]iron tricarbonyl (34, β.0 mol%) with MeγNO (β.0 mol%) at κ0 oC 
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for β4 h in both transfer hydrogenations and dehydrogenations.[4β] It is worth mentioning that 

34 was as active as or more active than 3 in the carbonyl reductions and alcohol oxidations 

(Scheme 1γ). 

 

Scheme 13. Knölker type catalysts for TH of ketones. 

A useful application of the hydrogen transfer reaction catalyzed by iron catalysts is the 

conversion of ethyl levulinate to -valerolactone (GVL). In β014, ‑u et al. reported that using 

5.0 mol% of an in situ prepared catalyst from ‑e(OTf)β (17) and [P(CHβCHβPPhβ)γ] ligand 35, 

GVL was produced in λλ% yield by reaction with formic acid (β.0 equiv.) in dioxane at 140 °C 

for β4 h. Notably, the reaction can be performed without addition of base and with a TON of 

β4 (Scheme 14).[4γ] In β015, Metzker and Burtuloso reported the same reaction starting from 

‑eγ(CO)1β catalyst (16, 4.0 mol%) in the presence of 4.0 equiv. of formic acid and 4.0 equiv. 

of imidazole in water at 1κ0 °C for 15 h (λβ% yield, TONμ βγ).[44]  

 

Scheme 14. Iron-catalyzed reduction of ethyl levulinate to -valerolactone. 

The use of Casey’s complex 2 permitted to perform the reaction in milder conditions 

(Scheme 14). Using 1.0 mol% of 2 in the presence of 5.0 mol% of NaHCOγ in isopropanol at 

100 °C for 1λ h, -valerolactone was obtained in λ5% yield and TON of λ5 from ethyl 

levulinate.[45] De Wildeman recently described the reduction of levulinic acid using the 

acetonitrile-ligated Knölker catalyst 33 (4.0 mol%) in the presence of β5 equiv. of isopropanol 

in toluene at κ0 °C for β0 h yielding GVL in γκ%. (Scheme 14) Noticeably, 33 (0.1 mol%) can 
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perform the hydrogenation of levulinic acid to GVL in ethanol under 60 bar of Hβ at 100 °C 

for β0 h with 57% yield (TONμ 570).[46] 

 

Scheme 15. Pincer iron catalysts for the TH of aldehydes and ketones 

Tridentate PSiP ligand based iron pincer complexes 36 and 37 can be used in transfer 

hydrogenation of aldehydes (Scheme 15). Sun reported the reduction of aldehydes using 

β.0 mol% of catalyst in the presence of β.0 mol% of KOtBu in isopropanol at 60 °C for 

β4 h. The reduction can tolerate functional groups such as halides or cyano. Additionally, 

chemoselective reduction of α, –unsaturated aldehydes led to the corresponding allylic 

alcohols in 70–κβ% yields.[47] Noticeably, ketones were not reduced under such 

conditions. Using another pincer complex, β,6-bis(pyrazolyl)pyridine iron(II) complex 

(38, 1.0 mol%), TH of ketones can be also achieved using 1 equiv. of KOH as the base 

in isopropanol at κβ °C for 4κ h (Scheme 15). It has a better activity with aromatic 

ketones than with aliphatic ketones.[4κ] 

 
Scheme 16. Selective TH of aldehydes catalyzed by ‑e(B‑4)β∙6HβO/35.  

‐fficient and highly selective transfer hydrogenation of aromatic, heteroaromatic and aliphatic 

aldehydes using in situ generated catalytically active species (0.4 mol%) from ‑e(B‑4)β∙6HβO 

(39)/tetraphosphine (35) in the presence of 1.1 equiv. of formic acid as the hydrogen source in 

TH‑ at 60 °C for β h (β0 examples, GC-yieldsμ λ6–λλ%) were described by Beller 
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(Scheme 16).[4λ] Chloro, bromo, ketone, ester and styryl functionalities were not reduced under 

these conditions. Additionally, chemoselective reduction of α, –unsaturated aldehydes to the 

corresponding allylic alcohols was conducted under base-free conditions. 

2.2. Imines and reductive amination of carbonyl compounds 

2.2.1. Imines.  
Up to now, there are only scarce reports on the reduction of imines catalyzed by iron-based 

species. In β011, Beller and coworkers developed the first catalytic hydrogenation of imines to 

amines,[50] associating in a synergic manner the Knölker complex 2 and a chiral phosphoric 

Brønsted acid (40 and 41, Scheme 17). The resulting in situ catalytic system was active at 

50 atm of Hβ at 65 °C resulting in the hydrogenation of numerous N-arylketimines to the 

corresponding amines in 60–λ4% isolated yields and 67–λκ% ee. Based on this methodology, 

chiral amines were prepared from terminal alkynes and primary anilines using consecutive 

hydroamination/hydrogenation sequenceμ (i) a gold catalyzed hydroamination of terminal 

alkynes, using 1.0 mol% of [Au(o-BiPh)(t-Bu)βP][B‑4] leading to imines, which were then 

in situ involved in (ii) an enantioselective hydrogenation [5.0 mol% of 2/1.0 mol% of 40 or 41 

under the same conditions, yields up to λγ%, ee of 70–λ4%].[51] 

 
Scheme 17. Knölker complex/chiral phosphoric Brønsted acids for the catalytic asymmetric 
hydrogenation of imines. 
The same catalytic system (γ.0–5.0 mol% of 2 and 1.0–β.0 mol% of 40 or 41) was also used to 

promote the enantioselective hydrogenation of quinoxalines and 2H-1,4-benzoxamines, 

conducting to the corresponding tetrahydroquinoxalines with enantiomeric ratios (er) up to 

λ7μγ and to γ,4-dihydro-2H-1,4-benzoxamines with er up to κ7μ1γ, respectively 

(Scheme 1κ).[5β] 
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Scheme 18. Knölker complex/chiral phosphoric Brønsted acids for the catalytic asymmetric 
hydrogenation of C=N bond. 
In β017, Benaglia and co-workers reported an iron-catalyzed diastereoselective reduction of 

chiral imines, using an achiral cyclopentadienone-based iron complex 42 (10.0 mol%) in the 

presence of 0.4 equiv. of MeγNO (Scheme 1λ). Performing the reduction under γ0 bar of Hβ at 

70 oC in ‐tOH, enantiomerically pure amines were often produced with dr up to λκμβ, in 

moderate conversions, yields and activity (TO‑ up to 0.5γ h-1).[5γ]  

 
Scheme 19. Knölker complex for catalyzed diastereoselective reduction of chiral imines. 

Noteworthy, using a water soluble Knölker type complex 4 (Scheme 1, β.5 mol%) in the 

presence of γ.75 mol% of MeγNO in water under 10 bar of Hβ at 100 °C for 14 h, Renaud 

described the reduction of water stable and soluble imines (4 examples) in 50–λκ% yields.[1γ] 

In addition to Knölker type complexes, some other well-defined iron complexes were shown 

to perform hydrogenation of C=N bonds. Thus, using the bifunctional iron pincer complex 43 

as the catalyst (γ.0 mol%), Jones has performed the hydrogenation of tetrahydroquinoxaline 

N-heterocycles under 5–10 atm of Hβ, in the presence of 10 mol% of KOtBu in TH‑ at κ0 °C 

for β4 h, and the corresponding reduced derivatives were isolated in 60–λβ% yields 

(Scheme β0). Noteworthy, the same type of pincer catalyst [e.g. 44] also promote the reverse 

dehydrogenation of N-heterocycles when refluxing in xylene for γ0 h, whereas 43 was 

inactive.[54] 
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Scheme 20.  Pincer iron complexes for the catalytic hydrogenation of N-heterocycles. 

Transfer hydrogenation conditions can be also used for the reduction of imines. In β011, the 

first iron-catalyzed enantioselective TH was performed using activated ketimines.[55] Thus, 

using an in situ formed catalyst (0.γγ mol%) from [NH‐tγ][‑eγH(CO)11] 45 and the 

diiminophosphine tetradentate chiral ligand CyNβPβ 46, aromatic and heteroaromatic N-

phosphonyl ketimines were reduced in 67–λκ% yields and κλ–λκ% ee after a reaction in the 

presence of a catalytic amount of a base at 45 °C for γ0 min. in isopropanol (Scheme β1). 

 
Scheme 21. ATH of imines promoted by tetradentate chiral ligands. 

In a similar manner, using diimino-diphosphine iron complexes, Morris also reported the 

transfer hydrogenation of N-(diphenylphosphinoyl)- and N-(tolylsulphonyl)-ketimines. The 

corresponding amines were then obtained with βλ–λ4% conversion and λ5–λλ% ee using the 

most efficient complex 47 (1.0 mol%) in combination with 0.κ mol% of KOtBu in iPrOH at 

40 °C for 40–1β0 min. (Scheme β1).[56] It must be pointed out that the 

amine(imine)diphosphine analogue 48 exhibited an enhanced activity for transfer 

hydrogenation of imines with TO‑ up to 10 s-1.[57] 

Interestingly, ‑unk’s catalyst can also catalyze transfer hydrogenation of N-aryl and N-alkyl 

imines. Indeed, Zhao succeeded to perform such a reaction using the combination of the 

Knölker's nitrile-ligated complex (49, 5.0 mol%) and ‑e(acac)γ (50) (10 mol%) in isopropanol 

in the absence of base at 110 °C for 4κ h (Scheme ββ). The key for the success of this catalytic 

system is the use of ‑e(acac)γ (50) as a Lewis acid, as in its absence, the reaction led to only 

λ% conversion.[5κ]  
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Scheme 22. Iron-catalyzed TH of imines. 

Recently, Piarulli, Gennari and Pignataro reported TH of non-activated imines promoted by a 

Knölker complex 5 (β.0 mol%) for the reduction of a number of N-aryl and N-alkyl imines in 

the presence of MeγNO (4.0 mol%) in iPrOH at 100 oC for 1κ h (Scheme ββ).[5λ]  

2.2.2. Direct reductive amination (DRA) of carbonyl compounds.  
Among the main preparative pathways for the production of amines, DRA is undoubtedly one 

of the most powerful and useful ones.[60] Notwithstanding this reaction has been extensively 

studied with stoichiometric alkali reducing agents. Over the last decade, applications with iron 

as a catalyst have been developed.[61]  

 
Scheme 23. Iron-catalyzed DRA reactions under hydrogenative conditions. 

In β00κ, using 10 mol% of ‑eSO4ꞏ7HβO (51) and β5 mol% of Naβ‐DTA, Bhanage et al. 

performed the DRA of aldehydes and ketones with primary and secondary amines, in water 

under βκ bar of hydrogen at 150 °C for 1β h[6β] (Scheme βγ). Under these drastic conditions, 

small amounts of alcohols due to the reduction of the carbonyl compounds were also detected.  

DRA can be performed under milder conditions using 4.0 mol% of ‑eγ(CO)1β 16 under 50 bar 

of Hβ in toluene at 65 °C for β4 hμ by reaction with both aldehydes and ketones, anilines are 

transformed to the corresponding alkylated anilines in 6κ–λ7% yields (Scheme βγ). In order to 
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have a complete condensation between anilines and ketones, the use of molecular sieves is 

required. Noticeably, the reduction is chemoselective when aldehydes bearing ketone or ester 

moieties were used.[6γ]  

Molecular-defined Knölker complexes 3 and 52 also efficiently catalyzed this transformation 

under mild conditionsμ with 5.0 mol% of 3 and 5.0 mol% of MeγNO, under low hydrogen 

pressure (5 bar) at κ5 °C in ethanol, aldehydes reacted with alkylamines producing the 

corresponding alkylated amines in γκ–λ4% yields (Scheme βγ). A slight modification of the 

reaction conditions is required to perform the DRA of ketonesμ  the reaction has to be performed 

in methanol with a catalytic amount of NH4P‑6.[64] 

Interestingly the catalyst 5 (5.0 mol%) in combination with MeγNO (5.0 mol%) can also 

promote the transfer hydrogenative reductive amination of aldehydes and ketones in the 

presence of γ Å molecular sieves at 100 oC for 1κ h, in good yields (Scheme β4).[5λ] 

 
Scheme 24. Iron-catalyzed DRA reactions under transfer hydrogenative conditions with 
isopropanol. 
In order to rationalize the catalytic DRA transformation, an outer-sphere mechanism was 

postulated and supported by D‑T calculations (Scheme β5).[16-17, 65] The reaction of MeγNO on 

the complex 3 generated the 16 electron species (III-1) which can coordinate the dihydrogen 

leading to the intermediate (III-2) then (III-3) by heterolytic Hβ cleavage. Based on a concerted 

hydride/proton transfer from the hydroxyl and the iron hydride to the in situ generated imine 

moiety, the species (III-4) then (III-5) were produced. ‑inally, the catalytic active species (III-

1) is regenerated producing the amine derivative. (Scheme β5) 
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Scheme 25. Plausible outer-sphere mechanism for hydrogenation of imines in DRA catalyzed 
by Knölker type catalyst 3. 
More recently, reductive amination/cyclization of levulinic acid via transfer hydrogenation 

with HCOβH (‑A) as hydrogen source, was reported by Burtoloso (Scheme β6).[66] Using 

4.0 mol% of ‑eγ(CO)1β 16 with β.β equiv. of amine and β.β equiv. of HCOβH in water at 1κ0 °C, 

levulinic acid was converted to numerous pyrrolidones in 40–λ1% yields. 

 

Scheme 26. Iron-catalyzed DRA reactions under transfer hydrogenative conditions with 
HCOβH. 

2.3. Carboxylic acid derivatives and carbon dioxide 

Iron-catalyzed reduction of polarized C=X bonds such as aldehydes or ketones is a flourishing 

research area in which some complexes start to compete with the noble metal ones in terms of 

activity. By contrast, catalytic hydrogenation of less reactive derivatives such as carboxylic 

acids, amides or esters in the presence of iron complexes is still in its infancy compared to the 

hydrogenation with noble transition metal complexes such as ruthenium. Nevertheless, some 

recent results demonstrate the high potential of this chemistry at iron.[67] 

2.3.1. Amides.  
In the series of the carboxylic acid derivatives, carboxamides are undoubtedly among the most 

difficult ones to selectively reduce. ‐ven if numerous transition metals have already efficiently 

been used for the catalytic reduction of amides, hydrogenations using iron catalysts were 
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scarcely reported. Additionally, one of the challenges is the selective cleavage the C-N bond 

leading to alcohols and amines or the C=O bond furnishing the corresponding amines. 

In early β016, Milstein described the first example of homogeneous iron-catalyzed 

hydrogenation of amides using an iron PNP pincer complex 8 as the catalyst (Scheme 45). The 

reaction can be performed in the presence of 6.0 mol% of KHMDS (potassium 

bis(trimethylsilyl)amide) under drastic conditions (60 bar of Hβ at 140°C) with a range of 

activated secondary and tertiary N-substituted β,β,β-trifluoroacetamides leading to the 

corresponding amines and trifluoroethanol with moderate to good yields.[6κ] 

In β016, Langer reported the hydrogenation of non-activated amides and lactams with an iron 

pincer catalyst (53, β.0–10 mol %, Scheme 45). As a representative example, the treatment of 

N-phenylbenzamide with 50 bar Hβ at 70–100 °C in dry TH‑ after β4 h results in the clean 

formation of alcohol and amine, whereas the C=O bond cleavage product was not detected by 

GC analysis.[6λ] Similarly, Sanford used an analogous pincer complex (54) bearing PCyβ 

moieties to catalyze the hydrogenation of amides (including formamides) in quite harsher 

conditions (110–1γ0 °C) but at lower hydrogen pressure (β0–50 bar) in γ h (Scheme 45). TON 

up to γ00 can be reached under such conditions. Notably, N,N-dimethylformamide was 

hydrogenated with TON up to 1000.[70] 

 

Scheme 27. Hydrogenation of amides with iron pincer catalysts 

In β017, Bernskoetter used a PNP iron hydride complex as the catalyst to promote the 

hydrogenation of amides. The use of 0.07–0.01κ mol% of 12 in TH‑ under γ0 atm of Hβ for 

4 h mainly permitted to hydrogenate secondary formamide derivatives with 4-λλ% conversion 

and TON up to 44γ0 (Scheme β7). Under such conditions, acetamides and benzamides 

exhibited reduced activities. Interestingly, the addition of co-catalyst such as formanilide 
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HCON(H)Ph and LiOTf enhanced the productivity of the reaction with acetamide and 

benzamides derivatives, when performed at 1β0 °C for 16 h under 60 bar of Hβ.[71] 

2.3.2. Nitriles.  
The catalytic hydrogenation of nitriles leading selectively to the corresponding primary amines 

is still a challenging transformation, mainly with iron catalysts. In his continuous effort to 

develop new iron-catalyzed transformations, Beller reported the use of 1.0 mol% of the iron 

PNP pincer complexes 44[7β] and 54[7γ] for the selective hydrogenation of nitriles to primary 

amines under γ0 bar of Hβ in isopropanol at 70–100 °C for γ h (Scheme βκ). Importantly, 

aromatic, heteroaromatic, alkyl and dinitriles (including the industrial relevant adiponitrile) can 

be reduced in 40–λ5% yields with 44. Notably, TO‑s up to β50 h-1 at 100 °C were obtained. 

Under such reaction conditions, several functional groups such as halides, esters, ethers, 

acetamido groups and α, –unsaturated C=C bonds were tolerated. 

 

Scheme 28. Iron PNP complexes in the catalytic hydrogenation of nitriles to primary amines 

Subsequently, Milstein’s group reported the synthesis of a novel complex 55 and its application 

in the catalytic homogeneous hydrogenation of (hetero)aromatic, benzylic, and aliphatic 

nitriles to selectively form primary amines (Scheme βκ). The catalytic active species (1.0–

5.0 mol%) prepared in situ by reaction of 55 with 1.0 equiv. of NaHB‐tγ and γ.0 equiv. of 

KHMDS was applied for the reduction of (hetero)aromatic and alkyl nitriles under 60 bar of 

Hβ in TH‑ at 140 °C for 16–60 h (7κ–λλ% conversion, 6γ–λλ% NMR-yields).[74] Interestingly, 

they have described an iron-catalyzed hydrogenation of nitriles leading selectively to secondary 

imines. The reduction proceeded under relatively mild conditions (λ0 °C, γ0 bar Hβ), using 

1.0–κ.0 mol% of the pincer complex (iPrPNP)‑e(H)Br(CO) (56) and KOt-Bu as a base (in an 
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equimolar amount to ‑e pre-catalyst) leading the corresponding imines in 11–λλ% NMR-yields 

(Scheme βλ). Noticeably, no products resulting from the full hydrogenation (primary or 

secondary amines) were observed.[75] This reaction resulted from the condensation of the 

reduced derivatives, the reactive imine intermediate with the amine. 

 

Scheme 29. Selective hydrogenation of nitriles to secondary imines catalyzed by 56. 

Using the same catalyst 56, cross-secondary imines were selectively formed through 

hydrogenative cross-coupling of nitriles and amines under similar conditions, but at lower 

temperature (60 °C vs λ0 °C) and pressure of Hβ (10–β0 bar vs γ0 bar, Scheme γ0).[76] The 

reaction was particularly efficient with aromatic nitriles. 

 

Scheme 30. Selective reductive cross-coupling of nitriles and amines to form secondary 
aldimines catalyzed by 56. 

2.3.3. Carboxylic esters.  
In organic synthesis, one of the most important, but also the most challenging task is the 

hydrogenation of carboxylic acids or esters in an efficient and chemoselective manner to obtain 

alcohols, ethers or aldehydes. In terms of large scale and industrial applications, reduction of 

esters to alcohols via hydrogenation is an important task. In the area of iron catalysis, there are 

only a few reports until recently, with β014 being a productive year in this area. 

‑irst, Milstein described a selective iron-catalyzed hydrogenation of activated trifluoroacetic 

acid esters ‑γC-COβR leading to β,β,β-trifluoroethanol and the corresponding alcohols 

RCHβOH in 5β–λλ% NMR-yields. The iron dihydrido pincer complex 57 (1.0 mol%) was used 

as catalyst in the presence of 5.0 mol% of NaOMe as the base in dioxane under β5 bar of 

hydrogen at 40 °C for 16 h (Scheme γ1).[77] It must be pointed out that no reduction activity 

was observed with difluoroacetic acid ester derivatives.  
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Scheme 31. Iron dihydrido pincer complexes for the hydrogenolysis of esters to alcohols 

Simultaneously, Beller,[7β] Guan and ‑airweather[7κ] reported the hydrogenation of a wide 

variety of aliphatic and aromatic esters catalyzed by the bifunctional PNP iron pincer 

complexes 44 and 53 under base free conditions (Scheme γ1). Such PNP ligand was initially 

described by Gusev in the osmium-catalyzed hydrogenation of esters.[7λ] With this catalytic 

system, carboxamides, heteroaromatic motifs (e.g. furans, pyridines, benzothiazoles), and 

remoted alkenyl moieties were well tolerated, whereas cyano functionalities were 

hydrogenated to the corresponding amines. Noteworthy, lactones led selectively to the 

corresponding diols. Crude industrial samples of a mixture of C1β–C16 esters were also reduced 

under solvent-free conditions. Beller then have shown that the sterically less hindered ‐tβPNP 

analogous iron complex 53 gave superior catalytic activity working at lower temperatures (60–

100 °C vs 100–1β0 °C).[κ0] 

A catalytic cycle was proposed based on D‑T calculations and experimental studies including 

an observation indicating that the –NH moiety on the PNP pincer backbone was an important 

key as no activity was detected using PNP ligand bearing a N-Me substituent (Scheme γβ).[κ1]  

Thus, after BHγ elimination from 44, simultaneous hydrogen transfers from the metal center 

(IV-1) to the carbonyl moiety (without any previous coordination) and from the NH function 

produced the hemiacetal and an iron-amido complex via an outer-sphere mechanism. 

Hydrogenation of the iron complex (IV-2) regenerated the dihydride species IV-1. The 

solvolysis of the acetal led to methanol and aldehydes which is then reduced to alcohol via the 

same catalytic cycle.[7β] 
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Scheme 32. Proposed mechanism for ester hydrogenolysis catalyzed by 44. 

Apart pincer iron complexes, Lefort and Pignataro reported the use of the 

(cyclopentadienone)iron complexes 3 for the hydrogenation of activated trifluoroacetate esters 

(Scheme γ1). With 1.0 mol% of 3 in the presence of β.0 mol% of MeγNO and β0 mol% of 

trimethylamine, the reaction proceeded at λ0 °C under 70 bar of Hβ and led quantitatively to 

the corresponding alcohols, with TON up to γγ6. One main limitation of this methodology is 

its substrate dependence as only trifluoroacetate esters could be reduced.[κβ]  

2.3.4. Carbon dioxide and carbonates.  
In terms of sustainability, the use of carbon dioxide as an attractive and abundant C1 feedstock 

is nowadays a challenging purpose in bulk chemical industry (methanol, formic acid, 

formaldehyde, urea, etc.).[κγ] In the field of reductions, the direct hydrogenation of COβ[κ4] to 

formaldehyde, methanol, methane, formamides, and amines are crucial but challenging goals, 

with a particular focus on the COβ hydrogenation to afford formic acid (or formate). 

Pioneering contribution made by ‐vans in 1λ7κ using [NR4][H‑e(CO)4] (58) demonstrated 

that iron complexes could be nice candidates for the reduction of COβ into formate derivatives, 

although harsh reaction conditions were used to reach very low yields (up to 6%).[κ5] In β00γ, 

thanks to a high-pressure combinatorial catalyst discovery technique, Jessop et al. identified 

that the combination of ‑eClγ (59) and 1,β-bisdicyclohexylphosphinoethane (dcpe) in the 

presence of 0.5 equiv. of DBU (1,κ-diazabicyclo[5.4.0]undec-7-ene) catalyzed the direct 

hydrogenation of COβ to formic acid with a TON of 11γ and a TO‑ of 15.1 h–1 under 40 bar 
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Hβ and 60 bar COβ at 50 °C for 7.5 h.[κ6] Noticeably, this in situ formed catalyst was more 

active than [NR4][H‑e(CO)4] 58 when used with DBU. 

Table 1. Iron-catalyzed hydrogenation of carbon dioxide and bicarbonate 

 

In β010, Beller, Laurenczy and coworkers described the hydrogenation of carbon dioxide and 

bicarbonates (HCOγ–) to formates, alkyl formates and formamides (when the reaction was 

performed in the presence of alcohols and amines, respectively). Indeed, using an in situ formed 

catalyst [(35)‑eH][B‑4] (60) from ‑e(B‑4)βꞏ6HβO (39), [P(CHβCHβPPhβ)γ] (35) and Hβ, the 

reduction of sodium bicarbonate led to formate with κκ% yield and a TON of 610, when 

performing the reaction at κ0 °C, under 60 bar Hβ for β0 h (Table 1).[κ7] Using the same catalyst, 

methyl formate was also obtained by hydrogenation of COβ in the presence of methanol and an 

excess of triethylamine, with 56% yield and a TON of 5κ5, and dimethylformamide from 

dimethylamine with 75% yield and a TON of 7β7 [PHβ/COβ = 60/γ0 bar, 100 °C, β0 h]. When 

performing the hydrogenation in the presence of ethanol, propanol and diethylamine, ethyl and 

propyl formates and diethylformamide were produced, respectively, in lower yields (λ–βκ%). 

Additionally, the in situ catalyst obtained from 35 and ‑eClβ (20) was also efficient in the 

hydrogenation of COβ.[κκ] ‑urthermore, the in situ catalytic system ‑e(B‑4)βꞏ6HβO (39)/35 can 

also promote the reversible reaction by dehydrogenation of formic acid to COβ and Hβ without 

base in high catalytic activity (TO‑s up to λ4β5 h–1 and TONs up to λβ417 at κ0 °C with 

0.005 mol% of catalyst, Table 1).[κλ] Noticeably, using a meta-trisulfonated-tris[β-

(diphenylphosphino)ethyl] phosphine sodium salt P[(CHβCHβP(Ph)(m-NaOγS-C6H4)]γ (61) as 
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a ligand associated to ‑e(II) salts, Laurenczy demonstrated that the hydrogenation of COβ can 

be also promoted in water at r.t.[λ0] 

By reaction of the tetradentate tris[β-(diphenylphosphino)phenyl]-phosphine (62) and 

‑e(B‑4)βꞏ6HβO (39), the air- and thermally stable complex [(62)‑e(‑)][B‑4] (63), was shown 

to be one of the most active iron catalysts for the hydrogenation of carbon dioxide and 

bicarbonates affording formates and formamides with TONs up to 7500 for the hydrogenation 

of sodium bicarbonate (Table 1).[λ1] Milstein described that trans-[‑e(H)β(CO) (tBuPNP)] (57, 

0.1 mol% loading) was efficient for the hydrogenation of COβ and sodium bicarbonate to 

formate salts in a 10μ1 HβO/TH‑ mixture at κ0 °C at low pressures (Table 1). The highest TON 

of γβ0 (γβ% formate yield) was obtained for the hydrogenation of bicarbonate performing at 

κ0 °C under κ.γ bar Hβ. The catalytic activity in COβ hydrogenation was increased for the 

reaction under 10 bar pressure (Hβ/COβ = βμ1) in an aqueous NaOH/TH‑ solution (TONs up 

to 7κκ and TO‑s up to 156 h–1).[λβ] Similar complex based on the pyrazine backbone [(β,6-

bis(di(tert-butyl)- phosphinomethyl)pyrazine)‑e(H)(Cl)(CO)] (64) was evaluated in the 

catalytic hydrogenation of COβ at 55 °C, but exhibited lower activity (TON = γκκ, Table 1).[λγ] 

Iron PNP pincer complexes (65, 66) which previously shown to exhibit remarkable activities 

in formic acid dehydrogenation, were also tested for the reverse COβ hydrogenation in the 

presence of a Lewis acid (Table 1).[λ4] The transformation was realized in a DBU/TH‑ solution 

at κ0 °C under 6λ bar Hβ/COβ (1μ1). The addition of lithium triflate (LiOTf) was shown to have 

a beneficial effect and provided the best results with TON of 5κ λλ0. Hazari and Bernskoetter 

also described similar pincer complexes (67) with an aryl isonitrile ligand instead of a carbonyl 

which exhibited lower activity in the COβ hydrogenation (TON = 61γ, Table 1).[λ5] 

Supported by computational, including the initial D‑T calculations by Yang,[λ6] and 

experimental studies with 57,[λβ, λ6] a possible reaction mechanism for the hydrogenation of 

carbon dioxide was proposed and is outlined in Scheme γγ. Resulting from the direct attack of 

COβ on the hydride ligand of 57, the oxygen-bound formate complex (V-1) is obtained. The 

formate ligand in V-1 is then easily substituted by a molecule of water, leading to the cationic 

complex (V-2). Under hydrogen pressure, the ηβ-Hβ coordinated species (V-3) may be formed. 

‑inally, V-3, by reaction with –OH, the active species 57 is then regenerated by heterolytic 

cleavage of the coordinated Hβ in (V-4) or by dearomatization and subsequent proton migration 

in (V-4’). Noticeably, theoretical studies showed that the reaction was very dependent on the 
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choice of the solvent used, protic solvent with a higher ability to solvate the bicarbonate being 

then best.[λ7] 

 

Scheme 33. Proposed mechanism for (57)-catalyzed COβ hydrogenation 

Similarly, the groups of Kirchner and Gonsalvi demonstrated that 9 and 68 were good 

candidates to catalyze the COβ/bicarbonate reduction under comparable reaction conditions 

(Table 1).[λκ] In the case of bicarbonate reduction, a high TON of 1λ64 (λκ% conversion) and 

4560 (βγ% conversion) were detected after β4 h under λ0 bar of Hβ with catalyst loadings of 

0.05 and 0.005 mol%, respectively. The hydrogenation of COβ in basic conditions (0.5 M 

NaOH) proceeded with TONs of up to 1ββ0 and quantitative yields when catalyzed by 9 under 

κ0 bar at κ0 °C. The N-methylated aminophosphino pincer complex 68 was less active than 9 
in the presence of NaOH. Noteworthy, at a lower catalyst loading (0.01 mol%), quantitative 

formation of formate was still observed at κ0 °C, which corresponds to a TON of approximately 

10000.  

Peters showed that triphosphinoiron chloride complexes including [(SiPRγ)‑e(Cl)(H)] (69, 

0.1 mol%) also reacted with COβ under elevated pressures of COβ (βλ atm) and Hβ (βλ atm), 

leading to formate and methylformate (Table 1). When conducting the reaction in the presence 

of N‐tγ in MeOH at 100 °C for β0 h, (‐tγNH)(OCHO) and MeOCHO were obtained in βμ1 

ratio with TON = β00.[λλ] 
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Gonsalvi and co-workers studied both a well-defined iron complex and the in situ analogous 

one prepared from ‑e(B‑4)βꞏ6HβO (39) bearing the tetradentate 1,1,4,7,10,10-hexaphenyl-

1,4,7,10-tetraphosphadecane phosphine (70) for bicarbonate hydrogenation (Scheme γ4).[100] 

With the catalyst in situ prepared from the commercial ligand (70) and ‑e(B‑4)βꞏ6HβO (39), 

the hydrogenation of sodium bicarbonate in methanol under 60 bar Hβ at κ0 °C for β4 h, was 

performed leading to the formate in 15% conversion (TON = 154). Under the aforementioned 

reaction conditions in the presence of propylene carbonate (PC), [‑e(rac-70)B‑4][B‑4] (71), 

the authors succeeded to obtain the formate in 5κ% conversion (TON = 575). (72) led to an 

improvement in the bicarbonate conversion up to 76% in the absence of PC, whereas the TON 

reached a maximum value of 1ββλ at a higher substrate-to-catalyst ratio of 10000, (1β% 

conversion). High-pressure NMR experiments suggested the formation of [‑e(rac-70)H]+ (73) 

as a key intermediate species whatever the starting complex 71 or 72. 

 

Scheme 34. Structure of 70 and its iron catalysts tested for bicarbonate hydrogenation. 

As an alternative to the iron pincer catalyst discussed above, the group of Zhou developed a 

phosphine-free, air- and moisture-stable iron catalyst 3 active for bicarbonate hydrogenation in 

basic media (Table 1).[101]  The highest activity (TON of 447 after β4 h) was obtained for the 

reduction of sodium bicarbonate in ethanol/water (1μβ) under γ0 bar Hβ at 1β0 °C (yield = 45%). 

Noticeably, even at lower Hβ pressure (5 bar), TON of 16γ could still be obtained. By contrast, 

with COβ in the presence of NaOH, only traces of sodium formate were formed whatever the 

pressure applied. It is note mentioning that the complex 3 in association with an iridium 

complex, [Ir(d‑(C‑γ)ppy)β-(dtbbpy)][P‑6] (IrPS, 74), used as a photosensitizer and 

triethanolamine used as a electron/proton donor, can promote the photochemical reduction of 

COβ to carbon monoxide  under visible light at r.t. with initial TO‑ up to ββ.β min-1.[10β] 

(d‑(C‑γ)ppy = cyclometalated β-(β,4-difluorophenyl)-5-trifluoro-methylpyridine and dtbbpy 

= 4,4’-di-tert-butyl-β-β’-bipyridyl). 



42 

 

 

Scheme 35. Iron-catalyzed N-formylation of amines by hydrogen and carbon dioxide 

Using the well-defined PNP pincer complex 65 (0.0β mol%), Hazari and Bernskoetter, 

succeeded recently to perform the selective N-formylation of various alkylamine derivatives 

via COβ hydrogenation (Scheme γ5). Performing the reaction in TH‑ at 1β0 °C for 4–16 h 

under γ5 bar of COβ and γ5 bar of Hβ, a large variety of primary and secondary alkylamines 

led to the corresponding with κ–λβ% yields and TONs up to κλ00.[10γ] Noticeably, mechanistic 

studies indicated that the transformation proceeded first via the reversible reduction of COβ to 

ammonium formate, and then by the its dehydration to formamide. 

75

Martins, Pombeiro 2017:
75 (15 mol), PEHA (3.4 mmol)

pCO2/pH2 = 3 (75 bar),
80 °C, 24 h

yield up to 46%
TONs up to 2387

(pre-)cat.
H3C OHCO2 + H2

N N

N N

N N FeCl2HC

PEHA = pentaethylenehexamine  

Scheme 36. Iron-catalyzed hydrogenation of carbon dioxide to methanol. 

Another interesting target in COβ reduction is the production of methanol. Martins and 

Pombeiro described this reaction using an iron(II) scorpionate catalyst [‑eClβ{ γ-HC(pz)γ}] 

(75) (pz = 1-pyrazolyl) in solvent-free conditions at κ0 °C for β4 h (Scheme γ6). ‐ven if the 

transformation can be promoted in amine free conditions (yields up to βκ%), the addition of 

pentaethylenehexamine increase the efficiency of the transformation. Notably, TONs up to 

β.γ × 10γ were obtained, making this catalyst one of the most efficient for this reaction.[104] 

3. Hydrosilylation 

3.1. Aldehydes and ketones 

‐ven if the catalyzed hydrogenation or transfer hydrogenation are powerful methodology for 

the reduction of carbonyl derivatives, for chemoselectivity issues, the hydrosilylation can be 

an interesting alternative pathway, more particularly when using inexpensive hydrogen sources 
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such as PMHS and TMDS (1,1,γ,γ-tetramethyldisiloxane). During the last decade, the area of 

iron-catalyzed hydrosilylation of aldehydes and ketones has seen an amazing development.  

 
Scheme 37. Pioneering iron-catalyzed hydrosilylation of acetophenone by Brunner 

The early example of the hydrosilylation of ketones catalyzed by iron complexes was reported 

in 1λλ0 by Brunner and ‑isch.[105] Indeed, 0.5–1.0 mol% of [‑e(Cp)(CO)(X)(L)] (76) promoted 

the reaction of acetophenone with 1.0 equiv. of diphenylsilane at 50–κ0 °C for β4 h, yielding 

quantitatively the silylated ether, without the formation of the silylated enol ether (Scheme γ7).  

Two decades later, one of the first efficient and scalable methodology using iron-based 

catalysts for the hydrosilylation of carbonyl derivatives was described by Beller. Thus, the in 

situ formed catalyst from ‑e(OAc)β (77, 5.0 mol%) and PCyγ (78, 10.0 mol%) permitted to 

conduct the reduction of functionalized (hetero)aromatic and alkyl aldehydes in the presence 

of γ.0 equiv. of PMHS in TH‑ at 65 °C for 16 h, (γ5 examples, 60–λλ% yields, Scheme γκ).[106] 

It also catalyzed the reduction of ketones (β1 examples, 60–λ6% yields) after β0 h at 65 °C.[107] 

Interestingly, ester, amino, cyano and α, -C=C moieties were tolerated.  

Using the same methodology, an enantioselective version was then developed associating 

‑e(OAc)β (77) and (S,S)-Me-Duphos (79) as a chiral diphosphine ligand. Thus, using 

stoichiometric amounts of (‐tO)βMeSiH or PMHS at r.t. or 65 °C, aromatic ketones were 

reduced affording the corresponding alcohols with yields and ee up to λλ% (Scheme γκ).[10κ] 

In concomitant contributions, Nishiyama showed that the nitrogen-based ligands such as 

N,N,N’,N’-tetramethylethylene-diamine (TM‐DA, 80) [10λ] or sodium thiophenecarboxylate 

(81)[110] (10 mol%) associated to ‑e(OAc)β (77, 5.0 mol%) gave an efficient catalyst for the 

hydrosilylation of ketones under similar conditions (β.0 equiv. of (‐tO)βMeSiHν 65 °Cν β0–

β4 hν 50–λ4% yields, Scheme γκ). Asymmetric hydrosilylation of ketones was experimentally 

achieved using N,N,N-bis(oxazolinylphenyl)-(Bopa) ligands such as Bopa-dpm (82, γ.0 mol%) 

in combination with ‑e(OAc)β (77, β.0 mol%)  and (‐tO)βMeSiH as the hydride source (κκ–

λλ% yields and 50–κκ% ee, Scheme γκ).[111] It must be also underlined that when using the 

preformed complex [(77)‑eClβ] (5.0 mol%) in association with zinc powder (6.0 mol%) with 
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β equiv. of (‐tO)βMeSiH under similar conditions, the other enantiomer of the alcohol was 

obtained.[11β] 

 
Scheme 38. Initial iron based catalysts for hydrosilylation of ketones. 

N1-Alkylated β-(pyrazol-γ-yl)pyridines such as (83, 10 mol%) by reaction with iron octanoate 

[‑e(OβCκH15)β] (84, 5.0 mol%) led also to suitable catalyst precursors for the hydrosilylation 

of aldehydes and ketones at κ0 °C for β0 h in the presence of PMHS with yields up to λλ% 

(Scheme γκ).[11γ] ‑urthermore, Plietker et al. described a catalyst prepared in situ from PCyγ 

(78) and the [Bu4N][‑e(CO)γ(NO)] complex[114] (85), (which is used with success in allylic 

substitution reactions[115]), also highly active for the hydrosilylation of numerous 

functionalized aldehydes and ketones in the presence of PMHS (Scheme γκ). The 
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corresponding alcohols were produced in moderate to excellent yields [aldehydes (65–λλ%)ν 

ketones (λβ–λλ%)], at low catalyst loadings [85 (1.0–β.5 mol%)ν PCyγ (78) (1.1 mol%)] at γ0–

50 °C for 14 h.[116]  

In terms of activity, Tilley achieved a breakthrough. Indeed, the simple low valent but highly 

air-sensitive iron silylamide complex [‑e(N(SiMeγ)β)β] (86, 0.01–β.7 mol%), catalyzed 

efficiently the hydrosilylation of various aldehydes and ketones in the presence of 1.6 equiv. 

of PhβSiHβ at βγ °C for 0.γ–β0 h (Scheme γκ). Remarkably, TO‑s up to β400 h–1 can be reached 

for the reduction of γ-pentanone, and the reaction tolerated functional groups such as nitrile, 

cyclopropyl or C=C bond (Scheme γκ).[117] The related iron(II) bis-(trimethylsilyl)amido 

complexes (87) coordinated to a N-phosphinoamidate ligand (0.015–1.0 mol%) promoted the 

hydrosilylation of a range of aldehydes and ketones in the presence of 1.0 equiv. of 

phenylsilane (Scheme γκ).[11κ] Noteworthy, a significant beneficial influence of the ligand on 

the activity was increased with TO‑s up to βγ600 h–1 for the reduction of acetophenone (to be 

compared to 1β66 h–1 with 86). Togni has shown that an in situ formed catalyst from 

cyclopentadienyl-bearing chiral diamine (88) and ‑e(acac)β (89) promoted the reduction of 

ketones affording the corresponding alcohols with conversion up to λλ% but with low to 

moderate ee up to γ7% (Scheme γκ).[11λ]  

Pincer type iron complexes, which are usually more stable and efficient in hydrogenation, were 

also extensively reported in hydrosilylation of carbonyl compounds.  

The first contribution by Chirik in β00κ, described a family of highly active 

bis(imino)pyridine(PDI) iron complexes such as [‑e(iPrPDI)(Nβ)β] 90, already identified as 

catalysts for the hydrogenation and hydrosilylation of alkenes, was also active in the 

hydrosilylation of p-tolualdehyde and acetophenone with PhβSiHβ in pentane at βγ °C in 1 h 

(Scheme γλ). [1β0]  

Using the iron dialkyl complexes (91, 0.1 mol%) or (92, 1.0 mol%) under similar conditions 

(β.0 equiv. PhβSiHβ, pentane, βγ °C, γ h), numerous ketones including cyclohexanones were 

efficiently reduced (Scheme γλ).[1β0] Noteworthy, cyclohexenones were chemoselectively 

reduced to the corresponding unsaturated alcohols, although acyclic enones led to the allylic 

alcohols in a less selective manner.  ‑urthermore, this catalytic system is highly active 

exhibiting one of the highest TO‑ up to βγ600 h-1. 

In β011, Guan designed new iron hydride complexes coordinated to phosphinite-based pincer 

ligands (POCOP) such as 93 applicable in the catalytic hydrosilylation of aldehydes and 

ketones (Scheme γλ).[1β1] ‑ull conversion of benzaldehyde was reached at 50 °C for 1 h using 
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1.0 mol% of catalyst 93 and of 1.1 equiv. of (‐tO)γSiH. ‑or the hydrosilylation of ketones such 

as acetophenone, a higher temperature (κ0 °C for 4.5 h) was necessary to observe full 

conversionν the corresponding alcohols were then obtained in up to κκ% yield. This system 

was appropriate for the hydrosilylation of aromatic and aliphatic aldehydes (κ0–λβ% yields at 

50–65 °C for 1–γ6 h) and aromatic ketones (0–κκ% yields at 50–κ0 °C for 4.5–4κ h). 

Noticeably, the decoordination of PMeγ or CO ligand in an initial step seems to be crucial step 

in order to generate the active catalytic species. Noticeably, similar activities were obtained 

with cationic pincer iron complexes (94 and 99).[1ββ] 

 
Scheme 39. Pincer iron catalysts for hydrosilylation of carbonyl derivatives 

Similarly, tridentate PSiP (96)[1βγ] and PCP (97)[1β4] and (98)[1β5] ligand based iron pincer 

complexes can be used under mild conditions in hydrosilylation (Scheme γλ). Thus, using 

1.0 mol% of 96 and 1.5 equiv. of (‐tO)γSiH, the reduction of aldehydes and ketones can be 

performed at 60 °C in 1 h and in 6 h, respectively. Slightly higher activities are obtained with 

the complex 97 at 50 °C (aldehydesμ 0.γ–1.0 mol% 97, 1–1γ h, κ5–λ0 % yieldsν ketonesμ 
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1.0 mol% 97, 16 h, β1–λ0% yields). ‑indlater prepared similar structural iron complexes, (β,6-

bis(di-tert-butyl-phosphinito)pyridine) [(tBuPONOP)‑eClβ] (99) and (β,6-bis(di-tert-butyl-

phosphinomethyl)pyridine) [(tBuPNP)‑eClβ] (100) complexes which were more active in 

hydrosilylation of aldehydes and ketones by reaction with 1.5 equiv. of (‐tO)γSiH at r.t. for 

β4 h.[1β6] 

Noticeably, unusual pincer iron complexes were also reported in catalytic hydrosilylation. 

Driess and Oestreich reported a disilylene pyridine SiNSi pincer complex (101) which 

exhibited catalytic activity towards the hydrosilylation of ketones (Scheme γλ). Noticeably, it 

was shown that the transition metal in the catalytic species does not seem to be directly involved 

in the catalytic process. By contrast, the activation of the ketone and silane should happen in 

the ligand sphere, i.e. at silicon.[1β7]  

Recently, Lee described the use of a low-coordinate iron(II) complex bearing an NNN-pincer 

ligand (102, 1.0 mol%) for the hydrosilylation of aldehydes and ketones using phenylsilane 

(1 equiv.) at r.t. for β4 h (Scheme γλ). TO‑s up to 1γ min-1 were observed showing the good 

efficiency of such catalyst.[1βκ] 

 
Scheme 40. Chiral pincer iron catalysts for asymmetric hydrosilylation of ketones 

On the other hand, chiral pincer iron complexes have been developed for asymmetric 

hydrosilylation of ketones. In β00κ, Gade reported a [‑e(tetraphenyl-carbpi)(OAc)] complex 

(103 5.0 mol%), able to promote the reduction using (‐tO)βMeSiH or PHMS as the hydrosilane 

at 40–65 °C leading to the corresponding alcohols in 50–λγ% ee (Scheme 40).[1βλ]  To date, it 

is still one of the most efficient catalysts in terms of enantioselectivity and activity. 
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In β00λ, Chirik has described a chiral tridentate bis-(oxazolinyl) ligated 

[(S,S)-(iPrpybox)-‑e(CHβSiMeγ)β] complex (104) (0.γ mol%) able to catalyze the asymmetric 

hydrosilylation of ketones with β.0 equiv. of PhSiHγ and 0.λ5 equiv. of B(C6‑5)γ at βγ °C for 

1 h, exhibiting ee up to 54% (Scheme 40).[1γ0]  

Similarly, in β015, Nishiyama and Ito reported a bis-(oxazolinyl) ligated iron complex (105) 

with lower enantioselectivity (up to 44% ee) under relatively similar conditions (Scheme 

40).[1γ1] Modifying the structure of one arm of the Pybox ligand, Huang designed an 

unsymmetrical oxazolinyl-imino pyridine iron complex (106) able to enhance the 

enantioselectivity of the hydrosilylation (Scheme 40). Activating the complex 106 (1.0 mol%) 

with β.0 mol% of NaHB‐tγ, in the presence of 1.0 equiv. of PhβSiHβ at β5 °C for γ h, ee values 

increased up to λγ%.[1γβ]  

In β015, Gade described a general and highly efficient asymmetric hydrosilylation of ketones 

using 5.0 mol% of chiral iron alkoxide pincer complex (107) in the presence of β.0 equiv. of 

(‐tO)βMeSiH in toluene in a temperature range from -7κ °C to r.t. for 6 h (Scheme 40). 

Importantly, unprecedented activities and stereoselectivities were obtained in hydrosilylation 

area with TO‑ up β40 h−1 at −40 °C, with 7γ–λλ% ee for numerous alkyl aryl ketones.[1γγ]  

 
Scheme 41. Mechanistic proposal for iron-catalyzed hydrosilylation of ketones  

A detailed mechanism study of the catalytic cycle demonstrated that the rate-determining step 

is a -bond metathesis of the alkoxide complex (VI-1) with the hydrosilane, leading to an iron 

hydride species (VI-2) and generating the alkoxysilane compounds (Scheme 41). The 

subsequent coordination then insertion of the ketone to the iron hydride bond then regenerated 

the catalytic alkoxy species VI-1.[1γ4] 
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Cyclopentadienyl piano-stool iron(II) complexes are another family of molecular-defined iron 

complexes widely studied in hydrosilylation reactions. ‑ollowing the pioneering work of 

Brunner in the early 1λλ0s,[105] in β00κ, Nikonov reported an unusual and new iron silyl 

dihydride complex (109, 5.0 mol%) active for the hydrosilylation of benzaldehyde with 

HβSiMePh at 50 °C for 1β h (Scheme 4β).[1γ5] Noteworthy, the parent cationic complex (108, 

5.0 mol%) was also efficient in hydrosilylation of benzaldehyde with PhSiHγ at ββ °C for γ h. 

 
Scheme 42. Cyclopentadienyl iron phosphine based complexes 

Our group has developed an analogous series of cationic carbonyl complexes 

[‑e(Cp)(CO)β(PRγ)][X][1γ6] (110-114, Scheme 4β) which successfully catalyzed the 

hydrosilylation of both aldehydes and ketones. Using 5.0 mol% of catalysts 110–112 and 

1.1 equiv. of phenylsilane at γ0 °C for 16 h under continuous visible light irradiation, the 

reduction of benzaldehyde derivatives proceeded with excellent conversions either in TH‑ (λβ–

λκ%) or under neat conditions (λ1–λ7%). Importantly, PMHS (4.0 equiv.) could also be used 

in the presence of 5.0 mol% of complexes 110-112 under similar conditions in TH‑μ the best 

conversion reached λ5%. In this series, the best catalyst identified for the reduction of 

acetophenone was the neutral iron complex [Cp‑e(CO)(I)(PPhγ)] (113) which exhibited higher 

activity in the presence of 1.β equiv. of phenylsilane under neat conditions and visible light 

activation and slightly harsher conditions (70 °C, γ0 h). Noticeably, the tetrafluoroborate 

complex (114, 5.0 mol%) exhibited similar or superior activities compared to the iodo- or 

hexafluorophosphate analogs. (e.g. acetophenoneμ λκ% conversion, visible light activation, 

70 °C, 16 h with 1.β equiv. of PhSiHγ or 7β h with 4.0 equiv. of PMHS). It is important to 

notice that visible light activation is required in order to favor the decoordination of one CO 

ligand and then generate an unsaturated active species. 

Cyclopentadienyl piano-stool iron(II) complexes, particularly when associated to N-

heterocyclic carbene ligands (NHC), are another important series of efficient catalysts 

extensively developed for the hydrosilylation of carbonyl derivatives.[1γ7] ‑ollowing the 

pioneering contribution of Brunner, in β010, Royo reported the activity of tethered Cp-NHC 
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iron complexes (e.g. 28, 1.0 mol%) for the hydrosilylation of activated aldehydes (6 examples) 

with 1.β equiv. of (‐tO)βMeSiH in acetonitrile at κ0 °C for 1–1κ h (Scheme 4γ).[γκa]  

Our group has designed a series of NHC-piano-stool iron complexes including the cationic 

complex [‑e(CO)β(IMes)][I] (115), and the neutral complex [‑e(I)(CO)(IMes)] (95), which 

was selectively obtained by visible photo irradiation of 115 in CHβClβ (Scheme 4γ). They were 

efficient in the reduction of both aldehydes and ketones using 1.0 equiv. of PhSiHγ (aldehydes, 

TH‑, γ0 °C, γ h, κκ–λλ% conversionν ketones, toluene, 70 °C, 16 h, 50–λλ% conversion).[1γκ] 

Notably, lower activities were obtained with ketones, electron deficient acetophenone 

derivatives being easier to reduce.  

 
Scheme 43. Representative Cp-NHC iron complexes for catalyzed hydrosilylation reactions 

It must be underlined that the visible light activation is required to generate the active catalyst 

from the cationic complex 115 albeit neutral complex 116 was active at γ0 °C without 

activation. When conducting the transformation under solvent-free conditions and light 

irradiation, significant rate enhancements were obtained as the reactions proceeded with higher 

conversions and yields and at lower temperatures (50 °C versus 70 °C).[1γλ] Interestingly, nitrile, 

amine and alkene groups were tolerated.  

‑urthermore, NHC ligands such as IMes exhibited a significant influence on the activity and 

this effect was clearly demonstratedμ when using 115 versus [‑e(Cp)(CO)β]β (117) or 



51 

 

[‑e(Cp)(I)(CO)β] (118) precursors as the catalysts for benzaldehyde reduction, after γ h at 

γ0 °C, the conversions are > λ7 % for 115 vs <10 % for 117 and 118. [Cp‑e(CO)β]β 117 was 

shown to catalyze similar hydrosilylations but harsher conditions [5.0 mol% of 117, β.0 equiv. 

of (‐tO)βMeSiH, 100 °C, β4 h for both aldehydes and ketones, Scheme 4γ].[140] 

The architecture of the NHC ligand has also a great influence on the activity of the 

corresponding [‑e(Cp)(NHC)(CO)β][I] precatalyst in the hydrosilylation. Indeed,  A series of 

piano-stool iron complexes coordinated to 1,γ-disubstituted imidazolidin-β-ylidene ligands 

[‑e(Cp)(CO)β(NHC)][I] (e.g. 119) have shown moderate activity as full conversions were 

obtained  only at 100 °C (PhSiHγ, 0.5–4 h, neat conditions, without light activation) 

(Scheme 4γ).[141]  

By contrast, the complex [‑e(Cp)(NHC)(CO)β] (120, 1.0 mol%) with a cyclic, six-membered 

N-heterocyclic carbene ligand incorporating a malonate backbone efficiently performed the 

hydrosilylation of aromatic aldehydes using 1.0 equiv. of diphenylsilane at γ0 °C (full 

conversion after 1–γ h) and for reduction of acetophenone derivatives in the presence of 

1.0 equiv. of phenylsilane at 70 °C (γ7–λκ% conversions after 16 h), thus exhibiting 

comparable activity than 115 (Scheme 4γ).[14β] Likely, benzimidazole based NHC iron 

complexes such as 121 (β.0 mol%) showed analogous activity for the hydrosilylation of 

benzaldehyde at γ0 °C within γ h and acetophenone at 70 °C within 17 h (1.β equiv. PhSiHγ, 

visible light irradiation, neat, Scheme 4γ).[14γ]  

In β017, Albrecht has developed a new series of 1,β,γ-triazolylidene iron(II) piano stool 

complexes such as 122 which exhibited high activity in the hydrosilylation of aldehydes and 

ketonesμ under relatively mild conditions (1,β-dichloroethane, 60 °C), in the presence of 

1.β equiv. of phenylsilane, TO‑s up to 14400 h−1 at 0.1 mol % catalyst loading (for the 

hydrosilylation of 4-bromobenzaldehyde) were obtained, which notably an induction period of 

β0–γ0 minutes (Scheme 4γ). Preliminary mechanistic investigations suggested the formation 

of radical species and the involvement of S‐T type mechanism for the hydrosilanes 

activation.[144] 

Adolfsson has shown that an in situ prepared iron complexes, starting from iron(II) acetate salt 

and the imidazolium salt precursors IPrꞏHCl (123) or N-hydroxyethyl-imidazolium (124) in 

the presence of a base such as n-BuLi can be also used efficiently for the hydrosilylation of 

ketones with γ.0 equiv. of PHMS in TH‑ at 65 °C (Scheme 44).[145] Importantly, the exact 

stoichiometry imidazolium salts / base is crucial, as simple alkoxide salts are also known to 

promote catalytic hydrosilylations with trisubstituted silanes. 
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Scheme 44. Adolfsson’s catalytic system for hydrosilylation of ketones 

Alternatively, the square planar low valent NHC iron complex [‑e(Me)β(IMes)β] (125, 

0.1 mol%) showed good activity for the hydrosilylation of β’-acetonaphtone in TH‑ (1.1 equiv. 

of (‐tO)γSiH, β5 °C, 5 h or 1.1 equiv. of PhβSiHβ, 40 °C, 5 h, Scheme 45). Noteworthy, 125 

(1.0 mol%) was also efficient in TH at 70 °C in the presence of 1.β equiv. of iPrOLi in 

iPrOH.[146] Similarly, hydrosilylation of acetophenone can be performed using the iron 

complex (126) bearing a diamine-bridged bis-NHC (1.0 mol%) in association with MeLi 

(β.0 mol%, used to generate a ‑e-Me species) (TH‑, 1.1 equiv. of PhβSiHβ, 60 °C, 16 h, λ5% 

conversion, Scheme 45).[147]  

 
Scheme 45. Representative NHC-iron based catalysts for hydrosilylation reactions  
NHC-Iron(0) can be suitable catalysts for hydrosilylation of carbonyl derivatives. Thus, Royo 

reported this ability of the [‑e(CO)4(IMes)] complex (127, 1.0 mol%) to reduce benzaldehyde 

derivatives with 1.β equiv. of phenylsilane at r.t. for 4 h, and a good reducible functional group 

tolerance was shown (e.g. ketones, nitriles, nitro groups) (Scheme 45).[14κ] Song described four 

coordinate picolyl-functionalized NHC iron complex (128) which were able to promote the 

hydrosilylation of ketones (Scheme 45). Using 0.05–1.0 mol% of 128 in the presence of an 

excess of PMHS at r.t., ketones such as arylmethylketones, or dialkylketones were reduced to 

alcohols in κ1–λκ% yields.[14λ] 
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Scheme 46. ‑e(PMeγ)4 based complexes as catalysts in hydrosilylation reactions 
Li and Sun’s group did intensive work on the design and catalytic use of a series of ‑e(PMeγ)4 

(129) based complexes. Thus, they reported the use of cyclometallated iron complexes such as 

the hydrido iron complex (130) as a catalyst (0.γ–0.6 mol%) in the presence of 1.β equiv. of 

(‐tO)γSiH in TH‑ at 55 °C for the reduction of aldehydes and ketones yielding the alcohols in 

65–λβ%[150] (Scheme 46). Other similar iron hydride complexes like (128),[151] (132),[15β] 
(133),[15γ] (134),[154] were also be applied in hydrosilylation reactions under similar conditions 

giving comparable activities (Scheme 46). 

In β015, another iron(0) complex, the bis(imino)acenaphthene iron arene complex, [BIAN-

‑e(C7Hκ)] (135) (1.0 mol%) was shown to be an active catalyst using PhβSiHβ (1.0 equiv.) at 

70 °C under solvent-free conditions exhibiting broad functional group tolerance 

(Scheme 47).[155] Iron(III) based complexes were identified as good catalysts for 

hydrosilylation reactions. Thomas has then shown that the amine–bis(phenolate) iron(III) (136) 

(1.0 mol%) with (‐tO)γSiH (γ.0 equiv.) at κ0 °C, γ–β4 h promoted the hydrosilylation of both 

ketones and aldehydes with wide functional group tolerance and 55–λ7% yields 

(Scheme 47).[156] 

‑ernandez described iron complexes based on anthraquinonic ligands (137)[157] and (138)[15κ] 

which was active in hydrosilylation of aldehydes and ketones. More particularly, the complex 

(138 0.β5–0.5 mol%) exhibited TO‑ up to 6γ min-1 when performing the reaction at r.t. for 5–

1β0 min. in the presence of 1.1β equiv. of (‐tO)βMeSiH. Both aromatic aldehydes and ketones 

(such as cyclohexanone or benzophenone) were reduced (Scheme 47). 
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Scheme 47. Various iron complexes for the hydrosilylation of carbonyl derivatives 
In β011, our group reported a general and efficient hydrosilylation of aldehydes and ketones to 

the corresponding alcohols using the well-defined complex [(dppe)β‑e(H)β] (139, 0.1–

1.0 mol%) as the pre-catalyst using PMHS (β.0 equiv.) as the reducing agent and NaB(O‐t)4 

(1.0 mol%) as a co-catalyst under visible light irradiation (Scheme 47).[15λ] This iron catalyst 

was tolerant towards numerous functional groups and worked well under various conditions 

(from 5 h at r.t. to κ min. at 100 oC, TONs up to 1000 and TO‑s up to 600 h-1). 

In β015, Peters described a bis(o-diisopropylphosphinophenyl)phenylborane iron complex 

(140, 1.0 mol%) able to catalyze hydrosilylation of aldehydes and ketones by reaction with 

1 equiv. of diphenylsilane at r.t. for 4κ h than at 50 °C for γ0 h leading after quench to the 

corresponding alcohols with κ6–λλ% yields (Scheme 47).[160] 

 
Scheme 48. Unusual chemoselectivity in hydrosilylation of carbonyl compounds 
‑inally, in this area, Campagne discovered an unusual reactivity, using the association of 

PMHS (β.7 equiv.) and ‑eClγꞏ6HβO (141, 10 mol%) in 1,β-dichloroethane (DC‐) under 

microwave irradiationμ after a reaction at 1β0 °C for 1 h, aldehydes and ketones were converted 

to the corresponding methylene derivatives in 6β–λκ% yields (Scheme 4κ).[161] 
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3.2. Imines 

In the field of hydrosilylation of imines, only scarce general methodologies of iron-catalyzed 

hydrosilylation of aldimines and ketimines were described. The first report was published in 

β01β using β.0 mol% of the complex [‑e(Cp)(IMes)(CO)β][I] 115 and β.0 equiv. of 

phenylsilane, under solvent free conditions and light irradiation at γ0 °C for γ0 h, a large range 

of aldimines were reduced leading to the corresponding amines after a basic treatment 

(Scheme 4λ).[16β] Numerous functional groups were tolerated, including halides (I, Br, Cl), 

ketones, esters and alkenes. Slightly harsher reaction conditions were required to reduce 

efficiently ketiminesμ β4 h at 100 °C under neat conditions with higher catalyst loading 

(5.0 mol%) (57–λ5% yields).  

 
Scheme 49. Iron-catalyzed hydrosilylation of imines. 

By designing the NHC ligand, Mandal reported a highly active abnormal-NHC−‑e(0) complex 

(142) for reduction of imines (Scheme 4λ). Using a very low catalyst loading (down to 0.005 

mol %) and β.0 equiv. of phenylsilane in DMSO at r.t., imines were obtained with TON up to 

17000.[16γ] Noteworthy, a broad functional group tolerance was shown and interestingly the 

reduction of imines bearing N-alkylated O-protected sugars was possible. By contrast, to 

reduce ketimines, β.0 mol% of (142) was required. 

In a mechanistic point of view, the proposed catalytic cycle follows the classic Chalk-Harrold 

pathway and was supported by D‑T calculations. One CO ligand of 142 is released in order to 

generate a 16 electron species (VII-1) able to perform an oxidative addition of PhSiHγ leading 

to the iron hydride species (VII-2). The intermediates (VII-3) is then obtained after 

deccordination of one CO ligand and coordination of the imine derivative, which is 

subsequently inserted by a hydride migration leading to (VII-4). After reductive elimination, 

VII-1 is regenerated and the silylated amine produced (Scheme 50). 
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Scheme 50. Proposed mechanism of an iron-catalyzed hydrosilylation of imines 

Among methodologies to synthesize amines in a large scale, the direct reductive amination 

(DRA) of aldehydes and ketones, using stoichiometric alkali reducing agents such as LiAlH4 

or NaBH4 is certainly one of the most efficient. An interesting alternative is the transition metal 

catalyzed DRA, with a special interest using earth abundant ones, mainly under hydrogenation 

conditions. Noticeably, iron-catalyzed DRA can also be performed under hydrosilylation 

conditions. In β010, ‐nthaler reported the first DRA of aldehydes by anilines catalyzed by 

‑eClγ (59, 5.0 mol%) with a large excess of PMHS in TH‑ at 60 °C for β4 h (Scheme 51).  

 
Scheme 51. Iron-catalyzed DRA reactions under hydrosilylation conditions. 

By contrast, no reaction occurred with alkylamines such as benzylamine.[164] Using PMHS and 

molecular-defined Cp phosphanyl-pyridine iron complexes such as (143, 5.0 mol%), DRA of 

benzaldehydes and secondary amines in dimethylcarbonate (DMC) at 40 °C for β4 h under 

visible light irradiation, produced the corresponding tertiary amines in 5γ–λγ% yields 

(Scheme 51). Good functional group tolerance was observed as esters, nitriles, ketones and 

halides were not reduced.[165] In order to highlight the importance of the phosphanyl-pyridine 
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ligand on the activity, when using monophosphine complexes [Cp‑e(CO)β(PRγ)][B‑4] such as 

114, only moderate conversion (γ5–5κ%) were reached.  

 
Scheme 52. Cascade reaction involving iron-catalyzed DRA. 

Iron-catalyzed DRA can be conducted starting from allylic or homoallylic alcohols and 

secondary or primary anilinesν indeed, using [‑e(cod)(CO)γ] (144, 5.0 mol%) and PMHS in 

ethanol at 50–70 °C under visible light irradiation, tertiary and secondary aniline compounds 

were selectively obtained in γ1–λ5% yields (Scheme 5β). This transformation is a formal DRA 

of (homo)allylic alcohols which occurred via a tandem isomerization/ condensation/ 

hydrosilylation process.[166]  

3.3. Hydrosilylation of carboxylic acid derivatives  

3.3.1. Carboxamides. 
Among the carboxylic acid derivatives, the most difficult ones to reduce are carboxamides. 

‑urthermore, chemoselectivity issues can be also met during the reduction of amides, as the C-

N or C=O bond cleavage can occur, depending on the reaction conditions, leading the amine 

and/or alcohol (Scheme 5γ).[167] 

 
Scheme 53. Possible reaction pathways involved in the reduction of carboxamides. 

Pioneering contributions were described concomitantly by Beller[16κ] and Nagashima[16λ] on 

iron-catalyzed hydrosilylation reactions of secondary and tertiary carboxamides yielding 

specifically the corresponding amines, using ‑eγ(CO)1β 16 or ‑e(CO)5 1 as pre-catalysts (β.0–

10 mol%), and either PMHS (4.0–10 equiv.) or TMDS (β.β equiv.) as cheap hydrosilanes at 

100 °C for β4 h (Scheme 54). Noticeably, Nagashima highlighted that such transformations 

were also promoted at r.t. for λ h when conducted under irradiation conditions using a 400 W 

high pressure mercury lamp.  

The use of molecular defined iron(II) NHC complexes such as [Cp‑e(CO)β(IMes)][I] 110 

(5.0 mol%) in the presence of β.0 equiv. of phenylsilane at 100 °C for β4 h also permitted to 
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reduce both tertiary and secondary amines when the reaction was conducted under visible light 

irradiation (β4 W compact fluorescent lamps) and solvent free conditions  (Scheme 54).[170]  

 
Scheme 54. Iron-catalyzed hydrosilylation of tertiary and secondary amides. 

By preparing carefully an in situ iron/NHC catalytic species from a TH‑ mixture of ‑e(OAc)β 

(77, 1.0 mol%), ([Ph-H‐MIM][OT‑]) (145, 1.1 mol%) and LiCl (1.0 mol%) and then treated 

by β.β mol% of nBuLi, Adolfsson reported the hydrosilylation of tertiary amides using 

γ.0 equiv. of PMHS at 65 °C for 5–14 h (Scheme 54).[171] Importantly, the use of LiCl is crucial 

to increase both the chemoselectivity and activity. The well-defined NHC-‑e(0) complex [bis-

(N-Dipp-imidazole-β-ylidene)methylene-‑e(η6-benzene)] (146, 1.0 mol%) promoted the 

catalytic reduction of tertiary carboxamides by reaction in TH‑ with γ.0 equiv. of 

diphenylsilane at 70 °C for β4 h (4 examples, κγ–λλ% yields).[17β] 

By contrast, the reductions of primary amides under hydrosilylation conditions are usually 

more difficult to conduct. Indeed, under the classical reaction conditions, dehydration of 

amides to nitrile derivatives is always the major reaction observed.[170, 17γ] To tackle this 

selectivity issues and efficiently reduce primary amides to primary amines, Beller used two 

different iron catalytic systems in a sequential way. Thus, using [NH‐tγ][‑eγH(CO)11] 45 (β.0–

5.0 mol%) in the presence of γ.0 equiv. of (‐tO)βMeSiH in toluene, the dehydration of primary 

amides was first performed leading to nitriles (Scheme 55). Then the combination of ‑e(OAc)β 
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(77, β0 mol%) and the terpyridine ligand (147, β0 mol%), catalyzed the reduction of nitriles to 

primary amines at 100 °C for additional βκ h.[174]  

 
Scheme 55. Iron-catalyzed reduction of primary amides to primary amines. 

3.3.2. Carboxylic esters.  
In organic synthesis, the efficient and chemoselective reduction of carboxylic acid derivatives 

such as carboxylic acids or esters to alcohols, ethers or aldehydes is a crucial and tedious task. 

Similarly, to carboxamides, the selective bond cleavage of the esters will direct the selective 

formation of aldehydes, alcohols or ethers (Scheme 56). All these selective transformations 

have been already described at iron, even if up to date, there are only scarce reports dealing 

with that challenging task. 

 
Scheme 56. Possible bond cleavages in ester reduction. 

The first iron-catalyzed hydrosilylation of esters was reported in β01β, using 5.0 mol% of 

[‑eCp(CO)β(PCyγ)][I][175] (148) and 4.0 equiv. of PhSiHγ under solvent free conditions and 

visible light activation at 100 °C for 16 h (Scheme 57). As a representative example, methyl 

phenylacetate was converted in κ5% leading to a mixture of β-phenylethanol and methyl β-

phenylethyl ether (ratio 6μ1). The best catalyst identified was [‑e(Cp)(CO)β(PCyγ)][B‑4] 114 

(5.0 mol%) which led specifically to β-phenylethanol in λ7% conversion and κκ% isolated 

yield. Carboxylic esters such as alkanoates and β-substituted acetates were then converted to 

the corresponding primary alcohols in 51–κκ% isolated yields.  

Similar chemoselective catalyzed hydrosilylation reactions of aromatic and aliphatic esters to 

alcohols were also conducted using an in situ catalyst generated from 5.0 mol% of ‑e(stearate)β 

(149) and 10 mol% of ethylenediamine (150) with γ.0 equiv. of PMHS at 100 °C for β0 h (γ5–

κ6% yields, Scheme 57).[176] Interestingly, Turculet et al. described a more active catalytic 
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system using the three coordinate iron(II) N-phosphinoamidinate complex 87 in low catalytic 

loading (0.β5–1.0 mol%) in the presence of 1.0 equiv. of phenylsilane for the reduction of 

esters to alcohols at r.t. within 4 h (Scheme 57).[11κ] 

 
Scheme 57. Selective iron-catalyzed hydrosilylation of esters to alcohols.  

The chemoselectivity of these hydrosilylations can be finely controlled by a fine design of the 

catalytic system. Indeed, to obtain selectively ethers from esters, the combination of ‑eγ(CO)1β 

(16, 10 mol%) and TMDS (γ.0 equiv.) in toluene at 100 °C for β h permitted to reduce aliphatic 

and alicyclic esters, even steroid esters[177] (Scheme 5κ).  

 
Scheme 58. Selective iron-catalyzed hydrosilylation of esters to ethers.  

In multi-step synthesis, the reduction of esters furnishing aldehydes is always a tedious step, 

even if proven procedures with stoichiometric alkali reductant are always efficient. Thus, to 

produce specifically aldehydes from (hetero)aromatic and aliphatic esters, the association of  

the complex [‑e(CO)4(IMes)] 127 (5.0 mol%) and the hydrosilanes RβSiHβ (R = ‐t, Ph) 

permitted the efficient and specific reduction at r.t. under UV irradiation (γ50 nm)[17κ] 

(Scheme 5λ). ‐tβSiHβ showed the best performance for the reduction of alkanoates, whereas 

PhβSiHβ was the most active for benzoates. Noteworthy, this catalytic system was also efficient 

for the more tedious and chemoselective reduction of lactones to lactols in good isolated yields 

(κγ–λ5%).  
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Scheme 59. Selective iron-catalyzed hydrosilylation of esters to aldehydes and lactones to 
lactols. 
‑urthermore, experimental evidence proved that the hydrosilylation proceeded via an oxidative 

addition of various hydrosilanes to unsaturated NHC-‑e species obtained from the complex 

such as 127 by UV activation, furnishing a hydride-silyl iron complex which was fully 

characterized by NMR and X-ray analysis.[17λ] Based on these observations, the following 

mechanism was proposed (Scheme 60)μ after decoordination of one CO ligand under UV-

irradiation, oxidative addition of a hydrosilane led to the hydride iron(II) intermediate (VIII-
2). Then, insertion of the C=O bond of the ester into either the ‑e-H or ‑e-Si was postulated. 

A final reductive elimination produced the silylated acetal and regenerated the unsaturated 

iron(0) active species.[17κ] 

 
Scheme 60. Proposed catalytic cycle for the semi-reduction of esters. 

Noticeably, aldehydes were obtained starting from more reactive acyl chlorides, using a 

catalytic system generated from ‑eO (151, β0 mol%) and tris(β,4,6-

trimethoxyphenyl)phosphine (TMPP, 152, 5.0 mol%) in the presence of PhSiHγ (1.1β equiv.) 

in toluene at 60–1β0 °C for β0 h.[1κ0] 
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3.2.3. Carboxylic acids.  
The chemoselective reduction of carboxylic acids leading selectively to alcohols or aldehydes 

is also an important challenging target. ‐ven if such reactions can be selectively conducted 

through heterogeneous catalysis using highly drastic conditions, or through homogeneous 

catalytic hydrogenation, it has been scarcely reported using iron-catalyzed hydrosilylation 

(Scheme 61). 

 
Scheme 61. Carboxylic acid reduction into alcohols or aldehydes. 

Such selective hydrosilylation can be conducted using a one pot procedure using well-chosen 

silane-iron complex association. Indeed, conducting the transformation with 4.0 equiv. of 

PhSiHγ and 5.0 mol% of [‑e(cod)(CO)γ] complex 144 under UV irradiation (γ50 nm) at r.t. for 

β4 h, alkanoic and activated benzoic acids were converted to the corresponding alcohols (67–

λ7% yields) after acidic hydrolysis (Scheme 6β). By contrast, when the reaction was performed 

with 5.0 mol% of [‑e(t-PBO)(CO)γ] (153) and β.0 equiv. of TMDS  at 50 °C for β4 h, alkanoic 

acids were selectively reduced leading to the corresponding aldehydes in 45–λ5 isolated 

yields[1κ1] (Scheme 6β). In order to have insight into the chemoselectivity, a disilylacetal 

intermediate p-Br-C6H4-CH[OSi(Me)β-CHβ-SiH(Me)β]β was isolated and fully characterized 

by NMR and MS. This intermediate was stable under the reaction conditions and generated the 

aldehydes after an acidic hydrolysis step, thus avoiding any over-reduction process.  

 
Scheme 62. Chemoselective hydrosilylation of carboxylic acids to alcohols and aldehydes. 

4. Hydrogen borrowing reactions 
The hydrogen auto-transfer also called borrowing hydrogen methodology is another important 

pathway in the area of reduction reactions. It involves a metal promoted hydrogen transfer 
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mechanism starting from an alcohol which is oxidized to a carbonyl intermediate and a metal 

hydride species which will be able in the last step to release hydrogen for the reduction of the 

unsaturated intermediate formed from the carbonyl condensation, the transition metal catalyst 

playing here the role of hydrogen shuttle (Scheme 6γ). Such transformations are typically 

performed with noble metals such as ruthenium, rhodium or iridium.[1κβ] 

 

Scheme 63. Principle of metal catalyzed borrowing hydrogen methodology 

Iron can also perform such transformation mainly using Knölker type complexes as the 

catalysts. Indeed, direct reductive amination reactions can be efficiently promoted via a 

hydrogen borrowing pathway at rather high temperatures starting from primary alcohols.  

 In a pioneering contribution, Deng reported the N-alkylation of sulfonamides with 5.0 equiv. 

of benzylic alcohols using a ‑eClβ (20, 5.0 mol%)/KβCOγ (β0 mol%) catalytic system at 1γ5 °C 

for β0 h leading to the corresponding N-alkylated sulfonamides R-SOβ-NR’ (β1 examples, κλ–

λκ% yields).[1κγ] In β01γ, Singh described an efficient iron phthalocyanine (154) catalyzed N-

alkylation of amines such as aminobenzothiazoles, aminopyridines and aminopyrimidines with 

benzyl alcoholsμ using 1.0 mol% of iron phthalocyanine 154 in the presence of β.0 equiv. of 

NaOtBu in toluene at 100 °C for 1β h, the mono N-alkylated derivatives were yielded in β0–

λ0% (Scheme 64).[1κ4] Noticeably, starting from o-phenylenediamine, β-aminothiophenol and 

β-aminophenol, at 1β0 °C, under similar conditions, β-phenylbenzimidazoles, β-substituted 

benzothiazoles, and β-phenylbenzoxazole were produced, respectively, in 41–λλ% yields. 

In β014, ‑eringa and Barta described a general methodology using the complex 3 (5.0 mol%) 

associated to 10 mol% of MeγNO which catalyzed the auto-transfer hydrogenation of numerous 

primary alkylalcohols with aniline and benzylamine derivatives in CPM‐ (cyclopentyl methyl 

ether) at 1β0–140 °C affording the corresponding monoalkylated amines with yields up to λ5% 

(Scheme 64). The reaction can be also performed with diols leading selectively to the 

corresponding 5-, 6- and 7-membered heterocycles via a N,N-dialkylation process and tolerated 

various functional groups such as halides, hydroxyl, ester, nitrile, nitro. Noticeably, this 

methodology was applied for the synthesis of two pharmaceutical active molecules, Piribedil, 
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an anti-Parkinson drug and the Glycine transporter type 1 (GlyT1) inhibitor which exhibited 

potential in the treatment of schizophrenia.[1κ5] This BH reaction was extended to allylic 

alcohols giving the corresponding allylic amines without isomerization of the C=C bond.[1κ6]  

 
Scheme 64. Iron-catalyzed RDA reaction via hydrogen borrowing. 

Later, Wills developed a catalytic system prepared in situ from the modified Knölker complex 

(155, 10 mol%) and 10 mol% of MeγNO which showed the same range of  activity in toluene 

at 110 °C for 4κ h or xylene at 140 °C for β4 h (Scheme 64).[1κ7] Concomitantly, Zhao reported 

that the Knölker complex 49 (10 mol%) in combination with 40 mol% of Ag‑ was efficient 

for the reaction of primary anilines with 5.0 equiv. of secondary alcohols giving the 

corresponding monoalkylated amines with β6–λ7% yields (Scheme 64).[1κκ] With primary 

alcohols, its quantity is crucial for the selectivity of the reactionμ with 1.β equiv., monoalkylated 

anilines were selectively obtained, whereas with 5.0 equiv. mixtures mono- and dialkylated 

amines were observed.  

Wills also designed a series of (cyclopentadienone)iron tricarbonyl complexes by modifying 

the electronic variation of the aromatic groups neighboring the C=O of the cyclopentadienone, 

and identified the complex (156) as the best catalyst precursor for BH of alcohols with various 



65 

 

amines (Scheme 64). Notably, unsaturated alcohols containing double and triple bonds were 

applied.[1κ7] 

Renaud et al. recently reported an efficient way to perform the N-ethylation (or N-methylation) 

of amines with ethanol (or methanol), as the solvent, in the presence of β.0 mol% of iron 

Knölker type complex 42 and 10 mol% of CsOH at 110 °C for 16 h (Scheme 64).[1κλ] With 

ethanol (or methanol), starting with primary anilines, the mono N-alkylation was selectively 

observed, whereas the primary alkylamines led to the di-N-alkylation derivatives. 

Noteworthy, starting from fatty alcohols (4.0 equiv.), Barta described the N-monoalkylation of 

unprotected α-amino acids using 5.0 mol% of Knölker's nitrile-ligated complex 32 in neat 

conditions or β,β,β-trifluoroethanol at 110 °C for 1κ–4β h (κ examples, γβ–6λ% yields, 

Scheme 65).[1λ0]  

 
Scheme 65. Iron-catalyzed hydrogen borrowing reaction involving amino acids. 

Sundararaju developed an original synthesis of substituted pyrroles using the hydrogen 

borrowing methodology. Indeed, using 10 mol% of 3 and 10 mol% of MeγNO in toluene at 

150 °C, the reaction of various anilines and alkylamines with cis/trans buten-1,4-diol 

derivatives lead to substituted pyrroles in ββ–λ0% yields (Scheme 66).[1λ1] To explain the 

formation of pyrroles, a hydrogen auto transfer process–oxidation–intramolecular dehydrative 

condensation sequence was suggested.  

 

Scheme 66. Iron-catalyzed pyrrole synthesis via hydrogen borrowing reaction  

The hydrogen borrowing methodology can be used to build carbon chains through C–C bond 

formation. More particularly, α-alkylation of the ketone using an alcohol as the electrophilic 

alkylation agent in replacement of alkyl halides/pseudohalides is a strategy which permits to 

decrease the production of waste. The first report at iron was reported in β015 by our group 
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using the complex 3 (β.0 mol%) associated to β.0 mol% of PPhγ in the presence of a catalytic 

amount of base (CsβCOγ, 10 mol%)μ various primary alcohols then reacted with acetophenone 

derivatives in toluene at 140 °C leading to the alkylated products in γ6–7β% yields 

(Scheme 67).  

 
Scheme 67. Iron-catalyzed α-alkylation of ketones  

Noteworthy, under similar conditions with 10–γ0 mol% of KOtBu, α-alkylation of ketones 

reacted with β-aminobenzyl alcohol yielding the quinoline derivatives in 55–67% yields.[1λβ] 

Renaud used more active Knölker type complexes bearing an electron rich cyclopentadienone 

ligand [e.g. 40 or (157)] which permitted to perform the same reactions (except quinoline 

synthesis) at lower temperature (λ0 °C vs 140 °C, Scheme 67 Noticeably, D‑T calculations 

rationalized the better activity of these catalysts.[1λγ] 

5. Hydroboration 

5.1. Hydroboration of alkenes and alkynes 

Transition metal catalyzed hydroelementations are efficient and greener transformations for 

the introduction of boron[1λ4] into unsaturated molecules. More particularly, in the area of 

transition metal catalyzed hydroboration, organoboronates became an important class of 

reagents, as they are quite stable toward atmospheric oxidation, and widely used as synthons 

in selective carbon-carbon or carbon-heteroatom bond formations.[1λ5] Up to now, rhodium is 

usually identified as the metal of choice to promote efficiently such reactions.[1λ6] By contrast, 

contributions with iron catalysts are scarce. 
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In the 1λλ0s, using the [‑eCp(Bcat)(CO)β] complex (158), Hartwig developed a pioneering 

stoichiometric activation of arenes giving arylcatecholborane.[1λ7] In β00λ, Ritter reported the 

first iron-catalyzed hydroboration of 1,γ-dienes by pinacolborane (HBpin, 1.5 equiv.), using a 

catalyst generated from a well-defined [(iminopyridine)‑eClβ] complex (159, 4.0 mol%) in the 

presence of 10 mol% of magnesium at r.t. for 4 min.–4 h (Scheme 6κ).[1λκ] Noteworthy, isolated 

C=C double bonds and esters were tolerated under the reaction conditions. Additionally, even 

if starting from unsymmetrical dienes, only 1,4-addition adducts and (E)-C=C bonds were 

exclusively obtained, highlighting the high chemo- and regioselectivity of the transformation.  

 
Scheme 68. Chemo- and regioselective hydroboration of 1,γ-dienes. 

Similarly, Huang prepared a series of new iminopyridine iron complexes in particular bearing 

bulky diphenylphosphinomethyl-ketimine substituents. The iron complex (160, 1.0–4.0 mol%) 

was identified as the most selective and in association with NaHB‐tγ (β.5–10 mol%), promoted 

the hydroboration of 1-(hetero)aryl-substituted 1,γ-dienes with 1.04 equiv. of HBpin at β5 °C 

in 1–β h in ‐tβO leading in a regio- and stereo-selective manner to secondary (Z)-allylboronates 

as the major compounds in 7β–λγ% yields (Scheme 6λ).[1λλ] Importantly, this report constitutes 

the first example of 1,4 hydroboration of 1-substituted dienes leading to secondary 

allylboronates. 

 
Scheme 69. Chemo- and regioselective hydroboration of 1,γ-dienes. 

During the last few years, hydroboration of olefins was competitively studied utilizing iron 

based catalysts. In β01γ, Huang described the use of a catalyst in situ prepared from the 

bipyridyl-based phosphine iron complex (161, 0.β5–5.0 mol%) and NaHB‐tγ (0.75–15 mol%) 

to perform the hydroborylation of terminal olefins using 0.5 equiv. of HBpin at r.t. for 10–γ0 

min. leading to the alkylboronates with 6β–λ6% yields (Scheme 70). This reaction is 
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particularly suitable for the hydroboration of linear terminal alkenes and functional groups such 

as tosylate, tertiary amines, benzylethers and acetals were tolerated. The reaction is 

chemoselective as only terminal C=C bond of a polyene is hydroborated.[β00] 

 
Scheme 70. Iron-catalyzed hydroborylation of alkenes. 

‑urthermore, this catalytic system was applied for the hydroboration of styrenes. When the 

reaction was performed in toluene with β.0 mol% of 161 and 6.0 mol% of NaHB‐tγ at β5 °C 

for γ0 min., a mixture of hydroboration, dehydrogenative borylation and hydrogenation 

products was obtained (Scheme 70). By contrast, adding β0–40 mol% of acetonitrile, the 

reaction became selective as only the hydroboration adduct was obtained with 7κ–λ6% yields. 

The quantity of acetonitrile was crucial as the similar reaction performed in acetonitrile led to 

only 5% of the hydroborated derivative after γ0 min.  

 
Scheme 71. Proposed mechanism for iron-catalyzed hydroborylation of alkenes. 

The authors then proposed a mechanism for this reaction (Scheme 71). After reduction of the 

complex 161 by NaHB‐tγ and coordination of the alkene, the species (IX-1) is generated and 

its oxidative addition of H-Bpin led to the ‑e(II) species (IX-2). The 1,β-insertion of the C=C 
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into the ‑e-H bond produced the iron alkyl boryl (IX-3). The reductive elimination gave the 

linear boronate and regenerated the species IX-1 by coordination of an alkene.  
Simultaneously, Chirik reported that the bis(imino)pyridine iron dinitrogen complex 90 
(1.0 mol%) was also efficient for the hydroboration of terminal and disubstituted alkenes using 

1.0 equiv. of H-Bpin under neat conditions at β5 °C for 15 min. to β4 h (Scheme 70). It must 

be underlined that this catalytic system permitted to hydroborate cyclic alkenes and C=C bond 

in internal linear olefins such as cis-4-octene. In the latter case, a mixture of 1- and 4-

octylboronate products in a 5μ1 ratio was obtained showing that an isomerization process can 

also operate. Notably, the reaction also succeeded regioselectively with styrene derivatives. 

Starting from styrene, the anti-Markovnikov boronate ester, PhCHβCHβBPin, was exclusively 

obtained using 1.0 mol% of 90. 

The hydroborations of α- and cis- -methyl styrenes led specifically to β-phenylpropyl boronate 

ester  and 1-phenylpropyl boronate ester, respectively after β4 h (Scheme 70).[β01] Using a 

similar system, generating the active catalyst from ‐tMgBr (γ.0 mol%) and the dichloro iron 

complex (162, 1.0 mol%) or from the complex formed from ‑eClβ (20) and the corresponding 

bis-iminopyridine ligand 163 (1.0 mol%), the hydroboration of functional alkenes was 

efficiently performed in TH‑ at r.t. for 1 h using 1.1 equiv. of HBpin. Importantly, halides, 

esters, amides, imines, amines, and alcohols were tolerated  (Scheme 70).[β0β] Additionally, the 

hydroborylation of internal alkenes such as cyclooctene was successfully performed. 

In our group, using a molecular-defined iron-NHC complex, [(IMes)‑e(CO)4] 127 (5.0 mol%) 

under UV irradiation (γ50 nm) and neat conditions in the presence of 1.β5 equiv. of HBpin at 

r.t. for β4 h, functionalized terminal alkenes can be hydroborated in moderate to good yields. 

It must be underlined the good functional group tolerance with ester, acetal, ether, silylether, 

epoxide and nitrile moieties which were not altered (Scheme 70).[β0γ]  

In β015, Rauchfuss described the potential of the phosphine-iminopyridine iron complex (164) 

as a catalyst (0.1 mol%) in hydroboration, highlighting the full reaction of 1-octene with 

1.0 equiv. of HBpin at r.t. when 164 was treated with β.5 equiv. of NaHB‐tγ  (Scheme 70).[β04] 

Szymczak designed amidobispyridine ‑e(II) complexes (165) and (166) able to catalyze the 

hydroboration of alkenes when associated to γ.0 equiv. of NaHB‐tγ (Scheme 70). ‑or the 

reaction of HBpin (β.0 equiv.) at r.t. under neat conditions with terminal linear and cyclic 

olefins, both complexes exhibited similar reactivity. ‑or the hydroboration of styrene, 166 gave 

the best result (κ1% yields), 165 giving a less selective reaction with 11% of by-products 

resulting from dehydrogenative borylation and hydrogenation reactions. The hydroborylation 
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of the more challenging cis-4-octene led to a mixture of alkylboronates using 166 whereas 165 

permitted to obtain specifically the linear boronates, resulting first in the isomerization of the 

C=C bond followed by hydroborylation.[β05] 

In β016, Webster reported iron(II) -diketiminate complexes, such as (167) for the 

hydroboration of alkenes and alkynes (Scheme 70). Using 5.0 mol% of 167, terminal linear 

olefins were hydroborylated using β.0 equiv. of HBpin at r.t. for 16 h in C6D6 leading to the 

anti-Markovnikov products with 45–λλ% yields. Noticeably, epoxide, ketone, and substituted 

C=C bonds were not altered. With styrenes, harsher reaction conditions (60 °C, β.5–1κ h) were 

necessary, but a mixture of isomers was obtained. By contrast, the hydroborations of α- and 

cis- -methyl styrenes led specifically to β-phenylpropyl boronate esters  and 1-phenylpropyl 

boronate esters, respectively (Scheme 70).[β06]  

N-phosphinoamidinate-coordinated iron complexes (168) was reported to be a useful catalyst 

for the isomerization/hydroborylation of internal olefins using 1,γ-dimethyl-1,γ-diaza-β-

boracyclopentane as the hydroboron reagent leading to linear terminal alkyl diazaborolanes 

(Scheme 7β). Noticeably, 1,γ-dimethyl-1,γ-diaza-β-boracyclopentane was a better partner than 

HBpin for such transformation.[β07] 

 
Scheme 72. Iron-catalyzed isomerization/hydroborylation of internal olefins. 

Using bis(pinacolato)diboron (Bβpinβ), Zhou reported a simple system based on ‑eClβ (20, 0.1–

10 mol%) working in the presence of 1.β equiv. of KOt-Bu and 1.0 equiv. of t-BuOH in TH‑ 

at 65 °C for 1β h. Numerous styrenes and heteroarylalkenes were hydroborylated and led to the 

anti-Markovnikov products with 64–λλ% yields (β4 examples).[β0κ] 

Regioselective hydroboration of styrenes is always a more challenging task. A highly 

Markovnikov-selective hydroboration of styrenes was described using a catalytic system from 

‑eClβ (20, β.5 mol%), an oxazolinylphenyl picolinamide ligand (169, γ.0 mol%) and NaBH‐tγ 

(5.0 mol%), affording the branched borylated products with up to >50/1 (b/l) at r.t. in toluene 
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after 1κ h (Scheme 7γ).[β0λ] By contrast, with linear olefins such as 1-octene, 1/1 ratio was 

obtained. 

 
Scheme 73. Iron-catalyzed Markovnikov selective hydroborylation of styrenes. 

Similarly, Thomas developed alkoxytethered NHC iron(II) complexes able to perform 

regioselective hydroboration of terminal olefins. Noticeably, using the right hydroboranes 

associated to the right iron complex permitted to direct the regioselectivity. With 1.β5 equiv. 

of HBpin and β.5 mol% of (170) under neat conditions at r.t., styrene derivatives led to the 

corresponding branched borylated product with yields up to λ0% and selectivity b/l from 5μ1 

to γ7μ1 (Scheme 74). By contrast, selecting HBcat (1.5 equiv.) and the complex (171, 5.0 mol%) 

in TH‑ at r.t. a reverse anti-Markovnikov selectivity was observed (Scheme 74). As the 

catechol boronic esters are sensitive and difficult to purify, to quantify the reaction, they were 

either oxidized (HβOβ, NaOH, 0 °C, 0.5 h) or transesterified with pinacol to give the primary 

alkyl- boronic esters. (44−71% yields).[β10] 

 
Scheme 74. Switchable iron catalyst systems for Markovnikov and anti-Markovnikov 
hydroborylation of styrenes. 

Hydroborylation of alkynes can be also performed using iron-based catalysts. In β01γ, ‐nthaler 

reported the hydroboration of terminal alkynes using ‑eβ(CO)λ 172 as the catalyst (β.5 mol%), 

in the presence of 1.β5 equiv. of HBpin at 100 °C for β4 h (Scheme 75). Vinyl boronate esters 

were then obtained with high stereoselectivity. Starting from terminal alkynes, (E)-

vinylboronate derivatives were obtained selectively (17 examples, 40–λλ% yields), whereas 
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more complex mixtures of regioisomers were obtained with internal non symmetric alkynes.[β11] 

Using ‑eClγ (59) or iron nanoparticles from ‑eγO4 (173, 5.0 mol%) in the presence of 1.β equiv. 

of Bβpinβ and β.0 equiv. of CsβCOγ in acetone at 60 °C, terminal alkynes led selectively to (E)-

vinylboronates in 65–λκ% yields (Scheme 75). It is interesting to note that NP ‑eγO4 can be 

recycled up to 6 times without significant loss of activity. [β1β]  

 
Scheme 75. Iron-catalyzed hydroboration of alkynes. 

In β017, Nishibayashi described pyrrolide-based PNP pincer iron complexes (174, 1.0 mol%) 

active in hydroboration of alkynes with HBpin (1.1 equiv.) in hexane at r.t. after 16 h 

(Scheme 75).[β1γ] The corresponding E-vinylboronates were obtained selectively in κ4–λ4% 

yields. Noteworthy, steric hindrance seemed to inhibit the reaction, as o-

methylphenylacetylene was converted in less than 5%. ‑urthermore, with internal alkynes such 

as diphenylacetylene, a lower yield was detected (β1%).  TONs up 710 were reached when the 

reaction was performed at 60 °C. 

 
Scheme 76. Iron-catalyzed hydroboration of alkynes. 

Using iron(II) polyhydride complexes containing tridentate PNP pincer-type ligands 

[‑e(PNP)(H)β(ηβ–Hβ)] (175, 0.4–4.0 mol%), Kirchner reported a catalytic system able to 

promote the hydroboration of terminal alkynes in the presence of pinacolborane (1.1 equiv.), 

leading vinylboronates with high Z–selectivity (Scheme 76). When the reaction was performed 

at r.t. in C6D6 after γ–16 h, vinylboranoates were obtained in κ7–λ6% yields, EμZ ratios of 

βλμ71–1μλλ.[β14] 
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5.2. Dehydrogenative borylation 

An attractive alternative way of preparation of vinyl boronate esters can be performed by the 

catalytic dehydrogenative borylation of styrene derivatives. In β016, Ge,[β15] our group[β16] 

reported such selective dehydrogenative borylation of vinylarenes with pinacolborane 

catalyzed by molecular defined iron complexes. Thus, using [‑e(PMeγ)4] (129, γ.0–5.0 mol%), 

in the presence of 1.β equiv. of monosubstituted and disubstituted vinylarenes and β.0 equiv. 

of norbornene in hexane at 50 °C for 1κ h, E-vinyl boronate esters were selectively produced 

in high yields of 60–λ4% (Scheme 77).[β15] Good functional group tolerance was shown as 

acetal, imines, furyl, amino, boronate, PhβP were not altered. It must be noticed that norbornene 

is crucial for the success of the transformationμ indeed, when the hydroboration was conducted 

in the absence of hydrogen acceptors, only a trace amount of desired product was detected. 

 
Scheme 77. Iron-catalyzed dehydrogenative borylation of alkenes. 

Our group has developed the synthesis of a series of dicarbonyl PCP-iron hydride 

complexes,[β16] and has shown that they are active and selective catalytic precursors for the 

dehydrogenative borylation of styrene with HBpin. Using (176) or (177) (5.0 mol%), HBpin 

(1.0 equiv.) reacted with styrene at r.t. under neat conditions and UV irradiation (γ50 nm) for 

7β h giving the corresponding vinyl boronate ester with up to κ0% isolated yields (Scheme 77). 

Noticeably, no hydrogen scavenger was required to promote the reaction.  

6. Conclusion of Chapter I 
This chapter highlights the main advances made in the area of iron-catalyzed, chemoselective 

reduction of carbonyl derivatives, carboxylic compounds and COβ. In particular, it was shown 

that an accurate design of the catalytic iron system is crucial to perform highly chemoselective 

transformations. ‑urthermore, these reported results demonstrate without any doubts the high 

potential of the earth abundant, inexpensive, benign iron transition metal to realize reduction, 

hydroelementation and hydrogen borrowing reactions under mild conditions. Since two 
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decades, a rebirth began in iron-catalyzed transformations which represent an impressive 

potential for future academic or industrial applications.  

In terms of catalyst design, innocent as well as non-innocent redox-active and tri- or tetra-

dentate cooperative ligands have already shown impressive and promising results. NHC, 

cyclopentadienyl and organophosphorus based complexes have also reveals outstanding 

activities and selectivities. Notably, in-depth mechanistic studies will be crucial to elucidate 

reaction pathways, important steps in the elaboration of finely designed iron catalysts able to 

reach the best activity and selectivity. 

These initial achievements, in particular for the challenging reductions of carboxylic acid 

derivatives and carbon dioxide, have already allowed very impressive advances and should 

stimulate the utilization of iron-catalyzed methodologies in large-scale synthesis and fine 

chemistry.  
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Chapter II – Fe-Catalyzed Dehydrogenative Borylation Reactions 

Introduction 
Thanks to the impressive progress made in Suzuki-Miyaura coupling reactions,[1] the selective 

preparation of organoboron compounds has attracted broad interest over the last two decades.[β] 

In particular, alkenyl and alkynyl boronic esters are nowadays valuable boron derivatives, 

using in both Suzuki cross-couplings[βa] or Petasis reactions[γ]. This family of compounds is 

traditionally prepared though the (dehydrogenative)hydroboration of alkynes and alkenes,[4] 

cross-metathesis,[5] Miyaura borylation[6] or boryl-Heck reactions.[7] More particularly, there 

has recently been intense interest in developing first row transition metal complexes for 

catalytic hydroboration of alkenes (with iron[κ], cobalt[λ], nickel[10] and manganese[11] catalysts) 

alkynes (with iron[κd, 1β], cobalt[1γ] and copper[14] catalysts), and enynes.[15] As an alternative, 

the selective C-H borylation of alkenes and alkynes is far less developed.[16] While the 

dehydrogenative borylation of styrenes or alkynes is often encountered and considered as a 

side reaction of their hydroboration to form organoboranes,[17] achieving a selective 

dehydrogenation of styrenes remains challenging.[1κ] However, an accurate design of the 

catalytic system can be performed to favor such pathway, then yielding alkenyl- or alkynyl-

boronates from terminal alkenes or alkynes, respectively.[1κ] 

In this chapter, we describe the use of iron based catalysts for the selective dehydrogenative 

borylation of styrenes giving styrylboronates (paragraph II-1) and of terminal alkynes leading 

to the corresponding alkynylboronates (Paragraph II-β). 
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II-1 Fe-Catalyzed dehydrogenative borylation of styrenes 
Contributions in this partμ Optimization and scopeμ Duo Wei, Thomas Dombrayν D‑T 

calculationsμ Mary Grellier, Tomoya Ichino, Satoshi Maeda. 

1.1. Introduction 

The direct C-H borylation of Cspβ-H bonds of arenes has attracted a lot of attention,[1λ] notably 

lately with catalysts based on first row transition metals, due to (i) the importance of 

organoborate derivatives in organic synthesis,[β0] (ii) the great advantages of direct C-H bond 

functionalization in terms of atom and step economic synthesis compared with classical 

synthetic methods[β1] and (iii) the challenge of replacing traditional precious transition metals 

by abundant ones.[ββ] Several efficient catalytic systems based on nickel,[βγ] cobalt,[β4] iron,[β5] 

iron-zinc or iron-copper,[β6] copper,[β7] manganese,[βκ] titanium[βλ]  and even metal-free 

‑rustrated Lewis Pair (‑LP)[γ0] have been developed (Scheme 1). 

 

Scheme 1. Representative organometallic catalysts for C-H borylation reactions. 

On the other hand, alkenyl boronic esters are also valuable boron derivatives, using in Suzuki 

cross-couplings[βa] or Petasis reactions.[γ] As an alternative preparation method, the selective 

C-H borylation of Cspβ-H of alkenes is far less developed. While the dehydrogenative 

borylation of styrenes is often encountered and considered as a side reaction of the 

hydroboration of alkenes to form organoboranes,[17] achieving a selective dehydrogenation of 

styrenes remains challenging.[1κ] Moreover, the rare examples of selective dehydrogenative 

borylation have been performed either in the presence of an excess of styrenes as hydrogen 

acceptor[γ1] or of boron precursors.[γβ] 

In the case of iron, our group[γγ] and others[γ4] have observed the formation of vinylboronates, 

in the course of our studies on hydroboration of alkenes. ‑urthermore, using POCOP-iron 

hydride complexes, we have demonstrated for the first time that in the presence of 
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pinacolborane and an excess of styrene (γ equiv.), the corresponding vinyl boronate could be 

obtained with satisfying selectivity and good yield.[16a] In the course of our study, the group of 

Ge, reported that ‑e(PMeγ)4 is an efficient catalyst for the borylation of styrenes in the presence 

of norbornene (β equiv.), as an hydrogen acceptor (Scheme β).[16b]  

 
Scheme 2. ‑e-catalyzed dehydrogenative borylation of styrenes. 

In this chapter, following our strategy of C-H borylation of arenes in the absence of hydrogen 

acceptor[γ5], we present an iron catalyzed selective dehydrogenative coupling of styrenes in the 

presence of a stoichiometric amount of HBpin, with the formation of Hβ as the sole by-product. 

1.2. Results and discussions 

1.2.1. Optimization of the parameters of the reaction 

Based on our previous contribution on dehydrogenative borylation of arenes,[β5d] we have first 

selected [‑e(Me)β(dmpe)β] complex 1 as the catalyst (5.0 mol%) to perform the first tests for 

the dehydroborylation of styrene 3a (γ equiv.) with HBpin (1 equiv.) under UV irradiation at 

γ50 nm at room temperature for 7β h under neat conditions (Table 1, entry 1)ν under such 

conditions, a full consumption of HBpin was observed by 11B NMR and the converted styrene 

lead to a mixture of styrylboronate 4a (6β%), β-phenylethylboronate 5a (1λ%) and 

ethylbenzene 6a (1λ%) (Table 1). With this catalyst 1, bearing two dmpe ligands, the selectivity 

couldn’t be improved further. As iron(0) complex [‑e(dmpe)β] was postulated as a key 

intermediate in the course of the borylation of arenes, we turned our attention towards the 

parent iron (0) complex bearing monodentate phosphines, namely 

tetrakis(trimethylphosphine)-iron(0). To our delight, using ‑e(PMeγ)4 (2) as the catalyst under 

similar conditions (Table 1, entry β), after 1κh, a full conversion of HBpin was detected by 11B 

NMR and styrylboronate 4a was obtained in κ7% isolated yieldν It is important to note thatμ (i) 

more than 1 equiv. of styrene has reactedν (ii) in the crude mixture, only β% of β-

phenylethylboronate 5a was detected by CGν and (iii) the quantity of ethylbenzene 6a formed 
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(γ4 %), resulting from the hydrogenation of styrene, is lower than the one of styrylboronate 4a 

(64 %).  

Table 1. Optimization of the Iron catalyzed dehydroborylation of styrene[a] 

PhPh
[Fe] (5.0 mol%)

+  H-Bpin
Bpin

Ph
Bpin Ph

[Fe] = Fe(Me)2(dmpe)2 (1) 
        Fe(PMe3)4 (2)

3a 4a 5a 6a
+ +

H-Bpin =
O

B
O

H

 

Entry 3a (equiv.) Conditions[a] Conv. (%)[b] Select. (%)[b,c] 

4a : 5a : 6a 
Yield 4a 

(%)[d] 
1[e] γ.0 Neat, UV, 1κ h >λκ 6βμ1λμ1λ 83f 
β[g] γ.0 Neat, UV, 1κ h >λκ 64μβμγ4 87 
γ[g] β.0 Neat, UV, 1κ h >λκ 64μ5μγ1 80 
4[g] 1.0 Neat, UV, 1κ h >λκ 40μγ6μβ4 37 
5[g] γ.0 Neat, 50 °C, 1κ h >λκ 74μ1μβ5 85 
6[g] γ.0 MeCN, 50 °C, 1κ h κ - - 
7[g] γ.0 TH‑, 50 °C, 1κ h >λκ 6κμ1μγ1 81 
κ[g] γ.0 pentane, 50 °C, 1κ h >λκ 71μβμβ7 81 
λ[g] γ.0 Toluene, 50 °C, 1κ h >λκ 71μ1μβκ 83 
10[g] β.0 Toluene, 50 °C, 1κ h >λκ 77μ1μββ 78 
11[g] 1.0 Toluene, 50 °C, 1κ h >λκ κ0μ5μ15 76 
1β 1.0 Toluene, 50 °C, 1κ h >λκ[i] κ5μ5μ15 76 
1γ 1.0 Toluene, 50 °C, 6 h λ0[i] κ6μ11μγ 64 
14[h] 1.0 Toluene, 50 °C, 1κ h 47[i] κ6μλμ5 34 
15 1.0 Toluene, γ0 °C, 1κ h κ4[i] κ4μ4μ1β 35 
16[j] 1.0 Toluene, 50 °C, 1κh 46 λ4μγμγ 28 

[a] Typical conditionsμ 5.0 mol% of [‑e] catalyst, 0.5 mmol of HBpin, neat or 0.5 mL of toluene, 1κ hν  

[b] Conversion based on HBpin detected by 11B NMRν  
[c] product distribution determined by GC based on converted styrene. N.B.μ more than 1.0 equiv. of 

styrene may be consumedν  
[d] Isolated yield based on HBpinν  
[e] [‑e(dmpe)βMeβ] as the catalyst, 7β hν  

[f] κγ% isolated yield, mixture of 4a (77%) and 5a (βγ%) (by 1H NMR)ν  
[g] [‑e(PMeγ)4] as the catalyst. 
[h]  β.5 mol% of catalyst was used instead of 5.0 mol%. 
[i] Determined by GC based on styrene. 
[j] With β0 mol% PMeγ 

More importantly, compared to the borylation of arenes, the irradiation is not mandatory for 

the borylation to occur as the reaction can be also performed at 50 °C without any UV 

irradiation, leading to similar activity and selectivity (entry 5). Interestingly, under thermal 

conditions, with ‑e(PMeγ)4 2 as the catalyst (5.0 mol%), the borylation of styrene can be 

performed in organic solvents (entries 6-λ). Whereas no reaction was observed in acetonitrile, 

toluene was identified to be the best solvent, with an excellent selectivity and notably without 

the concomitant borylation of the aromatic solvent (entry λ). ‑inally, in neat conditions and in 
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toluene, the quantity of styrene can be decreased from γ to 1 equiv.μ in toluene, with a slightly 

lower yield based on HBpin (76 % vs κγ%) but a yield based on styrene increasing from β7 to 

76% (‐ntries β-4 and λ-11). ‑inally, lowering the temperature to γ0 °C, the catalyst loading to 

β.5 mol% or the reaction time to 6 h has a deleterious effect on the activity (entries 1β-15). 

Thus the optimized conditions to obtain the dehydroborated styryl boronate derivatives is the 

use of 5.0 mol% of the catalyst ‑e(PMeγ)4 2 in the presence of 1 equiv. of styrene derivative, 

1 equiv. of H-Bpin in toluene at 50 °C for 1κh (Table 1, entriy 11). 

1.2.2. Scope of the dehydrogenative borylation of styrene derivatives  

Then, we probed the scope of the reaction with ‑e(PMeγ)4 2 as the catalyst precursor (Table β). 

Good isolated yields for alkyl substituted styrenes were obtained (4a-d, 7λ-λ0%). In the case 

of p-methylstyrene 3b, in addition to the styrylboronate 4b, β0% of β-(4’methyl-

phenyl)ethylboronate 5b were also obtained. Styrenes bearing para-electron donating 

substituents such as methoxy 3e and phenyl 3f led to the corresponding borylated styryl 

derivatives 4e-f with 70-λ0% yields. Starting with γ,4,5-trimethoxyphenylethene 3h, under 

similar conditions, only 70% of conversion was observed and the expected borylated styryl 

derivative 4h was obtained in γ1% NMR-yield, in addition of γκ% of 1-ethyl-γ,4,5-

trimethoxybenzene 6h.  

Noticeably, α-methylstyrene 3i can be also dehydroborylated and the expected borylated styryl 

derivative 4i was isolated in 6κ% yield. However, with (E)- -methylstyrene, bearing an internal 

C=C bond, under similar conditions, no reaction occurred. 

With 4-chloro-styrene, under similar conditions, low conversions were observed (β1 %), and a 

mixture was obtained including the products resulting of the dehalogenation of the starting 

material. Noticeably, it must be also pointed out that in the cases of functionalized styrenes 

such as 4-cyanostyrene or vinyl-pyridine, no reaction of dehydrogenative borylation occurred 

due to polymerization of the starting materials. 
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Table 2. ‑unctionalized styrene dehydroborylation catalyzed by ‑e(PMeγ)4 2. 

 
Entry Substrate Time 

(h) 
Conv. 
(%)[a] 4:5:6 Borylated styrene Yield of 4 

(%)[b] 

1 
 

1κ >λκ κ0μ5μ15 
 

76 

β 
 

40 >λκ κκμ7μ5 
 

κ0[c] 

γ 40 >λκ κλμ6μ5  7λ[d] 

4 
 

β0 >λκ 76μλμ15 
 

λ0[e] 

5 
 

7β >λκ 77μγμβ0 
 

77 

6 
 

40 >λκ 7γμγμβ4 
 

70 

7 κ6 >λκ κλμ5μ6 
 

κ1[f] 

κ 

 

κ6 70 4γμγμ54 
 

γ1[g] 

λ[h] 
 

κ6 >λκ λ1μ6μγ 
 

6κ 

[a] Detected by 1H NMR of crude mixtureν 
[b] Isolated yieldν 
[c] Isolated as mixture of 4b and 5b in 1μ0.β0ν  
[d] Isolated as mixture of 4c and 5c in 1μ0.10ν  
[e] Isolated as mixture of 4d and 5d in ration of 1μ0.1β.ν 
[f] Isolated as mixture of 4g, 5g and 6g in ration of 1μ0.06μ0.07 

[g] Yield determined by NMR 

[h] β.0 equiv. of α-methylstyrene (3i) were used 

1.3. Mechanistic insights 

In order to determine theoretically the reaction pathway for the reaction of 3a with H-Bpin 

catalyzed by ‑e(PMeγ)4, an automated reaction path search method, artificial force induced 

reaction (A‑IR)[γ6] has been used and performed by Mary Grellier (LCC Toulouse). All 

structures discussed below were optimized by a spin-unrestricted D‑T method with the BγLYP 
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functional[γ7], the 6-γ1G* basis set and the empirical dispersion correction[γκ]. Transition states 

(TSs) were confirmed to be first-order saddle points by normal mode analysis, and path 

connections were determined by intrinsic reaction coordinate calculations starting from TSs. 

The analysis of the different reaction pathways has been done on iron complexes at singlet, 

triplet, and quintet spin states multiplicities.  

1.3.1. Structure of the ground spin state of Fe(PMe3)4 catalyst 

Optimized structures of the ‑e(PMeγ)4 catalyst in the three spin multiplicities are shown in 

‑igure 1. Coordination number of singlet and triplet states is four, while that of quintet state is 

three. The quintet structure is identified as ‑e(PMeγ)γ. The expectation value of spin-squared 

operator ‹Ŝβ› indicates that the singlet structure corresponds to open-shell-singlet. Relative 

electronic energies and Gibbs free energies of these spin states are summarized in ‑igure 1. 

The quintet state is the most unstable of the three spin states, showing that the quintet state is 

excluded from the ground spin state of ‑e(PMeγ)4. It is found that the triplet state is more stable 

than the singlet state. Therefore, the ground spin state of ‑e(PMeγ)4 is triplet. 

 

Figure. 1. Optimized structures of ‑e(PMeγ)4 in singlet, triplet, and quintet states. ‐lectronic 
and free energy values (Erel and Grel) relative to the starting point in unit of kJ/mol, averaged 
‑e–P bond length (ave. ‑e–P) in unit of Å, and the expectation value of spin-squared operator 
(‹Ŝβ›) are shown.  
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1.3.2. Substrate coordination 

The possibilities of coordination of styrene or HBpin to ‑e(PMeγ)4, and the dissociation of 

PMeγ ligand from the iron complex 2 at the first reaction step have been examined. ‐nergy 

profiles in triplet state are shown in ‑igure β. The barrier energy for the PMeγ dissociation step 

is 5λ.4 kJ/mol, which is the lowest in the possible reaction steps. The alternatives for the first 

reaction step involving styrene or HBpin approaches to the catalyst 2 lead to a PMeγ 

spontaneous dissociation from the ‑e atom. The energy of simple PMeγ dissociation is lower 

than the energy found for the transition states involving the coordination of styrene 3a (TS1/2) 
or HBpin (TS3/4) (e.g. 104.0 and 10λ.6 kJ/mol respectively). ‑or the two coordination steps to 

the catalyst, spin dependence has been studied. These energy barriers in singlet state are higher 

than those in triplet state. ‑or the structural change of coordination of styrene, spontaneous 

dissociation of PMeγ occurs, which is same as that in triplet. Therefore, a styrene–bound 

‑e(PMeγ)4 complex does not exist at the present computational level. The dissociation of PMeγ 

in the triplet state is then the first reaction step, and the possibilities of coordination of styrene 

and HBpin can be ruled out. 

 
Figure 2. ‐nergy profiles at first reaction step in triplet state. Dissociation step of PMeγ, and 
coordination steps of styrene and HBpin are represented in solid, dotted, and dashed lines, 
respectively. Gibbs free energy was estimated at γβγ.15 K and 1.0 atm. ‐nergy reference is 
sum of ‑e(PMeγ)4 in triplet state, two styrenes, HBpin, and Hβ. 2 and 3a are ‑e(PMeγ)4 and 
styrene, respectively. 
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Possibilities of coordination of styrene or HBpin to 2a, and dissociation of PMeγ from 2a have 

been investigated and compared at second reaction step. ‐nergy profiles for the three possible 

steps are shown in ‑igure γ. It is clear that the coordination of styrene is energetically preferable 

step. ‑urthermore, the coordination of styrene would kinetically proceed than that of HBpin 

since the concentration of styrene is higher than that of HBpin at initial condition of the 

catalytic reaction (see entry 4–6 in Table1). The possibility of dissociation step is ruled out 

since this step is only endothermic reaction, and has the highest barrier. Therefore, the 

coordination of styrene to ‑e(PMeγ)γ is the second reaction step. 

 
Figure 3. ‐nergy profiles at second reaction step in triplet state. Gibbs free energy was 
estimated at γβγ.15 K and 1.0 atm. ‐nergy reference is sum of ‑e(PMeγ)4 in triplet state, two 
styrenes, HBpin, and Hβ. 3a is styrene (see in scheme 1). 

The coordination of HBpin to IM5 and the dissociation of PMeγ from IM5 have been 

investigated at the third reaction step. ‐nergy profiles for the two possible steps are shown in 

‑ig. γ. IM9 corresponds to a weak complex between IM5 and HBpin. As HBpin approaches 

IM5, a PMeγ spontaneously dissociates from the ‑e atom through TS9/10 with a high barrier. 

The dissociation of PMeγ to generate IM8 is energetically more preferred and thus is the third 
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reaction step. IM12 is a weak complex between IM8 and HBpin, and it generates IM13 

through a tiny barrier TS12/13. Overall, the coordination of substrates occurs in the following 

sequenceμ (i) PMeγ dissociation, (ii) styrene coordination, (iii) another PMeγ dissociation, and 

(iv) HBpin coordination.  

It was also shown that the singlet state is not favorable at any of intermediate along the best 

path. At 2a, quintet is 1β.5 kJ/mol lower than triplet. A spin-crossover may take place at 2a, 

although its impact on the reaction kinetics would be small because quintet is not favorable at 

any other intermediate. 

1.3.3. Styrylboronate formation 

‑igure 4 shows a reaction profile for the formation of styrylboronate. Along the path of triplet 

state, a B-H bond cleavage occurs at TS13/14IS. Then, conformational rearrangements and 

pseudo rotation around the ‑e atom take place in the area between IM14IS and IM17IS. The  

C-H bond activation takes place at TS17/18IS, and this TS is the highest energy point along 

this path. There is a tiny barrier at TS18/19IS to form an H-H bond. Subsequent Hβ dissociation, 

styrene coordination, and dissociation of the styrylboronate product reproduces IM8IS. 

Along the path of triplet state, the hydride transfer step through TS17/18IS corresponds to the 

rate-determining step. TSs of the same step for singlet and quintet paths are both much higher 

in free energy than the triplet one. Therefore, we conclude that TS17/18IS is the rate-

determining step of this reaction. As seen in ‑igure 4, a spin-crossover may take place between 

IM13 and IM14 and also between IM17 and IM18. The lowest energy point before the rate-

determining step is IM14HS. The overall barrier for this reaction would thus be the energy 

difference between TS17/18IS and IM14HS ~κλ.1 kJ/mol. The experimental temperature 50°C 

is enough to overcome this barrier. 

Another remarkable point is that the reverse reaction from IM21IS to IM14HS is also possible 

at the experimental temperature. Its overall barrier (the energy gap between TS17/18IS and 

IM21IS) is ~107.6 kJ/mol. This allows the system to access byproducts that are preferred 

thermodynamically, as discussed below. 
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Figure 4. A reaction profile for the formation of styrylboronate in singlet (LSμ low spin), triplet 
(ISμ intermediate spin), and quintet (HSμ high spin) states. ‑or LS and HS, only local minima 
and the rate determining transition state are shown. ‐nergy values relative to the starting point 
are shown in unit of kJ/mol. 

1.3.4. 2-Phenylethylboronate formation 

In ‑igure 5, a reaction profile for the formation of β-phenylethylboronate is given. The B-H 

activation part is identical to the one for styrylboronate formation in ‑igure 4. The branching 

between formation of styrylboronate or β-phenylethylboronate occurs at IM15IS. A pseudo 

rotation takes place through a relatively high barrier TS15/22IS to take a form in which a 

subsequent hydride transfer can happen. The hydride transfer TS (TS22/23IS) is the highest 

energy point along this profile. ‑inally, a coordination of styrene and a subsequent dissociation 

of β-phenylethylboronate give IM8IS. 
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Singlet and quintet TSs for the hydride transfer step are much higher in energy than the one in 

the triplet state. This confirms that the hydride transfer step through TS22/23IS is the rate-

determining step. The lowest energy point before TS22/23IS is IM14HS. The overall barrier can 

therefore be estimated to be ~λκ.λ kJ/mol as the energy difference between TS22/23IS and 

IM14HS. The overall barrier is bigger than the one in the styrylboronate formation. This 

explains the dominant formation of the styrylboronate product. 

 
Figure 5. A reaction profile for the formation of β-phenylethylboronate in singlet (LSμ low 
spin), triplet (ISμ intermediate spin), and quintet (HSμ high spin) states. ‑or LS and HS, only 
local minima and the rate determining transition state are shown. ‐nergy values relative to the 
starting point are shown in unit of kJ/mol. 
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On the other hand, styrylboronate is thermodynamically less preferred than β-

phenylethylboronate. In other words, it is expected that the amount of β-phenylethylboronate 

formation changes depending on reaction conditions. This point is discussed below in more 

detail. 

1.3.5. Ethylbenzene formation  

As shown experimentally, ethylbenzene is one of significant byproducts. We therefore studied 

the formation path of ethylbenzene via a hydrogenation of styrene. In this path, Hβ produced 

as byproduct of the styrylboronate formation is the hydrogen source. ‑igure 6 shows its reaction 

profile. Along the triplet path, H-H dissociation occurs on the ‑e center through TS25/26IS. 

Then, the hydride transfer occurs from ‑e to C via TS26/27IS, where this TS is the highest 

energy point along the profile. After pseudo rotations in the area from IM27IS to IM30IS, the 

second hydride transfer takes place via TS30/31IS. Then, a styrene coordination and Hβ 

dissociation reproduces IM8IS. 

The overall barrier in the reaction from IM8IS to IM27IS or IM27HS can be estimated as the 

energy gap between TS26/27IS and IM8IS ~6κ.6 kJ/mol. On the other hand, the overall barrier 

for the second hydride transfer can be estimated as the energy gap between TS30/31IS and 

IM29HS ~λ4.β kJ/mol. Therefore, the second hydride transfer through TS30/31IS is the rate-

determining step of this reaction. In singlet and quintet states, TS26/27LS, TS30/31LS, and 

TS30/31HS were found to be higher in free energy than those in triplet state (see ‑igure 6). 

However, TS in quintet corresponding to TS26/27IS was not be obtained at the computational 

level used.  

Along this profile, once the system goes over the highest TS (TS26/27IS), the reverse reaction 

generating styrene and Hβ is unlikely to proceed because the forward reaction is preferred both 

kinetically and thermodynamically. Therefore, the overall barrier ~6κ.6 kJ/mol for the first 

hydride transfer is compared to those in styrylboronate (~κλ.1 kJ/mol) and β-

phenylethylboronate (~λκ.λ kJ/mol)ν the overall barrier is smallest in the ethylbenzene 

formation. However, it is kinetically unfavorable, because concentration of Hβ, which is a 

byproduct of styrylboronate formation, is expected to be low especially in the initial stage of 

the reaction. Its concentration increases as the reaction proceeds is not negligible. This would 

explain generation of ethylbenzene of 15-γ4% in the present experiments (see Table 1). 
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Figure 6. A reaction profile for the formation of ethylbenzene in singlet (LSμ low spin), triplet 
(ISμ intermediate spin), and quintet (HSμ high spin) states. ‑or LS and HS, only local minima 
and the rate determining transition state are shown. ‐nergy values relative to the starting point 
are shown in unit of kJ/mol. 

1.3.6. Competition among three pathways 

Competition among dehydrogenative borylation, hydroboration, and hydrogenation is 

discussed. At first, profiles of the three pathways are compared in ‑igure 7. ‐nergetically, 

hydrogenation (green line) is most preferable. Kinetically, dehydrogenative borylation (black 

line) is more favorable than hydroboration (orange line). Thermodynamically, in contrast, 

hydroboration is more favorable than dehydrogenative borylation. 

The change in the final product ratio among 4a, 5a, and 6a, depending on the initial 

concentration of 3a, can be discussed based on ‑igure 7. In the final stage of the reaction, the 
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concentration of 3a should be very low. In contrast, conversion of 4a to 5a via hydrogenation 

of 4a can occur gradually, since the concentration of 4a should be large enough and its barrier 

104.κ kJ/mol is moderate. This process affords 5a and therefore increases the yield of 5a a little. 

On the other hand, this process also consumes Hβ and reduces its concentration. Consequently, 

the contribution of hydrogenation giving 6a should decreases slightly. These happed in the 

entry 6 in Table 1. In this entry, the yield of 4a increased a little bit due to the decrease of the 

contribution of hydrogenation. 

To gain further insights, a kinetic simulation is done using a simplified reaction profile. It is 

known to be difficult to solve the kinetic equation with the full reaction profile including fast 

reaction steps. The simplification was therefore done assuming local equilibria among local 

minima that quickly interconvert to each other. 

 
Figure 7. Comparison of energy profiles for dehydrogenative borylation (black), 
hydroboration (orange), and hydrogenation (green). 

The simulation without consideration of disappearance of Hβ from the system gave 4a and 6a 

with nearly the same amount. This result can easily be expected from ‑igure 7ν in the middle 

to final stage, styrene is most likely to react with Hβ generated through the dehydrogenative 
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borylation because of the high thermodynamic stability of 6a and the low barrier. We therefore 

introduced a disappearance process of Hβ in the simulation. That is, the term −kv[Hβ] was added 

to the equation of the concentration of Hβ, assuming that Hβ gradually disappeared from the 

system via its vaporization. The rate constant for Hβ vaporization kv (= γ.γβ s−1) was determined 

empirically so that the simulation with the condition of entry 6 in Table 1 reproduced the 

experimental products’ ratio. 

‑igure κ shows the variation of concentrations of styrene and the three products as a function 

of time, with the reaction condition of ‐ntry λ, Table 1, where IM5IS and IM20IS are regarded 

to be equivalent to styrene and styrylboronate, respectively. As seen in ‑igure κ, the 

concentration of styrene decreased gradually in the early stage, and the concentration of 

styrylboronate started to increase a short time later. The other two products, 5a and 6a, started 

to be formed in the later stage. This is because styrylboronate is kinetically the most preferred 

product and is formed first. The final products’ ratio κ1μβμ17 (evaluated at 4.γ hour) of the 

present simulation, which included single empirical parameter, reproduced the experimental 

ratio well. 

 
Figure 8. Concentration of 3a, 4a, 5a, and 6a as a function of time in ‐ntry λ, Table 1. 

Table γ presents the calculated products’ ratio by simulations for entries λ-11 (Table 1), where 

kv = γ.γβ s−1 was adopted in all the three simulations. (The rate constant for Hβ vaporization kv 

(= γ.γβ s−1) was determined empirically) As seen in Table γ, the ratio of 4a was smallest in 
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‐ntry 1, increased in ‐ntry β, and largest in ‐ntry γ. This trend qualitatively is consistent with 

the experimental data in Table 1. These results support the above discussion on the initial 

styrene concentration dependence of the products’ ratio based on the energy profiles in ‑igure 7. 

Table 3. Product distribution obtained by the kinetic simulation. 

‐ntry 3a (equiv.) Select. (%) 4aμ5aμ6a Observed Select. (%) 
4aμ5aμ6a[a] 

1 γ.0 7βμβμβ6 71μ1μβκ 
β β.0 7γμβμβ5 77μ1μββ 
γ 1.0 κ1μβμ17 κ0μ5μ15 
[a] Resuts from Table 1, entries λ-11 

1.3.7. Proposed mechanism 

Scheme γ summarizes most favorable catalytic cycles for the three products 4a, 5a, and 6a. 

Only selected intermediates (IMs) and TSs for the rate-determining steps are shown. It was 

found that IM8IS was the active species in all the three cycles. As discussed above, generation 

of IM8IS occurs in three stepsμ (i) PMeγ dissociation, (ii) styrene coordination, and (iii) another 

PMeγ dissociation. In all the three cycles, the spin multiplicity of TSs for their rate-determining 

step is triplet. In some intermediates, quintet is more stable than triplet. Singlet is always 

unstable and has negligible contribution.  

All the IMs in Scheme γ have only two PMeγ. As discussed with ‑igures 1-γ, coordination of 

styrene, HBpin, or PMeγ to tetra-coordinate ‑e species results in dissociation one of their 

ligands. It is thus concluded that five-coordinate ‑e intermediates are not stable at the present 

computational level. 

The catalytic cycles in Scheme γ are consistent to the trend seen in Table 1. Dehydroborylation 

is kinetically more favorable than borylation. The energy difference λ.κ kJ/mol between 

TS17/18IS and TS22/23IS is large enough to selectively afford the dehydroborylation product 

4a. Although TS26/27IS is the lowest in free energy among the three TSs, hydrogenation 

requires Hβ generated through dehydroborylation and occurs only after dehydroborylation 

proceeds sufficiently. The selectivity 4a > 6a > 5a can thus be explained from Scheme γ. 
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Scheme 3. Catalytic cycles for generation of 4a, 5a and 6a.  

1.4. Conclusion 

In summary, we have reported a highly selective direct C-H borylation of styrene derivatives 

with pinacolborane (1.0 equiv.), using ‑e(PMeγ)4 as catalyst in the absence of any hydrogen 

acceptor. A detailed mechanism study allowed us to rationalize the observed high chemo- and 

regio-selectivity of this reaction. 
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II-2 Fe-Catalyzed dehydrogenative borylation of terminal alkynes 
Contributions in this partμ Optimization, scope and mechanistic studiesμ Duo Weiν ICP-O‐S 

analysesμ Bertrand Lefeuvre 

Publicationμ D. Wei, B. Carboni, J.-B. Sortais, C. Darcel, Adv. Synth. Catal. 2018, 360, γ64λ-γ654. 

Alkynylboronates are useful building blocks and are classically prepared by deprotonation of 

the corresponding alkynes by n-BuLi, then reaction with a boric ester and finally quench with 

anhydrous acid.[γλ] Transition metal catalyzed dehydrogenative borylation of terminal alkynes 

was only scarcely reportedμ the known catalytic systems are SiNN and PNP pincer iridium 

complexes,[40] silver[41] or NHC-copper[4b, 4β] well defined complexes. 

To continue with our investigation of the previous section, we firstly selected ‑e(Me)β(dmpe)β 

(1) and ‑e(PMeγ)4 (2) as the catalysts and phenylacetylene as the substrate, under similar 

conditions as shown in § 1.β, Table 1, entry 11. It was disappointing to observe that only 

styrylboronate 4a was detected in ca. β0% yield, resulting from hydroboration of 

phenylacetylene, without any formation of the desired phenylethynylboronates product. A 

quick literature survey shown that the combination of simple zinc Lewis acid, for example 

Zn(OTf)β, and an organic base could promote the dehydrogenative borylation of alkynes.[4β] So 

we turned our attention to seek suitable iron salts which could act as efficient catalysts for the 

selective dehydrogenative borylation of terminal alkynes leading to the corresponding 

alkynylboronates. 

2.1. Results and discussions 

2.1.1. Optimization of reaction conditions 

Our initial studies showed that the dehydrogenative borylation of p-tolylacetylene 7a could be 

achieved in 67% conversion in toluene solution at 100 °C for 7β h with 1 equiv. of HBpin in 

the presence of 10 mol% of ‑e(OTf)β[4γ] as precatalyst, and 10 mol% of pyridine. The borylated 

p-tolylacetylene 8a was obtained as the major product (κ7%) along with trace amounts of the 

hydroborated derivative 9a (7%) and of 4-methylstyrene 10a (5%) (Table 4, entry 1). The 

chemoselectivity decreased significantly when β,6-lutidine, β,β’-bipyridine or ‐tγN (10 mol%) 

was used as the base (entries β-4). Upon screening various bases, DABCO was found to lead 

to both high conversion (κ4%) and selectivity towards the formation of the borylated p-

tolylacetylene 8a (κ7%) besides trace amounts of the alkenyl derivative 9a (10%) and of 4-

methylstyrene 10a (γ%) (‐ntry 5).   
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Table 4. Optimization of the reaction parameters for p-tolylacetylene.[a] 

 
Entry [Fe] (mol%) Base (mol%) Conv. (%) 8a/9a Yield (%) 8a
1 ‑e(OTf)β (10) Pyridine (10) 76 κ7/7 66 
β ‑e(OTf)β (10) β,6-lutidine (10) λγ 4γ/γ6 40 
γ ‑e(OTf)β (10) β,β’-bipyr (10) κ5 44/4γ γ7 
4 ‑e(OTf)β (10) ‐tγN (10) 57 54/β0 γ1 
5 ‑e(OTf)β (10) DABCO (10) κ4 κ7/10 7γ 
6 ‑e(OTf)β (β.5) DABCO (β.5) λλ κ4/κ κγ 
7 ‑e(OTf)β (β.5) DABCO (β.5) λ0 κ5/λ 77[b] 
κ ‑e(OTf)β (β.5) DABCO (1.0) λλ κ1/11 κ0 
λ ‑e(OTf)β (1.0) DABCO (1.0) λ0 45/47 41 
10 ‑e(OTf)β (β.5) DABCO (1.0) κκ 5λ/1β 5β[c] 
11 ‑e(OTf)β (β.5) DABCO (1.0) λ1 76/17 6λ[d] 
1β None DABCO (5.0) <1 - <1 
1γ ‑e(OTf)β (5.0) None κ0 γ4/βλ β7 
14 ‑e‑β (β.5) DABCO (β.5) λλ β4/5κ β4 
15 ‑eClβ (β.5) DABCO (β.5) 5λ 11/λ 6 
16 ‑eBrβ (β.5) DABCO (β.5) λλ 4β/β4 4β 
17 ‑e(OAc)β (β.5) DABCO (β.5) λκ γγ/44 γγ 

[a] Reaction conditionsμ ‑e(OTf)β (β.5-10 mol%), toluene (1 M), alkyne 7 (0.5 mmol), HBpin 
(0.5 mmol) and base (1.0-10 mol%) at 100 °C for 7β h. Conversion and yield were measured 
by 1H NMR analysis of the crude product, based on 7a, and the identity of the products 8a 
and 9a was confirmed by GC–MS. Bipyrμ bipyridineν DABCOμ 1,4-
diazabicyclo[β.β.β]octane. 

[b] 4κ h.  
[c] with β equiv. of norbornadiene. 
[d] with β equiv. of cyclooctene.  

‑e(OTf)β and DABCO loadings can be efficiently decreased to β.5 mol% as full conversion 

was obtained after 7β h at 100 °C, 8a being produced selectively in κ4% NMR yield (entry 6). 

Decreasing the reaction time to 4κ h led to lower conversion (λ0%, entry 7). However, with 

only 1.0  mol% of ‑e(OTf)β and DABCO, even with λ0% conversion, the selectivity dropped 

(8a/9a = 45μ47, entry λ). Noticeably, the addition of hydrogen scavengers such as 

norbornadiene or cyclooctene has a deleterious effect on the chemoselectivity of the reaction 

(entries 10 and 11). 

Notably, using DABCO, without iron precursor, resulted in no activity (entry 1β). By contrast, 

a low yield and selectivity was obtained using ‑e(OTf)β (β.5 mol%) without base, even if the 

conversion can reach κ0%, thus showing the crucial role of the DABCO catalytic additive on 

the efficiency and chemoselectivity of this transformation (entry 1γ). 
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The influence of the nature of the iron precursors was also investigated. ‑e‑β, ‑eBrβ and 

‑e(OAc)β (β.5 mol%) in association with DABCO (β.5 mol%) led to full conversion under 

standard conditions but with a lower selectivity towards 8a (β4-4β%, entries 14-17), whereas 

‑eClβ was less active (entry 15).  

The influence of the solvent was also studied using the system ‑e(OTf)β/pyridine. (Table 5) 

‐ven if the conversion is less important in toluene in comparison to dimethylcarbonate or β-

methyl-TH‑, the selectivity towards 8a is higher, which makes toluene the most appropriate 

solvent fort he reaction.  

Table 5. ‑e(OTf)β catalyzed dehydrogenative borylation of 7aμ influence of the solvent.[a]  

 

Entry Solvent (1 M) Conv. (%) 8a/9a Yield (%) 8a 
1 Toluene 6γ κ4/10 5γ 
β β-Methyl-TH‑ 6λ 67/γ4 46 
γ BuβO 6γ 46/54 βλ 
4 DMC 66 β4/6κ 16 

[a] Conditionsμ a β0 mL Schlenk tube was charged in a glove box, with 
‑e(OTf)β (10 mol%), solvent (1 M), 7a (0.5 mmol), HBpin 
(0.5 mmol) and pyridine (β0 mol%) in this order, and stirred at 100 
oC for 7β h. Yields are measured on the crude product by NMR based 
on 7a. DMC = dimethylcarbonate 

Hence, the optimal conditions selected to probe the substrate scope of the reaction are β.5 mol% 

of ‑e(OTf)β, 1.0 mol% of DABCO, in toluene (1 M) at 100 °C for 7β h (Table 4). 

As ‑e(OTf)β exihibited the best activity in this transformation, in order to exclude any 

controversies about transition metal traces responsible of the observed catalytic activity, ICP-

O‐S analyses were performed and are summarized in the Table 6 showing that the higher 

amounts of metals are 0.1λ% of silver, 0.04% of ruthenium, 0.0β% of nickel (in mass%). 

Table 6. ICP-O‐S analysis of ‑e(OTf)β in mass% 

Element Ag (%) Ru (%) Ni (%) Mn (%) Pd (%) Zn (%) Cu (%) Co (%) Cd (%) 
Percentage 0.1κλ6κ 0.0γλ 0.0156 0.00615 0.00γλ 0.00γ75 0.00γβ 0.00175 0.0007β

In order to check that silver, nickel and ruthenium in such level are not responsible of the 

catalytic activity, few reactions of dehydrogenative borylation of p-tolylacetylene involving 

β.5 mol% of Ag(OTf)β, Ni(OAc)β or RuClγ•xHβO were performed in standard conditions 

(Table 7). With Ag(OTf)β, Ni(OAc)β, no reaction occurred. By contrast, with RuClγ•xHβO,  
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5κ% of conversion was detected, with the selective production of p-tolylstyrylboronate 9a. 

Table 7. Dehydrogenative borylation of 7a catalyzed by metal based salts present in trace 
amount in the iron salt.[a] 

 

‐ntry Metal catalyst Conv. (%) 8a/9a Yield(%) 8a 

1 Ag(OTf)β <1 - <1 
β Ni(OAc)β <1 - <1 

γ RuClγ•xHβO 
(γ6.70% Ru) 5κ 1/λ5 0 

[a] Conditionsμ a β0 mL Schlenk tube was charged in a glove box, with metal 
catalyst (β.5 mol%), toluene (1 M), 7a (0.5 mmol), HBpin (0.5 mmol) and 
DABCO (1.0 mol%, stock solution in toluene) in this order, and stirred at 
100 oC for 7β h. Yields are detected by crude NMR based on 7a. 

2.1.2. Scope of the reaction for alkynes 

Phenylacetylene and arylacetylene derivatives bearing para-electron-donating substituents, e.g. 

p-methyl, p-tert-butyl or p-methoxy, led selectively to the corresponding borylated 

arylacetylene compounds 8a-8d with isolated yields up to κ5% (Table κ, entries 1-4).  

It is worth noting that electron-withdrawing substituted arylacetylene derivatives such as p-

trifluoromethylphenylacetylene, required shorter reaction times (β4 h instead of 7β h at 100 °C, 

entry 5) to lead to the corresponding borylated acetylenic derivative 8e specifically obtained 

with κ7% isolated yield. Interestingly, the extension of the reaction time to 7β h permitted to 

only obtain specifically pinacol (E)-styrylborane 9e in λβ % yield (entry 6). This result suggests 

that the production of the hydroborylated compounds 9e could occur through the hydrogenation 

of the borylated acetylenic derivative 8e. Noteworthy, the bis(ethynyl)benzene afforded 

selectively the bis(pinacolborylethynyl)-benzene 8f in λγ% yield (entry 7). 

In addition, the reaction can be also efficiently performed with 1-dodecyne or terminal akynes 

bearing a benzyloxy group, leading to the corresponding borylated alkynes 8g-8i in 7κ-λγ% 

isolated yields (entries κ-10). Trimethylsilylacetylene is also a suitable starting material as the 

corresponding borylated compound 8j was isolated in κλ% yield (entry 11). 

Using alkadiynes such as 1,7-octadiyne or 1,6-heptadiyne, the monofunctionalization was only 

observed in the presence of β equiv. of HBpin and the corresponding monoborylated 

derivatives 8k and 8l were obtained selectively in 70-7β% isolated yields (entries 1β and 1γ). 

Noticeably, no trace of diborylated compounds was detected, the only by-products observed in 
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the crude mixture being the corresponding alkenyl borylated compounds resulting from the 

hydroborylation of one terminal triple bond.  

Table 8. Scope of the reaction of dehydrogenative borylation of terminal alkynes.[a] 

 
[a] General conditionsμ alkyne (0.5 mmol), HBpin (0.5 mmol), ‑e(OTf)β (β.5 mol%), DABCO 

(1.0 mol%), toluene (0.5 mL, 1 M), 100 °Cν  
[b] Measured by 1H NMR of the crude mixture.  
[c] Isolated yields. In parenthesis, isolated yield on gram scale reaction.  
[d] Reaction in a Young NMR tube in C6D6.  
[e] β equiv. of HBpin. 

With more steric demanding terminal alkynes such as tert-butylacetylene and 

cyclopropylacetylene, both dehydroborylation and borylated products were selectively 

obtained depending upon the reaction time. Pinacol tert-butylethynylborane 8m and pinacol 

cyclopropylethynylborane 8n were isolated in 6β and 6γ% yields, respectively, after 60 h and 

γ6 h (entries 14 and 16). 
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A prolonged 7β h of reaction permitted to switch the chemoselectivity as pinacol (E)-β-tert-

butylvinyl-boranate 9m and pinacol (E)-β-cyclopropylvinyl-boranate 9n were selectively 

isolated in κ5 and λ0% yields, respectively (entries 15 and 17). Notably, cyclopropylacetylene 

furnished 8n and 9n in good yields (6γ and κ5%, respectivement), which seem to indicate that 

the reaction did not proceed via stable radical intermediates. Starting from methyl hex-6-ynoate 

or γ-bromo-1-propyne, only the hydroborated derivative 9o and 9p were obtained in high yields, 

λ5 and λβ%, respectively, whatever the reaction time, λ or 7β h (entries 1κ and 1λ).  

Additionally, under the optimized reaction conditions, no reaction was observed with terminal 

alkynes bearing primary amine, alcohol or carboxylic acid substituents (‑igure λ). 

H
H2N HH2N

HO
H

O

HO

H

HO
H

 
Figure 9. Non-working substrates in dehydrogenative borylation reactions. 

2.2. Mechanistic insights 

Preliminary experiments aimed at gaining an insight into the reaction course were then 

performed. The reaction outlined in Table 4, entry κ, was achieved in a Young NMR tube, 

charged under argon atmosphere with β.5 mol% of ‑e(OTf)β in C6D6 (1.0 mol/L), 0.5 mmol of 

7b, 0.5 mmol of HBpin and DABCO (1.0 mol%) at 100 oC for indicated time.  

 
Figure 10μ 11B NMR spectra recorded at λ6 MHz of the reaction of p-tolylacetylene a2 with 
HBpin in C6D6 at 100 °C leading to the compounds 8b and 9b.  



111 

 

Analysis of 11B NMR spectra showed that the dehydroborylated and the borylated compound 

8b and 9b were formed simultaneously, 8b being always the major product (‑igure 10). 

Additionally, the results described in Table 4, entries 6, 15 and 17 indicated that the formation 

of the alkenyl boronates results from the reduction of the corresponding alkynylboronates. On 

the other hand, the evolution of the Hβ gas was also identified in 1H NMR at 4.47 ppm 

(‑igure 11). 

 
Figure 11μ 1H NMR spectra recorded at 400 MHz of the reaction of p-tolylacetylene 7b with 
HBpin in C6D6 at 100 °C leading to the formation of Hβ. 

‑rom a mechanistic point of view, as a Lewis acid, ‑e(OTf)β should be able to activate the B-

H bond, thus enhancing the electrophilic capacity of the boron center to react with acetylenic 

derivative. This process would be accelerated by the presence of DABCO which increases the 

nucleophilicity of the terminal acetylenic carbon (Scheme 4).[4β] 

B Hpin
FeII

B Hpin FeII

R H

N

N

R C H

N

N

+ -
B Hpin Fe II
+ 

- +

H2

N

N
FeII +

R Bpin

 
Scheme 4. Possible reaction mechanism of dehydrogenative borylation reactions. 
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2.3. Conclusion 

In summary, we have reported the first example of a highly selective catalytic dehydrogenative 

borylation of terminal alkynes with pinacolborane, using ‑e(OTf)β as an inexpensive catalyst 

and DABCO as a co-catalyst. Both aryl and alkyl substituted alkynes were borylated 

(14 examples, yieldμ 6β-λγ%) at 100 oC in toluene. 
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II-3 Conclusion of Chapter II 
In summary, we reported the first examples of highly selective catalytic direct C-H borylation 

of a) styrene derivatives and b) terminal alkynes with pinacolborane (1.0 equiv.), using 

‑e(PMeγ)4 and ‑e(OTf)β/DABCO as catalyst system, respectively.  

‑or C-H borylation of terminal alkynes, both aryl and alkyl substituted alkynes were applied 

in the substrate scope with 14 examples (yieldsμ 6β-λγ%) at 100 oC in toluene. In the case of 

the dehydrogenative borylation of styrene derivatives, the substrate scope was developed with 

λ examples (yieldsμ γ1-λ0%) at 50 oC in toluene. The detailed mechanism study showed that 

the dehydroborylation is kinetically more favorable than the hydroboration. 
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II-5 Experimental data 
5.1. Gneral information. 
All reactions were carried out with oven-dried glassware using standard Schlenk techniques 
under an inert atmosphere of dry argon or in an argon-filled glove-box. Toluene, TH‑, diethyl 
ether (‐tβO), and CHβClβ were dried over Braun MB-SPS-κ00 solvent purification system and 
degased by thaw-freeze cycles. Technical grade petroleum ether, diethyl ether were used for 
chromatography column. Analytical TLC was performed on Merck 60‑β54 silica gel plates 
(0.β5 mm thickness). Column chromatography was performed on Across Organics Ultrapure 
silica gel (mesh size 40-60 m, 60Å). All reagents were obtained from commercial sources and 
liquid reagents were dried on molecular sieves and degased prior to use.  
1H, 1γC, 1λ‑, γ1P and 11B NMR spectra were recorded in CDClγ, C6D6, C7Dκ at βλκ K unless 
otherwise stated, on Bruker, AVANC‐ 400 and AVANC‐ γ00 spectrometers at 400.1 and γ00.1 
MHz, respectively. (1Hμ CDClγ 7.β6 ppm, C6D6 7.16 ppm, C7Hκ β.0κ ppm, 1γCμ CDClγ, central 
peak is 77.0 ppm, C6D6, central peak is 1βκ.1 ppm, C7Dκ, central peak is β0.4 ppm). γ1P NMR 
spectra were calibrated against an external HγPO4 and 11B NMR spectra against an external 
B‑γ•O‐tβ standard. Chemical shift (δ) and coupling constants (J) are given in ppm and in Hz, 
respectively. The peak patterns are indicated as followsμ (s, singletν d, doubletν t, tripletν q, 
quartetν quin, quintetν m, multiplet, and br. for broad).  
GCMS were measured by GCMS-QPβ010S (Shimadzu) with GC-β010 equipped with a γ0-m 
capillary column (Supelco, SLBTM-5ms, fused silica capillary column, γ0 M × 0.β5 mm × 
0.β5 mm film thickness), which was used with helium as vector gas. The following GC-MS 
conditions were usedμ Initial temperature 100 °C, for β minutes, then rate 10 °C/min. until 
β50 °C and β50 °C for 10 minutes. 
5.2. - Part II-1- Dehydrogenative borylation of styrenes 
5.2.1. Preparation of the catalysts (1) and (2) 
[‑e(Me)β(dmpe)β] and ‑e(PMeγ)4 were prepared according to described methods.[1,β] 
5.2.2. Preparation of styrene derivatives 
A solution of the aldehyde (6.γ6 mmol, 1.0 equiv.) in anhydrous TH‑ (γ0 mL) was cooled at 
0 °C then triphenylmethylphosphonium bromide (β.50 g, 6.λ7 mmol, 1.1 equiv.) was added 
followed by potassium t-butoxyde (0.7κ g, 6.λ7 mmol, 1.1 equiv.) in small portions. The 
mixture was then stirred at room temperature until completion (TLC monitored). The reaction 
was then quenched with water (β0 mL). The product was extracted with dichloromethane (γγ0 
mL). The organic layer was washed with brine, then dried with anhydrous NaβSO4 and 
evaporated. The crude residue was dissolved in the minimum amount of dichloromethane and 
packed on β.5 g of silica and purified by column chromatography (petroleum ether/ ‐tβO) to 
give the desired compound 
5.2.3. Characterization of the styrene derivatives 

3bμ  1H NMR (400 MHz, C6D6) δ 7.β1 (d, J = κ.β Hz, βH), 6.λ5 (d, J = κ.0 Hz, 
βH), 6.6β (dd, J = 17.6, 10.λ Hz, 1H), 5.6β (dd, J = 17.6, 1.β Hz, 1H), 5.07 (dd, J = 10.λ, 1.1 
Hz, 1H), β.0λ (s, γH). 

3cμ 1H NMR (400 MHz, CDClγ) δ 7.54 – 7.4β (m, 1H), 7.ββ – 7.1β (m, γH), 6.λ5 (dd, 
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J = 17.4, 11.0 Hz, 1H), 5.64 (dd, 1H), 5.γ0 (dd, 1H), β.γ6 (s, γH). 

3eμ 1H NMR (400 MHz, CDClγ) δ 7.γ5 (d, J = κ.6 Hz, βH), 6.κ6 (d, J = κ.6 Hz, 
βH), 6.67 (dd, J = 17.6, 10.λ Hz, 1H), 5.61 (d, J = 17.6 Hz, 1H), 5.1γ (d, J = 10.λ Hz, 1H), γ.κβ 
(s, γH). 

3fμ 1H NMR (400 MHz, CDClγ) δ 7.6λ – 7.56 (m, 4H), 7.55 – 7.4β (m, 4H), 7.41 – 
7.γβ (m, 1H), 6.7κ (dd, J = 17.6, 10.λ Hz, 1H), 5.κ1 (dd, J = 17.7, 0.λ Hz, 1H), 5.βλ (dd, J = 

10.λ, 0.κ Hz, 1H). 

3gμ 1H NMR (400 MHz, CDClγ) δ 7.γ6 – 7.β6 (m, 1H), 7.14 (dd, J = β0.λ, κ.λ Hz, 
βH), 6.λ5 (td, J = κ.γ, 1.λ Hz, 1H), 6.6λ (dd, J = 17.6, 10.λ Hz, 1H), 5.76 (d, J = 17.6 Hz, 1H), 
5.γ1 (d, J = 10.λ Hz, 1H). 

3hμ 1H NMR (400 MHz, C6D6) δ 6.κ0 – 6.βλ (m, γH), 5.61 (d, J = 17.5 Hz, 1H), 
5.1γ (d, J = 10.κ Hz, 1H), γ.κγ (s, γH), γ.γλ (s, 6H). 

1H NMR (400 MHz, CDClγ) δ 7.47 (d, J = κ.4 Hz, βH), 7.γ0 (d, J = κ.λ Hz, βH), 
6.6κ (dd, J = 17.6, 10.λ Hz, 1H), 5.77 (d, J = 17.6 Hz, 1H), 5.γ1 (d, J = 10.λ Hz, 1H). 

1H NMR (400 MHz, C6D6) δ 7.04 (d, J = κ.4 Hz, βH), 6.κκ (d, J = κ.4 Hz, βH), 
6.γ6 (dd, J = 17.6, 10.λ Hz, 1H), 5.4β (d, J = 17.6 Hz, 1H), 5.00 (d, J = 10.λ Hz, 1H).  

1H NMR (400 MHz, CDClγ) δ κ.7γ – κ.γλ (m, 1H), 7.65 (td, J = 7.7, 1.λ Hz, 1H), 7.γ6 
(d, J = 7.λ Hz, 1H), 7.β0 – 7.11 (m, 1H), 6.κγ (dd, J = 17.5, 10.κ Hz, 1H), 6.β0 (dd, J = 17.4, 
1.γ Hz, 1H), 5.4λ (dd, J = 10.λ, 1.β Hz, 1H) 
5.2.4. General procedure for dehydrogenative borylation of styrene derivatives catalyzed 
by [Fe(PMe3)4] 
In an argon filled glove box, a Schlenk flask was charged with ‑e(PMeγ)4 (λ.0 mg, 5.0 mol%), 
followed by toluene (0.5 mL), styrene (0.5 mmol) and pinacol borane(0.5 mmol). The mixture 
was stirred for 1κ h at 50 ℃. The solution was then diluted with diethyl ether (5.0 mL) and 
filtered through a small pad of silica (β cm in a Pasteur pipette). The silica was washed with 
diethyl ether. The filtrate was evaporated and the crude residue was purified by column 
chromatography (SiOβ, petroleum ether/‐tβO as eluent). 

5.2.5. Characterization of the borylated products 

(E)-4,4,5,5-Tetramethyl-2-(4-methyl)-styryl-1,3,2-dioxaborolane 4a[5] 

According to general procedure, 4-methylstyrene (64 µL, 0.5 mmol, 
1.0 equiv.) gave the title compound as a pale-yellow oil after column chromatography (SiOβ, 
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petroleum ether/ ‐tβO λμ1) (λ7 mg, κ0%). 1H NMR (400 MHz, CDClγ)μ δ 7.41 (m, γH), 7.15 
(d, J = κ.1 Hz, βH), 6.1β (d, J = 1κ.5 Hz, 1H), β.γ5 (s, γH), 1.γβ (s, 1βH). 13C{1H} NMR (101 
MHz, CDClγ, the carbon attached to quadrupole B was not observed due to low intensity)μ  
δ 14λ.6, 1γλ.1, 1γ4.λ, 1βλ.4, 1β7.1, κγ.4, β5.0, β1.5 . 11B NMR (λ6 MHz, CDClγ)μ δ γ0.β. 
Spectral data were in good agreement with literature values. GC-MS, m/z(%) = β44([M]+, 7κ), 
ββλ(ββ), 171(11), 15κ(65), 14γ(100), 117(51), 105(11), λ1(1κ), 77(7), 57(κ). 

(E)-4,4,5,5-Tetramethyl-2-styryl-1,3,2-dioxaborolane 4b[γ] 

According to the general procedure, styrene (57 µL, 0.5 mmol, 1.0 equiv.) 
gave the title compound as a colorless oil after column chromatography (SiOβ, petroleum ether/ 
‐tβO λμ1) (κ7 mg, 76%). 1H NMR (γ00 MHz, CDClγ)μ δ 7.51-7.4κ (m, βH), 7.40 (d, J = 1κ.4 
Hz, 1H), 7.γ6-7.βλ (m, γH), 6.17 (d, J = 1κ.4 Hz, 1H), 1.γβ (s, 1βH). 13C{1H} NMR (75 MHz, 
CDClγ, the carbon attached to quadrupole B was not observed due to low intensity)μ δ 14λ.7, 
1γ7.7, 1βλ.0, 1βκ.7, 1β7.β, κγ.5, β5.0. 11B NMR (λ6 MHz, CDClγ)μ δ γ0.6. Spectral data were 
in good agreement with literature values. GC-MS, m/z(%) = βγ0([M]+, 61), β15(βκ), 17γ(10), 
157(14), 1γ0(100), 11κ(βγ), 105(41), κ5(β6), 77(βλ), 51(λ). 

(E)-4,4,5,5-Tetramethyl-2-(2-methyl)-styryl-1,3,2-dioxaborolane 4c[4] 

According to general procedure, β-methystyrene (65 µL, 0.5 mmol, 1.0 equiv.) 
gave the title compound as a colorless needle crystal after column chromatography (SiOβ, 
petroleum ether/ ‐tβO λμ1) (λ6 mg, 7λ%). 1H NMR (γ00 MHz, CDClγ)μ δ 7.65 (d, J = 1κ.4 Hz, 
1H), 7.57-7.54 (m, 1H), 7.β0-7.1γ (m, γH), 6.0κ (d, J = 1κ.4 Hz, 1H), β.4β (s, γH), 1.γβ (s, 
1βH). 13C{1H} NMR (75 MHz, CDClγ, the carbon attached to quadrupole B was not observed 
due to low intensity)μ δ 147.γ, 1γ6.λ, 1γ6.4, 1γ0.5, 1βκ.7, 1β6.β, 1β5.λ, κγ.4, β5.0, β0.0.  
11B NMR (λ6 MHz, CDClγ)μ δ γ0.7. Spectral data were in good agreement with literature 
values. GC-MS, m/z(%) = β44([M]+, 6β), ββλ(1γ), 171(λ), 15κ(βγ), 144(100), 1βκ(γλ), 
116(λγ), 105(λ), κ4(β6), 77(7), 57(10). 

(E)-4,4,5,5-Tetramethyl-2-(4-t-butyl)-styryl-1,3,2-dioxaborolane 4d[6] 

According to general procedure, 4-t-butylstyrene (κλ µL, 0.5 mmol, 
1.0 equiv.) gave the title compound as a pale-yellow needle crystal after column 
chromatography (SiOβ, petroleum ether/ ‐tβO λμ1) (1γ6 mg, λ5%). 1H NMR (γ00 MHz, 
CDClγ)μ δ 7.45-7.γ5 (m, 5H), 6.1γ (d, J = 1κ.4 Hz, 1H), 1.γβ (s, β1H). 13C{1H} NMR (75 MHz, 
CDClγ, the carbon attached to quadrupole B was not observed due to low intensity)μ δ 15β.γ, 
14λ.5, 1γ4.λ, 1β7.0, 1β5.6, κγ.4, γ4.κ, γ1.4, β5.0. 11B NMR (λ6 MHz, CDClγ)μ δ γ0.λ. Spectral 
data were in good agreement with literature values. GC-MS, m/z(%) = βκ6([M]+, κ7), β71(100), 
β1γ(10), 1κ5(ββ), 171(4κ), 155(1κ), 14γ(κ6), 1βκ(γ4), 101(15), λ1(λ), κγ(1κ), 57(7κ), 55(14). 
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(E)-4,4,5,5-Tetramethyl-2-(4-methoxy)-styryl-1,3,2-dioxaborolane 4e[7] 

According to general procedure, 4-methoxystyrene (67 µL, 0.5 mmol, 
1.0 equiv.) gave the title compound as a pale-yellow needle crystal after column 
chromatography (SiOβ, petroleum ether/ ‐tβO λμ1) (7β mg, 55%). 1H NMR (400 MHz, CDClγ)μ 
δ 7.4γ (d, J = κ.5 Hz, βH), 7.γ6 (d, J = 1κ.5 Hz, 1H), 6.κ6 (d, J = κ.5 Hz, βH), 6.0β (d, J = 1κ.5 
Hz, 1H), γ.κ0 (s, γH), 1.γ0 (s, 1βH). 13C{1H} NMR (101 MHz, CDClγ, the carbon attached to 
quadrupole B was not observed due to low intensity)μ δ 160.4, 14λ.β, 1γ0.5, 1βκ.6, 114.1 κγ.γ, 
55.4, β5.0. 11B NMR (λ6 MHz, CDClγ)μ δ γ0.4. Spectral data were in good agreement with 
literature values. GC-MS, m/z(%) = β60([M]+, 100), β45(β4), 1κ7(10), 175(γ5), 160(κ0), 
144(λκ), 1γ5(1λ), 117(γ1), λ1(11), 77(β6), 65(1β), 55(λ). 

(E)-4,4,5,5-Tetramethyl-2-(4-phenyl)-styryl-1,3,2-dioxaborolane 4f[7] 

According to general procedure, 4-phenylstyrene (λ0 mg, 0.5 mmol, 
1.0 equiv.) gave the title compound as a colorless solid after column chromatography (SiOβ, 
petroleum ether/ ‐tβO λμ1) (107 mg, 70%). 1H NMR (γ00 MHz, CDClγ)μ δ 7.6γ-7.55 (m, 6H), 
7.4λ-7.4γ (m, γH), 7.γκ-7.γκ (m, 1H), 6.βγ (d, J = 1κ.4 Hz, 1H), 1.γ4 (s, 1βH). 13C{1H} NMR 
(75 MHz, CDClγ, the carbon attached to quadrupole B was not observed due to low intensity)μ 
δ14λ.1, 141.7, 140.7, 1γ6.6, 1βκ.λ, 1β7.7, 1β7.6, 1β7.4, 1β7.1, κγ.5, β5.0. 11B NMR (λ6 MHz, 
CDClγ)μ δ βλ.4. Spectral data were in good agreement with literature values. GC-MS, m/z(%) 
= γ06([M]+, 100), βλ1(15), ββ0(40), β06(66), 1λ0(4κ), 17λ(γ6), 165(βγ), 15β(16), 77(7), 57(κ). 

(E)-4,4,5,5-Tetramethyl-2-(α-methyl)-styryl-1,3,2-dioxaborolane 4i[κ] 

 According to general procedure, α-methylstyrene (1γ0 µL, 1.0 mmol, 
β.0 equiv.) gave the title compound as a pale-yellow oil after column chromatography (SiOβ, 
petroleum ether/ ‐tβO λμ1) (17 mg, β1%). 1H NMR (400 MHz, CDClγ)μ δ 7.51 (m, γH), 7.γ4-
7.β7 (m, βH), 5.76 (s, 1H), β.41 (s, γH), 1.γβ (s, 1βH). 13C{1H} NMR (101 MHz, CDClγ, the 
carbon attached to quadrupole B was not observed due to low intensity)μ δ 15κ.0, 144.0, 1βκ.γ, 
1βκ.1, 1β6.0, κγ.1, β5.1, β0.γ. 11B NMR (λ6 MHz, CDClγ)μ δ γ0.λ. Spectral data were in good 
agreement with literature values. GC-MS, m/z(%) = β44([M]+, κλ), ββλ(β4), 1κ7(56), 171(βγ), 
15κ(71), 1βκ(100), 116(41), 105(λ6), κ5(1γ), 77(βκ), 55(1β). 

(E)-4,4,5,5-Tetramethyl-2-(3-fluoro)-styryl-1,3,2-dioxaborolane 4g[γ] 

According to general procedure, γ-fluoro-styrene (60 µL, 1.0 mmol, 1.0 equiv.) 
gave the title compound as a pale-yellow oil after column chromatography (SiOβ, petroleum 
ether/ ‐tβO λμ1) (100 mg, κ1%). 1H NMR (400 MHz, CDClγ)μ δ 7.γ6 (d, J = 1κ.4 Hz, 1H), 
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7.γβ-7.βκ (m, 1H), 7.β6-7.ββ (m, 1H), 7.β0-7.1κ (m, 1H), 7.0β-6.λκ (m, 1H), 6.1κ (d, J = 1κ.4 
Hz, 1H), 1.γγ (s, 1βH). 13C{1H} NMR (101 MHz, CDClγ, the carbon attached to quadrupole B 
was not observed due to low intensity)μ δ16γ.γ (d, JCF = β45), 14κ.β (d, JCF = β.7), 140.0 (d, 
JCF = 7.1), 1γ0.β (d, JCF = κ.γ), 1βγ.1 (d, JCF = β.7), 115.κ (d, JCF = β1.6), 11γ.4 (d, JCF = β1.6), 
κγ.7, β5.0. 11B NMR (λ6 MHz, CDClγ)μ δ γ1.0. 19F NMR (γ76 MHz, CDClγ) δ -11γ.47. 
Spectral data were in good agreement with literature values. GC-MS, m/z(%) = β4κ([M]+, 4κ), 
βγγ(β7), β05(17), 175(κ), 16β(60), 147(100), 1βγ(17), 10γ(β1), κ5(βγ), 77(10), 5λ(15), 55(7) 

5.3. Part II-2- Dehydrogenative borylation of alkynes 

5.3.1. General procedure for Fe(OTf)2 catalyzed dehydrogenative borylation of terminal 
alkynes 
In an argon filled glove box, a β0 mL Schlenk tube was charged with ‑e(OTf)β (β.5 mol%), 
toluene (1.0 mol/L), alkyne (0.5 mmol), HBpin (0.5 mmol) and DABCO (1.0 mol%, stock 
solution in toluene) in this order. Then the reaction mixture was stirred at 100 oC for 7β h. After 
cooling the mixture to room temperature, the solution was diluted with pentane (β.0 mL) and 
filtered through a small pad of celite (β cm in a Pasteur pipette). The celite was washed with 
pentane (β.0 mL×β). The filtrate was evaporated and the crude residue was then purified either 
by recrystallization (slow evaporation from pentane) or bulb to bulb distillation. 
5.3.2. General procedure for kinetic study of Fe(OTf)2 catalyzed dehydrogenative 
borylation of terminal alkynes 

 
In an argon filled glove box, a Young NMR tube was charged with ‑e(OTf)β (β.5 mol%), C6D6 
(1.0 mol/L), a2 (0.5 mmol), HBpin (0.5 mmol) and DABCO (1.0 mol%, stock solution in C6D6) 
in this order. Then the reaction mixture was heated at 100 oC for indicated time. After cooling 
the mixture to room temperature, crude NMRs were done in situ.  

5.3.3. Characterization of the products of dehydrogenative borylation reactions 
NMR spectra of these products are in accordance with literature reports (see references 
accordingly). As noted by those references, the signals of quaternary carbon atoms bound to 
boron were not observed due to low intensity. 
 
4,4,5,5-Tetramethyl-2-(p-tolylethynyl)-1,3,2-dioxaborolane 8a[9] 

 
Recrystallization form pentane gave the title compound (10β.λ mg, κ5% yield) as a white solid. 
1H NMR (400 MHz, C6D6) δ 7.γ5 (d, J = κ.0, βH), 6.66 (d, J = κ.0, βH), 1.κκ (s, γH), 1.0γ (s, 
1βH). 11B NMR (1βκ MHz, C6D6) δ β4.κ7. 13C{1H} NMR (101 MHz, C6D6) δ 1γλ.5, 1γβ.κ, 
1βλ.4, 11λ.κ, 10β.γ, κ4.0, β4.7, β1.γ. 
 
4,4,5,5-Tetramethyl-2-(phenylethynyl)-1,3,2-dioxaborolane 8b[9] 

 
Bulb to bulb distillation (1β0 oC/β Torr) gave the title compound (λ1.β mg, κ0% yield) as a 
white solid. 1H NMR (400 MHz, C6D6) δ 7.41 – 7.γκ (m, βH), 6.λ1 – 6.κβ (m, γH), 1.0γ (s, 
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1βH). 11B NMR (1βκ MHz, C6D6) δ β4.7λ. 13C{1H} NMR (101 MHz, C6D6) δ 1γβ.7, 1βλ.γ, 
1βκ.5, 1ββ.7, 101.λ, κ4.1, β4.7. 
 
2-((4-(t-Butyl)phenyl)ethynyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8c 

 
Recrystallization form pentane gave the title compound (1β0.κ mg, κ5% yield) as a white solid. 
1H NMR (400 MHz, C6D6) δ 7.45 (d, J = κ.4, βH), 6.λ7 (d, J = κ.4, βH), 1.04 (s, λH), 1.0γ (s, 
1βH). 11B NMR (1βκ MHz, C6D6) δ β4.λ0. 13C{1H} NMR (101 MHz, C6D6) δ 15β.5, 1γβ.7, 
1β5.7, 11λ.λ, 100.λ, κ4.0, γ4.7, γ1.0, β4.7. GC-MS, m/z(%) = βκ4 ([M]+, γλ), β6λ(100), 
1λλ(βλ), 16λ(βκ), 141(1λ), 57(16). 
 
2-((4-Methoxyphenyl)ethynyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8d[10] 

 
Bulb to bulb distillation (1γ0 oC/β Torr) gave the title compound (λ6.κ mg, 75% yield) as a pale 
yellow solid. 1H NMR (400 MHz, C6D6) δ 7.γ6 (d, J = κ.κ, βH), 6.4γ (d, J = κ.κ, βH), γ.0κ (s, 
γH), 1.05 (s, 1βH). 11B NMR (1βκ MHz, C6D6) δ β5.01. 13C{1H} NMR (101 MHz, C6D6) δ 
160.κ, 1γ4.5, 114.γ, 114.γ, 10β.4, κ4.0, 54.7, β4.κ. 
 
4,4,5,5-Tetramethyl-2-((4-(trifluoromethyl)phenyl)ethynyl)-1,3,2-dioxaborolane 8e[10] 

 
Recrystallization form pentane gave the title compound (1βκ.κ mg, κ7% yield) as a white solid. 
1H NMR (400 MHz, C6D6) δ 7.11 (d, J = κ.β, βH), 6.λ7 (d, J = κ.β, βH), 1.0β (s, 1βH).  
11B NMR (1βκ MHz, C6D6) δ β4.6γ. 19F NMR (γ76 MHz, C6D6) δ -6β.κ1. 13C{1H} NMR (101 
MHz, C6D6) δ 1γβ.4, 1γ0.4 (q, J = γβ.6), 1β5.7, 1β5.0 (q, J = γ.κ), 1β4.04 (q, J = β7β.4 Hz), 
λλ.7, κ4.0, β4.γ. 
 
(E)-4,4,5,5-Tetramethyl-2-(4-(trifluoromethyl)styryl)-1,3,2-dioxaborolane 9e[4] 

 
Recrystallization form pentane gave the title compound (1γ7.1 mg, λβ% yield) as a white solid. 
1H NMR (400 MHz, C6D6) δ 7.55 (d, J = 1κ.4, 1H), 7.1λ (d, J = κ.1, βH), 7.05 (d, J = κ.1, βH), 
6.γ5 (d, J = 1κ.4, 1H), 1.1γ (s, 1γH). 11B NMR (1βκ MHz, C6D6) δ γ0.1λ. 19F NMR (γ76 MHz, 
C6D6) δ -6β.γ7. 13C{1H} NMR (101 MHz, C6D6) δ 14κ.γ, 141.1, 1γ0.4 (q, J = γβ.β), 1β7.5, 
1β5.7 (q, J = γ.κ), 1β4.λ (d, J = β71.λ Hz), κγ.5, β5.0. 
 
1,4-Bis((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethynyl)benzene 8f 

 
Recrystallization form pentane gave the title compound (175.κ mg, λγ% yield) as a white solid. 
1H NMR (400 MHz, C6D6) δ 7.γ5 (s, 4H), 1.β1 (s, β4H). 11B NMR (1βκ MHz, C6D6) δ β4.5γ. 
13C{1H} NMR (101 MHz, C6D6) δ 1γβ.5, 1βγ.γ, 101.1, κ4.β, β4.7. GC-MS, m/z(%) = γ7κ 
([M]+, 0.5), β5β(4λ), βγ7(ββ), 1λ4(β5), 167(6γ), 15β(100), 1β4(1β), 77(1β). 
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4,4,5,5-Tetramethyl-2-(3-phenylprop-1-yn-1-yl)-1,3,2-dioxaborolane 8g[9] 

 
Bulb to bulb distillation (1γ0 oC/β Torr) gave the title compound (λκ.1 mg, κ1% yield) as a pale 
yellow liquid. 1H NMR (400 MHz, C6D6) δ 7.15 (d, J = 7.1, βH), 7.06 – 6.λ5 (m, γH), γ.βκ (s, 
βH), 1.00 (s, 1βH). 11B NMR (1βκ MHz, C6D6) δ β4.βλ. 13C{1H} NMR (101 MHz, C6D6)  
δ 1γ5.λ, 1βκ.7, 1βκ.βλ (overlap with C6D6 peak), 1β6.λ, 101.6, κγ.κ, β5.λ, β4.7. 
 
4,4,5,5-Tetramethyl-2-(dodec-1-yn-1-yl)-1,3,2-dioxaborolane 8h[11] 

 
Bulb to bulb distillation (1γ0 oC/β Torr) gave the title compound (114.0 mg, 7κ% yield) as a 
white solid. 1H NMR (400 MHz, C6D6) δ β.01 (t, J = 6.λ, βH), 1.γλ – 1.06 (m, 16H), 1.00 (s, 
1βH), 0.λβ (t, J = 7.0, γH). 11B NMR (1βκ MHz, C6D6) δ β4.βκ. 13C{1H} NMR (101 MHz, 
C6D6) δ 104.6, κγ.7, γβ.γ, γ0.0, βλ.λ, βλ.κ, βλ.5, βλ.1, βκ.5, β4.7, βγ.1, 1λ.κ, 14.4. 
 
2-(6-(Benzyloxy)hex-1-yn-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8i 

 
Bulb to bulb distillation (1γ0 oC/β Torr) gave the title compound (146.1 mg, λγ% yield) as a 
colorless liquid. 1H NMR (400 MHz, C6D6) δ 7.β5 (d, J = 7.γ, βH), 7.1κ (d, J = 7.γ, βH), 7.10 
(t, J = 7.γ, 1H), 4.βγ (s, βH), γ.14 (t, J = 6.1, βH), 1.λλ (t, J = 6.λ, βH), 1.5κ – 1.40 (m, 4H), 
1.00 (s, 1βH). 11B NMR (1βκ MHz, C6D6) δ β4.β4. 13C{1H} NMR (101 MHz, C6D6) δ 1γλ.5, 
1βκ.5, 1β7.7, 1β7.5, κγ.7, 7β.λ, 6λ.7, βλ.1, β5.γ, β4.7, 1λ.5. GC-MS, m/z(%) = γ1γ ([M]+, 6), 
βγ1(1κ), β14(1β), 165(1κ), 14β(17), 101(β7), λ1(100), 7λ(4γ), 55(14). 
 
Trimethyl((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethynyl)silane 8j[9] 

 
Bulb to bulb distillation (100 oC/β Torr) gave the title compound (λλ.κ mg, κλ% yield) as a 
white solid. 1H NMR (400 MHz, C6D6) δ 0.λ6 (s, 1βH), 0.0κ (s, λH). 11B NMR (1βκ MHz, 
C6D6) δ βγ.55. 13C{1H} NMR (101 MHz, C6D6) δ 110.7, κ4.1, β4.6, -0.5. 
 
4,4,5,5-Tetramethyl-2-(octa-1,7-diyn-1-yl)-1,3,2-dioxaborolane 8k 

 
Bulb to bulb distillation (1β0 oC/β Torr) gave the title compound (κ1.β mg, 70% yield) as a 
white solid. 1H NMR (400 MHz, C6D6) δ 1.κλ – 1.κ6 (m, βH), 1.7λ – 1.76 (m, βH), 1.71 (t, J 

= β.6, 1H), 1.γβ – 1.βλ (m, 4H), 1.00 (s, 1βH). 11B NMR (1βκ MHz, C6D6) δ β4.β5. 13C{1H} 
NMR (101 MHz, C6D6) δ 10γ.λ, κγ.λ, κγ.7, 6λ.0, β7.6, β7.γ, β4.7, 1λ.1, 1κ.0. GC-MS, m/z(%) 
= βγ1 ([M]+, 0.5), β17(βκ), 1κλ(11), 145(γ0), 1γ1(100), 11κ(4β), 105(κγ), λ1(51), 7λ(4β), 
67(γβ), 55(βκ). 
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2-(Hepta-1,6-diyn-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8l 

 
Bulb to bulb distillation (1β0 oC/β Torr) gave the title compound (7κ.5 mg, 7β% yield) as a 
white solid. 1H NMR (400 MHz, C6D6) δ β.0β (t, J = 7.1, βH), 1.λγ (td, J = 7.0, 6.6, β.β, βH), 
1.66 (t, J = β.6, 1H), 1.γ6 (p, J = 7.0, βH), 0.λλ (s, 1βH). 11B NMR (1βκ MHz, C6D6) δ β4.06. 
13C{1H} NMR (101 MHz, C6D6) δ 10γ.β, κγ.7, κγ.β, 6λ.4, β7.γ, β4.7, 1κ.6, 17.6. GC-MS, 
m/z(%) = β1κ ([M]+, β), β0γ(βκ), 175(15), 161(β0), 1γ1(γ5), 117(100), 105(β4), λ1(4κ), 
7λ(βκ), 57(β1), 5γ(16). 
 
2-(3,3-Dimethylbut-1-yn-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8m[11,12] 

 
Bulb to bulb distillation (100 oC/β Torr) gave the title compound (64.5 mg, 6β% yield) as a 
white solid. 1H NMR (400 MHz, C6D6) δ 1.0λ (s, λH), 0.λλ (s, 1βH). 11B NMR (1βκ MHz, 
C6D6) δ β4.γ0. 13C{1H} NMR (101 MHz, C6D6) δ 11β.β, κγ.6, γ0.6, βκ.1, β4.7. 
 
(E)-2-(3,3-Dimethylbut-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 9m[13] 

 
Bulb to bulb distillation (100 oC/β Torr) gave the title compound (λ4.6 mg, λ0% yield) as 
colorless liquid. 1H NMR (400 MHz, C6D6) δ 7.0β (d, J = 1κ.β, 1H), 5.7β (d, J = 1κ.β, 1H), 
1.10 (s, 1βH), 0.λ4 (s, λH). 11B NMR (1βκ MHz, C6D6) δ γ0.67. 13C{1H} NMR (101 MHz, 
C6D6) δ 164.6, κβ.λ, γ5.0, βκ.λ, β5.0. 
 
2-(Cyclopropylethynyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8n 

 
Bulb to bulb distillation (100 oC/β Torr) gave the title compound (60.5 mg, 6γ% yield) as a 
white solid. 1H NMR (400 MHz, C6D6) δ 0.λλ (s, 1βH), 0.λβ (tt, J = κ.4, 5.0, 1H), 0.5λ – 0.5β 
(m, βH), 0.γ0– 0.β0 (m, βH). 11B NMR (1βκ MHz, C6D6) δ β4.0λ. 13C{1H} NMR (101 MHz, 
C6D6) δ 107.β, κγ.β, β4.γ, κ.γ, 0.β. GC-MS, m/z(%) = 1λβ ([M]+, 1γ), 177(5κ), 14λ(4λ), 
1γ5(γ5), 11λ(10), 106(40), λγ(100), 7λ(1κ), 67(1λ), 5γ(1γ). 
 
 
(E)-2-(2-Cyclopropylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 9n 

 
Bulb to bulb distillation (100 oC/β Torr) gave the title compound (κβ.5 mg, κ5% yield) as 
colorless liquid. 1H NMR (400 MHz, C6D6) δ 6.γκ (dd, J = 17.7, λ.γ, 1H), 5.κ5 (d, J = 17.7, 
1H), 1.10 (s, 1βH), 0.4λ – 0.44 (m, βH), 0.4γ (s, 1H), 0.γ1 – 0.β7 (m, βH). 11B NMR (1βκ MHz, 
C6D6) δ γ0.ββ. 13C{1H} NMR (101 MHz, C6D6) δ 15λ.0, κβ.κ, β5.0, 17.γ, κ.0. GC-MS, m/z(%) 
= 1λ4 ([M]+, βλ), 17λ(γ0), 150(15), 1β1(β0), 101(100), λ5(75), κγ(54), 67(κ5), 55(γκ). 
 
 
 



125 

 

Methyl (E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-enoate 9o[4] 

 
‑iltration through AlβOγ with pentane gave the title compound (1β0.7 mg, λ5% yield) as a 
colorless liquid. 1H NMR (400 MHz, C6D6) δ 6.κ1 (dt, J = 17.λ, 6.5, 1H), 5.71 (dt, J = 17.λ, 
1.6, 1H), γ.γ0 (s, γH), β.04 – 1.λ0 (m, 4H), 1.57 (p, J = 7.5, βH), 1.0λ (s, 1βH). 11B NMR (1βκ 
MHz, C6D6) δ βλ.λ6. 13C{1H} NMR (101 MHz, C6D6) δ 17γ.0, 15γ.5, κγ.0, 50.λ, γ5.β, γγ.γ, 
β5.0, βγ.κ. 
 
(E)-2-(3-bromoprop-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 9p[14] 

 
‑iltration through AlβOγ with pentane gave the title compound (11γ.6 mg, λβ% yield) as a 
colorless liquid. 1H NMR (400 MHz, C6D6) δ 6.7κ (dt, J = 17.5, 7.1, 1H), 5.67 (dt, J = 17.5, 
1.β, 1H), γ.41 (dd, J = 7.1, 1.β, βH), 1.0β (s, 1βH). 11B NMR (1βκ MHz, C6D6) δ βλ.6β. 13C{1H} 
NMR (101 MHz, C6D6) δ 147.5, κγ.4, γγ.5, β4.κ. 
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Chapter III - Hydrosilylation Reactions 
Part 1 - Synthesis of cyclic amines via iron-catalyzed hydrosilylation  

Introduction  
N-Heterocycles are one of the most important compounds due to their widely potential 

applications in agrochemical, natural products, pharmaceutical chemistry, biologically 

valuable fine chemicals, as well as material chemistry.[1] Particularly, cyclic amines (such as 

pyrrolidines, piperidines and azepanes) are present in a large class of natural products and 

biologically active molecules.[β] Noticeably, as a representative example, the pyrrolidine ring 

motif is present in numerous natural alkaloids (e.g. nicotine and hygrine). It is also found in 

many pharmaceuticals such as procyclidine and bepridil (‑igure 1a). Piperidine motif can be 

present in Mefloquine, an important anti-malerial drug and azepane in Cetiedil, a vasodilator 

and anti-sickling agent. ‑urthermore, pyrrolidones are usually substructure in the drug racetams 

such as piracetam, levetiracetam and aniracetam (‑igure 1b).  

 
Figure 1. Selected examples for a) pyrrolidine, piperidine and azepane functionalities in 
natural alkaloids and pharmaceuticals and b) pyrrolidone structures in racetam drugs. 

Among the numerous synthetic methodologies, the conventional double alkylation of primary 

amines with dihalides[γ] seems to be a convenient pathway, however the utilization of 

stoichiometric amount of base additives is unavoidable. In the past few decades, huge efforts 

have been devoted to the development of efficient methods for the synthesis of cyclic amines,[4] 

including hydrogen borrowing,[5] intramolecular hydroamination reactions,[6] ring-closing 

metathesis[7] and reductive amination of keto acids (especially levulinic acid, Scheme 1).[κ]  

In addition, those synthetic routes have been dominated by noble metals as the catalysts, for 

examples Ir, Ru, Rh and also Pd. In comparison, ‐arth-abundant metals are relatively less 

applied in such transformations.  
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Scheme 1. Representative catalytic synthetic routes to N-substituted cyclic amines. 

This first part of the chapter will be devoted to iron-catalyzed efficient and selective one-pot 

pathways involving a reductive amination step via hydrosilylation for the selective preparation 

of (i) pyrrolidines vs pyrrolidinones from levulinic acid derivatives, (ii) pyrrolidines, 

piperidines and azepanes from ω-amino fatty acids and (iii) from dicarboxylic acids. 

(Scheme β). 

 
Scheme 2. Iron-catalyzed synthesis of cyclic amines via iron catalyzed one pot sequence 
involving a reductive amination step. 
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III-1 Reductive amination of keto acids derivatives with hydrosilanes 
catalyzed by Fe-NHC complexes 
Contributions in this partμ Optimization and scopeμ Duo Wei, Chakkrit Netkaewν 

Mechanistic studiesμ Duo Wei. 

Publicationμ D. Wei, C. Netkaew, C. Darcel, Adv. Synth. Catal. 2019, 361, 17κ1-17κ6. 

1.1. Introduction 

The selective and efficient production of inedible biomass or biomass platform derived fine 

chemicals, such as ethanol, hydroxymethylfurfural (HM‑), furfural, and levulinic acid (LA), 

has drawn much attention with the huge development of green and sustainable chemistry in the 

past two decades.[λ] Levulinic acid or levulinate derivatives, which are easily accessible from 

acidic hydrolysis of carbohydrates such as lignocellulose,[10] have been extensively studied. 

Indeed, they are valuable fine chemicals for access to platform molecules, such as -

valerolactone (GVL), N-substituted-5-methyl-β-pyrrolidones, β-methyl-tetrahydrofuran, and 

1,4-pentanediol.[11] 

The combination of a reductive amination of levulinic acid and a subsequent intramolecular 

cyclization is one of the most atom economic and sustainable approaches to access pyrrolidines 

and pyrrolidinones (Scheme γ).  

 
Scheme 3. General methodology involving transition metal catalyzed reductive amination of 
levulinic acid and keto-acids for the synthesis of lactams 

In the area of homogeneous catalysis, in β011, ‑u et al.[1β] reported the first example of 

transformation of levulinic acid to pyrrolidines with formic acid as the hydrogen source. A 

ruthenium catalyst generated in situ from [{RuClβ(p-cymene)}β] and tBuγP was efficiently used 

at κ0 oC with alkylamines, and 1β0 oC with arylamines. Afterwards, Xiao[1γ], Zhang[14] and 

‑ischmeister[15] developed efficient Cp*Ir based catalysts which operated in water or neat 

conditions at κ0-110 oC, with either formic acid or Hβ as the reductants. It is also important to 

underline that the selective production of lactams versus cyclic amines starting from levunilic 

acid and amines in the presence of PhSiHγ were reported by either switching from In(OAc)γ to 

InIγ[κa], or from AlClγ•6HβO to RuClγ•γHβO[κb], respectively. ‑urthermore, organoboron-

catalyzed reductive aminations of LA with silanes as reducing reagents has also been 
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reported.[16] Additionally, reductive aminase from Aspergillus oryzae was also able to promote 

the enatioselective formation of N-alkylpyrrolidinones from ethyl levulinate.[17] 

At iron, few reports deal with catalysts able to reduce levulinic acid or levulinate derivatives 

to -valerolactone under transfer hydrogenationμ (i) using formic acid, ‑e(OTf)β and 

[P(CHβCHβPPhβ)γ] ligand (140 °C, β4 h),[1λ] and ‑eγ(CO)1β (water, 1κ0 °C, 15 h),[β0] and (ii) 

using isopropanol, Casey type complex (NaHCOγ, 100 °C, 1λ h)[β1] and  Knölker type 

complexes (κ0-100 °C, 1λ-β0 h).[ββ] Additionally, the hydrogenation of levulinic acid to GVL 

was performed using Knölker type complexes with TON up to 570 (‐tOH, 60 bar Hβ, 100 °C, 

β0 h). Recently, PNNNP pincer iron complex catalyzed the hydrogenation of both methyl 

levulinate and levulinic acid leading to GVL with TO‑ up to 1λ00 h-1 (100 bar Hβ, 100 °C).[βγ] 

Besides hydrogenation, hydrosilanes are mild and higher selective reducing agents in terms of 

chemoselectivity and functional-group tolerance for the production of fine chemicals. They can 

be considered as interesting alternative reductants, although siloxane waste is an unavoidable 

by-product. To the best of our knowledge, the use of well-defined iron complexes as catalysts 

for transformation of levulinic acid derivatives to pyrrolidines and pyrrolidinones was scarcely 

explored. Only one recent contribution of Burtoloso reported the use of ‑eγ(CO)1β for catalyzed 

transfer hydrogenation of levulinic acid using β.β equiv. of a mixture 1μ1 of formic acid and 

amine in water in drastic conditions (1κ0 °C) leading to pyrrolidones.[β4] 

This paragraph will be devoted to the efficient and selective one-pot methodology for the 

switchable reductive amination of levulinic acid or levulinates via hydrosilylation for the 

selective preparation of pyrrolidines vs pyrrolidinones by the right choice of iron catalysts 

(Scheme 1b). 
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Scheme 4. Reductive amination of levulinic acid using well-defined iron catalysts. 
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1.2. Results and discussions 

1.2.1. Optimization of reaction conditions for the reductive amination of ethyl levulinate 
with aniline 

In our group, a series of N-heterocyclic carbene (NHC) based iron complexes have been 

previously developed, including [Cp‑e(CO)β(IMes)][I] 1  and [‑e(CO)4(IMes)] 2 [Scheme 4, 

IMes = 1,γ-bis (β,4,6-trimethylphenyl)imidazol-β-ylidene], for catalytic hydrosilylation of  

carbonyl derivatives[β5], imines[β6], amides[β7], esters[βκ] and also methylation of secondary 

amines.[βλ] Inspired by recent reports on the catalytic transformation of biomass and of bio-

based synthons, we began our initial investigation using ethyl levulinate 1, aniline 2a, 

phenylsilane in the absence of solvent, combined with 1 or 2 as catalysts. The preliminary 

experiment using 1 (5.0 mol%) in the presence of 4 equiv. of PhSiHγ at 100 oC upon visible 

light irradiation (using β4 watt compact fluorescent lamp) under neat conditions exhibited a 

promising result for reductive amination of 3 with 4aμ β-methyl-1-phenyl-pyrrolidine 5a was 

obtained in λ4% yield (Table 1, entry 1). 

Table 1 Optimization for the reductive amination of ethyl levulinate 3 with aniline 4a[a] 

 

Entry [Fe] (mol%) Silane (equiv.) Conv. (%)[b] Yield (%)[b] 
5a 6a 7 

1 1 (5.0) PhSiHγ (4) λλ λ4 0 0 
β 1 (5.0) PhβSiHβ (6) λλ 0 46 47 
γ 1 (5.0) ‐tγSiH (1β) λλ 0 0 0 
4[c] 1 (5.0) PhSiHγ (4) λλ γ7 β1 17 
5 1 (5.0) PhSiHγ (β) λλ 50 β7 βγ 
6 1 (5.0) PhSiHγ (1) λλ β7 βλ βκ 
7[d] 1 (5.0) PhSiHγ (4) λλ γβ γ5 11 
κ 2 (5.0) PhSiHγ (4) λλ λ0 0 6 
λ 2 (β.5) PhSiHγ (4) λλ λλ 0 0 
10 2 (1.0) PhSiHγ (4) λλ λβ 0 β 
11 2 (β.5) PhSiHγ (β) λλ 75 0 1γ 
1β[d] 2 (β.5) PhSiHγ (4) κλ 1γ 1λ 0 
[a] Conditionsμ 1 or 2 (1.0-5.0 mol%), 3 (0.β5 mmol), 4a (0.β5 mmol) and silane, 

visible light irradiation (β4 watt compact fluorescent lamp), 100 oC, β0 hν then 
hydrolysis (TH‑/NaOH β N). 

[b] Conversion and yield determined by 1H NMR of the crude mixture. The 
condensation imine product from 3 and 2a was also detected. 

[c] Reaction performed at 60 oC. 
[d] Reaction conducted in the absence of visible light irradiation. 

The nature of the silanes was also crucial for the selectivity of the reaction. While TMDS 

(1,1,γ,γ- tetramethyldisiloxane, 6 equiv.) and PMHS (polymethylhydrosiloxane, 1β equiv.) 
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were totally inactive, diphenylsilane (6 equiv.) led to a mixture of pyrrolidinone (6a, 46%) and 

GVL (7, 47%) (Table 1, entry β). Using 1β equiv. of ‐tγSiH led only to the condensation imine 

product generated from 3 and 4a (Table 1, entry γ). Decreasing the temperature to 60 °C or 

the amount of PhSiHγ led to a deteriorative selectivity (entries 4-6) as 5a was obtained in 

mixture with 6a and 7. 

Compared to 1, 2 exhibited a better activity. Indeed, at lower catalyst loading of 2 (β.5 mol% 

and even at 1.0 mol%), excellent yields of 5a, λλ and λβ%, respectively, were achieved 

(entries κ-10). ‑urthermore, lowering the PhSiHγ amount to β equiv. led to a mixture of 5a and 

7. Noticeably, the catalytic reaction performed in the absence of visible light irradiation led to 

unsatisfactory selectivity under catalysis of 1 or 2 (entries 7 and 1β). In absence of catalyst, no 

reduction reaction occurs, as only the condensation imine product from 3 and 4a was detected. 

1.2.2. Scope for reductive amination of levulinates into pyrrolidines 

The substrate scope for the catalyzed reductive amination of levulinate into pyrrolidines was 

then explored using β.5 mol% of 2 in the presence of 4 equiv. of phenylsilane in solvent-free 

conditions at 100 °C for β0 h (Table β).  

Table 2. Scope of reductive amination of levulinates into pyrrolidines catalyzed by complex 
2.[a] 

 
[a] Conditionsμ catalyst 2 (β.5 mol%), 3 or 8 (0.5 mmol), amine 

4 (0.5 mmol) and PhSiHγ (4 equiv.), visible light irradiation, 
100 oC, β0 hν then hydrolysis (TH‑/NaOH β N). Isolated 
yields in parenthesis 

Aromatic amines bearing substituents such as methyl, methoxy or fluoro 4b-4d, as well as 

aniline 4a, were smoothly converted into corresponding pyrrolidines in moderate to good 

isolated yields (56-λ0%). Notably, important building blocks for pharmaceuticals such as  
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5-amino-1,γ-benzodioxole was effectively transformed to 5e in 76%. Additionally, methyl γ-

benzoylpropanoate 8 can be also transformed into 1,β-diphenylpyrrolidine 9 in 7β% yield. 

1.2.3. Optimization of reaction conditions for reductive amination of levulinic acid 

The direct transformation of levulinic acid to pyrrolidines and pyrrolidinones is also another 

interesting target. The feasibility of the catalytic reductive amination of levulinic acid with 

aniline 4a was conducted with the catalyst 1 (5.0 mol%) under similar conditionsμ 4 equiv. of 

PhSiHγ, 100 °C, β4 h upon visible light irradiation. Levulinic acid 10 was quantitatively 

converted to a mixture with pyrrolidinone 6a as the major product (5aμ6a = βκμ7β, Table γ, 

entry 1). Increasing the quantity of PhSiHγ to 6 equiv. gave a 7μγ mixture of 5a and 6a (entry β). 

Noticeably, lowering the amount of PhSiHγ to β equiv. led to a remarkable improvement in 

selectivity as 6a was obtained specifically with λλ% yield (entry γ). 

Table 3. Optimization for reductive amination of levulinic acid.10[a]  

 
Entry [Fe] (mol%) PhSiH3 (equiv.) Conv. (%) [b] Yield (%)[b] 

5a 6a 
1 1 (5.0) 4 λλ βκ 7β 
β 1 (5.0) 6 λλ 6λ γ1 
γ 1 (5.0) β λλ 0 λλ 
4 1 (β.5) 4 λλ 1κ κβ 
5 2 (5.0) 5 λλ λ0 λ 
6 2 (5.0) 6 λλ λλ 0 
7 2 (β.5) 6 λλ 7β β7 
κ 2 (5.0) β κβ 0 κ0 
λ 2 (β.5) β κ0 0 75 
[a] Conditionsμ 1 or 2 (β.5-5.0 mol%), 10 (0.β5 mmol), 2a (0.β5 mmol) and PhSiHγ (β-

6 equiv.), visible light irradiation, 100 oC, β0 hν then hydrolysis (TH‑/NaOH β N).  
[b] Conversion and yield determined by 1H NMR of the crude mixture. GVL 7 was not 

observed under these conditions. 

The use of 2 as the catalyst permitted to switch the selectivity of the reaction. Indeed, using 

5.0 mol% of 2 led to 5a as the sole product (λλ%) when the reaction was conducted with 

6 equiv. of PhSiHγ (Table γ, entry 6). ‑urther lowering the catalyst loading of 1 or 2 from  

5.0 to β.5 mol% result in the drop of the selectivity with mixtures of 5a and 6a (entries 4 and 7). 

‑urthermore, with β equiv. of PhSiHγ, 6a can be formed in lower yield κ0% and 75% with 5% 

and β.5% of 2 respectively (Table γ, entry κ, λ). Similarly, to methyl levulinate, the reaction 

did not proceed using 6 equiv. of TMDS or PMHS. 
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1.2.4. Scope for reductive amination of levulinic acid into pyrrolidinones 

We then explored the substrates scope in regard of levulinic acid. To prepare pyrrolidinones 6, 

a variety of anilines 4 were employed for the annulation of levulinic acid catalyzed by 

1 (5.0 mol%), with PhSiHγ (β equiv.) at 100 oC under visible light irradiation (Table 4).  

Table 4. Scope of reductive amination of levulinic acid into pyrrolidinones catalyzed by 
complex 1.[a] 

 
[a] Conditionsμ 1 (5.0 mol%), 10 (0.5 mmol), 4 (0.5 mmol) and PhSiHγ (β equiv.), visible light 

irradiation, 100 oC, β0 hν then hydrolysis (TH‑/NaOH β N). Isolated yields in parenthesis.  
[b] κ4% isolated yield on gram scale (10 mmol) reaction. 

The reactions of aniline 4a, γ,4-(methylenedioxy) aniline 4e as well as 4-methoxyaniline 4f 
afforded the corresponding N-arylpyrrolidinones 6a, 6e and 6f in 60-κ7% yields. Notably, 

anilines bearing reducible functional group such as halogen substituents, boronate ester, acetyl, 

cyano, carboxylic ester and primary amide also provided the corresponding products 6b, 6g-h, 
6l-6p in γ0-6κ% yields, highlighting the good group tolerance of the transformation. 

Noticeably, the reaction can be performed with hindered amines leading to the pyrrolidones 6i-
6k in moderate yields up to 67%. Indeed, alkylamines such as cyclohexylamine can be used 

giving the pyrrolidinone 6q in 7β% yield (Table 4). 

1.2.5. Scope for reductive amination of keto acids into cyclic amines 

On the other hand, the reaction scope can be extended to pyrrolidines 5 using 2 (5.0 mol%) as 

the catalystμ indeed, the reaction of various keto acids with amines to give cyclic amines were 
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performed in the presence of PhSiHγ (6 equiv.) at 100 oC for β0 h under visible light irradiation 

(Table 5).  

Table 5. Scope of reductive amination of keto acids into cyclic amines catalyzed by complex 
2.[a] 

 
[a] Conditionsμ 2 (5.0 mol%), 10, 11, 13 or 15 (0.5 mmol), 4 (0.5 mmol) 

and PhSiHγ (4 equiv.), visible light irradiation, 100 oC, β0 hν then 
hydrolysis (TH‑/NaOH β N). Isolated yields in parenthesis. 

[b] κλ% isolated yield on gram scale (10 mmol) reaction. 

Interestingly, by reaction with levulinic acid, aniline 4a, methyl-substituted anilines 4c-4d, γ,4-

(methylenedioxy)aniline 4e, as well as 4-methoxyaniline 4f afforded the corresponding 

pyrrolidines 5a, 5c-f in 6β%-λβ% yields. Notably, the boronate ester 4l and trifluoromethyl 4r 

substituted anilines led also to 5l and 5r in λ0% and κλ% yields, respectively. Additionally, 

halogen-containing anilines 4b, 4g-4h were converted to the corresponding pyrrolidines 5b, 
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5g-5h in yields up to λγ% (Table 5, entries κ-10). ‐ven if the reaction showed a broad 

functional group tolerance including reducible functional groups, no reaction occurred with  

4-nitroaniline. It must be underlined that this methodology can be extended to the synthesis of 

cyclic amines like piperidines 12, 14 and azepane (16a and 16f) which can be obtained 

efficiently by reaction of anilines with 1,5- or 1,6-keto acids with yields up to λβ%. 

1.2.6. Scope for reductive amination of 2-formylbenzoic acid into isoindolines 

Table 6. Scope of reductive amination of 17 into isoindolines catalyzed by complex 2.[a] 

 
[a] Conditionsμ 2 (5.0 mol%), 17 (0.5 mmol), 4 (0.5 mmol) and 

PhSiHγ (6 equiv.) visible light irradiation, 100 oC, β4 hν then 
hydrolysis (TH‑/NaOH β N). Isolated yields in parenthesis. 

In order to show the generality of the catalyzed transformation, the use of β-formylbenzoic acid 

17 rather than keto acids for this transformation was next investigated under similar conditions 

(Scheme 5). Several N-arylisoindoline derivatives 18 were then synthesized starting from 

anilines bearing halogen atoms 4b, 4g-4h, trifluoromethyl 4r, boronate ester 4l, as well as  

o-phenyl group 4i (57-λγ% isolated yields). Notably, under similar conditions, benzylamine 4t 
gave also the β-benzylisoindoline 18t in a good yield (κ6%). It is particularly worth mentioning 

that this methodology permitted to tolerate halogen and boronate ester functionality and the 

corresponding products could be applied for further elaboration of complex molecules via 

catalyzed cross-coupling reactions. 
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1.3. Mechanistic studies 

In order to have evidences of the pathway of the transformation, the reduction of pyrrolidinone 

6a with β equiv. of PhSiHγ was then carried out in the presence of [‑e(CO)4(IMes)] 2 

(5.0 mol%) at 100 °C for β0 h upon visible light irradiationμ the β-methyl-1-phenylpyrrolidine 

5a was then obtained in λ5% NMR-yield (Scheme 5). This result indicates that in the reaction 

process of aniline with levulinic acid, the resulting pyrrolidinone 6a could be further converted 

into pyrrolidine 5a catalyzed by 2 under similar reductive conditions. 

 
Scheme 5. Iron-catalyzed reduction of pyrrolidinone 6a to pyrrolidine 5a 

In a mechanism point of view, based on the previous reaction pathway proposed with indium,[κa] 

an imine intermediate I-1 could be firstly generated from the condensation of levulinic acid 

with amine and dehydrogenative silylation of carboxylic acid with hydrosilanes. (Scheme 6) 

Then the imine moiety of I-1 was reduced under catalytic hydrosilylation conditions leading to 

silylamine species I-2[β6, γ0] which underwent transamidation generating 6a (Scheme 6). ‑inally, 

6a could be further reduced into 5a under catalytic hydrosilylation conditions.[βκ, γ1] 

 
Scheme 6. Proposed reaction pathway. 

1.4. Conclusion 

In summary, in this paragraph, a switchable and efficient iron catalyzed synthesis of  

N-substituted pyrrolidinones and pyrrolidines starting from renewable sources such as levulinic 

acid and esters and a variety of amines, was described via a reductive amination using 

phenylsilane as the reducing agent. It must be underlined that two well-defined NHC iron 

complexes were employed, each of them being able to conduct specifically to a single 
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derivativeμ pyrrolidones or pyrrolidines. Interestingly, using similar conditions, cyclic amines 

such as piperidines and azepanes were efficiently prepared by reaction of anilines with 1,5- or 

1,6-keto acids, respectively. Additionally, this methodology can be applied for the preparation 

of isoindolines starting from β-formylbenzoic acid. 
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III-2 Reductive amination of carbonyl derivatives with ω-amino fatty acids 
catalyzed by Fe(CO)4(IMes) 
Contributions in this partμ Optimization and scopeμ Duo Wei, Chakkrit Netkaew, Victor 

Carréν Mechanistic studiesμ Duo Wei, Chakkrit Netkaew. 

Publicationμ D. Wei, C. Netkaew, V. Carré, C. Darcel, ChemSusChem 2019, 12, γ00κ-γ01β. 

2.1. Introduction 

In III-1-1, we have already described an iron-catalyzed reductive amination of keto-acids such 

as levulinic acid, 1,5- and 1,6-keto acids leading to cyclic amines such as pyrrolidines, 

piperidines and azepanes, respectively, under hydrosilylation conditions.[γβ] ‑rom a sustainable 

organic synthesis point of view, iron-catalyzed reductive amination of aldehydes and ketones 

with ω-amino fatty acids should be another attractive method to prepare N-substituted cyclic 

amine derivatives in one step (Scheme 7). Indeed, ω-amino fatty acids are widely present in 

plants and animal speciesμ as a representative example, 4-aminobutanoic acid (GABA) is the 

chief inhibitory neurotransmitter in the mammalian central nervous system and GABA is also 

sold as a dietary supplement.[γγ] ‑urthermore, 5-aminopentanoic acid is a normal metabolite 

present in human saliva, with a tendency to elevated concentration in patients with chronic 

periodontitis,[γ4] and 6-aminohexanoic acid is effective in treatment of certain bleeding 

disorders (for instance postoperative bleeding), marketed as Amicar.[γ5] 

 
Scheme 7. Iron-catalyzed reductive amination of carbonyl derivatives with ω-amino fatty acids.  

This paragraph will be dedicated to an iron-catalyzed efficient and selective one-pot 

preparation of N-substituted cyclic amines (including pyrrolidines, piperidines and azepanes) 

via reductive amination of carbonyl derivatives with ω-amino fatty acids by hydrosilylation 

(Scheme 7).  
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2.2. Results and discussions 

2.2.1. Optimization of reaction conditions 

We thus began our initial optimization work with benzaldehyde 18a, 5-aminopentanoic acid 

19 and phenylsilane in toluene, in the presence of 2 as the catalyst. The preliminary experiment 

using 5.0 mol% of 2 associated to 4 equiv. of PhSiHγ at 100 oC upon visible light irradiation 

(using β4 watt compact fluorescent lamp) showed an interesting result for reductive amination 

of 18a and 19μ thus, N-benzylpiperidine 20a was produced in λ6% yield (Table 7, entry 1) with 

only trace amounts of benzyl alcohol 22 (γ%) resulting from the reduction of the benzaldehyde, 

underlining the remarkable selectivity with respect to 18a.  

Table 7. Optimization of the reaction parameters.[a]  

 

Entry Catalyst [mol%] Silane [equiv.] T [°C] Conv. [%] Yield [%] 

20a 21 22 
1 2 [5.0] PhSiHγ [4] 100 λλ λ6 0 γ 
β 2 [5.0] PhβSiHβ [6] 100 λλ 0 5λ 40 
γ 2 [5.0] TMDS [6] 100 0 - - - 
4 2 [5.0] PMHS [1β] 100 0 - - - 
5[b] 2 [5.0] PhSiHγ [4] 100 λκ 67 γ1 0 
6[c] 2 [5.0] PhSiHγ [4] 100 λλ κ7 1β 0 
7  2 [5.0] PhSiHγ [4] κ0 λ7 47 50 0 
κ 2 [5.0] PhSiHγ [4] 50 λ7 γβ 65 0 
λ 2 [5.0] PhSiHγ [4] γ0 λ6 7 β5 64 
10 2 [5.0] PhSiHγ [5] 100 λλ κ4 1 14 
11 2 [5.0] PhSiHγ [γ] 100 λλ γ0 6λ 0 
1β 2 [5.0] PhSiHγ [β] 100 λ5 β0 71 4 
1γ 2 [β.5] PhSiHγ [4] 100 κ6 71 1γ β 
14 ‑e(CO)5 [5.0] PhSiHγ [4] 100 λλ 40 0 5λ 
15 ‑eγ(CO)1β [5.0] PhSiHγ [4] 100 λλ - - λλ 
[a] General reaction conditionsμ 2 (5.0 mol%), 19 (0.5 mmol), 18a (0.5 mmol), PhSiHγ and toluene 

(0.5 mL), visible light irradiation (using β4 watt compact fluorescent lamp), 100 oC, β0 hν then 
hydrolysis (TH‑/NaOH β N). The conversions and yields were determined by 1H NMR 
spectroscopy.  

[b] neat condition.  
[c] In the absence of visible light irradiation.  

Afterwards, different hydrosilanes were evaluated in order to study the selectivity of the 

reaction. Using diphenylsilane (6 equiv.) led to a mixture of 1-benzylpiperidin-β-one (21, 5λ%) 

and benzyl alcohol (22, 40%) with no expected piperidine 20a, entry β). By contrast, with 

TMDS (6 equiv.) and PMHS (1β equiv.) no reaction occurred (entries γ and 4). The absence 

of toluene or visible light irradiation resulted in deteriorative selectivity (entries 5 and 6) as 
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20a was obtained in mixture with 21. Decreasing the temperature to κ0 or 50 °C led to a mixture 

of 20a and 21 with 21 as the major product (50% and 65%, respectively, entries 7 and κ). 

Nevertheless, when the reaction was conducted at γ0 °C, even if the conversion reached λ6%, 

benzyl alcohol 22 was the major product (64%, entry λ). The quantity of hydrosilanes has also 

a crucial effect on the selectivityν indeed, increasing the amount of phenylsilane to 5 equiv. or 

decreasing to γ or β equiv. lowered the selectivity of the reaction (entries 10-1β vs 1). ‑inally, 

with a lower catalyst loading of 2 (β.5 mol%), a lower conversion (κ6%) was obtained, with 

20a being the major product (71%, entry 1γ). Additionally, using ‑e(CO)5 or ‑eγ(CO)1β under 

the optimized conditions, even if full conversions were observed, benzyl alcohol resulting from 

the reduction of benzaldehyde was the major product obtained (5λ and λλ% respectively), 

showing the crucial role of the IMes ligand for the selectivity of the reaction (Table 7, ‐ntries 

14 and 15).  

It must be also mentioned that this transformation using the catalyst 2 (5.0 mol%) at 100°C for 

β0 h, under hydrogenation conditions (β bar of Hβ under visible light irradiation or 50 bar of 

Hβ in an autoclave in the absence of light irradiation) or hydrogen transfer conditions (4 equiv. 

of HCOβH / β equiv. of N‐tγ) did not succeed, as no conversion of benzaldehyde 18a was 

detected. 

Table 8. Control experiments in iron-free catalytic conditions.[a]  

 
Entry PhSiH3 

[equiv.] T [°C] Time [h] Conv. [%]a Yields [%] a 

20a 21 22 
1 5.0 100 γ λ5 0 λλ 0 
β 4.0 100 γ 66 0 λλ 0 
γ β.0 50 4 κβ 0 λ7 γ 
4 β.0 γ0 4 7κ 0 λγ 7 

[a] General reaction conditionsμ 19 (0.5 mmol), 18a (0.5 mmol), PhSiHγ and 
toluene (0.5 mL)ν then hydrolysis (TH‑/NaOH β N). The conversions and 
yields were determined by 1H NMR spectroscopy. 

It must be underlined that in the absence of iron catalyst, the piperidinone 21 can be detected 

in quantitative yield using 5, 4 or β equiv. of phenylsilane at 100, 50 or γ0 oC in 4 h. Noticeably, 

the piperidine 20a was not detected (Table κ). More detailed experiments were performed and 

explained in the mechanistic studies (Schemes λ and 10). 
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2.2.2. Scope for the preparation of piperidines 

With our optimized conditions in hand (5.0 mol% of 2, 4 equiv. of PhSiHγ, toluene, 100 °C, 

β0 h, visible light irradiation, Table 7, entry 1), we then explored the substrate scope and 

limitation for the catalyzed reductive amination of carbonyl derivatives with ω-amino fatty 

acids into N-substituted cyclic amines (Tables λ, 10 and 11). Benzaldehyde, o- and  

p-tolualdehyde were smoothly converted into the corresponding N-substituted piperidines 

isolated in λβ-λ5% yields (20a-20c, Table λ). Starting from the more hindered mesitaldehyde, 

the corresponding product 20d was isolated in good yield (κ0%), showing that the steric 

hinderance did not inhibit the reactivity. The reactions of p-methoxy or p-N,N-dimethylamino 

benzaldehyde afforded the corresponding piperidines 20e-20f in λγ and 6γ% yields, 

respectively. 

Table 9. Scope of the synthesis of piperidines by reductive amination of carbonyl derivatives 
with 5-aminopentanoic acid 19.[a]   

 
[a] General reaction conditionsμ 2 (5.0 mol%), 19 (0.5 mmol), 18 (0.5 mmol), PhSiHγ (4 equiv.) and 

toluene (0.5 mL), visible light irradiation, 100 oC, β0 hν then hydrolysis (TH‑/NaOH β N). 
Isolated yields of 20 are shown. 

The reaction also tolerated halides (chloro, bromo and fluoro) giving 20g-20i in λγ-λ5% yields. 

Importantly, piperidines bearing reducible functional groups such as carboxylic ester (20j) and 

amide (20k), were prepared in 6β% and 7κ% yields, respectively highlighting the good group 
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tolerance of this transformation. Notably, the reaction with p-(acetyl)aniline led to a less 

selective transformation as 7β% of the piperidine 20l was obtained in mixture with β0% of the 

fully reduced product, 1-((p-piperidylmethyl)phenyl)ethan-1-ol. Additionally, hetero-aromatic 

aldehydes based on pyrrole, furan, thiophene and quinoline cores were efficiently transformed 

to 20m-20p in κ1-λ7% yields. ‑errocenyl substituent was also tolerated as 20q was isolated in 

κλ% yield. Interestingly, starting from isophthalaldehyde, the corresponding dipiperidine 

derivative 20r can be purified in a moderate yield (5κ%). When α, -unsaturated aldehyde such 

as cinnamaldehyde was used, the corresponding N-cinnamylpiperidine 20s was obtained in  

7γ% isolated yield. ‑urthermore, unsaturated linear aldehyde such as 10-undecenal reacted 

selectively leading to the piperidine 20t in λ6% yield without hydrosilylation or isomerization 

of the terminal C=C bond, exhibiting the good functional tolerance towards conjugated or 

remoted C=C bonds. Noticeably, the reaction can be also conducted with acetophenone, 

although moderate yield was achieved (20u, 56%). 

2.2.3. Scope for the preparation of azepanes 

Table 10. Scope of the synthesis of azepanes by reductive amination of carbonyl derivatives 
with 6-aminohexanoic acid 23.[a]   

 
[a] General reaction conditionsμ 2 (5.0 mol%), 18 (0.5 mmol), 23 (0.5 mmol), PhSiHγ 

(4 equiv.) and toluene (0.5 mL), visible light irradiation, 100 oC, β0 hν then 
hydrolysis (TH‑/NaOH β N).  

[b] Isolated yields of 24 are shown. 
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Next, the reductive amination of carbonyl derivatives reaction was extended to  

6-aminohexanoic acid 23, in order to synthesise azepanes (Table 10). In the examples depicted 

in Table 10, aromatic aldehydes bearing an electron donating group, such as p-chloro and p-

methoxy substituted benzaldehydes, afforded the corresponding azepanes in λ5% and λ0% 

isolated yields, respectively. The steric hindrance did not inhibit the transformation as the 

cyclic amine 24c derived from mesitaldehyde can be isolated in 75% yield. Notably, cyano 

reducible functional group was tolerated and 24d was isolated in κβ% yield. Heteroaromatic 

aldehydes based on quinoline, thiophene and furan cores were effectively transformed to 24e-

24g in yields up to λ5%. Interestingly, remoted C=C group was not hydrosilylated and 24h was 

isolated in λ4% yield. Ketones are also appropriate partners in the preparation of azepanes. 

Indeed, as representative examples, cyclohexanone and acetophenone led to the corresponding 

azepanes 24i and 24j in κ7% and 47% yields. 

2.2.4. Scope for the preparation of pyrrolidines 

Table 11. Scope of the synthesis of pyrrolidines 26 by reductive amination of aldehydes with 
4-aminobutanoic acid.[a] 

 
[a] General reaction conditionsμ 2 (5.0 mol%), 25 

(0.5 mmol), 18 (0.5 mmol), PhSiHγ (4 equiv.) and 
toluene (0.5 mL), visible light irradiation, 100 oC, 
β0 hν then hydrolysis (TH‑/NaOH β N). Isolated 
yields of 9 are shown. 
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In order to show the generality of this cyclic amine preparation, 4-aminobutanoic acid (25, 

GABA) was employed with different aldehydes to prepare pyrrolidines 26 as shown in Table 

11. Thus, p-fluorobenzaldehyde furnished 26a in λγ% yield. Heteroaromatic aldehydes 

containing quinoline, thiophene and furan groups can be effectively transformed to 26b-26d in 

good yields (κ7-λ0%). Similar to piperidine 20t and azepane 24h, pyrrolidine 26e was prepared 

in λ5% yield starting from 10-undecenal and 25, again without alteration of the remoted C=C 

bond.  

‐ven though this method is quite general for the synthesis of 5, 6 and 7 membered cyclic amines, 

in a similar fashion, the reaction of -alanine (γ-aminopropanoic acid) 27 with benzaldehyde 

18a under the optimized conditions in the presence of 5.0 mol% of 2, did not furnish the desired 

azetidine product 28 (or even the corresponding N-benzyl- -lactam 29). Indeed, the γ-(N-

benzylamino)propanoic acid 30 was the sole product obtained with κγ% NMR-yield. It resulted 

from the simple reductive amination of -alanine with benzaldehyde, showing that the 

transamidation leading to the 4-membered ring is the limiting step of the reaction (Scheme κ). 

 

Scheme 8. Reductive amination of -alanine with benzaldehyde. 

2.3. Mechanistic insights 

Summarising the results described above, 5-, 6- and 7-membered cyclic amines can be 

efficiently formed via an iron catalyzed hydrosilylation of ω-amino fatty acids in the presence 

of aldehydes. Importantly, it was shown that the first steps of the transformation generating 

specifically piperidinone 20 (i.e. (i) imine formation, (ii) its reduction then (iii) transamidation) 

can be performed in the absence of iron catalyst, as shown for the reaction of benzaldehyde 

with 5-aminopentanoic acid 19 leading quite exclusively to the piperidinone 21 with only trace 

amount of benzyl alcohol 22 and no piperidine 20a, whatever the quantity of phenylsilane (β-

5 equiv.) or the temperature (γ0-100 oC) (Table κ). Additionally, this transformation seems to 

be specific to ω-amino fatty acids used as with methyl 4-aminobutyric ester, no reduction 

reaction occurred.  

Noticeably, the ability of carboxylic acid to promote the hydrosilylation of aldimines was 

evaluated. Indeed, carboxylic acid such as acetic acid can promote the hydrosilylation of 

aldiminesμ the aldimine 31 can be hydrosilylated leading to the corresponding amine 32, but in 
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very low yield (14% NMR-yield) when the reaction was conducted with β equiv. phenylsilane 

in toluene at 100 °C for 4 h (Scheme λ-a). Noticeably, the addition of 1 equiv. of acetic acid 

permitted to promote the hydrosilylation of the imine 31 in 51% NMR-yield (Scheme λ-b).  

 
Scheme 9. Controlled experiments for acetic acid promoted aldimine hydrosilylation. 

‑urthermore, carboxylic acids also seem to promote the reductive amination of aldehydes with 

primary amines for the formation of imines in the presence of hydrosilanes (Scheme 10).[γ6] In 

the case of the reductive amination of benzaldehyde with butylamine, in the absence of any 

additive, the reaction gave the corresponding aldimine  33 in quantitative yield when 

conducting in toluene at 100 oC (Scheme 10-a). When the reaction was performed in the 

presence of β equiv. of phenylsilane, the major product obtained still was the aldimine 33 (λ5%), 

with trace amounts of the product resulting from a double reductive amination of benzaldehyde 

(34, 5% yield) and no product from the direct reductive amination product 35 (Scheme 10-b).  

 
Scheme 10. Controlled experiments for carboxylic acid promoted reductive amination of 
benzaldehyde. 

When n-valeric acid or acetic acid (1 equiv.) were used as additives, the aldimine 33 was the 

major compound (70-75%), but a significant increase of the amount of the product resulting 

from a double reductive amination of benzaldehyde, 34, was obtained (15-β0%, Scheme 10c-

d). In addition, the compound produced by reductive amination of benzaldehyde then 
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intermolecular amidation with carboxylic acid, 36, was detected in 10% yield. γ6 was 

generated by (i) reductive amination of benzaldehyde, then (ii) intermolecular amidation with 

carboxylic acid. 

These results seem to prove that the carboxylic moiety of ω-amino fatty acids promote the 

reductive amination of the amino part with the carbonyl derivative under hydrosilylation. By 

contrast, the reduction of the formed piperidinones with phenylsilane has to be performed in 

the presence of an iron catalyst.  

On another hand, to gain information on the nature of the iron active species, a reductive 

amination of 18a with 19 using 5.0 mol% of 2 in the presence of 4 equiv. of PhSiHγ was 

conducted in a Young NMR tube at 100 °C under visible light irradiation and the evolution of 

the reaction was checked by NMR. It is important to underline that the signal of Hβ and ‑e-H 

species were observed at 4.46 ppm and – λ.1γ ppm, respectively, after γ h of reaction at 100 °C 

(‑igures β and γ). The shift of the ‑e-H signal is very close to the one observed in 

hydrosilylation of esters.[1κ]  

 
Figure 2μ 1H NMR spectrum between 0 and 10 ppm. 
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Figure 3μ 1H NMR spectrum in the hydride area. 

Based on these observations and on the previous reaction proposed pathways,[κ, γβ] an imine 

intermediate II-1 is first produced by condensation of 18a with 19 and dehydrogenative 

silylation of the carboxylic acid moiety with phenylsilane, then generating Hβ. The reduction 

of the imine moiety of II-1 under hydrosilylation conditions generated the silylamine 

intermediate II-2, then the piperidinone 21 via intramolecular transamidation (Scheme 11). The 

final step is an iron-catalyzed reduction of 21 into 20a under hydrosilylation conditions.[βκ, γ1, 

γ7] 

 
Scheme 11. Possible reaction pathway. 
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2.4. Conclusion 

This paragraph described an unprecedented efficient method for the preparation of  

N-substituted cyclic amines (including pyrrolidines, piperidines and azepanes) starting from  

ω-amino fatty acids and aldehydes or ketones, via reductive amination. The reaction proceeds 

with a notably high functional group tolerance as reducible groups such as carboxylic ester, 

amide, cyano and even acetyl, are well tolerated. Nevertheless, 4-membered cyclic amines or 

-lactams can not be produced starting from -alanine under these conditions. 
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III-3 Hydrosilylation of diacids in the presence of amines catalyzed by 
Fe(CO)4(IMes) 
Contributions in this partμ Optimization and scopeμ Duo Wei, Chakkrit Netkaew. 

3.1. Introduction 

In the two first paragraph of this part, we have described iron-catalyzed access to cyclic amines 

amines such as pyrrolidines, piperidines and azepanes, via reductive amination of keto-acids 

with amines and of ω-amino fatty acids with carbonyl derivatives under hydrosilylation 

conditions. Over the other alternatives methods involving such iron-catalyzed reductive 

amination sequences, diols and diacids can be envisaged as starting materials. In this area, 
significant breakthrough has been made in the development of milder and greener methods for 

the N-heterocyclization of primary amines starting from diols via hydrogen borrowing 

catalyzed with noble metals[5b, γκ], base metals[γλ], -AlβOγ[40] as well as organic catalysts[41]. 

The advantages of such methodology are clearly the reaction at ambient conditions without 

generation of harmful by-products (only water as a by-product) even if most of these systems 

require high reaction temperature.  
On the other hand, carboxylic acids can be interesting starting materials for reductive amination. 

Indeed, an interesting straightforward catalytic N alkylation of amines with carboxylic acids 

was reported by Beller et al. in β014 using Karstedt’s catalyst associated to dppe as a ligand 

and hydrosilanes as reducing agents under mild reaction conditions.[4β] ‑urthermore, 

dicarboxylic acids are well-known starting materials in the preparation of copolymers such as 

polyamides and polyesters, including the most widely used adipic acid in the production of 

Nylon 6-6. Other representative examples of dicarboxylic acids include aspartic acid and 

glutamic acid, two amino acids in the human body. ‐ven if diacids are also stable and readily 

available, to the best of our knowledge, the direct reductive amination of diacids with amines 

yielding N-substituted cyclic amines is unknown to date. It must be noticed that the reaction of 

diesters in the presence of anilines under hydrogenation conditions leading to N-aromatic 

heterocycles catalyzed by ruthenium complex was developed in β017.[4γ] However harsh 

reaction conditions (ββ0 oC) was generally required and its scope is limited to aniline. 

This third paragraph of this part is dedicated to the first hydrosilylation of diacids in the 

presence of amines as a novel route to N-substituted cyclic amines. (Scheme 1β) 
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Scheme 12. Novel route to N-substituted cyclic amines via iron-catalyzed reductive amination 
of diacids with amine under hydrosiltylation conditions. 

3.2. Results and discussions 

3.2.1. Optimization of reaction conditions 

In classical organic synthesis, the synthesis of cyclic imides starting from diacids (or from the 

corresponding cyclic anhydrides) and amine always requires ancillary reagents such as 

carboxylic acids,[44] acid chlorides,[45] anhydrides,[46] SOClβ[47] or dramatically harsh conditions 

(such as high temperature up to γγ0 oC).[4κ] 

To find a more sustainable patway starting from diacids, we began our initial optimization work 

with glutaric acid 39, cyclohexylamine 40 and PhSiHγ (6.0 equiv.) in dimethyl carbonate 

(DMC), catalyzed by ‑e(CO)4(IMes) 2 (using classical conditions already developed in the 

previous paragraphs).[βκ-βλ, γβ, 4λ] After β0 h at 110 °C using γ.0 mol% of 2, the fully reduced 

product N-cyclohexylpiperidine 20v was generated in quantitative yield (Table 1β, entry 1), 

notably without production of the other two intermediates N-cyclohexylglutarimide 41a and 

N-cyclohexyl-β-piperidone 42a. The amount of PhSiHγ can be decreased to 4.0 equiv. without 

any loss of activity and selectivity, as 20v was still obtained quantitatively and exclusively. 

(Table 1β, entry β) However, the selectivity dropped when decreasing the amount of PhSiHγ 

into β equiv. or the catalyst loading to β.5 mol% (Table 1β, entries γ and 4). 

Table 12. Reductive amination of glutaric acid with cyclohexylamine[a] 

HO OH

OO
+ NH2 N Cy +

42a 20v

N Cy +

41a

O

O

O

N CyCy
2, PhSiH3

39 40

DMC,110 oC
h, 20 h

 
Entry Cat. [mol%] PhSiH3 [equiv] T [°C] Conv. [%] a NMR-yield [%]

41a 42a 20v
1  5.0 6 110 >λλ 0 0 >λλ
β  5.0 4 110 >99 0 0 >99
γ  5.0 β 110 >λλ 0 40 60
4  β.5 4 λ0 λκ 0 4 λβ

[a] General reaction conditionsμ ‑e catalyst 2, 39 (0.5 mmol), 40 (0.5 mmol), PhSiHγ and 
DMC (0.5 mL), visible light irradiation (using β4 watt compact fluorescent lamp), 110 oC, 
β0 hν then hydrolysis (TH‑/NaOH β N). The conversions and yields were determined by 
1H NMR spectroscopy. 
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It should be noted that the two steps of reduction of succimide 41a to pyrrolidinone 42a and 

the reduction of pyrrolidinone 42a to pyrrolodine 20v were shown to be catalyzed by the 

catalyst 2 under hydrosilylation conditions.  

Table 13. Reductive amination of glutaric acid with aniline[a] 

 
Entry Cat 

[mol%] 
PhSiH3 
[equiv.] Additive [mol%] Conv. 

[%] a 
NMR-yield [%] a 
41b 42b 20w 

1 5.0 6 - 70 0 0 70 
β 5.0 4 - 40 1β 4 β4 
γ 5.0 6 ‑e(OTf)β [10] κγ 0 0 κγ 
4 5.0 6 ‑e(OTf)γ [10] β6 β6 0 0 
5 5.0 6 ‑eClγ [10] γβ γβ 0 0 
6 5.0 6 Fe(OTf)2 [20] 90 0 0 90 
7 5.0 6 ‑e(OTf)β [γ0] κ4 17 0 67 
κ None None - 0 0 0 0 
λ None 6 - 50 50 0 0 
10 5.0 None - 0 0 0 0 
[a] General reaction conditionsμ ‑e catalyst 2, 39 (0.5 mmol), 4a (0.5 mmol), PhSiHγ and 

DMC (0.5 mL), visible light irradiation (using β4 watt compact fluorescent lamp), 
110 oC, β0 hν then hydrolysis (TH‑/NaOH β N). The conversions and yields were 
determined by 1H NMR spectroscopy. 

To evaluate the transformation of diacid with aromatic amines, aniline 4a was selected as 

annulation partner instead of cyclohexylamine 40 in the hydrosilylation of glutaric acid 39 
(Table 1γ). When the reaction was performed with 6.0 equiv. of PhSiHγ under the previous 

optimized condtions, only 70 % conversion was observed but with an excellent selectivity as 

70% yield of the full reduced cyclic amine 20w was obtained (Table 1γ, entry 1). Reducing the 

amount of phenylsilane to 4.0 equiv. led to a mixture of 41b, 42b and 20w with a moderate 

conversion (40%) (Table 1γ, entry β). Interestingly, the addition of a catalytic amount of Lewis 

acid like 10 mol% of ‑e(OTf)β in the presence of 6 equiv. of phenylsilane resulted in the 

increase of both conversion and yield of 20w (κγ%, Table 1γ, entry γ). The use of other ‑e 

Lewis acids such as ‑eClγ or ‑e(OTf)γ gave only partial conversions of 39 into imide 41b  

(β6 and γβ%, respectively, Table 1γ, entries 4 and 5). Increasing the ‑e(OTf)β amount to β0 mol% 

permitted to obtain 20w in λ0% yield, while the use of γ0 mol% of ‑e(OTf)β has a detrimental 

effect on the reaction as a mixture of 41b and 20w was observed in a ratio 17μ67 (κ4% 

conversion, Table 1γ, entries 6 and 7). Notably, in the absence of both the ‑e catalyst 2 and 

PhSiHγ, no product can be produced. Nevertheless, using 6.0 equiv. of PhSiHγ in the absence 

of catalyst 2 and Lewis acid 50% of the amidation product 41b can be detected, indicating that 
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PhSiHγ promotes the formation of 41b. ‑inally, the presence of the catalyst 2 in the absence of 

silane led to no conversion (Table 1γ, entries κ-10). The role of the Lewis acid should be to 

increase the electrophilicity of the carbon of the C=O moiety in order to make the addition of 

softer nucleophilic aniline more easy. 

3.2.2. Scope for the preparation of cyclic amines starting from linear diacids 

With the optimized conditions found for the condensation of alkylamines and anilines 

(Table 1β, entry β, and Table 1γ, entry 6 for anilines, respectively), we then explored the 

substrate scope for the catalyzed reductive amination of diacids in the presence of various 

amines (alkylamines, Table 14ν anilines, Table 15). 

Starting from glutaric acid 39, various alkylamines such as benzylamine, cyclohexylamine, or 

1-hexylamine can be used leading to the corresponding piperidines in very good isolated yieldsμ 

κλ-λ4% (20a, 20v, and 20x, Table 14). Additionally, β-aminomethylbenzimidazole can be used 

conducting to the corresponding piperidine 20y in λ0% NMR yield. 

Table 14. Reductive amination of diacids with aliphatic amines [a] 

 
[a] General reaction conditionsμ 2 (5.0 mol%), 39, 43 or 44 (0.5 mmol), amine (0.5 mmol), PhSiHγ 

(4 equiv.) and DMC (0.5 mL), visible light irradiation, 110 oC, β0 hν then hydrolysis 
(TH‑/NaOH β N). Isolated yields of the products are shown. 

[b] NMR yield. 

Pyrrolidines 26d and 26g can be also efficiently prepared from succinic acid 43 by reaction 

with the corresponding amines, furfurylamine and β,4-dimethoxybenzylamine, in κ7 and 7κ% 

yield, respectively. Remarkably, using an amino-alcohol such as 6-aminohexan-1-ol, a 

chemoselective transformation occurred as the pyrrolidine 26f the pending hydroxyl group was 

produced in κλ% yield.  
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‑inally, when starting from adipic acid 44, azepanes were obtained in good yields when 

reacting with p-methoxybenzylamine, β-thienylmethylamine and β-picolylamine (70-77% 

yields) 

To reach good conversions, when working with aniline derivatives, β0 mol% of ‑e(OTf)β had 

to be used as an additive. The scope of aromatic amines was thus investigated (Table 15). By 

reaction of glutaric acid 39 with aniline and 4-methoxyaniline, the corresponding  

N-arylpiperidines 20w and 20z were obtained in 7κ% and κγ% yields, respectively.  

The reaction of succinic acid 43 with aniline, p-methoxy, p-bromo and p-fluoroanilines led to 

the corresponding pyrrolidines 26h-k in 7γ-κκ% yields. Additionally, heteroaromatic amine 

such as 6-amino-β-picoline was successfully converted in the corresponding piperidine 26l in 

76% yield. Notably, an important building block for pharmaceuticals such as 5-amino-1,γ-

benzodioxole was effectively transformed to piperidine 26m in κ5% yield. It must be 

underlined that anilines bearing an electron-withdrawing substituent did not permit to obtain 

cyclic amines. When adipic acid 44 was used in association with aniline, the desired product 

N-phenylazepane 24m was detected with ca. 10% NMR-yield. 

Table 15. Reductive amination of diacids with arylamines[a] 

HO
OH

O
+ NH2aryl

O

N aryl( )n ( )n

2 (5.0 mol%)

N

N

N

4

PhSiH3 (6.0 equiv.)
Fe(OTf)2 (20 mol%)

110 oC, h, 20 h

20w,78%

26h, 88%

24m, ca. 10% [b]

N

Br

N

OMe

N

F

NN N O

O

26k, 76% [b]

26i, 80% 26j, 73%

20z, 83% [b]

26l, 65% [b] 26m, 85% [b]

20, n = 2, 
26, n = 1, 
24, = 3

39, n = 2
43, n = 1
44, n = 3

N

 
[a] General reaction conditionsμ 2 (5.0 mol%), 39, 43 or 44 (0.5 mmol), 
amine (0.5 mmol), PhSiHγ (6 equiv.) and DMC (0.5 mL), visible 
light irradiation, 110 oC, β0 hν then hydrolysis (TH‑/NaOH β N). 
Isolated yields of the products are shown.  [b] NMR yield. 
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3.3. Mechanistic insights 

A possible reaction pathway was purposed (Scheme 1γ). III-1 and hydrogen gas were 

generated as the result of dehydrogenative silylation of glutaric acid. Then, a transamidation 

reaction took place in the presence of a primary amine, generating III-2. Cyclization of III-2 

led to 41a and liberated a silanol. Noticeably, these γ first steps were not catalyzed by the iron 

complex as 41a and 41b can be produced in the absence of the complex 2. The first reduction 

of 41a into 42a via hydrosilylation catalyzed by the iron catalyst 2 took place. ‑inally, 42a was 

reduced to 20v under the same condition. 

 

Scheme 13. Possible reaction pathway. 

3.4. Conclusion 

In summary, in this paragraph, we have shown that for the first time, linear diacids such as 

glutaric, succinic and adipic acids can be good starting materials to prepare cyclic amines 

(including piperidines, pyrrolidines and azepanes) via a sequence involving reduction steps 

under hydrosilylation conditions. Noticeably, both alkylamines and anilines are suitable 

partners in such transformation generating the cyclic amines in good isolated yields. It must be 

underlined that the reaction with anilines is more difficult and required the use of a catalytic 

amount of a Lewis acid to increase the electrophilicity of the carboxylic moiety towards the 

attack of the aniline. Nevertheless, N-arylazepanes are more difficult to obtain. ‑urther 

optimization, scopes and mechanism studies have to be done. 
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III-4 Conclusion of the Part 1 dedicated to synthesis of cyclic amines via iron-
catalyzed hydrosilylation 
In this first part dedicated to iron-catalyzed hydrosilylation reactions, it was shown that cyclic 

amines such as pyrrolidines, piperidines and azepanes can be selectively prepared using a 

sequential procedure involving a reductive amination of carbonyl derivatives under 

hydrosilylation. Three procedures were describedμ 

(i) The first one starting from keto-acid derivatives (including the bio-based levulinic acid 

and methyl levulinate) by reaction with various amines derivatives. In particular, we have 

shown that depending on the nature of the iron catalyst used, either cyclic amines or cyclic 

amides were selectively produced. 

(ii) The second one starting from ω-amino fatty acids in the presence of carbonyl derivatives 

(aldehydes, ketones) and a catalytic amount of ‑e(CO)4(IMes) under hydrosilylation 

conditions. 

(iii) The last one by reaction of diacids such as glutaric, succinic and adipic acids with 

alkylamines or aniline derivatives. In the latter case, an additional Lewis acid was 

necessary to promote efficiently the production of cyclic amines. This last methodology is 

particularly interesting as it permitted to access efficiently to N-arylpiperidines and N-

arylpyrrolidines. 

It must also be underline that these three methods tolerated numerous functional groups such 

halides, hydroxyl, cyano, remoted C=C, ester, boronic esters, etc. 
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III-6 Experimental data 
6.1. General information. 
1H, 1γC{1H}, 1λ‑{1H} and 11B{1H} NMR spectra were recorded in CDClγ at βλκ K unless 
otherwise stated, on Bruker, AVANC‐ 400 and AVANC‐ γ00 spectrometers at 400.1, γ00.1, 
γ76.5 and 1βκ.4 MHz, respectively. 1H and 1γC{1H} NMR spectra were calibrated using the 
residual solvent signal as internal standard (1Hμ CDClγ 7.β6 ppm, 1γCμ CDClγ, central peak is 
77.16 ppm). Chemical shift (δ) and coupling constants (J) are given in ppm and in Hz, 
respectively. The peak patterns are indicated as followsμ (s, singletν d, doubletν t, tripletν q, 
quartetν quin, quintetν m, multiplet, and br. for broad). 
HR-MS were recorded on a Waters Q-Tof β mass spectrometer at the corresponding facilities 
of the CRMPO, Centre Régional de Mesures Physiques de l’Ouest, Université de Rennes 1. 

6.2. Synthesis of complexes 
The complexes [Cp‑e(CO)β(IMes)][I][1] 1 and [‑e(CO)4(IMes)][β] 2 were prepared according 
to the published procedure. 

6.3. - Part III-1- Reductive amination of keto acids 
6.3.1. Typical procedure for the reductive amination of ethyl levulinate into pyrrolidines 
catalyzed by [Fe(CO)4(IMes)] 2 

 
In an argon filled glove box, a β0 mL Schlenk tube was charged with [‑e(CO)4(IMes)] 
2 (β.5 mol%), ethyl levulinate (0.5 mmol), aniline (0.5 mmol) and PhSiHγ (4 equiv.) in this 
order. Then the reaction mixture was stirred upon visible light irradiation (using β4 watt 
compact fluorescent lamp) at 100 oC for β0 h. After cooling to room temperature, the reaction 
was quenched by adding β mL TH‑ and β mL NaOH (aq.) β N, stirred for β h at room 
temperature and then extracted with γ×10 mL of ethyl acetate. The combined fractions were 
dried over anhydrous NaβSO4 for 0.5 h. After filtration through degreasing cotton, the crude 
mixture was dried under reduced pressure. The residue was then purified by silica gel column 
chromatography using a mixture of heptane/ethyl acetate as the eluent to afford the desired 
product. 

6.3.2. Typical procedure for the reductive amination of levulinic acid into 
pyrrolidinones catalyzed by [CpFe(CO)2(IMes)][I] 1 

+ H2NR NR
1 (5.0 mol%)O

OH

O

O

410 6

PhSiH3 (2 equiv.), neat,
100 oC, h

 
In an argon filled glove box, a β0 mL Schlenk tube was charged with [Cp‑e(CO)β(IMes)][I] 
1 (5.0 mol%), levulinic acid (0.5 mmol), aniline (0.5 mmol) and PhSiHγ (β equiv.) in this order. 
Then the reaction mixture was stirred upon visible light irradiation (using β4 watt compact 
fluorescent lamp) at 100 oC for β0 h. After cooling to room temperature, the reaction was 
quenched by adding β mL TH‑ and β mL NaOH (aq.) β N, stirred for β h at room temperature 
and then extracted with γ×10 mL of ethyl acetate. The combined fractions were dried over 
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anhydrous NaβSO4 for 0.5 h. After filtration through degreasing cotton, the crude mixture was 
dried under reduced pressure. The residue was then purified by silica gel column 
chromatography using a mixture of heptane/ethyl acetate as the eluent to afford the desired 
product. 
6.3.3. Typical procedure for the reductive amination of keto acids into cyclic amines 
catalyzed by [Fe(CO)4(IMes)] 2 

 
In an argon filled glove box, a β0 mL Schlenk tube was charged with [‑e(CO)4(IMes)] 
2 (5.0 mol%), keto acid (0.5 mmol), aniline (0.5 mmol) and PhSiHγ (6 equiv.) in this order. 
Then the reaction mixture was stirred upon visible light irradiation (using β4 watt compact 
fluorescent lamp) at 100 oC for β0 h. After cooling to room temperature, the reaction was 
quenched by adding β mL TH‑ and β mL NaOH (aq.) β N, stirred for β h at room temperature 
and then extracted with γ×10 mL of ethyl acetate. The combined fractions were dried over 
anhydrous NaβSO4 for 0.5 h. After filtration through degreasing cotton, the crude mixture was 
dried under reduced pressure. The residue was then purified by silica gel column 
chromatography using a mixture of heptane/ethyl acetate as the eluent to afford the desired 
product. 
6.3.4. Typical procedure for the reductive amination of 2-formylbenzoic acid into 
isoindolines catalyzed by [Fe(CO)4(IMes)] 2 

 
In an argon filled glove box, a β0 mL Schlenk tube was charged with [‑e(CO)4(IMes)] 
2 (5.0 mol%), β-formylbenzoic acid (0.5 mmol), aniline (0.5 mmol) and PhSiHγ (6 equiv.) in 
this order. Then the reaction mixture was stirred upon visible light irradiation (using β4 watt 
compact fluorescent lamp) at 100 oC for β0 h. After cooling to room temperature, the reaction 
was quenched by adding β mL TH‑ and β mL NaOH (aq.) β N, stirred for β h at room 
temperature and then extracted with γ×10 mL of ethyl acetate. The combined fractions were 
dried over anhydrous NaβSO4 for 0.5 h. After filtration through degreasing cotton, the crude 
mixture was dried under reduced pressure. The residue was then purified by silica gel column 
chromatography using a mixture of heptane/ethyl acetate as the eluent to afford the desired 
product. 
6.3.5. Reduction of 5-methyl-1-phenylpyrrolidin-2-one 6a to 2-methyl-1-phenyl-
pyrrolidine 5a 
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In an argon filled glove box, a β0 mL Schlenk tube was charged with [‑e(CO)4(IMes)] 
2 (5.0 mol%) or [Cp‑e(CO)β(IMes)][I] 1 (5.0 mol%), 5-methyl-1-phenylpyrrolidin-β-one 
6a (0.β5 mmol) and PhSiHγ (β equiv.) in this order. Then the reaction mixture was stirred upon 
visible light irradiation (using β4 watt compact fluorescent lamp) at 100 oC for β0 h. After 
cooling to room temperature, the reaction was quenched by adding β mL TH‑ and β mL NaOH 
(aq.) β N, stirred for β h at room temperature and then extracted with γ×10 mL of ethyl acetate. 
The combined fractions were dried over anhydrous NaβSO4 for 0.5 h. After filtration through 
degreasing cotton, the crude mixture was dried under reduced pressure. The product yield was 
determined by 1H NMR of the crude mixture. 

6.3.6. General procedure for gram scale reactions  

Preparation of 2-methyl-1-phenyl-pyrrolidine 5a 

In an argon filled glove box, a 100 mL Schlenk tube was charged with [‑e(CO)4(IMes)] 
2 (5.0 mol%, β40 mg), levulinic acid (10 mmol, 1.16 g), aniline (10 mmol, 0.λγ g) and PhSiHγ 
(60 mmol, 6.4λ g) in this order. Then the reaction mixture was stirred upon visible light 
irradiation (using β4 watt compact fluorescent lamp) at 100 oC for 4κ h. After cooling to room 
temperature, the reaction was quenched by adding β0 mL TH‑ and γ0 mL NaOH (aq.) β N, 
stirred for β h at room temperature and then extracted with γ×β0 mL of ethyl acetate. The 
combined fractions were dried over anhydrous NaβSO4 for 0.5 h. After filtrate through 
degreasing cotton, the crude mixture was dried under reduced pressure. The residue was then 
purified by silica gel column chromatography using a mixture of heptane/ethyl acetate as the 
eluent to afford 5a in κλ% isolated yield. 

Preparation of 5-methyl-1-phenylpyrrolidin-2-one 6a 
In an argon filled glove box, a 100 mL Schlenk tube was charged with [Cp‑e(CO)β(IMes)][I] 
1 (5.0 mol%, γ1β mg), levulinic acid (10 mmol, 1.16 g), aniline (10 mmol, 0.λγ g) and PhSiHγ 
(β0 mmol, β.16 g) in this order. Then the reaction mixture was stirred upon visible light 
irradiation (using β4 watt compact fluorescent lamp) at 100 oC for 1κ h. After cooling to room 
temperature, the reaction was quenched by adding β0 mL TH‑ and β0 mL NaOH (aq.) β N, 
stirred for β h at room temperature and then extracted with γ×β0 mL of ethyl acetate. The 
combined fractions were dried over anhydrous NaβSO4 for 0.5 h. After filtrate through 
degreasing cotton, the crude mixture was dried under reduced pressure. The residue was then 
purified by silica gel column chromatography using a mixture of heptane/ethyl acetate as the 
eluent to afford 6a in κ4% isolated yield. 
6.3.7. Characterization data for cyclic amines obtained from keto-acid derivatives 

2-Methyl-1-phenylpyrrolidine 5a[γ] 

 
‐thyl levulinate (70.λ L, 0.5 mmol) and aniline (45.6 L, 0.5 mmol) gave the title compound 
5a (7β.6 mg) in λλ% conversion and λ0% yield. 

Levulinic acid (51.β L, 0.5 mmol) and aniline (45.6 L, 0.5 mmol) gave the title compound 
5a (7γ.4 mg) in λλ% conversion and λ1% yield. 
1H NMR (400 MHz, CDClγ) δ 7.β6 (td, J = 7.γ, β.0 Hz, βH), 6.70 – 6.61 (m, γH), γ.λ5 – γ.κ7 
(m, 1H), γ.4λ – γ.4γ (m, 1H), γ.βγ – γ.15 (m, 1H), β.15 – 1.λ7 (m, γH), 1.7λ – 1.6κ (m, 1H), 
1.β1 (d, J = 6.β Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ 147.γ, 1βλ.γ, 115.β, 111.λ, 5γ.7, 
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4κ.γ, γγ.β, βγ.4, 1λ.5. GC-MS, m/z(%) = 161([M]+, 1κ), 146(100), 104(1λ), λ1(10), 77(γγ), 
51(1γ). 

1-(4-Fluorophenyl)-2-methylpyrrolidine 5b[γ] 

 
‐thyl levulinate (70.λ L, 0.5 mmol) and 4-fluoroaniline (47.4 L, 0.5 mmol) gave the title 
compound 5b (7λ.κ mg) in λλ% conversion and κλ% yield. 

Levulinic acid (51.β L, 0.5 mmol) and 4-fluoroaniline (47.4 L, 0.5 mmol) gave the title 
compound 5b (77.1 mg) in λλ% conversion and κ6% yield. 
1H NMR (400 MHz, CDClγ) δ 6.λλ – 6.λ0 (m, βH), 6.5β – 6.47 (m, βH), γ.κ1 (qt, J = 6.4, γ.β 
Hz, 1H), γ.45 – γ.γ5 (m, 1H), γ.15 – γ.0λ (m, 1H), β.14 – 1.λγ (m, γH), 1.75 – 1.66 (m, 1H), 
1.16 (d, J = 6.β Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ 154.κ (d, J = βγγ.1 Hz), 144.1, 
115.6 (d, J = ββ.0 Hz), 11β.γ (d, J = 7.1 Hz), 54.β, 4κ.λ, γγ.4, βγ.5, 1λ.5. 19F{1H} NMR (γ76 
MHz, CDClγ) δ -1γ1.β. GC-MS, m/z(%) = 17λ([M]+, ββ), 164(100), 1ββ(βλ), 10λ(1γ), λ5(β5), 
75(10). 

2-Methyl-1-(p-tolyl)pyrrolidine 5c[γ] 

 
‐thyl levulinate (70.λ L, 0.5 mmol) and p-toluidine (55.1 L, 0.5 mmol) gave the title 
compound 5c (54.γ mg) in κ6% conversion and 6β% yield. 

Levulinic acid (51.β L, 0.5 mmol) and p-toluidine (55.1 L, 0.5 mmol) gave the title 
compound 5c (64.0 mg) in λ0% conversion and 7γ% yield. 
1H NMR (400 MHz, CDClγ) δ 7.0κ – 7.05 (m, βH), 6.57 – 6.5γ (m, βH), γ.λ0 – γ.κγ (m, 1H), 
γ.46 – γ.4β (m, 1H), γ.1λ – γ.1γ (m, 1H), β.βκ (s, γH), β.15 – 1.λβ (m, γH), 1.75 – 1.67 (m, 
1H), 1.β0 (d, J = 6.β Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ 145.4, 1βλ.κ, 1β4.γ, 11β.0, 
5γ.λ, 4κ.6, γγ.γ, βγ.5, β0.4, 1λ.6. GC-MS, m/z(%) = 175([M]+, γγ), 160(100), 11κ(16), λ1(βγ), 
65(10). 

1-(3,4-Dimethylphenyl)-2-methylpyrrolidine 5d 

 
‐thyl levulinate (70.λ L, 0.5 mmol) and γ,4-dimethylaniline (60.6 mg, 0.5 mmol) gave the 
title compound 5d (5γ.0 mg) in 6β% conversion and 56% yield. 

Levulinic acid (51.β L, 0.5 mmol) and γ,4-dimethylaniline (60.6 mg, 0.5 mmol) gave the title 
compound 5d (5κ.7 mg) in 7κ% conversion and 6β% yield. 
1H NMR (400 MHz, CDClγ) δ 6.λλ (d, J = κ.β Hz, 1H), 6.4γ (d, J = β.6 Hz, 1H), 6.γκ (dd, J = 

κ.β, β.7 Hz, 1H), γ.κ4 (qt, J = 6.4, γ.0 Hz, 1H), γ.44 – γ.40 (m, 1H), γ.17 – γ.11 (m, 1H), β.β4 
(s, γH), β.17 (s, γH), β.11 – 1.λ1 (m, γH), 1.70 – 1.64 (m, 1H), 1.17 (d, J = 6.β Hz, γH). 13C{1H} 
NMR (101 MHz, CDClγ) 145.λ, 1γ7.β, 1γ0.4, 1βγ.β, 11γ.6, 10λ.5, 5γ.κ, 4κ.6, γγ.γ, βγ.5, β0.5, 
1λ.7, 1κ.7. GC-MS, m/z(%) = 1κλ ([M]+, γ5), 174(100), 1γβ(10), 105(15), 77(10). HR-MS 
(ESI) calcd. for [M+H]+ C1γHβ0N 1λ0.15λ0, found 1λ0.15λβ (1 ppm). 
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1-(Benzo[d][1,3]dioxol-5-yl)-2-methylpyrrolidine 5e 

 
‐thyl levulinate (70.λ L, 0.5 mmol) and benzo[d][1,γ]dioxol-5-amine (6κ.6 mg, 0.5 mmol) 
gave the title compound 5e (7κ.0 mg) in λλ% conversion and 76% yield. 

Levulinic acid (51.β L, 0.5 mmol) and benzo[d][1,γ]dioxol-5-amine (6κ.6 mg, 0.5 mmol) 
gave the title compound 5e (κβ.1 mg) in λλ% conversion and κ0% yield. 
1H NMR (400 MHz, CDClγ) δ 6.7β (d, J = κ.5 Hz, 1H), 6.β5 (d, J = β.4 Hz, 1H), 5.λκ (dd, J = 

κ.4, β.4 Hz, 1H), 5.κ5 – 5.κγ (m, βH), γ.κ0 – γ.7γ (m, 1H), γ.γλ – γ.γ4 (m, 1H), γ.1γ – γ.07 
(m, 1H), β.1β – 1.λ0 (m, γH), 1.71 – 1.64 (m, 1H), 1.15 (d, J = 6.β Hz, γH). 13C{1H} NMR 
(101 MHz, CDClγ) δ 14κ.5, 14γ.λ, 1γκ.0, 10κ.λ, 10γ.4, 100.5, λ4.κ, 54.4, 4λ.β, γγ.γ, βγ.5, 1λ.6. 
GC-MS, m/z(%) = β05([M]+, 40), 1λ0(100), 14κ(1β). HR-MS  (ESI) calcd. for [M+H]+ 
C1βH16NOβ β06.1176, found β06.1177 (1 ppm). 

1-(4-Methoxyphenyl)-2-methylpyrrolidine 5f[γ] 

 
Levulinic acid (51.β L, 0.5 mmol) and 4-methoxyaniline (61.6 mg, 0.5 mmol) gave the title 
compound 5f (κκ.0 mg) in λλ% conversion and λβ% yield. 
1H NMR (400 MHz, CDClγ) δ 6.κ5 (d, J = λ.0 Hz, βH), 6.55 (d, J = λ.0 Hz, βH), γ.76 (s, γH), 
γ.4γ – γ.γκ (m, 1H), γ.14 – γ.0κ (m, 1H), β.1β – 1.λ1 (m, 4H), 1.7β – 1.64 (m, 1H), 1.16 (d, J 

= 6.β Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ 150.7, 14β.5, 115.β, 11β.λ, 56.β, 54.β, 4λ.1, 
γγ.4, βγ.6, 1λ.κ. GC-MS, m/z(%) = 1λ1([M]+, γγ), 176(100), 1γ4(1β), 77(10). 

2-Methyl-1-(2-(trifluoromethyl)phenyl)pyrrolidine 5r 

  
Levulinic acid (51.β L, 0.5 mmol) and β-(trifluoromethyl)aniline (6β.κ L, 0.5 mmol) gave 
the title compound 5r (10β.0 mg) in λλ% conversion and κλ% yield. 
1H NMR (400 MHz, CDClγ) δ 7.61 – 7.57 (m, 1H), 7.46 – 7.41 (m, 1H), 7.ββ (d, J = κ.β Hz, 
1H), 7.04 (t, J = 7.6 Hz, 1H), γ.66 – γ.51 (m, βH), β.λ4 – β.κκ (m, 1H), β.16 – β.0λ (m, 1H), 
1.λ7 – 1.κκ (m, 1H), 1.κ5 – 1.74 (m, 1H), 1.6γ – 1.55 (m, 1H), 1.01 (d, J = 6.0 Hz, γH). 13C{1H} 
NMR (101 MHz, CDClγ) δ 14λ.γ, 1γ6.0, 1γβ.4, 1β7.7 (q, J = 5.7 Hz), 1β5.γ (q, J = βλ.0 Hz), 
1β4.6 (q, J = β7β.λ Hz), 1ββ.0 (d, J = 4β.λ Hz), 57.β, 55.λ (q, J = β.γ Hz), γγ.κ, β4.0, 1λ.1. 
19F{1H} NMR (γ76 MHz, CDClγ) δ -5λ.4. GC-MS, m/z(%) = ββλ([M]+, β5), β14(100), 
17β(β0), 145(β5). HR-MS (ESI) calcd. for [M+H]+ C1βH15N‑γ βγ0.1151, found βγ0.1150 
(1 ppm). 

2-Methyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrrolidine 5l 
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Levulinic acid (51.β L, 0.5 mmol) and 4-(4,4,5,5-tetramethyl-1,γ,β-dioxaborolan-β-yl)aniline 
(10λ.5 mg, 0.5 mmol) gave the title compound 5l (1βλ.β mg) in λλ% conversion and λ0% yield. 
1H NMR (400 MHz, CDClγ) δ 7.67 (d, J = κ.6 Hz, βH), 6.55 (d, J = κ.6 Hz, βH), γ.λ7 – γ.λ1 
(m, 1H), γ.46 – γ.41 (m, 1H), γ.βγ – γ.17 (m, 1H), β.11 – 1.λ5 (m, γH), 1.7β – 1.6λ (m, 1H), 
1.γβ (s, 1βH), 1.17 (d, J = 6.γ Hz, γH). 13C{1H} NMR (101 MHz, CDClγ, the carbon attached 
to quadrupole boron was not observed due to low intensity) δ 14λ.4, 1γ6.4, 111.β, κγ.β, 5γ.5, 
4κ.0, γγ.1, β5.0, βγ.γ, 1λ.β. 11B{1H} NMR (1βκ MHz, CDClγ) δ γ1.7. GC-MS, m/z(%) = 
βκ7([M]+, β5), β7β(100), β14(10), 17β(15). HR-MS (ESI) calcd. for [M+H]+ C17Hβ7NOβ11B 
βκκ.β1βλ, found βκκ.β1γ4 (β ppm). 

1-(4-Chlorophenyl)-2-methylpyrrolidine 5g[γ] 

 
Levulinic acid (51.β L, 0.5 mmol) and 4-chloroaniline (44.6 L, 0.5 mmol) gave the title 
compound 5g (λ1.0 mg) in λλ% conversion and λγ% yield. 
1H NMR (400 MHz, CDClγ) δ 7.16 – 7.1β (m, βH), 6.50 – 6.46 (m, βH), γ.κ6 – γ.7λ (m, 1H), 
γ.41 – γ.γ6 (m, 1H), γ.16 – γ.0λ (m, 1H), β.14 – 1.λγ (m, γH), 1.7β – 1.6κ (m, 1H), 1.15 (d, J 

= 6.β Hz, γH). 13C{1H} NMR (1β6 MHz, CDClγ) δ 145.λ, 1βλ.0, 1β0.0, 11β.λ, 5γ.λ, 4κ.4, γγ.γ, 
βγ.4, 1λ.γ. GC-MS, m/z(%) = 1λ5([M]+, β5), 1κ0(100), 1γκ(ββ), 111(1λ), 75(11). 

1-(4-Bromophenyl)-2-methylpyrrolidine 5h[γ] 

 
Levulinic acid (51.β L, 0.5 mmol) and 4-bromoaniline (κ6.λ mg, 0.5 mmol) gave the title 
compound 5h (100.κ mg) in λλ% conversion and κ4% yield. 
1H NMR (400 MHz, CDClγ) δ 7.γ1 – 7.βκ (m, βH), 6.4κ – 6.45 (m, βH), γ.κ7 – γ.κγ (m, 1H), 
γ.4γ – γ.γ7 (m, 1H), γ.1κ – γ.11 (m, 1H), β.14 – 1.λκ (m, γH), 1.74-1.7β (m, 1H), 1.1κ (d, J = 

6.β Hz, γH). 13C{1H} NMR (1β6 MHz, CDClγ) δ 146.β, 1γ1.λ, 11γ.5, 107.0, 5γ.λ, 4κ.γ, γγ.β, 
βγ.4, 1λ.β. GC-MS, m/z(%) = βγλ([M]+, β5), ββ4(100), 1κβ(11), 117(10), 76(1γ). 

1,2-Diphenylpyrrolidine 9[4] 

 
Methyl γ-benzoylpropionate (κ4.γ L, 0.5 mmol) and aniline (45.6 L, 0.5 mmol) gave the 
title compound 9 (κ0.4 mg) in κ5% conversion and 7β% yield. 
1H NMR (400 MHz, CDClγ) δ 7.γ1 – 7.β7 (m, βH), 7.βγ – 7.β1 (m, γH), 7.16 – 7.1β (m, βH), 
6.65 – 6.61 (m, 1H), 6.4λ (d, J = κ.0 Hz, βH), 4.7β (dd, J = κ.β, β.β Hz, 1H), γ.7γ – γ.6κ (m, 
1H), γ.44-γ.γκ (m, 1H), β.4γ-β.γ4 (m, 1H), β.10 – 1.λ1 (m, γH). 13C{1H} NMR (101 MHz, 
CDClγ) δ 147.γ, 144.κ, 1βλ.1, 1βκ.6, 1β6.7, 1β6.1, 115.λ, 11β.5, 6γ.1, 4λ.β, γ6.β, βγ.β.  
GC-MS, m/z(%) = ββγ([M]+, 51), 1λ4(15), 146(100), 117(10), λ1(1γ), 77(βκ). 

2-Methyl-1-phenylpiperidine 12[5] 

N
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5-Oxohexanoic acid (5λ.7 L, 0.5 mmol) and aniline (45.6 L, 0.5 mmol) gave the title 
compound 12 (7κ.0 mg) in λλ% conversion and κλ% yield. 
1H NMR (400 MHz, CDClγ) δ 7.γ4 – 7.β7 (m, βH), 7.00 (d, J = 7.λ Hz, βH), 6.κκ (t, J = 7.γ 
Hz, 1H), γ.λλ – γ.λβ (m, 1H), γ.β7 (m, 1H), γ.06 – β.λλ (m, 1H), 1.λ7 – 1.5λ (m, 6H), 1.05 (d, 
J = 6.6 Hz, γH). 13C{1H} NMR (1β6 MHz, CDClγ) δ 151.5, 1βλ.1, 11λ.γ, 117.κ, 51.6, 45.γ, 
γβ.0, β6.γ, β0.0, 14.0. GC-MS, m/z(%) = 175([M]+, βκ), 160(100), 1γβ(βγ), 11λ(10), 104(γ0), 
77(γ1), 51(10). 

1,2-Diphenylpiperidine 14[6] 

N

Ph  
5-Oxo-5-phenylpentanoic acid (λ6.1 mg, 0.5 mmol) and aniline (45.6 L, 0.5 mmol) gave the 
title compound 14 (λκ.5 mg) in λλ% conversion and κγ% yield. 
1H NMR (400 MHz, CDClγ) δ 7.γβ – 7.β4 (m, 4H), 7.β0 – 7.16 (m, γH), 6.λγ (d, J = 7.λ Hz, 
βH), 6.7λ (t, J = 7.γ Hz, 1H), 4.54 (dd, J = 6.7, 4.5 Hz, 1H), γ.4κ – γ.4β (m, 1H), γ.γγ – γ.β7 
(m, 1H), β.0κ – 1.54 (m, 6H). 13C{1H} NMR (1β6 MHz, CDClγ) δ 151.λ, 14γ.7, 1βκ.λ, 1βκ.4, 
1β7.γ, 1β6.γ, 11λ.7, 11κ.λ, 61.1, 50.6, γγ.6, β5.κ, ββ.β. GC-MS, m/z(%) = βγ7([M]+, 54), 
1κ0(15), 160(100), 1γβ(1β), 104(β4), λ1(14), 77(γβ). 

2-Methyl-1-phenylazepane 16a[7] 

N

 
6-Oxoheptanoic acid (7β.1 mg, 0.5 mmol) and aniline (45.6 L, 0.5 mmol) gave the title 
compound 16a (κ7.1 mg) in λλ% conversion and λβ% yield. 
1H NMR (400 MHz, CDClγ) δ 7.β4 – 7.1λ (m, βH), 6.6κ (d, J = κ.β Hz, βH), 6.60 (t, J = 7.β 
Hz, 1H), γ.7λ – γ.70 (m, 1H), γ.44 – γ.40 (m, 1H), γ.ββ – γ.15 (m, 1H), β.14 – β.07 (m, 1H), 
1.κ5 – 1.5κ (m, γH), 1.4κ – 1.ββ (m, 4H), 1.1γ (d, J = 6.γ Hz, γH). 13C{1H} NMR (1β6 MHz, 
CDClγ) δ 14κ.6, 1βλ.5, 114.5, 110.4, 5β.6, 4β.6, γ7.κ, γ0.β, β7.κ, β5.7, 1κ.1. GC-MS, m/z(%) 
= 1κλ ([M]+, γ5), 174(100), 160(15), 146(41), 11λ(15), 104(γ0), λ1(15), 77(γ0). 

2-Methyl-1-(4-methoxyphenyl)azepane 16f 

 
6-Oxoheptanoic acid (7β.1 mg, 0.5 mmol) and 4-methoxyaniline (61.6 mg, 0.5 mmol) gave the 
title compound 16f (λκ.7 mg) in λλ% conversion and λ0% yield. 
1H NMR (400 MHz, CDClγ) δ 6.κ7 – 6.κ0 (m, βH), 6.66 – 6.5κ (m, βH), γ.76 (s, γH), γ.7γ – 
γ.6β (m, 1H), γ.4γ – γ.γ0 (m, 1H), γ.βγ – γ.11 (m, 1H), β.16 – β.00 (m, 1H), 1.κ7 – 1.51 (m, 
γH), 1.47 – 1.1κ (m, 4H), 1.1β (d, J = 6.γ Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ 14λ.λ, 
14γ.7, 115.4, 111.0, 56.β, 5β.κ, 4γ.0, γ7.λ, γ0.β, βκ.0, β5.κ, 1κ.1. GC-MS, m/z(%) = β1λ ([M]+, 
55), β04(100), 1λ0(15), 176(β5), 150(λ0), 1γ4(β5), 1β1(15), 77(10). HR-MS (ESI) calcd. for 
[M+H]+ C14HββNO ββ0.16λ6, found ββ0.16λ6 (0 ppm). 
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6.3.8. Characterization data for isoindolines 18 

2-Phenylisoindoline 18a[κ] 

 
β-‑ormylbenzoic acid (75.1 mg, 0.5 mmol) and aniline (45.6 L, 0.5 mmol) gave the title 
compound 18a (κ6.λ mg) in λλ% conversion and κλ% yield. 
1H NMR (400 MHz, CDClγ) δ 7.γ7 – 7.γ0 (m, 6H), 6.76 (t, J = 7.γ Hz, 1H), 6.70 (d, J = κ.1 
Hz, βH), 4.67 (s, 4H). 13C{1H} NMR (101 MHz, CDClγ) δ 147.γ, 1γκ.1, 1βλ.5, 1β7.γ, 1ββ.7, 
116.γ, 111.7, 5γ.λ. GC-MS, m/z(%) = 1λ4([M]+, 100), 165(11), 116(15), 77(β7), 51(1β). 

2-(4-Fluorophenyl)isoindoline 18b[κ] 

  
β-‑ormylbenzoic acid (75.1 mg, 0.5 mmol) and 4-fluoroaniline (47.4 L, 0.5 mmol) gave the 
title compound 18b (λλ.β mg) in λλ% conversion and λγ% yield. 
1H NMR (400 MHz, CDClγ) δ 7.γ6 – 7.βλ (m, 4H), 7.05 – 7.00 (m, βH), 6.61 – 6.57 (m, βH), 
4.6β (s, 4H). 13C{1H} NMR (101 MHz, CDClγ) δ 155.4 (d, J = βγ4.0 Hz), 144.0 (d, J = 1.γ 
Hz), 1γκ.1, 1β7.4, 1ββ.7, 115.λ (d, J = ββ.1 Hz), 11β.1 (d, J = 7.γ Hz), 54.γ. 19F{1H} NMR 
(γ76 MHz, CDClγ) δ -1γ0.1. GC-MS, m/z(%) = β1β([M]+, 100), 116(14), λ5(15). 

2-(4-Chlorophenyl)isoindoline 18g[κ] 

  
β-‑ormylbenzoic acid (75.1 mg, 0.5 mmol) and 4-chloroaniline (44.6 L, 0.5 mmol) gave the 
title compound 18g (104.5 mg) in λλ% conversion and λ1% yield. 
1H NMR (400 MHz, CDClγ) δ 7.γ5 – 7.βλ (m, 4H), 7.β5 – 7.ββ (m, βH), 6.61 – 6.57 (m, βH), 
4.6γ (s, 4H). 13C{1H} NMR (101 MHz, CDClγ) δ 145.λ, 1γ7.κ, 1βλ.γ, 1β7.4, 1ββ.κ, 1β1.β, 
11β.7, 54.1. GC-MS, m/z(%) = ββκ([M]+, 100), 1λγ(1β), 111(1γ), 75(11). 

2-(4-Bromophenyl)isoindoline 18h[λ] 

  
β-‑ormylbenzoic acid (75.1 mg, 0.5 mmol) and 4-bromoaniline (κ6.λ mg, 0.5 mmol) gave the 
title compound 18h (116.5 mg) in λλ% conversion and κ5% yield. 
1H NMR (400 MHz, CDClγ) δ 7.γλ – 7.γ0 (m, 6H), 6.56 – 6.5β (m, βH), 4.61 (s, 4H). 13C{1H} 
NMR (101 MHz, CDClγ) δ 146.β, 1γ7.7, 1γβ.1, 1β7.4, 1ββ.7, 11γ.γ, 10κ.γ, 54.0. GC-MS, 
m/z(%) = β74([M]+, 100), 1λγ(βλ), 165(10), 116(1γ), λ7(11), 76(14). 

2-([1,1'-Biphenyl]-2-yl)isoindoline 18i 

 
β-‑ormylbenzoic acid (75.1 mg, 0.5 mmol) and β-aminobiphenyl (κ4.6 mg, 0.5 mmol) gave 
the title compound 18i in (1β6.β mg) λλ% conversion and λγ% yield. 
1H NMR (400 MHz, CDClγ) δ 7.55 – 7.5β (m, βH), 7.44 – 7.40 (m, βH), 7.γκ – 7.γ4 (m, βH), 
7.β7 – 7.16 (m, 5H), 7.07 (d, J = κ.1 Hz, 1H), 6.λ7 (td, J = 7.4, 1.1 Hz, 1H), 4.γ4 (s, 4H).  
13C{1H} NMR (101 MHz, CDClγ) 146.7, 14γ.β, 1γκ.5, 1γβ.κ, 1γ0.7, 1βλ.γ, 1βκ.γ, 1βκ.β, 1β6.λ, 
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1β6.7, 1ββ.β, 11κ.λ, 115.5, 56.γ. GC-MS, m/z(%) = β70 ([M]+, 100), β54(1κ), 1λγ(17), 
15β(γ0), 1γγ(γ0), 11κ(15). 

2-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isoindoline 18l 

 
β-‑ormylbenzoic acid (75.1 mg, 0.5 mmol) and 4-(4,4,5,5-tetramethyl-1,γ,β-dioxaborolan-β-
yl)aniline (10λ.5 mg, 0.5 mmol) gave the title compound 18l (λ1.6 mg) in κβ% conversion and 
57% yield. 
1H NMR (400 MHz, CDClγ) δ 7.κ0 – 7.75 (m, βH), 7.γ7 – 7.βλ (m, 4H), 6.67 (d, J = κ.6 Hz, 
βH), 4.6λ (s, 4H), 1.γ4 (s, 1βH). 13C{1H} NMR (101 MHz, CDClγ, the carbon attached to 
quadrupole boron was not observed due to low intensity) δ 14λ.4, 1γ7.7, 1γ6.6, 1β7.4, 1ββ.κ, 
111.1, κγ.γ, 5γ.κ, β5.0.  11B{1H} NMR (1βκ MHz, CDClγ) δ γ1.β. GC-MS, m/z(%) = γβ0 
([M]+, 100), β6β(15), ββ0(β5). HR-MS (ESI) calcd. ‑or [M+Na]+ Cβ0Hβ4NOβ11BNa γ44.17λβ, 
found γ44.1κ00 (β ppm). 

2-(2-(Trifluoromethyl)phenyl)isoindoline 18r 

 
β-‑ormylbenzoic acid (75.1 mg, 0.5 mmol) and β-(trifluoromethyl)aniline (6β.κ L, 0.5 mmol) 
gave the title compound 18r (κ1.6 mg) in κ7% conversion and 6β% yield. 
1H NMR (400 MHz, CDClγ) δ 7.6κ – 7.65 (m, 1H), 7.4λ – 7.45 (m, 1H), 7.γβ – 7.β7 (m, 4H), 
7.β0 (d, J = κ.4 Hz, 1H), 7.00 (t, J = 7.7 Hz, 1H), 4.7β (s, 4H). 13C{1H} NMR (101 MHz, 
CDClγ) 14κ.γ, 1γκ.4, 1γ6.0, 1γβ.λ, 1βκ.β (q, J = 6.β Hz), 1β7.γ, 1β4.λ (q, J = β7β.4 Hz), 1ββ.γ, 
1β0.6, 1β0.β, 5κ.β. 19F{1H} NMR (γ76 MHz, CDClγ) δ -56.κ. GC-MS, m/z(%) = β6β([M]+, 
100), βββ(1γ), 145(15), 111(15). HR-MS (ESI) calcd. ‑or [M+Na]+ C15H1βN‑γNa βκ6.0κ1λ, 
found βκ6.0κ07 (4 ppm). 

2-Benzylisoindoline 18t[10] 

  
β-‑ormylbenzoic acid (75.1 mg, 0.5 mmol) and benzylamine (54.6 L, 0.5 mmol) gave the title 
compound 18t (λ0.0 mg) in λλ% conversion and κ6% yield. 
1H NMR (400 MHz, CDClγ) δ 7.46 – 7.4γ (m, βH), 7.40 – 7.γ6 (m, βH), 7.γβ – 7.γ0 (m, 1H), 
7.β0 (s, 4H), γ.λ6 (s, 4H), γ.λ4 (s, βH). 13C{1H} NMR (101 MHz, CDClγ) δ 140.4, 1γλ.γ, 1βκ.λ, 
1βκ.5, 1β7.β, 1β6.κ, 1ββ.4, 60.4, 5λ.1.  GC-MS, m/z(%) = β0κ([M]+, 45), 11κ(6β), λ1(100), 
65(1κ). 

6.3.9. Characterization data for pyrrolidones 6 

5-Methyl-1-phenylpyrrolidin-2-one 6a[γ] 

 
Levulinic acid (51.β L, 0.5 mmol) and aniline (45.6 L, 0.5 mmol) gave the title compound 
6a (76.β mg) in λλ% conversion and κ7% yield. 
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1H NMR (400 MHz, CDClγ)μ δ 7.41 – 7.γ5 (m, 4H), 7.ββ – 7.1κ (m, 1H), 4.γγ – 4.β5 (m, 1H), 
β.64 – β.4λ (m, βH), β.41 – β.γβ (m, 1H), 1.7λ – 1.71 (m, 1H), 1.β0 (d, J = 6.β Hz, 1H).  
13C NMR (101 MHz, CDClγ)μ δ 174.γ, 1γ7.7, 1βλ.1, 1β5.κ, 1β4.1, 55.7, γ1.4, β6.λ, β0.γ.  
GC-MS, m/z(%) = 175([M]+, 4γ), 160(100), 1γβ(14), 1β0(γ1), 104(1λ), λ1(10), 77(4γ), 
51(β1). 

1-(4-Fluorophenyl)-5-methylpyrrolidin-2-one 6b[11] 

 
Levulinic acid (51.β L, 0.5 mmol) and 4-fluoroaniline (47.4 L, 0.5 mmol) gave the title 
compound 6b (60.λ mg) in λλ% conversion and 6γ% yield. 
1H NMR (400 MHz, CDClγ)μ δ 7.γγ – 7.βκ (m, βH), 7.10 – 7.04 (m, βH), 4.β6 – 4.1κ (m, 1H), 
β.66 – β.4κ (m, βH), β.41 – β.γβ (m, 1H), 1.7λ – 1.70 (m, 1H), 1.1κ (d, J = 6.β Hz, γH).  
13C{1H} NMR (101 MHz, CDClγ)μ δ 174.4, 160.5 (d, J = β45.4 Hz), 1γγ.6 (d, J = γ.1 Hz), 
1β6.1 (d, J = κ.β Hz), 115.λ (d, J = ββ.5 Hz), 56.0, γ1.γ, β6.λ, β0.γ. 19F{1H} NMR (471 MHz, 
CDClγ) δ -116.1. GC-MS, m/z(%) = 1λγ([M]+, 54), 17κ(100), 150(11), 1γκ(4κ), 1ββ(β5), 
10λ(1β), λ5(γ1), 75(1β), 55(10). 

1-(Benzo[d][1,3]dioxol-5-yl)-5-methylpyrrolidin-2-one 6e[1β] 

 
Levulinic acid (51.β L, 0.5 mmol) and benzo[d][1,γ]dioxol-5-amine (6κ.6 mg, 0.5 mmol) 
gave the title compound 6e (7γ.4 mg) in λ6% conversion and 67% yield. 
1H NMR (400 MHz, CDClγ)μ δ 6.κ5 (s, 1H), 6.κ0 (d, J = κ.β Hz, 1H), 6.70 (d, J = κ.0 Hz, 1H), 
5.λ6 (s, βH), 4.17 – 4.0λ (m, 1H), β.5λ – β.46 (m, βH), β.γλ – β.γ0 (m, 1H), 1.76 – 1.67 (m, 
1H), 1.17 (d, J = 6.β Hz, γH). 13C{1H} NMR (101 MHz, CDClγ)μ δ 174.5, 14κ.1, 145.λ, 1γ1.6, 
11κ.γ, 10κ.γ, 106.λ, 101.5, 56.5, γ1.β, β6.λ, β0.4. GC-MS, m/z(%) = β1λ([M]+, λβ), β04(100), 
174(10), 164(4λ), 1γβ(17), 106(10), 55(10). 

1-(4-Methoxyphenyl)-5-methylpyrrolidin-2-one 6f[1β] 

 
Levulinic acid (51.β L, 0.5 mmol) and 4-methoxyaniline (61.6 mg, 0.5 mmol) gave the title 
compound 6f (61.6 mg) in λλ% conversion and 60% yield. 
1H NMR (400 MHz, CDClγ)μ δ 7.ββ (d, J = κ.κ Hz, βH), 6.λ1 (d, J = κ.7 Hz, βH), 4.β0 – 4.1β 
(m, 1H), γ.7λ (s, γH), β.64 – β.47 (m, βH), β.γλ – β.γ1 (m, 1H), 1.77 – 1.64 (m, 1H), 1.16 (d, 
J = 6.β Hz, γH). 13C{1H} NMR (1β6 MHz, CDClγ)μ δ 174.4, 157.κ, 1γ0.5, 1β6.β, 114.4, 56.β, 
55.5, γ1.γ, β6.λ, β0.4. GC-MS, m/z(%) = β05([M]+, 66), 1λ0(100), 150(γ4), 1γ4(β5), 1ββ(14), 
77(1γ), 55(15). 

1-(4-Chlorophenyl)-5-methylpyrrolidin-2-one 6g[11] 
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Levulinic acid (51.β L, 0.5 mmol) and 4-chloroaniline (44.6 L, 0.5 mmol) gave the title 
compound 6g (57.7 mg) in 75% conversion and 55% yield. 
1H NMR (400 MHz, CDClγ)μ δ 7.γ6 – 7.γ1 (m, 4H), 4.γ1 – 4.βγ (m, 1H), β.67 – β.4κ (m, βH), 
β.41 – β.γβ (m, 1H), 1.7λ – 1.70 (m, 1H), 1.β0 (d, J = 6.1 Hz, γH). 13C{1H} NMR (101 MHz, 
CDClγ)μ δ 174.γ, 1γ6.γ, 1γ1.0, 1βλ.β, 1β5.0, 55.6, γ1.4, β6.7, β0.1. GC-MS, m/z(%) = 
β0λ([M]+, 5γ), 1λ4(100), 154(41), 1γκ(β0), 111(βκ), 75(β5), 55(14). 

1-(4-Bromophenyl)-5-methylpyrrolidin-2-one 6h[11] 

  
Levulinic acid (51.β L, 0.5 mmol) and 4-bromoaniline (κ6.λ mg, 0.5 mmol) gave the title 
compound 6h (75.0 mg) in λ7% conversion and 5λ% yield. 
1H NMR (400 MHz, CDClγ)μ δ 7.4λ (d, J = κ.7 Hz, βH), 7.βκ (d, J = κ.7 Hz, βH), 4.γ1 – 4.βγ 
(m, 1H), β.67 – β.47 (m, βH), β.40 – β.γ1 (m, 1H), 1.7λ – 1.70 (m, 1H), 1.β0 (d, J = 6.β Hz, 
γH). 13C{1H} NMR (101 MHz, CDClγ)μ δ 174.γ, 1γ6.κ, 1γβ.1, 1β5.γ, 11κ.κ, 55.5, γ1.4, β6.7, 
β0.1. GC-MS, m/z(%) = β55 ([M]+, 60), βγκ(100), 1λκ(βκ), 15λ(γβ), 1γ0(γ0), 11λ(β0), λ0(15), 
76(β4), 6γ(1γ), 55(1κ), 50(1γ). 

1-([1,1'-biphenyl]-2-yl)-5-methylpyrrolidin-2-one 6i[1β] 

 
Levulinic acid (51.β L, 0.5 mmol) and β-aminobiphenyl (κ4.6 mg, 0.5 mmol) gave the title 
compound 6i (κ4.β mg) in κγ% conversion and 67% yield. 
1H NMR (400 MHz, CDClγ) δ 7.4γ – 7.γγ (m, κH), 7.β5 – 7.βγ (m, 1H), β.54 – β.46 (m, 1H), 
β.41 – β.γβ (m, 1H), β.00 – 1.λβ (m, 1H), 1.57 – 1.4κ (m, 1H), 1.γ0 – 1.β4 (m, 1H), 0.κ7 (d, J 

= 6.γ Hz, γH).  13C{1H} NMR (101 MHz, CDClγ) δ 175.λ, 140.γ, 1γλ.4, 1γ5.0, 1γ0.λ, 1γ0.4, 
1βκ.6, 1βκ.5, 1βκ.γ, 1β7.7, 56.0, γ1.0, β7.κ, β0.1. GC-MS, m/z(%) = β51([M]+, κλ), βγ6(100), 
1λγ(16), 1κ0(γγ), 167(15), 15β(γ4), 76(11). 

1-Mesityl-5-methylpyrrolidin-2-one 6j[1γ] 

 
Levulinic acid (51.β L, 0.5 mmol) and β,4,6-trimethylaniline (70.β L, 0.5 mmol) gave the 
title compound 6j (4β.4 mg) in 46% conversion and γλ% yield. 
1H NMR (400 MHz, CDClγ) δ 6.λβ (s, 1H), 6.κλ (s, 1H), 4.07 – γ.λκ (m, 1H), β.65 – β.4λ (m, 
βH), β.45 – β.γ6 (m, 1H), β.β6 (s, γH), β.17 (s, γH), β.14 (s, γH), 1.κ6 – 1.76 (m, 1H), 1.0λ (d, 
J = 6.4 Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ 174.4, 1γ7.7, 1γ7.1, 1γ5.β, 1γβ.1, 1βλ.54, 
1βλ.47, 56.γ, γ0.κ, βκ.4, β1.0, 1λ.7, 1κ.7, 1κ.β. GC-MS, m/z(%) = β17([M]+, κ4), β0β(100), 
15κ(1λ), 146(βγ), 1γ5(β7), 1β0(4λ), λκ(15), λ1(β0), 77(10), 55(10). 
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1-(2,6-Diisopropylphenyl)-5-methylpyrrolidin-2-one 6k[1γ] 

 
Levulinic acid (51.β L, 0.5 mmol) and β,6-diisopropylaniline (λ4.γ L, 0.5 mmol) gave the 
title compound 6k (4λ.γ mg) in 50% conversion and γκ% yield. 
1H NMR (400 MHz, CDClγ) δ 7.γ1 (t, J = 7.7 Hz, 1H), 7.β1 – 7.16 (m, βH), γ.λ7 – γ.κλ (m, 
1H), γ.0γ – β.λγ (m, 1H), β.κ4 – β.7γ (m, 1H), β.67 – β.5γ (m, βH), β.46 – β.γκ (m, 1H), 1.κ7 
– 1.7κ (m, 1H), 1.β4 – 1.17 (m, 1βH), 1.0λ (d, J = 6.4 Hz, γH). 13C{1H} NMR (101 MHz, 
CDClγ) δ 175.β, 14κ.β, 146.5, 1γ1.7, 1βκ.κ, 1β4.11, 1β4.0κ, 57.κ, γ0.λ, βκ.λ, βκ.κ, βκ.5, β5.4, 
β4.7, β4.β, βγ.5, 1λ.κ. GC-MS, m/z(%) = β5λ([M]+, κ7), β44(100), ββ6(1κ), β0β(10), 15λ(βλ), 
145(β1), 117(10), λ1(14), 55(β0). 

5-Methyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrrolidin-2-one 6l 

 
Levulinic acid (51.β L, 0.5 mmol) and 4-(4,4,5,5-tetramethyl-1,γ,β-dioxaborolan-β-yl)aniline 
(10λ.5 mg, 0.5 mmol) gave the title compound 6l (5β.7 mg) in κ0% conversion and γ5% yield. 
1H NMR (400 MHz, CDClγ)μ δ 7.κγ (d, J = κ.0 Hz, βH), 7.4γ (d, J = κ.0 Hz, βH), 4.γλ – 4.γ4 
(m, 1H), β.6λ – β.4λ (m, βH), β.41 – β.γβ (m, 1H), 1.7λ – 1.7β (m, 1H), 1.γ4 (s, 1βH), 1.ββ (d, 
J = 6.0 Hz, γH). 13C{1H} NMR (101 MHz, CDClγ)μ δ 174.γ, 140.4, 1γ5.7, 1βλ.λ, 1ββ.6, κγ.λ, 
55.4, γ1.7, β6.κ, β5.0, β0.β. 11B{1H} NMR (1βκ MHz, CDClγ)μ δ γ1.1 GC-MS, m/z(%) = γ01 
([M]+, 5κ), βκ6(100), β0β(β5), 1κ6(γ0), 146(β0), 10γ(10), 55(15). HR-MS (ESI) calcd. for 
[M+Na]+ C17Hβ4NOγ11BNa γβ4.1741, found γβ4.1745 (1 ppm). 

1-(4-Acetylphenyl)-5-methylpyrrolidin-2-one 6m[1γ] 

 
Levulinic acid (51.β L, 0.5 mmol) and 4’-aminoacetophenone (67.6 mg, 0.5 mmol) gave the 
title compound 6m (51.1 mg) in 60% conversion and 47% yield. 
1H NMR (400 MHz, CDClγ)μ δ 7.λλ (d, J = κ.4 Hz, βH), 7.5λ (d, J = κ.4 Hz, βH), 4.46 – 4.γκ 
(m, 1H), β.74 – β.65 (m, 1H), β.5λ (s, γH), β.56 – β.50 (m, 1H), β.44 – β.γ5 (m, 1H), 1.κ4 – 
1.75 (m, 1H), 1.β7 (d, J = 6.1 Hz, γH). 13C{1H} NMR (1β6 MHz, CDClγ)μ δ 1λ7.β, 174.5, 
14β.β, 1γγ.7, 1βλ.5, 1ββ.1, 55.1, γ1.6, β6.65, β6.5κ, β0.0. GC-MS, m/z(%) = β17([M]+, 5γ), 
β0β(100), 146(1γ), 11κ(1γ), λ1(10). 

4-(2-Methyl-5-oxopyrrolidin-1-yl)benzonitrile 6n[1γ] 
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Levulinic acid (51.β L, 0.5 mmol) and 4-aminobenzonitrile (5λ.1 mg, 0.5 mmol) gave the title 
compound 6n (γ0.0 mg) in 4κ% conversion and γ0% yield. 
1H NMR (400 MHz, CDClγ)μ δ 7.67 – 7.6β (m, 4H), 4.44 – 4.γ6 (m, 1H), β.74 – β.66 (m, 1H), 
β.60 – β.51 (m, 1H), β.4γ – β.γ4 (m, 1H), 1.κ4 – 1.76 (m, 1H), 1.β7 (d, J = 6.1 Hz, γH). 13C{1H} 
NMR (101 MHz, CDClγ)μ δ 174.6, 14β.0, 1γγ.1, 1ββ.γ, 11κ.λ, 10κ.0, 54.λ, γ1.5, β6.4, 1λ.κ. 
GC-MS, m/z(%) = β00([M]+, 45), 1κ5(100), 157(10), 145(54), 1βλ(1λ), 10β(βκ). 

Ethyl 4-(2-methyl-5-oxopyrrolidin-1-yl)benzoate 6o[14] 

 
Levulinic acid (51.β L, 0.5 mmol) and 4-aminobenzoate (κβ.6 mg, 0.5 mmol) gave the title 
compound 6o (κ4.1 mg) in 75% conversion and 6κ% yield. 
1H NMR (400 MHz, CDClγ) δ κ.0γ (d, J = κ.6 Hz, βH), 7.5β (d, J = κ.6 Hz, βH), 4.41 – 4.γ1 
(m, γH), β.6κ – β.60 (m, 1H), β.55 – β.46 (m, 1H), β.γκ – β.βλ (m, 1H), 1.7κ – 1.70 (m, 1H), 
1.γ5 (t, J = 7.1 Hz, γH), 1.β1 (d, J = 6.β Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ 174.4, 
166.1, 141.λ, 1γ0.4, 1β6.κ, 1ββ.0, 60.λ, 55.1, γ1.5, β6.4, 1λ.κ, 14.4. GC-MS, m/z(%) = β47 
([M]+, 50), βγβ(100), β0β(β0), 1λβ(10). 

4-(2-Methyl-5-oxopyrrolidin-1-yl)benzamide 6p[1γ] 

 
Levulinic acid (51.β L, 0.5 mmol) and ethyl 4-aminobenzamide (6κ.1 mg, 0.5 mmol) gave 
the title compound 6p (4κ.0 mg) in 5γ% conversion and 44% yield. 
1H NMR (400 MHz, CDγOD) δ 7.λβ (d, J = κ.6 Hz, βH), 7.55 (d, J = κ.6 Hz, βH), 4.5γ – 4.45 
(m, 1H), β.71 – β.6β (m, 1H), β.5κ – β.50 (m, 1H), β.46 – β.γ7 (m, 1H), 1.κ4 – 1.76 (m, 1H), 
1.ββ (d, J = 6.γ Hz, γH). 13C{1H} NMR (101 MHz, CDγOD) δ 177.0, 171.6, 14β.1, 1γβ.0, 
1βλ.5, 1β4.6, 57.β, γβ.β, β7.4, β0.0. GC-MS, m/z(%) = β1κ([M]+, 70), β0γ(100), 16γ(β4), 
146(17), 1β0(16), 10γ(10), 55(10). 

1-cyclohexyl-5-methylpyrrolidin-2-one 6q[1γ] 

 
Levulinic acid (51.β L, 0.5 mmol) and cyclohexylamine (57.β L, 0.5 mmol) gave the title 
compound 6q (65.γ mg) in λλ% conversion and 7β% yield. 
1H NMR (400 MHz, CDClγ) δ γ.κ0 – γ.65 (m, βH), β.51 – β.γ5 (m, 1H), β.β7 – β.β0 (m, 1H), 
β.16 – β.06 (m, 1H), 1.κβ – 1.44 (m, κH), 1.γλ – 1.β5 (m, βH), 1.ββ (d, J = 6.γ Hz, γH), 1.1κ – 
1.04 (m, 1H). 13C{1H} NMR (101 MHz, CDClγ) δ 174.6, 5γ.0, 5β.6, γβ.0, γ0.5, γ0.β, β7.6, 
β6.1, β6.0, β5.7, ββ.5. GC-MS, m/z(%) = 1κ1([M]+, βκ), 1γκ(64), 100(100), κ4(βκ), 55(β5). 
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6.4.- Part III-2- Reductive amination of carbonyl derivatives with ω-amino fatty acids 
6.4.1. Typical procedure for the reductive amination of carbonyl derivatives with ω-
amino fatty acids 

 
A β0 mL Schlenk tube was charged with [‑e(CO)4(IMes)] 2 (5.0 mol%), ω-amino fatty acids 

19, 23 or 25 (0.5 mmol), aldehyde 18 (0.5 mmol), PhSiHγ (4 equiv.), and toluene (0.5 mL) 

under argon in this order. Then the reaction mixture was stirred upon visible light irradiation 

(using β4 watt compact fluorescent lamp) at 100 oC for β0 h. After cooling to room temperature, 

the reaction was quenched by adding β mL TH‑ and β mL NaOH (aq.) β N, stirred for β h at 

room temperature and then extracted with γ×β mL of ethyl acetate. The combined organic 

fractions were dried over anhydrous NaβSO4 for 0.5 h. After filtrate through degreasing cotton, 

the crude mixture was dried under reduced pressure. The residue was then purified by silica 

gel column chromatography using a mixture of heptane/ethyl acetate (60μ1 to 5μ1) as the eluent 

to afford the desired product.  

6.4.2. Characterization of cyclic amines 

1-Benzylpiperidine20a[15] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λ5% isolated yield (κγ.γ mg).  
1H NMR (400 MHz, CDClγ) δ 7.γ7 – 7.βλ (m, 4H), 7.βλ – 7.β1 (m, 1H), γ.4λ (s, βH), β.γλ (s, 
br, 4H), 1.6β – 1.56 (m, 4H), 1.47 – 1.41 (m, βH). 13C{1H} NMR (101 MHz, CDClγ) δ 1γκ.κ, 
1βλ.γ, 1βκ.β, 1β6.λ, 64.0, 54.6, β6.1, β4.5. GC-MS, m/z(%) = 174([M]+, 50), λκ(56), λ1(100), 
65(1κ), 55(10). 

1-(4-Methylbenzyl)piperidine 20b[16] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λγ% isolated yield (κκ.0 mg). 
1H NMR (400 MHz, CDClγ) δ 7.ββ (d, J = 7.λ Hz, βH), 7.14 (d, J = 7.λ Hz, βH), γ.46 (s, βH), 
β.γκ (s, br, 4H), β.γ5 (s, γH), 1.6β – 1.56 (m, 4H), 1.47 – 1.41 (m, βH). 13C{1H} NMR (101 
MHz, CDClγ) δ 1γ6.4, 1γ5.6, 1βλ.γ, 1βκ.λ, 6γ.7, 54.6, β6.1, β4.6, β1.β. GC-MS, m/z(%) = 
1κλ([M]+, 50), 105(100), κ4(κβ), 77(1κ), 55(10). 

 
  



177 

 

1-(2-Methylbenzyl)piperidine 20c[16] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λβ% isolated yield (κ7.1 mg). 
1H NMR (400 MHz, CDClγ) δ 7.γγ – 7.βλ (m, 1H), 7.β1 – 7.14 (m, γH), γ.44 (s, br, βH), β.4γ 
– β.41 (m, 4H), β.γλ (s, γH), 1.6β – 1.56 (m, 4H), 1.50 – 1.44 (m, βH). 13C{1H} NMR 
(101 MHz, CDClγ) δ 1γ7.5, 1γ7.γ, 1γ0.β, 1βλ.κ, 1β6.κ, 1β5.5, 61.7, 54.λ, β6.γ, β4.7, 1λ.4.  
GC-MS, m/z(%) = 1κλ([M]+, 4β), 174(10), 105(κγ), κ4(100), 77(β1), 55(10). 

1-(2,4,6-Trimethylbenzyl)piperidine 20d[17] 

 

 

The title compound was prepared as described in the general procedure in λλ% conversion and 
κ0% isolated yield (κ6.λ mg). 
1H NMR (400 MHz, CDClγ) δ 6.κ4 (s, βH), γ.γλ (s, βH), β.γ7 (s, λH), β.βκ (s, 4H), 1.54 – 1.4κ 
(m, 4H), 1.46 – 1.41 (m, βH). 13C{1H} NMR (101 MHz, CDClγ) δ 1γκ.γ, 1γ6.1, 1γβ.7, 1βκ.λ, 
56.κ, 54.4, β6.5, β4.λ, β1.0, β0.β. GC-MS, m/z(%) = β17([M]+, βκ), 1γβ(100), 117(17), λκ(14), 
κ4(βλ). 

1-(4-Methoxybenzyl)piperidine 20e[16] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λγ% isolated yield (λ5.5 mg). 
1H NMR (400 MHz, CDClγ) δ 7.βγ (d, J = κ.6 Hz, βH), 6.κ5 (d, J = κ.6 Hz, βH), γ.7λ (s, γH), 
γ.41 (s, βH), β.γ6 (s, br, 4H), 1.5λ – 1.54 (m, 4H), 1.45 – 1.γλ (m, βH). 13C{1H} NMR 
(101 MHz, CDClγ) δ 15κ.7, 1γ0.7, 1γ0.5, 11γ.5, 6γ.4, 55.γ, 54.5, β6.1, β4.6. GC-MS, m/z(%) 
= β05([M]+, β5), 1β1(100), λκ(1κ), κ4(γβ), 77(10). 

N,N-Dimethyl-4-(piperidin-1-ylmethyl)aniline 20f[17] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
6γ% isolated yield (6κ.κ mg). 
1H NMR (400 MHz, CDClγ) δ 7.1λ (d, J = κ.6 Hz, βH), 6.7β (d, J = κ.6 Hz, βH), γ.41 (s, βH), 
β.λ5 (s, 6H), β.γκ (s, br, 4H), 1.61 – 1.56 (m, 4H), 1.46 – 1.40 (m, βH). 13C{1H} NMR (101 
MHz, CDClγ) δ 14λ.κ, 1γ0.4, 1β6.γ, 11β.4, 6γ.5, 54.4, 40.κ, β6.1, β4.6. GC-MS, m/z(%) = 
β1κ([M]+, 1κ), 1γ4(100), 11κ(10). 
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1-(3-Fluorobenzyl)piperidine 20g[18] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λγ% isolated yield (κλ.λ mg). 
1H NMR (400 MHz, CDClγ) δ 7.βκ – 7.β1 (m, 1H), 7.0λ – 7.06 (m, βH), 6.λ5 – 6.λ0 (m, 1H), 
γ.46 (s, br, βH), β.γλ – β.γ6 (m, 4H), 1.61 – 1.55 (m, 4H), 1.47 – 1.41 (m, βH). 13C{1H} NMR 
(101 MHz, CDClγ) δ 16γ.1 (d, J = β45.1 Hz), 141.κ (d, J = 7.0 Hz), 1βλ.6 (d, J = κ.β Hz), 1β4.6 
(d, J = β.7 Hz), 115.κ (d, J = β1.β Hz), 11γ.κ (d, J = β1.β Hz), 6γ.4 (d, J = 1.λ Hz), 54.7, β6.1, 
β4.5. 19F{1H} NMR (γ76 MHz, CDClγ) δ -114.05. GC-MS, m/z(%) = 1λβ([M]+, 50), 10λ(100), 
κ4(7κ), 55(1β). 

1-(4-Chlorobenzyl)piperidine 20h[16] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λ5% isolated yield (λλ.6 mg). 
1H NMR (400 MHz, CDClγ) δ 7.γ1 – 7.β6 (m, 4H), γ.44 (s, βH), β.γ7 (s, br, 4H), 1.6β – 1.56 
(m, 4H), 1.4κ – 1.4γ (m, βH). 13C{1H} NMR (101 MHz, CDClγ) δ 1γ7.4, 1γβ.6, 1γ0.5, 1βκ.γ, 
6γ.β, 54.6, β6.1, β4.5. GC-MS, m/z(%) = β0κ([M]+, 50), 1β5(100), λκ(71), κ4(55), 55(11). 

1-(4-Bromobenzyl)piperidine 20i[15] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λγ% isolated yield (11κ.β mg). 
1H NMR (400 MHz, CDClγ) δ 7.4β (d, J = κ.γ Hz, βH), 7.1λ (d, J = κ.γ Hz, βH), γ.40 (s, βH), 
β.γ5 (m, br, 4H), 1.5λ – 1.5γ (m, 4H), 1.45 – 1.40 (m, βH). 13C{1H} NMR (101 MHz, CDClγ) 
δ 1γ7.λ, 1γ1.γ, 1γ0.λ, 1β0.7, 6γ.β, 54.6, β6.1, β4.5. GC-MS, m/z(%) = β54([M]+, 46), 16λ(50), 
λκ(100), κ4(κλ), 55(15). 

Methyl 4-(piperidin-1-ylmethyl)benzoate 20j[17] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
6β% isolated yield (7β.γ mg). 
1H NMR (400 MHz, CDClγ) δ 7.λκ – 7.λ6 (m, βH), 7.40 – 7.γκ (m, βH), γ.λ0 (s, γH), γ.50 (s, 
βH), β.γκ – β.γγ (m, 4H), 1.60 – 1.54 (m, 4H), 1.46 – 1.40 (m, βH). 13C NMR (101 MHz, 
CDClγ) δ 167.γ, 144.6, 1βλ.6, 1βλ.1, 1βκ.λ, 6γ.6, 54.7, 5β.1, β6.1, β4.4. GC-MS, m/z(%) = 
βγβ([M]+, κ0), β0β(10), 14λ(75), 1β1(βγ), λκ(100), κ4(λκ), 55(1γ). 

 

 

 



179 

 

N-(4-(Piperidin-1-ylmethyl)phenyl)acetamide 20k[17] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
7κ% isolated yield (λ0.6 mg). 
1H NMR (γ00 MHz, CDClγ) δ 7.4γ (d, J = κ.γ Hz, βH), 7.β5 (d, J = κ.γ Hz, βH), γ.4β (s, βH), 
β.45 – β.βγ (m, 4H), β.16 (s, γH), 1.64 – 1.4κ (m, 4H), 1.4κ – 1.γ1 (m, βH). 13C NMR 
(101 MHz, CDClγ) δ 16κ.4, 1γ6.7, 1γ4.7, 1βλ.λ, 11λ.κ, 6γ.4, 54.5, β6.1, β4.7, β4.5.  
GC-MS, m/z(%) = βγβ([M]+, γκ), 14κ(40), 106(100), κ4(λγ), 7κ(10). 

1-(4-(Piperidin-1-ylmethyl)phenyl)ethan-1-one 20l[19] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
7β% isolated yield (7κ.β mg). 
1H NMR (400 MHz, CDClγ) δ 7.λ0 (d, J = κ.γ Hz, βH), 7.4β (d, J = κ.γ Hz, βH), γ.51 (s, βH), 
β.5λ (s, γH), β.γ7 (m, br, 4H), 1.61 – 1.55 (m, 4H), 1.46 – 1.4γ (m, βH). 13C NMR (101 MHz, 
CDClγ) δ 1λκ.1, 144.κ, 1γ6.1, 1βλ.γ, 1βκ.4, 6γ.6, 54.κ, β6.κ, β6.1, β4.4. GC-MS, m/z(%) = 
β16([M]+, 71), 1γγ(6β), 11κ(10), λκ(100), κ4(κ1), 55(15). 

1-((1-Methyl-1H-pyrrol-2-yl)methyl)piperidine 20m[20] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
κ1% isolated yield (7β.β mg). 
1H NMR (400 MHz, CDClγ) δ 6.6γ – 6.57 (m, 1H), 6.07 – 6.0γ (m, 1H), 6.0β – 5.λκ (m, 1H), 
γ.67 (s, γH), γ.40 (s, βH), β.γκ (s, br, 4H), 1.5λ – 1.51 (m, 4H), 1.4κ – 1.40 (m, βH).  
13C NMR (101 MHz, CDClγ) δ 1βλ.6, 1ββ.4, 10λ.γ, 106.1, 55.β, 54.γ, γ4.0, β6.β, β4.7.  
GC-MS, m/z(%) = 17κ([M]+, 11), λ4(100). 

1-(Furan-2-ylmethyl)piperidine 20n[21] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λ7% isolated yield (κ0.1 mg). 
1H NMR (400 MHz, CDClγ) δ 7.γ5 (m, 1H), 6.βλ (m, 1H), 6.16 (m 1H), γ.4λ (s, βH), β.40 – 
β.γ7 (m, 4H), 1.61 – 1.55 (m, 4H), 1.4γ – 1.γ7 (m, βH). 13C NMR (101 MHz, CDClγ) δ 15β.β, 
14β.0, 110.0, 10κ.6, 55.7, 54.γ, β5.λ, β4.γ. GC-MS, m/z(%) = 165([M]+, γβ), κ1(100), 5γ(1κ). 

1-((5-Methylthiophen-2-yl)methyl)piperidine 20o[21] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
κ6% isolated yield (κ4.0 mg). 
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1H NMR (400 MHz, CDClγ) δ 6.67 – 6.66 (m, 1H), 6.5κ – 6.57 (m, 1H), γ.61 (s, br, βH), β.45 
(s, γH), β.4β – β.40 (m, 4H), 1.61 – 1.56 (m, 4H), 1.45 – 1.γλ (m, βH). 13C{1H} NMR 
(101 MHz, CDClγ) δ 1γλ.6, 1γλ.γ, 1β5.λ, 1β4.4, 5κ.β, 54.β, β6.1, β4.5, 15.5. GC-MS, m/z(%) 
= 1λ5([M]+, β0), 111(100), κ4(γβ). 

2-)Piperidin-1-ylmethyl)quinoline 20p[22] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
κκ% isolated yield (λλ.6 mg). 
1H NMR (400 MHz, CDClγ) δ κ.0κ (t, J = λ.1 Hz, βH), 7.77 (dd, J = κ.1, 1.4 Hz, 1H), 7.6λ – 
7.64 (m, βH), 7.50 – 7.46 (m, 1H), γ.7λ (s, br, βH), β.4κ – β.46 (m, 4H), 1.6β – 1.57 (m, 4H), 
1.4κ – 1.4β (m, βH). 13C{1H} NMR (101 MHz, CDClγ) δ 160.4, 147.7, 1γ6.γ, 1βλ.γ, 1βλ.1, 
1β7.6, 1β7.5, 1β6.1, 1β1.γ, 66.β, 55.0, β6.1, β4.4. GC-MS, m/z(%) = ββ5([M]+, 1γ), 14γ(100), 
1β5(14), λκ(1β), κ4(1κ), 55(κ). 

(1-Piperidinylmethyl)ferrocene 20q[23] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
κλ% isolated yield (1β6.0 mg). 
1H NMR (400 MHz, CDClγ) δ 4.16 – 4.15 (m, βH), 4.0λ (s, 7H), γ.γ5 (s, βH), β.γβ (s, br, 4H), 
1.55 – 1.4λ (m, 4H), 1.γ7 – 1.γγ (m, βH). 13C{1H} NMR (101 MHz, CDClγ) δ κβ.κ, 70.6, 6κ.6, 
6κ.0, 5λ.1, 5γ.κ, β5.λ, β4.γ. GC-MS, m/z(%) = βκγ([M]+, λ5), β00(100), 1κ6(1γ), 1γ4(β0), 
1β1(64), 56(β4). 

1,3-Bis(piperidin-1-ylmethyl)benzene 20r[24] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
5κ% isolated yield (7λ.0 mg). 
1H NMR (400 MHz, CDClγ) δ 7.β6 – 7.15 (m, 4H), γ.46 (s, 4H), β.57 – β.ββ (m, κH), 1.6γ – 
1.51 (m, κH), 1.4λ – 1.γγ (m, 4H). 13C NMR (101 MHz, CDClγ) δ 1γκ.5, 1γ0.γ, 1β7.λ6, 1β7.λ5, 
64.0, 54.6, β6.1, β4.6. GC-MS, m/z(%) = β71([M]+, 1β), 1κλ(100), 1γ5(1γ), 105(6κ), κ4(γλ), 
7λ(16), 55(10). 

1-Cinnamylpiperidine20s[25] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
7γ% isolated yield (7γ.5 mg). 
1H NMR (400 MHz, CDClγ) δ 7.γλ – 7.γ6 (m, βH), 7.γβ– 7.βκ (m, βH), 7.β4 – 7.1λ (m, 1H), 
6.50 (d, J = 15.7 Hz, 1H), 6.γ1 (dt, J = 15.7, 6.κ Hz, 1H), γ.1β (m, βH), β.44 (s, br, 4H), 1.64 
– 1.5κ (m, 4H), 1.4κ– 1.4γ (m, βH). 13C{1H} NMR (101 MHz, CDClγ) δ 1γ7.β, 1γβ.7, 1βκ.7, 
1β7.5, 1β7.4, 1β6.4, 6β.0, 54.κ, β6.1, β4.5. GC-MS, m/z(%) = β01([M]+, 1λ), 117(4β), 
110(100), λ1(14). 



181 

 

1-(Undec-10-en-1-yl)piperidines 20t[26] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λ6% isolated yield (114.0 mg). 
1H NMR (400 MHz, CDClγ) δ 5.κ1 (ddt, J = 17.0, 10.β, 6.7 Hz, 1H), 5.0β – 4.λ1 (m, βH), β.γ5 
– β.β4 (m, 4H), β.06 – β.01 (m, βH), 1.61 – 1.β7 (m, ββH). 13C NMR (101 MHz, CDClγ)  
δ 1γλ.4, 114.β, 5λ.λ, 54.κ, γ4.0, βλ.κ, βλ.7, βλ.6, βλ.γ, βλ.1, β7.λ, β7.β, β6.β, β4.7.  
GC-MS, m/z(%) = βγ7([M]+, β), λκ(100), 55(5). 

1-(1-Phenylethyl)piperidine 20u[27] 

 
The title compound was prepared as described in the general procedure in 70% conversion and 
56% isolated yield (5γ.0 mg). 
1H NMR (400 MHz, CDClγ) δ 7.γ6 – 7.17 (m, 5H), γ.γλ (q, J = 6.κ Hz, 1H), β.4λ – β.ββ (m, 
4H), 1.61 – 1.4λ (m, 4H), 1.41 – 1.40 (m, βH), 1.γ7 (d, J = 6.κ Hz, γH). 13C NMR (101 MHz, 
CDClγ) δ 144.1, 1βκ.β, 1β7.λ, 1β6.κ, 65.γ, 51.7, β6.4, β4.κ, 1λ.6. GC-MS, m/z(%) = 1κλ([M]+, 
κ), 174(100), 11β(γ0), 105(β5), λ1(1λ), 77(10). 

1-(4-Chlorobenzyl)azepane 24a[28] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λ5% isolated yield (106.γ mg). 
1H NMR (400 MHz, CDClγ) δ 7.γ0 – 7.β5 (m, 4H), γ.5λ (s, βH), β.61 – β.5κ (m, 4H), 1.65 – 
1.61 (m, κH). 13C NMR (101 MHz, CDClγ) δ 1γκ.λ, 1γβ.4, 1γ0.1, 1βκ.4, 6β.β, 55.7, βκ.4, β7.1. 
GC-MS, m/z(%) = ββγ([M]+, γκ), 1λ4(β5), 1κ0(15), 1β5(100), λκ(5γ), κλ(β1), 6λ(1γ), 55(10). 

1-(4-Methoxybenzyl)azepane 24b[29] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λ0% isolated yield (λκ.7 mg). 
1H NMR (400 MHz, CDClγ) δ 7.β7 – 7.βγ (m, βH), 6.κ7 – 6.κγ (m, βH), γ.κ0 (s, γH), γ.57 (s, 
βH), β.6β – β.5λ (m, 4H), 1.66 – 1.5λ (m, κH). 13C NMR (101 MHz, CDClγ) δ 15κ.6, 1γβ.β, 
1γ0.0, 11γ.6, 6β.β, 55.6, 55.4, βκ.γ, β7.β. GC-MS, m/z(%) = β1λ([M]+, γ0), 1β1(100), λκ(4λ), 
77(11). 

1-(2,4,6-Trimethylbenzyl)azepane 24c 

 
The title compound was prepared as described in the general procedure in κλ% conversion and 
75% isolated yield (κ6.κ mg). 
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1H NMR (400 MHz, CDClγ) δ 6.κβ (s, βH), γ.5β (s, βH), β.56 – β.5γ (m, 4H), β.γ7 (s, 6H), 
β.β6 (s, γH), 1.57 (s, κH). 13C NMR (101 MHz, CDClγ) δ 1γκ.β, 1γ6.1, 1γγ.5, 1βκ.λ, 56.1, 
54.λ, βκ.7, β7.γ, β1.0, β0.γ. GC-MS, m/z(%) = βγ1([M]+, βκ), 1γβ(100), 117(15), λκ(45), 
λ1(11). 

4-(Azepan-1-ylmethyl)benzonitrile 24d[29] 

 
The title compound was prepared as described in the general procedure in λγ% conversion and 
κβ% isolated yield (κ7.λ mg). 
1H NMR (400 MHz, CDClγ) δ 7.5λ (d, J = κ.γ Hz, βH), 7.46 (d, J = κ.γ Hz, βH), γ.67 (s, βH), 
β.67 – β.4λ (m, 4H), 1.7γ – 1.51 (m, κH). 13C NMR (101 MHz, CDClγ) δ 146.4, 1γβ.1, 1βλ.β, 
11λ.γ, 110.6, 6β.5, 55.λ, βκ.5, β7.1. GC-MS, m/z(%) = β14([M]+, 4κ), 1λλ(10), 1κ5(55), 
171(γ1), 145(15), 116(100), κλ(γ0), 6λ(15), 55(1β). 

2-(Azepan-1-ylmethyl)quinoline 24e 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λ1% isolated yield (10λ.4 mg). 
1H NMR (400 MHz, CDClγ) δ κ.11 (d, J = κ.5 Hz, 1H), κ.05 (d, J = κ.4 Hz, 1H), 7.7λ (dd, J = 

κ.β, 1.4 Hz, 1H), 7.7γ (d, J = κ.5 Hz, 1H), 7.6κ (ddd, J = κ.4, 6.κ, 1.5 Hz, 1H), 7.4λ (ddd, J = 

κ.1, 6.κ, 1.β Hz, 1H), γ.λ7 (s, βH), β.7γ – β.71 (m, 4H), 1.6λ – 1.6β (m, κH). 13C NMR (101 
MHz, CDClγ) δ 161.6, 147.7, 1γ6.γ, 1βλ.γ, 1βλ.1, 1β7.6, 1β7.5, 1β6.0, 1β1.β, 65.β, 56.1, βκ.5, 
β7.β. GC-MS, m/z(%) = β41([M]+, 1), 14γ(100), 115(10), λκ(45). 

1-((5-Methylthiophen-2-yl)methyl)azepane 24f 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λγ% isolated yield (λ7.γ mg). 
1H NMR (400 MHz, CDClγ) δ 6.65 (d, J = γ.4 Hz, 1H), 6.5λ – 6.5γ (m, 1H), γ.76 (s, βH), β.74 
– β.57 (m, 4H), β.45 (s, γH), 1.74 – 1.51 (m, κH). 13C NMR (101 MHz, CDClγ) δ 141.4, 1γλ.0, 
1β5.β, 1β4.γ, 57.6, 55.γ, βκ.4, β7.1, 15.5. GC-MS, m/z(%) = β0λ([M]+, 1κ), 111(100), λ6(γ5). 

1-(Furan-2-ylmethyl)azepane 24g[30] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λ5% isolated yield (κ5.1 mg). 
1H NMR (400 MHz, CDClγ) δ 7.γ6 – 7.γ4 (m, 1H), 6.γ0 (dd, J = γ.β, 1.κ Hz, 1H), 6.16 (d, J 

= γ.1 Hz, 1H), γ.66 (s, βH), β.67 – β.64 (m, 4H), 1.67 – 1.56 (m, κH). 13C NMR (101 MHz, 
CDClγ) δ 15γ.4, 141.λ, 110.1, 10κ.1, 55.5, 54.λ, βκ.0, β7.1. GC-MS, m/z(%) = 17λ([M]+, βκ), 
150(10), λκ(γ7), κ1(100), 6λ(10), 5γ(β4). 
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1-(Undec-10-en-1-yl)azepane 24h 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λ4% isolated yield (11κ.β mg). 
1H NMR (400 MHz, CDClγ) δ 5.κ1 (ddt, J = 17.0, 10.β, 6.7 Hz, 1H), 5.0β – 4.λ0 (m, βH), β.6β 
– β.60 (m, 4H), β.45 – β.γλ (m, βH), 1.66 – 1.57 (m, κH), 1.4λ – 1.βγ (m, 16H). 13C NMR 
(101 MHz, CDClγ) δ 1γλ.4, 114.β, 5κ.6, 55.κ, γ4.0, βλ.κ, βλ.7, βλ.6, βλ.γ, βλ.1, βκ.1, β7.κ, 
β7.7, β7.β. GC-MS, m/z(%) = β51([M]+, 1), 11β(100), 55(κ). 

1-Cyclohexylazepane 24i[31] 

 
The title compound was prepared as described in the general procedure in λ1% conversion and 
κ7% isolated yield (7κ.λ mg). 
1H NMR (400 MHz, CDClγ) δ β.6κ – β.65 (m, 4H), β.44 – β.γ6 (m, 1H), 1.κλ – 1.6λ (m, 4H), 
1.6γ – 1.57 (m, 10H), 1.βγ – 1.16 (m, 4H). 13C NMR (101 MHz, CDClγ) δ 64.4, 51.7, βλ.5, 
βλ.4, β7.β, β6.6, β6.γ. GC-MS, m/z(%) = 1κ1([M]+, 11), 1γκ(100), 110(10), 55(11). 

1-(1-Phenylethyl)azepane 24j[32] 

 
The title compound was prepared as described in the general procedure in 76% conversion and 
47% isolated yield (40.7 mg). 
1H NMR (400 MHz, CDClγ) δ 7.γ6 (d, J = 7.1 Hz, βH), 7.γ0 (t, J = 7.4 Hz, βH), 7.β6 – 7.17 
(m, 1H), γ.76 (q, J = 6.7 Hz, 1H), β.70 – β.54 (m, 4H), 1.5κ (s, κH), 1.γ5 (d, J = 6.7 Hz, γH). 
13C NMR (101 MHz, CDClγ) δ 145.β, 1βκ.1, 1β7.7, 1β6.6, 6γ.γ, 5β.β, βλ.1, β7.β, 1κ.4.  
GC-MS, m/z(%) = β0γ([M]+, 10), 1κκ(100), 1β6(ββ), 105(γκ), λ1(14), 7λ(1β), 55(10). 

1-(4-Fluorobenzyl)pyrrolidine 26a 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λγ% isolated yield (κγ.γ mg). 
1H NMR (400 MHz, CDClγ) δ 7.γ1 – 7.β6 (m, βH), 7.0β – 6.λ6 (m, βH), γ.57 (s, βH), β.51 – 
β.46 (m, 4H), 1.κγ – 1.74 (m, 4H). 13C NMR (101 MHz, CDClγ) δ 16β.0 (d, J = β44.γ Hz), 
1γ5.γ (d, J = γ.1 Hz), 1γ0.5 (d, J = κ.0 Hz), 115.1 (d, J = β1.β Hz), 60.1, 54.β, βγ.6.  
19F NMR (γ76 MHz, CDClγ) δ -116.γγ. GC-MS, m/z(%) = 17κ([M]+, 4γ), 10λ(100), κ4(4λ), 
70(γλ). 

2-(Pyrrolidin-1-ylmethyl)quinoline 26b[22] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
κ7% isolated yield (λβ.4 mg). 
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1H NMR (400 MHz, CDClγ) δ κ.1β (d, J = κ.5 Hz, 1H), κ.0κ (d, J = κ.5 Hz, 1H), 7.7λ (dd, J = 

κ.1, 1.5 Hz, 1H), 7.6λ (ddd, J = κ.4, 6.λ, 1.5 Hz, 1H), 7.61 (d, J = κ.5 Hz, 1H), 7.51 (ddd, J = 

κ.1, 6.λ, 1.β Hz, 1H), γ.λ7 (s, βH), β.65 – β.60 (m, 4H), 1.κ4 – 1.κ1 (m, 4H). 13C NMR (101 
MHz, CDClγ) δ 160.4, 147.κ, 1γ6.5, 1βλ.5, 1βλ.γ, 1β7.6, 1β7.5, 1β6.β, 1β1.γ, 6γ.β, 54.6, βγ.κ. 
GC-MS, m/z(%) = β11([M]+, 1), 14γ(100), 115(11). 

1-((5-Methylthiophen-2-yl)methyl)pyrrolidine 26c[33] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
κλ% isolated yield (κ0.7 mg). 
1H NMR (400 MHz, CDClγ) δ 6.6κ (d, J = γ.γ Hz, 1H), 6.57 – 6.56 (m, 1H), γ.74 (s, βH), β.56 
– β.5γ (m, 4H), β.45 (s, γH), 1.κ0 – 1.77 (m, 4H). 13C NMR (101 MHz, CDClγ) δ 140.5, 1γλ.β, 
1β5.4, 1β4.5, 54.λ, 5γ.λ, βγ.6, 15.5. GC-MS, m/z(%) = 1κ1([M]+, 1κ), 111(100), 70(β0). 

1-(Furan-2-ylmethyl)pyrrolidine 26d[34] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λ0% isolated yield (6κ.0 mg). 
1H NMR (400 MHz, CDClγ) δ 7.γ6 – 7.γ5 (m, 1H), 6.γ0 (dd, J = γ.1, 1.λ Hz, 1H), 6.1κ (d, J 

= γ.1 Hz, 1H), γ.6γ (s, βH), β.56 – β.5β (m, 4H), 1.κ0 – 1.77 (m, 4H). 13C NMR (101 MHz, 
CDClγ) δ 15γ.β, 14β.0, 110.1, 107.7, 54.0, 5β.β, βγ.6. GC-MS, m/z(%) = 151([M]+, γλ), 
10κ(10), κ1(100), 5γ(β0). 

1-(Undec-10-en-1-yl)pyrrolidine 26e[35] 

 
The title compound was prepared as described in the general procedure in λλ% conversion and 
λ5% isolated yield (106.1 mg). 
1H NMR (400 MHz, CDClγ) δ 5.κ0 (ddt, J = 16.λ, 10.β, 6.7 Hz, 1H), 5.01 – 4.λ0 (m, βH), β.4λ 
– β.45 (m, 4H), β.4β – β.γκ (m, βH), 1.7κ – 1.75 (m, 4H), 1.5γ – 1.β5 (m, 16H). 13C NMR 
(101 MHz, CDClγ) δ 1γλ.4, 114.β, 56.λ, 54.4, γγ.λ, βλ.κ, βλ.7, βλ.6, βλ.γ, βλ.γ, βλ.1, β7.λ, 
βγ.5. GC-MS, m/z(%) = βγγ([M]+, γ), κ4(100), 55(7). 

6.5.- Part III-3- Hydrosilylation of diacids in the presence of amines 
6.5.1. Typical procedure for the reductive amination of diacids with aliphatic amines 
catalyzed by Fe(CO)4(IMes) 2 

N NMes

Fe

CO

OC CO

CO
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2

HO
OH

O

+ NH2R

O
N R( )n

( )n
n = 1, 2, 3

2  (5.0 mol%)

PhSiH3 (4.0 equiv.), 110 oC
h, 20 h

R = aliphatic  
A β0 mL Schlenk tube was charged with [‑e(CO)4(IMes)] 2 (5.0 mol%), diacids (0.5 mmol), 
aliphatic amine (0.5 mmol), PhSiHγ (4.0 equiv.), and dimethyl carbonate (0.5 mL) under argon 
in this order. Then the reaction mixture was stirred upon visible light irradiation (using β4 watt 
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compact fluorescent lamp) at 110 oC for β0 h. After cooling to room temperature, the reaction 
was quenched by adding β mL TH‑ and β mL NaOH (aq.) β N, stirred for β h at room 
temperature and then extracted with γ×β mL of ethyl acetate. The combined organic fractions 
were dried over anhydrous NaβSO4 for 0.5 h. After filtrate through degreasing cotton, the crude 
mixture was dried under reduced pressure. The residue was then purified by silica gel column 
chromatography using a mixture of heptane/ethyl acetate (60μ1 to 5μ1) as the eluent to afford 
the desired product.  

6.5.2. Typical procedure for the reductive amination of diacids with arylamines catalyzed 
by Fe(CO)4(IMes) 2. 

N NMes

Fe

CO

OC CO

CO

Mes

2

HO
OH

O

+ NH2R

O
N R( )n

( )n
n = 1, 2, 3

2  (5.0 mol%)

PhSiH3 (6.0 eq.)
Fe(OTf)2 (20 mol%)

110 oC, h, 20 hR = aryl  
A β0 mL Schlenk tube was charged with [‑e(CO)4(IMes)] 2 (5.0 mol%), diacids (0.5 mmol), 
‑e(OTf)β (β0 mol%), arylamine (0.5 mmol), PhSiHγ (6.0 equiv.), and dimethyl carbonate 
(0.5 mL) under argon in this order. Then the reaction mixture was stirred upon visible light 
irradiation (using β4 watt compact fluorescent lamp) at 110 oC for β0 h. After cooling to room 
temperature, the reaction was quenched by adding β mL TH‑ and β mL NaOH (aq.) β N, stirred 
for β h at room temperature and then extracted with γ×β mL of ethyl acetate. The combined 
organic fractions were dried over anhydrous NaβSO4 for 0.5 h. After filtrate through degreasing 
cotton, the crude mixture was dried under reduced pressure. The residue was then purified by 
silica gel column chromatography using a mixture of heptane/ethyl acetate (60μ1 to 5μ1) as the 
eluent to afford the desired product.  

6.5.3. Characterization of cyclic amines 

1-phenylpiperidine 20w[36]  

 
Glutaric acid (66.1 mg, 0.5 mmol) and aniline (45.7 L, 0.5 mmol) gave the title compound in 
7κ% (6β.λ mg) yield. 1H NMR (400 MHz, CDClγ) δ 7.β7 – 7.βγ (m, βH), 6.λ5 (d, J = 7.λ Hz, 
βH), 6.κβ (t, J = 7.γ Hz, 1H), γ.16 (t, 4H), 1.75 – 1.6λ (m, 4H), 1.61 – 1.55 (m, βH). 13C{1H} 
NMR (101 MHz, CDClγ) δ 15β.4, 1βλ.1, 11λ.γ, 116.7, 50.κ, β6.0, β4.5. 

1-phenylpyrrolidines 26h[37] 

 
Succinic acid (5λ.0 mg, 0.5 mmol) and aniline (45.7 L, 0.5 mmol) gave the title compound in 
κκ% yield (64.7 mg). 1H NMR (400 MHz, CDClγ) δ 7.β7 – 7.βγ (m, βH), 6.6κ (t, J = 7.γ Hz, 
1H), 6.5λ (d, J = 7.λ Hz, βH), γ.γ0 (t, J = 6.6 Hz, 4H), β.04 – β.00 (m, 4H). 13C{1H} NMR 
(101 MHz, CDClγ) δ 14κ.1, 1βλ.β, 115.5, 111.κ, 47.7, β5.6. 

 



186 

 

1-benzylpiperidine 20a[38]  

 
Glutaric acid (66.1 mg, 0.5 mmol) and benzylamine (54.6 L, 0.5 mmol) gave the title 
compound in λ5% yield (κγ.γ mg). 1H NMR (400 MHz, CDClγ) δ 7.γγ – 7.γ1 (m, 4H), 7.βλ – 
7.β1 (m, 1H), γ.4κ (s, βH), β.40 – β.γ7 (m, 4H), 1.6β – 1.55 (m, 4H), 1.47 – 1.4β (m, βH). 
13C{1H} NMR (101 MHz, CDClγ) δ 1γκ.κ, 1βλ.γ, 1βκ.β, 1β6.λ, 64.0, 54.6, β6.1, β4.5. 

1-benzylpiperidine 20v[39]  

 
Glutaric acid (66.1 mg, 0.5 mmol) and cyclohexylamine (57.β L, 0.5 mmol) gave the title 
compound in λ4% yield (7κ.6 mg). 1H NMR (400 MHz, CDClγ) δ β.50 – β.4κ (m, 4H), β.β6 – 
β.β0 (m, 1H), 1.κκ – 1.7γ (m, 4H), 1.60 – 1.5γ (m, 5H), 1.44 – 1.γκ (m, βH), 1.β7 – 1.15 (m, 
4H), 1.1γ – 1.0β (m, 1H). 13C{1H} NMR (101 MHz, CDClγ) δ 64.5, 50.β, βκ.λ, β6.7, β6.6, 
β6.γ, β5.1. 

1-hexylpiperidine 20x[40]  

 
Glutaric acid (66.1 mg, 0.5 mmol) and hexylamine (66.1 L, 0.5 mmol) gave the title 
compound in λγ% yield (7κ.6 mg). 1H NMR (400 MHz, CDClγ) δ β.γ6 – β.γγ (m, 4H), β.β7 – 
β.βγ (m, βH), 1.60 – 1.54 (m, 4H), 1.50 – 1.40 (m, 4H), 1.βκ – 1.β6 (m, 6H), 0.κ7 (t, J = 6.κ 
Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ 5λ.λ, 54.κ, γβ.0, β7.6, β7.1, β6.β, β4.7, ββ.κ, 14.β. 

1-(2,4-dimethoxybenzyl)pyrrolidine 26g 

 
Succinic acid (5λ.0 mg, 0.5 mmol) and β,4-dimethoxybenzylamine (75.1 L, 0.5 mmol) gave 
the title compound in 7κ% yield (κ6.β mg). 1H NMR (400 MHz, CDClγ) δ 7.β1 (d, J = κ.λ Hz, 
1H), 6.46 (d, J = β.γ Hz, 1H), 6.45 (d, J = β.β Hz, 1H), γ.κ0 (s, 6H), γ.60 (s, βH), β.55 – β.5β 
(m, 4H), 1.7κ – 1.75 (m, 4H). 13C{1H} NMR (101 MHz, CDClγ) δ 15λ.λ, 15κ.7, 1γ1.γ, 1β0.0, 
10γ.λ, λκ.5, 55.6, 55.5, 54.β, 5γ.5, βγ.6. 

6-(pyrrolidin-1-yl)hexan-1-ol 26f 

 
Succinic acid (5λ.0 mg, 0.5 mmol) and 6-amino-1-hexanol (5κ.6 mg, 0.5 mmol) gave the title 
compound in κλ% yield (76.1 mg). 1H NMR (400 MHz, CDClγ) δ γ.6γ (t, J = 6.5 Hz, βH), 
β.50 – β.46 (m, 4H), β.44 – β.γλ (m, βH), 1.7λ – 1.75 (m, 4H), 1.61 – 1.4κ (m, 4H), 1.γλ – 1.γ4 
(m, 4H). 13C{1H} NMR (101 MHz, CDClγ) δ 6γ.0, 56.7, 54.4, γβ.κ, βλ.1, β7.5, β5.7, βγ.5. 
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1-(furan-2-ylmethyl)pyrrolidine 26d[39] 

 
Succinic acid (5λ.0 mg, 0.5 mmol) and furfurylamine (44.β L, 0.5 mmol) gave the title 
compound in κ7% yield (65.κ mg). 1H NMR (400 MHz, CDClγ) δ 7.γ6 – 7.γ5 (m, 1H), 6.γ1 – 
6.γ0 (m, 1H), 6.1κ (d, J = β.λ Hz, 1H), γ.64 (s, βH), β.57 – β.5β (m, 4H), 1.κ4 – 1.74 (m, 4H). 
13C{1H} NMR (101 MHz, CDClγ) δ 15γ.1, 14β.0, 110.1, 107.7, 54.0, 5β.β, βγ.6. 

1-(thiophen-2-ylmethyl)azepane 24k 

 
Adipic acid (7γ.0 mg, 0.5 mmol) and β-thiophenemethylamine (51.γ L, 0.5 mmol) gave the 
title compound in 75% (7γ.β mg) yield. 1H NMR (400 MHz, CDClγ) δ 7.β0 (dd, J = 5.1, 1.1 
Hz, 1H), 6.λ4 – 6.λβ (m, 1H), 6.κλ – 6.κκ (m, 1H), γ.κ5 (s, βH), β.6κ – β.65 (m, βH), 1.67 – 
1.60 (m, κH). 13C{1H} NMR (101 MHz, CDClγ) δ 144.1, 1β6.4, 1β5.β, 1β4.6, 57.4, 55.4, βκ.5, 
β7.1. 

1-(4-methoxybenzyl)azepanes 24b[38]  

 
Succinic acid (5λ.0 mg, 0.5 mmol) and 4-methoxybenzylamine (65.γ L, 0.5 mmol) gave the 
title compound in 77% yield (κ4.γ mg). 1H NMR (400 MHz, CDClγ) δ 7.β5 (d, J = κ.γ Hz, 
βH), 6.κ5 (d, J = κ.6 Hz, βH), γ.κ0 (s, γH), γ.57 (s, βH), β.61 – β.5λ (m, 4H), 1.61 (s, br, κH). 
13C{1H} NMR (101 MHz, CDClγ) δ 15κ.6, 1γβ.β, 1γ0.1, 11γ.6, 6β.β, 55.6, 55.4, βκ.γ, β7.β. 

1-(pyridin-2-ylmethyl)azepane 24l 

 
Succinic acid (5λ.0 mg, 0.5 mmol) and β-picolylamine (51.5 L, 0.5 mmol) gave the title 
compound in 70% yield (66.5 mg). 1H NMR (400 MHz, CDClγ) δ κ.5γ – κ.5β (m, 1H), 7.64 
(td, J = 7.7, 1.7 Hz, 1H), 7.4λ (d, J = 7.κ Hz, 1H), 7.15 – 7.1β (m, 1H), γ.κ0 (s, βH), β.70 – 
β.67 (m, 4H), 1.64 (s, br, κH). 13C{1H} NMR (101 MHz, CDClγ) δ 14κ.λ, 1γ6.γ, 1ββ.κ, 1β1.7, 
105.0, 64.4, 55.λ, βκ.β, β7.1. 
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Part 2 – Hydrosilylation catalyzed by Group 7 metal complexes 
III-7 Hydrosilylation of carboxylic acids, esters and amides catalyzed by 

Mn2(CO)10 and Re2(CO)10 
Contributions in this partμ Optimization, scope and mechanistic studiesμ Duo Wei, R. 

Buhaibeh. 

Publicationμ D. Wei, R. Buhaibeh, Y. Canac, J.-B. Sortais, Org. Lett. 2019, in press, doi: 

10.1021/acs.orglett.9b02449. 

7.1. Introduction 

The formation of silylated compounds catalyzed by transition-metal complexes via 

hydrosilylation reactions of unsaturated compounds have been investigated extensively in the 

past few decades due to the potential use of such molecules in organic synthesis and silicon 

industry.[1] 

Manganese, the third most abundant transition metals on the ‐arth, is widely used in oxidation 

reactions, both in stoichiometric (e.g. KMnO4) and catalytic versions (e.g. Katsuki-Jacobsen 

epoxidation[β]). By contrast, compared with the well-studied ‑e catalysts (see Chapter I), the 

development of manganese-catalyzed hydrosilylation reactions is less investigated.[γ] However, 

more and more attention is currently being paid to its development.  

On the other hand, the rhenium chemistry has been studied extensively in part due to the major 

interest for rhenium compounds’ applications as catalysts, particularly in oxidation and oxygen 

atom transfer reactions.[4] Such reactivity is highlighted by organometallic complexes 

organorhenium(VII) trioxide, and more particularly methyltrioxorhenium (MeReOγ, 

abbreviated as MTO), arguably one of the most versatile transition metal catalysts known to 

date. Another area of the potential application of 1κ6/1κκrhenium radioisotopes is in nuclear 

medicine and bio-medical chemistry.[5] Indeed, the application of organometallic rhenium 

compounds in the area of catalytic reaction[6], was unveiled since the discovery of Toste for the 

hydrosilylation reactions in β00γ.[7] 

7.2. Hydrosilylation reactions catalyzed by manganese and rhenium complexes: a 
literature survey  

In this part, we would like to summarize the development of manganese and rhenium catalysis 

in hydrosilylation of unsaturated bonds, including C=O, C=N, C≡N and NOβ functional groups.
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7.2.1. Hydrosilylation of carbonyl derivatives 

The hydride reduction of a carbonyl group followed by the protection of the resulting alcohol 

as a silyl ether is one of the most prevalent sequences in organic chemistry. Indeed, the direct 

catalytic hydrosilylation of carbonyl compounds represents a one-step alternative to these 

procedures, yielding the silyl ether compounds.  

7.2.1-1. Manganese catalyzed hydrosilylation of carbonyl derivatives  

In 1λκβ, Yates reported the first manganese-catalyzed hydrosilylation of acetone with 

Mnβ(CO)10 1 under UV irradiation conditions (γ50 nm)[κ] (Scheme 1). However, the desired 

hydrosilylated product was detected in only 5% yield.  

 

Scheme 1. ‑irst examples of manganese-catalyzed hydrosilylation of acetone. 

In the nineties, Cutler investigated thoroughly hydrosilylation with Mn carbonyl complexes[λ] 

L(CO)4MnC(O)R (L = CO, R =CHγ, Phν L = PPhγ, P‐tγ, R = CHγ) (β.0-5.0 mol%) which were 

effective catalysts for the hydrosilylation of iron acyl compounds ‑pCOR [R = CHγ, Phν ‑p = 

(η-C5H5)‑e(CO)β] with monohydro-, dihydro-, and trihydrosilanes (Scheme βa).[λb] Phosphine-

substituted manganese acetyl complex (PPhγ)(CO)4MnCOCHγ 2, was an extremely active and 

selective catalyst that quantitatively transformed ‑pCOCHγ with ‐tβSiHβ or PhβSiHβ into solely 

mono-‑p α-siloxyalkyl compounds ‑pCH(CHγ)OSiHR'β, with TO‑ up to κγ h-1 at r.t. 

(Scheme βa). Later, they showed that the same type of manganese carbonyl complexes can 

catalyze the deoxygenative hydrosilylation of iron acetyl compounds Cp(CO)β‑eC(O)CHγ to 

Cp(CO)β‑eCHβCHγ with a longer reaction time (Scheme βb).[λf] 

 

Scheme 2. Hydrosilylation of organoiron-carbonyl complexes catalyzed by manganese–acyl 
complexes 
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Simple ketones were also amenable in this catalytic system (Scheme γ).[λi]  The hydrosilylation 

of acetone, acetophenone, cyclohexanone, and β-cyclohexen-1-one was achieved with β.4 mol% 

of (PPhγ)(CO)4MnCOCHγ and 1.1 equiv. of HSiMeβPh or PhβSiHβ in C6D6 at room temperature, 

affording the corresponding alkoxysilanes in good yields (κ0-λ5% yields, TO‑ up to 6β5 h-1, 

Scheme γ). Notably, the hydrosilylation of β-cyclohexen-1-one was more difficult, requiring 

4 h to achieve κ5% yield of (cyclohex-β-en-1-yloxy)diphenylsilane. 

 

Scheme 3. Hydrosilylation of simple ketones catalyzed by manganese-acyl complexes. 

The proposed mechanism is shown in Scheme 4μ i) the catalytic active species Mn silyl 

complex L(CO)4MnSiRγ 3 was generated from manganese-acyl complex through ligand 

metathesis with the silaneν ii) the C=O bond coordinated to the manganese center and iii) 
inserted into the Mn-Si bond of to give a manganese alkyl complex 4ν iv) oxidative addition of 

the Si-H bond to the manganese center leading to Mn-H complex 5, which underwent v) 
reductive elimination to access the desired hydrosilylated product and regenerate the catalytic 

active species 3. 

 
Scheme 4. Proposed mechanism for the hydrosilylation of ketones. 

In 1λλλ, Chung demonstrated that (1H-hydronaphthalene)-Mn(CO)γ[(η5-C10Hλ)Mn(CO)γ)] 6 

can catalyze the hydrosilylation of ketones at r.t. The activity was explained by the facile ring-

slippage η5→ηγ of the 1H-hydronaphthalene ligand (Scheme 5),[10] as neither the 
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cyclohexadienyl complex (η5-C6H7)Mn(CO)γ nor the indenyl complex (η5-CλH7)Mn(CO)γ was 

active. As the electron-donating ability of the substituent on the substrate decreased, the yields 

dropped, and no reaction occurred with a strong electron-withdrawing substituent such as 

cyano and nitro or with the coordinating substrates such as tetrahydrofuran. This system was 

also sensitive to the steric hindrance as no reaction took place with 1-acetonaphthone. 

 

 

Scheme 5. Manganese complex in hydrosilylation reactions and its ring slippage. 

In β000, Magnus reported the hydrosilylation of aldehydes and ketones with Mn(dpm)γ 7 

/PhSiHγ/iPrOH (dpm = dipivaloylmethanato) catalytic system (reaction conditionsμ γ.0 mol% 

Mn(dpm)γ, 0.4 equiv. PhSiHγ at r.t. under 1 atm of Oβ, Scheme 6).[11] Notably, aromatic 

aldehydes, medium ring ketones, and hindered ketones were slowly reduced.  

 

Scheme 6. Hydrosilylation of ketones to alcohols catalyzed by Mn(dpm)γ in the presence of 
PhSiHγ/iPrOH/Oβ. 

In β01γ, Du developed a high valent manganese salen complex 8 for the hydrosilylation of 

carbonyl compounds (Scheme 7).[1β] Under the optimized conditions (0.5 mol% catalyst 

loading, 0.5 equiv. of PhSiHγ in CHγCN at κ0 oC), good to excellent isolated yields of the 

produced alcohols were achieved within less than γ h. Notably, tertiary silane, namely ‐tγSiH, 

was unable to serve as the reducing agent. ‑or the α, -unsaturated ketone, 1,γ-diphenyl-β-

propen-1-one, 45% yield of saturated ketone 1,γ-diphenyl-propan-1-one was isolated. 
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Scheme 7. Hydrosilylation of ketones catalyzed by the Salen–Mn complex 8. 

Interestingly, NHC–Mn complexes 9-15 were developed by our group for the hydrosilylation 

of carbonyl compounds under UV irradiation (γ50 nm) (Scheme κa).[1γ] Compared with the 

initial half-sandwich complex 9, the reactivity of two tethered complexes 10 and 11 were 

relatively low so that the Mn-silane σ-complexes 12 andn13 were isolated successfully. Based 

on the mechanistic study, a traditional Ojima mechanism[14] was proposed for the reaction with 

formation of active noncarbonyl Mn(III) 14 and 15 as the key intermediates. Very recently, 

Royo’s group developed bis-NHC-Mn complexes 16 and 17, which were shown to be effective 

catalysts for the hydrosilylation of carbonyl compounds with a wide substrate scope.[15] It is 

worth mentioning that this reaction worked well even with the inexpensive silane PMHS 

(polymethylhydrosiloxane) (Scheme κb). 

 

Scheme 8. Hydrosilylation of aldehydes and ketones catalyzed by NHC–Mn complexes. 

Since β014, Trovitch’s group has developed a series of manganese complexes 18-20,[16] with a 

pentadentate ligand. The extremely high reactive complex for the hydrosilylation of ketones 

(TO‑ up to 1βκ0 min−1)[16a] and aldehydes (TO‑ up to 4λ00 min−1)[16d, 16e] is (PhβPPrPDI)Mn 

(18) (PDI=pyridine diimine). The dimer complex 21 gave a TO‑ of 4λ50 min-1 for the 
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hydrosilylation of aldehydes, which is the highest TO‑ so far for all the base-metal catalysts 

(Scheme λ).  

 

Scheme 9. PDI–Mn complexes catalyzed hydrosilylation of carbonyl compounds. 

7.2.1-2. Rhenium-catalyzed hydrosilylation of carbonyl derivatives 

The high-oxidation state rhenium catalysts have been examined in reductions in the last 

16 years.[6, 17] The first rhenium-catalyzed hydrosilylation, (which is also the first example for 

a hydrosilylation catalyst with high-valent rhenium species and bearing two terminal oxo 

ligands) was described in β00γ by Toste et al (Scheme 10a). This novel reactivity represents a 

complete reversal from the traditional role of these complexes as oxidation catalysts. The 

hydrosilylation of aldehydes and ketones were catalyzed by the readily available 

iododioxo(bistriphenylphosphine)rhenium(V) [(PPhγ)βRe(O)βI] 22.[7] The substrates scope was 

readily extended to aromatic or aliphatic ketones and aldehydes with a good tolerance towards 

numerous functional groups (amino, nitro, halides, ester, cyano, cyclopropyl and alkenyl 

groups are left untouched). This reaction provides an efficient and practical one-step reduction-

protection method, showing also tolerance to air and moisture.  

A detailed mechanism, confirmed by computational study (D‑T calculations) by Wu et al. in 

β006,[1κ] was proposed by the same group based on experimental studies (Scheme 10b).[7a, 1λ] 

The first step involved a formal [β+β] addition of silane to the Re=O bond in 22 to produce 

metal hydride I-1, which was isolated and characterized by X-ray diffraction. Alkoxy-metal 

intermediate I-3 was produced by addition of the rhenium hydride to the carbonyl group. 

Transfer of the silyl group to the alkoxy ligand, formally a retro-[β+β] reaction, produced the 

silyl ether product and regenerates dioxo catalyst 22. 

However, the computational study by Wei[β0] supported that an ionic outer-sphere mechanistic 

pathway was the preferable route for the 22 catalyzed hydrosilylation of carbonyl compounds 

and imines (Scheme 10c). The ionic outer-sphere mechanism involved the activation of Si−H 
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through η1-bonding of silane to the metal center and subsequent nucleophilic attack on η1-

silane via organic substrates to promote the heterolytic cleavage of the Si−H bond. Along the 

ionic outer-sphere mechanistic catalytic cycle, the metal center acted as a Lewis acid to render 

the Si−H bond more polarized and more susceptible to the nucleophilic attack by organic 

substrates.[β1] 

 
Scheme 10. ReI(O)β(PPhγ)β 22 catalyzed hydrosilylation of carbonyl compounds and its 
mechanism studies. 

‑ollowing the work of Toste, the oxo-rhenium complexes were extended to 23-28 which 

showed similar activity in the  hydrosilylation of aliphatic and aromatic aldehydes (6 examples) 

and ketones (4 examples) by Romão et al in β005 with HSiMePhβ in C6D6 solution 

(Scheme 11).[ββ] 23 catalyzed the hydrosilylation of aldehydes at r.t. within γ0 min. affording 

the corresponding silyl ethers in good yield, but was ineffective as ketone hydrosilylation 

catalyst (even at κ0 oC). 26-28 (5.0 mol%) were active for hydrosilylation of 4-

trifluoromethylbenzaldehyde at κ0 oC, giving the corresponding alcohol with 40% yield (26, 

β0 h), >λ5% yield (27, 10 h) and >λ5% yield (28, 10 h) respectively. 
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Scheme 11. Reduction of carbonyl derivatives by high-valent rhenium oxides 23-28. 

In the same year, Abu-Omar and co-workers reported a new system for the hydrosilylation of 

aldehydes and ketones using a monooxorhenium(V) catalyst 29 containing an oxazoline ligand 

(Scheme 1β).[βγ] The reaction proceeded efficiently under ambient temperature with a low 

catalyst loading (0.1 mol %), 1.5 equiv. HSi‐tγ and the reaction could be performed without 

solvent. The catalyst retained activity after being recycled, for β-butanone κ0% NMR yield (1st 

cycle) and 50% NMR yield (βnd cycle). 

 

Scheme 12. Reduction of carbonyl derivatives by rhenium oxide containing oxazoline. 

Then, the same group prepared a number of cationic oxorhenium(V) salen based complexes 

such as [Re(O)(salpn)(Solv)][B(C6‑5)4] 30[β4] in β006 (Scheme 1γa) and 

[ReO(saldach)(HβO)][B(C6‑5)4] 31[β5] in β00κ incorporating a chiral environment, 

(Scheme 1γb). 30 and 31 serve as good catalysts for hydrosilylation of carbonyl compounds 

(1.0 mol% cat. loading, 1.5 equiv. silane, r.t.). Although, asymmetric versions (30) of these 

reactions afforded poor enantioselectivity even with bulky silanes. 
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Scheme 13. Hydrosilylation of carbonyl compounds with cationic oxorhenium(V) salen based 
complexes. 

Another application of chiral (CN-box)Re(V)-oxo complexes [γ.0 mol%, CN-Box = 

cyanobis(oxazoline)] in enantioselective reduction of prochiral ketones[β6] and imines[β7] with 

β equiv. of HSiMeβPh was reported by Toste and his colleagues in β010 (Scheme 14). Stirring 

32 with Re(O)Clγ(OPPhγ)(SMeβ) 33 in CHβClβ at r.t. yielded (CN-box)ReV–oxo 34 as a green 

solid. These reductions proceeded under an ambient air atmosphere with highly functional 

group tolerance with ees up to λλ%. The (CNbox)ReV–oxo complexes can be pre-formed and 

isolated as benchtop stable solids or generated in situ. 

 
Scheme 14. ‐nantioselective reduction of ketones and imines catalyzed by (CN-Box)ReV–oxo 
complexes. 

Besides these oxorhenium complexes, a series of novel low-valent Re(III) complexes were 

synthesized by Ison et al, such as 35[βκ] in β01β and 36[βλ] in β017 (Scheme 15). 36 (0.0γ mol%, 
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r.t.) was more reactive than 35 (0.1 mol%, κ0 oC) for the hydrosilylation of aldehydes. Good 

to excellent NMR yields (65-100%, 1γ examples) were achieved at ambient temperature under 

neat conditions using HSiMeβPh with 36. The reaction afforded TON up to λβ00 and TO‑ up 

to 1β6 h-1 (Scheme 15). 

 

Scheme 15. Cationic rhenium complexes catalyzed hydrosilylation of aldehydes. 

Berke and co-workers reported several easily available rhenium complexes, for example, 

Re(H)(PiPrγ)β(NO)(NOB(C6‑5)γ) 37[γ0] in β004, Re(H)β(ηβ-CβH4)γ(NO)(PRγ)β 38 (R = iPr), 39 
(R = Cy)[γ1] in β00κ, Re(CHγCN)γBrβ(NO) 40[γβ] in β00λ, Re(CHγCN)γClβ(NO) 41[γγ] and 

Re(CHγCN)Clβ(NO)(PCyγ)β 42[γγ] in β011. Those nitrosyl rhenium complexes were employed 

in the catalytic hydrosilylation of a variety of carbonyl compounds (Scheme 16). 

Hydrosilylations of carbonyl compounds were carried out with the catalyst 37, HSiRγ (1 equiv., 

R = ‐t or Ph) at r.t.-70 oC. ‐ither toluene or no solvent was applied. TONs up to λ000 and 

TO‑s up to ββ500 h–1 were observed. 38 and 39 exhibited similar activity in hydrosilylation of 

acetophenone with 0.5 mol% cat. loading at 70 oC in toluene-d8, giving full conversion and 

TO‑ up to κ00 h-1. 
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Scheme 16. Nitrosyl-rhenium complexes catalyzed hydrosilylation of carbonyl compounds. 

‑or 40, chlorobenzene was found to be superior over all the other solvents used. Various 

aliphatic and aromatic silanes were tested. ‐xcellent yields were achieved at r.t. in 

dichloromethane using triethylsilane, the reaction affording TO‑ values of up to 4λ5 h-1. 

Phosphine-free complex 41 proved to be less effective than the bisphosphine derivatives 42, as 

when the reaction of benzophenone and ‐tγSiH (1.1β equiv.) with 1.0 mol% of 42 was carried 

out at κ0 oC, a conversion of less than 10% was achieved within 4 h, while in the same condition 

42 gave λλ% yield (Scheme 16). 

In β01β, Re(CO)5Cl 43 and Reβ(CO)10 44 have been found by ‑an and co-workers[γ4] to be 

effective catalysts for the hydrosilylation of carbonyl substrates with various silanes and with 

TO‑ of β0-β5 h−1 for aldehydes (Scheme 17a). In this methodology, 1.0 mol% catalyst and a 

‐tγSiHμcarbonyl derivative ratio of γμ1 has been used. When different silanes such as PhβSiHβ 

and PhγSiH were used, a decrease in the corresponding silyl ether yield was observed.  
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Scheme 17. Catalyzed hydrosilylation of carbonyl derivatives via Re(CO)5Cl photolysis. 

A detailed mechanism for the hydrosilylation of carbonyl compounds was proposed by this 

group to account for the experimental observations (Scheme 17b). Upon photolysis of ‐tγSiH 

with Re(CO)5Cl or Reβ(CO)10, a dimeric rhenium carbonyl species III-1 with a bridging 

hydride has been identified in the mixture. When III-1 was isolated and tested for aldehyde 

hydrosilylation, the silyl ether was generated about β−γ times faster in comparison to 

Re(CO)5Cl.  

Upon photolysis, the dimer III-1 dissociated to afford ‐tγSiRe(CO)4 III-2 and HRe(CO)5 III-
3. Notably, the authors have shown that HRe(CO)5 III-3 was sluggish in catalysis. So the 
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catalytic active species could be ‐tγSiRe(CO)4 III-2. Starting from III-2, the carbonyl substrate 

underwent coordination onto the vacant site and facilitated the silyl ligand shift onto the oxygen 

atom. This process resulted in the formation of an alkyl ligand bound to the Re center III-5. 

Another silane underwent coordination via a ηβ-silyl complex or a σ-silyl (σH) complex. The H 

atom migrated from the silane to the alkyl group, thus regenerating the catalyst III-2 and 

releasing the silyl ether product. When either the carbonyl or silane has been depleted, the 

‐tγSiRe(CO)4 III-2 coordinated back to HRe(CO)5 III-3 and became part of the resting state 

III-1 (Scheme 17b). 

Interestingly, the direct reductive amination of aldehydes with primary and secondary anilines, 

using the same oxorhenium complexe ReI(O)β(PPhγ)β 22, was achieved by the group of 

‑ernandes. Under refluxing TH‑ for 5 min to 7 h, the corresponding amines were prepared 

with 7β–λ0% yields (Scheme 1κ). Noticeably, nitro, sulfone, ester, nitrile, amide, halides 

including iodide can be tolerated.[γ5] The same group have also developed a series of 

oxorhenium complexes bearing heterocyclic ligands to perform this transformation, for 

instance, the oxo-rhenium complex [ReOBrβ(L)(PPhγ) 45 (L = β-(β’-hydroxy-5’-

methylphenyl)benzotriazole, 46) was used as a catalyst (β.5 mol%) with the same efficiency 

and chemoselectivity in refluxing TH‑ (Scheme 1κ).[γ6] 

 

Scheme 18. Direct reductive amination of aldehydes using silane/oxorhenium catalytic system.  

‑urthermore, in β01γ Ghorai reported a direct reductive amination of ketones such as alkanones 

and cycloalkanones with electron-deficient amines using ReβO7 (23, 1.5 mol%) and NaP‑6 

(β0 mol%) as the catalytic system and triethylsilane (1.β equiv.) as the reductant in 

dichloromethane at 50 oC for 1β-60 h (Scheme 1λ).[γ7] The diastereoselective reductive 

amination of β-alkyl cyclohexanones were studied and excellent formation of cis-selective β-

alkyl amines (up to >1μλλ) were observed. 



204 

 

 
Scheme 19. Direct reductive amination of ketones with electron-deficient amines using 
ReβO7/NaP‑6 catalyst system. 

7.2.2. Hydrosilylation of carboxylic acid derivatives 

7.2.2-1 Manganese-catalyzed hydrosilylation of carboxylic acid derivatives 

In continuation of the hydrosilylation of metal acyl complexes by Cutler, manganese acyl 

complexes was thereafter tested in hydrosilylation of esters.[λe] With β.0-γ.0 mol% of 

(PPhγ)(CO)4MnC(O)CHγ 2 and 1.1 equiv. of PhSiHγ in C6D6, Cp(CO)β‑eC(O)OCHγ was 

converted to (η4-C5H6)‑e(CO)γ in λβ% yield (Scheme β0a). This catalytic system was then 

utilized in the hydrosilylation of simple esters to ethers catalyzed by the same manganese-acyl 

complex 2 (Scheme β0b).[λh] All the esters were consumed within 1 h, but only the linear 

alkanoate esters cleanly yielded the corresponding ethers. The other aromatic or cyclic esters 

gave mixtures of their ethers and alkoxysilanes, resulting from further reduction of silylacetal 

intermediates. (CO)5MnCHγ 47 and (CO)5MnBr 48 were less effective, as κ5% and 55% yields 

were obtained respectively after 4 h under similar conditions. In contrast, Mn(CO)5(SiMeβPh) 

49, Mn(CO)5(SiHPhβ) 50, and Mnβ(CO)10 1 were inactive. The proposed mechanism for the 

hydrosilylation of esters is similar to the one for ketones (see Scheme 4). The first 

hydrosilylation intermediate, alkyl silyl acetal, was further reduced by manganese hydride to 

afford the final ether product. 

 

Scheme 20. Hydrosilylation of an organoiron-ester complex and simple esters catalyzed by 
manganese–acyl complexes 

PDI-Mn complexes were also used for the hydrosilylation of esters (Scheme β1). The (PDI)Mn 

dimer complex 21 could catalyze the hydrosilylation of fomates to corresponding alcohols with 
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0.01 mol% catalyst loading (Scheme β1a).[14d] The hydrosilylation of esters with 51 proceeded 

through acyl C-O bond cleavage which was confirmed by the deuterium labeling (Scheme 

β1b).[16a] This reaction gave relatively modest TO‑s (21μ 14 h−1 and 51μ 1κ h−1) compared to 

the case of ketones. 

 

Scheme 21. Hydrosilylation of esters with PDI–Mn complexes. 

 

Scheme 22. Manganese-catalyzed reduction of amides via hydrosilylation. 

So far, only a few examples of manganese-catalyzed amide reduction with silanes have been 

reported. With the co-catalytic system of Mnβ(CO)10 1 and ‐tβNH, the substrate N-

acetylpiperidine was readily reduced to N-ethylpiperidine in κλ% yield (Scheme ββa)[γκ]. 

Similarly, CpMn(CO)γ 52 was shown to be an active catalyst in the reduction of DM‑ and N,N-
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diethylformamide (D‐‑) under UV irradiation conditions (Scheme ββb).[γλ] Moreover, 

Turculet developed a manganese complex 53, in β017, which was a competent catalyst for 

reduction of challenging tertiary amides to amines (Scheme ββc).[40] The reduction of 

aldehydes, ketones, and esters occurred smoothly by using this protocol. However, the 

underlying reaction mechanism was not clear. 

‑inally, our group has successfully developed the first reduction of carboxylic acids to 

aldehydes catalyzed by commercially available and inexpensive manganese carbonyl complex 

Mnβ(CO)10 1, in the presence of triethylsilane as an affordable and stable reducing agent 

(Scheme βγ).[41] The reaction proceeds at room temperature under UV irradiation. Of notable 

interest was the isolation of the stable disilylacetals as their protected aldehyde forms, which 

can be then hydrolyzed to the corresponding aldehydes. Another advantage of this system is 

the good tolerance of a variety of functional groups, such as halides, amino, furyl, pyridyl and 

internal double bond. However, the steric hindered substrates and benzoic acid derivatives did 

not lead to satisfactory results. 

 

Scheme 23. Manganese-catalyzed hydrosilylation of carboxylic acids. 

7.2.2-2 Rhenium-catalyzed hydrosilylation of carboxylic acid derivatives 

The reduction of carboxylic acid derivatives using rhenium are rare. In β011, ‑ernandes 

reported the reduction of nitriles to the corresponding primary amines with silanes catalyzed 

by the oxo-rhenium complexes 22 or ReOClγ(PPhγ)β 25. The catalytic system 22 (10 mol%) in 

the presence of γ equiv. of PhSiHγ reduced efficiently a series of benzonitriles in the presence 

of a wide range of functional groups such as halides, C‑γ, SOβCHγ and NHTs and also 

phenylacetonitrile (Scheme β4a).[4β] 

The catalytic cycle was proposed by the same authors (Scheme β4b)μ coordination of two 

nitriles to the rhenium with liberation of two phosphines, affording the complex ReIOβ(nitrile)β 

IV-1ν formation of the hydride species (nitrile)β(O)IRe(H)OSiRγ IV-2 as the result of the 

addition of the Si-H bond to one of the oxo-rhenium bondν dihydrosilylation of the nitrile to 

the corresponding N-disilylamine IV-5ν formation of the amine by hydrolysis of the N-

disilylamine, probably, due to the presence of a trace of water in the reaction mixture. 
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Scheme 24. Proposed catalytic cycle for the reduction of nitriles with 22/silane. 

In β00λ, the same group has also reported the reduction of nitroarene compounds to the 

corresponding amines catalyzed by 22 or 25 in the presence of γ.6 equiv. of PhMeβSiH in 

refluxing toluene for 1-4κ h (Scheme β5).[4γ] Aniline derivatives was then isolated in moderate 

to good yields (γ1-λ6%). It is noticeable that this catalytic transformation tolerated a huge 

variety of functional groups such as halides, esters, amides, sulfones, and nitriles. By contrast, 

the hydrosilylation of nitroalkanes such as β-nitroethylbenzene led to the corresponding nitrile 

in γκ% yield. 
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Scheme 25. Reduction of nitroarene compounds with 22 or 25. 

In summary, the utilization of manganese and rhenium catalysts in hydrosilylation of carbonyl 

and carboxylic acid derivatives has been developed since their pioneering examples in 1λκβ 

and β00γ, respectively. However, carboxylic acid derivatives were far less explored as 

substrates compared with carbonyl compounds. In the next paragraphs, our results for the 

chemoselective reduction of carboxylic acids, esters and amides will be discussed. 

7.3. Results and discussions 

‑ollowing the study of the hydrosilylation of various carboxylic acids catalyzed by Mnβ(CO)10, 

which is previously developed in our group,[41] we describe herein the same reaction but 

catalyzed by Reβ(CO)10 and also hydrosilylation of carboxylic esters and amides under the 

catalysis of Mnβ(CO)10 and Reβ(CO)10. 

7.3.1. Optimization of reaction conditions for Re2(CO)10 catalyzed hydrosilylation of 
carboxylic acids 
We firstly performed the hydrosilylation of β-naphthaleneacetic acid 54a catalyzed by 

Reβ(CO)10 44 (0.5 mol%) with 4 equiv. of ‐tγSiH under irradiation of UV-L‐D (γλ5-400 nm, 

45 W) in toluene at r.t. within γ h (Table 1). To our delight, λ7% conversion of 54a was 

achieved and the disilyl acetal product 55a was detected in κκ% NMR-yield, along with λ% of 

the fully reduced product silyl ether 56a, resulting from firstly decomposition of 55a to  

β-naphthaldehyde followed by further hydrosilylation with ‐tγSiH (entry 1). A low conversion 

(44%) was observed when decreased the catalyst loading to 0.β mol% (entry β). Theoretically, 

only β equiv. of ‐tγSiH are required to reduce 1 equiv. of carboxylic acidν we thus conducted 

the reaction with β.β equiv. of ‐tγSiH, and κλ% yield of 55a was observed using 0.5 mol% of 

Reβ(CO)10 in 6 h at r.t. (entry γ). ‐xtension the reaction time to λ h with β.β equiv. of ‐tγSiH 

increased the yield to λ4% yield of 55a (entry 4). The nature of the silanes was also crucial for 

the selectivity of the reaction. The use of ‐tβSiHβ and PhSiHγ (4 equiv.) led to low conversion 

of 54a, while the use of PhβSiHβ reversed the selectivity, as κ0% yield of silylether 56a was 

observed in γ h. The utilization of TMDS (1,1,γ,γ- tetramethyldisiloxane, 4 equiv.) led to a full 

conversion but a mixture of 55a and 56a. (entries 5-κ). In the absence of any light, under 

thermal conditions, or with visible light irradiation, no conversion of 54a was detected after λ 

h (entries λ-11). The highest yield of 55a (λκ%) was observed when the reaction was performed 

under UV irradiations (γ50 nm) in a Rayonnet RPR100 apparatus (entry 1β). However, when 

a medium pressure UV mercury lamp (150 W) was used, after only 1 hour, 41% conversion 
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was obtained with a good selectivity (entry 1γ). Notably, a comparable yield of 55a (λ0%) can 

be obtained, when Re(CO)5Br 57 (1.0 mol%) were employed as catalyst under UV irradiations 

(γ50 nm) (entry 14). ‑inally, in the absence of Re catalyst, no conversion of the  

β-naphthaleneacetic 1a can be detected (entry 15). 

Table 1. Hydrosilylation of β-naphthaleneacetic acid catalyzed by Reβ(CO)10 

 

Entry Re2(CO)10 (mol%) Silane (equiv.) Time (h) Conv. (%) Yield (%)[a] 

55a 56a 
1  0.5 ‐tγSiH (4) γ λ7 κκ λ 
β  0.β ‐tγSiH (4) γ 44 4β β 
γ  0.5 ‐tγSiH (β.β) 6 6λ 67 β 
4  0.5 Et3SiH (2.2) 9 97 94 3 
5  0.5 ‐tβSiHβ (4) γ 16 1β 4 
6  0.5 PhSiHγ (4) γ 5β 45 7 
7  0.5 PhβSiHβ (4) γ κ1 1 κ0 
κ  0.5 TMDS (4) γ >λλ 55 45 
λ [b] 0.5 ‐tγSiH (β.β) λ 0 - - 

10 [c] 0.5 ‐tγSiH (β.β) λ 0 - - 
11 [d] 0.5 ‐tγSiH (β.β) λ 0 - - 
1β [e] 0.5 Et3SiH (2.2) 9 >99 98 2 
1γ [f] 0.5 ‐tγSiH (β.β) 1 41 γ7 4 
14 [e,g] 1.0 ‐tγSiH (β.β) λ λ5 λ0 5 
15  None ‐tγSiH (β.β) λ 0 - - 
General conditionsμ a β0 mL Schlenk tube was charged with Reβ(CO)10 and 54a 
followed by toluene (0.5 M) and ‐tγSiH under argon atmosphere then stirred at r.t. for 
indicated hours. 
[a] Conversion and selectivity were detected by 1H NMR of the crude mixtureν 

[b] In the darkν  
[c] Visible light irradiation (400-κ00 nm, γ0 W)ν 
[d] at 100 oC without lightν  
[e] UV irradiations (γ50 nm) in a Rayonnet RPR100 apparatusν 
[f] With medium pressure UV lamp (150 W) 
[g] Re(CO)5Br 57 (1.0 mol%) as catalyst. 

7.3.2. Optimization of reaction conditions for Mn2(CO)10 and Re2(CO)10 catalyzed 
hydrosilylation of carboxylic esters 

We then performed the hydrosilylation of methyl β-(β-naphthalenyl)acetate 57a catalyzed by 

Mnβ(CO)10 1 (5.0 mol%) with 4 equiv. of ‐tγSiH under irradiation of UV-L‐D (γλ5-400 nm, 

45 W) in toluene, within γ h (Table β). To our delight, λβ% conversion of 57a was observed 

and the alkyl silyl acetal product 58a was detected in 75% yield, while 17% of the by-product 

silyl ether 56a was produced simultaneously (entry 1). The conversion dropped from λβ% to 

7γ%, when reducing the amount of ‐tγSiH to γ.0 and β.0 equiv. (entries β and γ). Prolonging 
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the reaction time from γ h to 6 h with β.0 equiv. of ‐tγSiH gave a better yield of 58a (λ1%), 

(entry 4). As shown in entries 5-7, with only 1.1 equiv. of ‐tγSiH, the conversion increased 

from 60% to λ0%, when prolonging the reaction time from γ h to λ h, giving 58a in κλ% yield. 

The use of ‐tβSiHβ (γ equiv.) led to partial conversion of 57a (41%) and mixture of 58a and 

56a (entry κ). While the use of PhβSiHβ, PhSiHγ and TMDS (γ equiv.) reversed the selectivity 

of the reaction with 56a as the sole obtained product in λλ% yield in γ h, for all cases (entries 

λ-11).  

Table 2. Hydrosilylation of methyl β-(β-naphthalenyl)acetate catalyzed by Mnβ(CO)10 

 

Entry Silane (equiv.) Time (h) Conv. (%) Yield (%)[a] 

58a 56a 
1  ‐tγSiH (4) γ λβ 75 17 
β  ‐tγSiH (γ) γ κβ κ1 1 
γ  ‐tγSiH (β) γ 7γ 66 7 
4  ‐tγSiH (β) 6 λβ λ1 1 
5  ‐tγSiH (1.1) γ 60 5γ 7 
6  ‐tγSiH (1.1) 6 70 6λ 1 
7  Et3SiH (1.1) 9 90 89 1 
κ  ‐tβSiHβ (γ) γ 41 β0 β1 
λ  PhβSiHβ (γ) γ >λλ 1 λλ 

10  PhSiHγ (γ) γ >λλ 1 λλ 
11  TMDS (γ) γ >λλ 1 λλ 
1β [b] ‐tγSiH (β) 6 0 - - 
1γ [c] ‐tγSiH (β) 6 0 - - 
14 [d] ‐tγSiH (β) λ λβ λ1 1 
15 [e] ‐tγSiH (β) 6 56 55 1 
16 [f] ‐tγSiH (β) 1 κ6 7γ 1γ 
17 [g] ‐tγSiH (1.1) λ 0 - - 
1κ [h] ‐tγSiH (1.1) λ 0 - - 
General conditionsμ a β0 mL Schlenk tube was charged with Mnβ(CO)10 and 57a 
followed by toluene (0.5 M) and ‐tγSiH under argon atmosphere then stirred at r.t. 
for indicated hours. 
[a] Conversion and selectivity were detected by 1H NMR of the crude mixtureν  

[b] In the darkν  
[c] At 100 oCν   
[d] UV irradiations (γ50 nm) in a Rayonet RPR100 apparatusν 
[e] Visible light irradiation (400-κ00 nm, γ0 W)ν 
[f] With medium pressure mercury UV lamp (150 W) 
[g] Mn(CO)5Br 48 (10 mol%) as catalystν 

[h] CpMn(CO)γ 52 (10 mol%) as catalystν 
 

In the absence of any light, or under thermal conditions, no conversion of 57a was detected 

after 6 h (Table β, entries 1β and 1γ). Notably, 58a was obtained in a slightly better yield (λ1%) 
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when the reaction was performed under UV irradiation (γ50 nm) in a Rayonet RPR100 

apparatus (entry 14). However, when the visible light irradiation (400-κ00 nm, γ0 W) and 

medium pressure mercury UV lamp (150 W) was used, low selectivity was observed (entries 

15 and 16). Noticeably, there is no detectable conversion of 57a, when Mn(CO)5Br 48 

(10 mol%) and CpMn(CO)γ 52 (10 mol%) were employed as catalysts (entries 17 and 1κ). 

Afterwards, Reβ(CO)10 44 was tested as the catalyst for the reduction of same ester substrate 

57a (Table γ). Using 4.0 equiv. ‐tγSiH, and 0.5 mol% Reβ(CO)10, full conversion of 57a was 

observed and 58a was obtained in κ5% yield after 6 h of reaction (entry 1). Lower conversions 

were obtained with a decrease of the reaction time to γ h or of the amount of ‐tγSiH to 1.1 equiv. 

(entries β and γ). However, longing the reaction time to λ h with only 1.1 equiv. of ‐tγSiH, κ4% 

yield of 58a was observed. Similar results can be observed with 1.0 mol% Reβ(CO)10 44 in 6 h 

(entry 5). The utilization of Re(CO)5Br (1.0 mol%) gave a partial conversion of 57a (7β%) 

(entry 6). Additionally, in the absence of catalyst, no reaction took place (entry 7). 

Table 3. Hydrosilylation of ester with Reβ(CO)10 

 

Entry Re2(CO)10 (mol%) Silane (equiv.) Time (h) Conv. (%)[a] Yield (%)[a]  
58a 56a 

1  0.5 ‐tγSiH (4) 6 >λλ κ5 15 
β  0.5 ‐tγSiH (4) γ 75 7β γ 
γ  0.5 ‐tγSiH (1.1) 6 κ6 κβ 4 
4  0.5 Et3SiH (1.1) 9 91 84 7 
5  1.0 ‐tγSiH (1.1) 6 λβ κ7 5 
6 [b] 1.0 ‐tγSiH (1.1) λ 7β 6γ λ 
7  None ‐tγSiH (1.1) λ 0 - - 

General conditionsμ a β0 mL Schlenk tube was charged with Reβ(CO)10 and 57a followed 
by toluene (0.5 M) and ‐tγSiH under argon atmosphere then stirred at r.t. for indicated 
hours. 
[a] Conversion and selectivity were detected by 1H NMR of the crude mixtureν 
[b] Re(CO)5Br (1.0 mol%) as the catalyst 

With these optimized conditions in hand for the reduction of acids [0.5 mol% of Reβ(CO)β, 

β.β equiv. of ‐tγSiH, toluene, r.t., λ h, UV-L‐D (γλ5-400 nm) or UV (γ50 nm) irradiation, 

(Table 1, entries 4 and 1β)] and for reduction of esters [5.0 mol% of Mnβ(CO)10 (method A, 

Table β, entry 7) or 0.5 mol% of Reβ(CO)10 (method B, Table γ, entry 4), 1.1 equiv. of ‐tγSiH, 

toluene, r.t., λ h, UV-L‐D (γλ5-400 nm, 45 W) irradiation], we then explored the substrate 
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scope for the catalyzed hydrosilylation of acids with Reβ(CO)10 (Table 4) and of esters with 

Mnβ(CO)10 or Reβ(CO)10 (Table 5). 

7.3.3. Scope for the hydrosilylation of carboxylic acids 

An shown in Table 4, β-naphthaleneacetic acid 54a, β-phenylacetic acid 54b, methyl 

substituted β-phenylacetic acids in ortho, meta, para positions 54c-e and β-(4-

methoxyphenyl)acetic acid 54f were smoothly converted in the corresponding disilyl acetal 

products in good yields (up to λ7%), although β-(o-tolyl)acetic acid led to 54c in 6β% isolated 

yield. Halogens like fluorine and chlorine can be tolerated, while β-(4-bromophenyl)acetic acid 

54i cannot be converted to the desired product, but the debromination of 54i was detected. 

Amino group was not altered, as 75% of 55j was isolated, without the formation of silylamine 

species.  

Table 4. Scope of hydrosilylation of carboxylic acids with Reβ(CO)10[a] 

 
[a] General conditionsμ carboxylic acid (0.5 mmol), ‐tγSiH (176 µL, 1.1 mmol, β.β equiv.), 

Reβ(CO)10 (1.6 mg, 0.5 mol%), r.t., toluene (1 mL), UV (γ50 nm), λ hν Conversion of 54 was 
detected by 1H NMR of the crude mixtureν and isolated yields of 2 were shown in parenthesesν  

Steric hindered acids like β-phenylbutanoic acid 54k cut down the conversion to βγ%. β-

(naphthalen-1-yl)acetic acid 54l gave the corresponding acetal 55l in lower yield (76%) 

compared with 54a. Interestingly heteroaromatic substituted acetic acids based on thiophene 
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54m and 1H-indole 54n can also be tolerated, giving 55m and 55n in 5λ% and κλ% yields, 

respectively. Carboxylic acids with longer carbon chains (55o-55t) gave the corresponding 

products in excellent isolated yields up to λκ%. Notablely, dicarboxylic acid 54t led to the 

corresponding diacetal 55t in λλ% yield. The internal C=C in 54r and 55r can be tolerated 

while conjugated C=C was reduced, as the saturated product 55o was detected starting from 

cinnamic acid. It is worth mentioning that acetic acid and formic acid were also reactive in the 

current reaction, producing ca. λ0% yield of 55u and 55v. ‑inally, good yields (λ0%) can be 

obtained with cyclic acids like cyclohexanecarboxylic acid 54w and cyclopentanecarboxylic 

acid 54x. 

7.3.4. Scope for the hydrosilylation of benzoic acids 

Table 5. Scope of hydrosilylation of benzoic acids with Reβ(CO)10[a] 

 
[a] General conditionsμ carboxylic acid (0.5 mmol), 

PhβMeSiH (β00 µL, 1.0 mmol, 4.0 equiv.), Reβ(CO)10 
(κ.β mg, 5.0 mol%), r.t., ‐tβO (1 mL), UV irradiation 
(γ50 nm), 4κ h, then hydrolysed at r.t. with trifluoroacetic 
acid (λλ%, 0.β5 mL) for γ h. NMR-yield of 60 are given, 
and isolated yields of 60 were shown in parenthesesν  

Benzoic acid derivatives are usually challenging substrates in reduction and particularly in 

hydrosilylation.[41] When benzoic acid 59a was tested as substrate under the standard conditions 

shown in Table 5, a mixture of disilyl acetal product and benzaldehyde was detected by 
1H NMR of the crude mixture, indicating that the disilyl acetal product may be hydrolysed to 

aldehyde during the reaction process. Thus, a hydrolysis was performed in the end of the 

reaction to afford aldehydes from the hydrosilylation of aromatic acids. Selected substrate 

scope is shown in Table 5 using PhβMeSiH (4.0 equiv.) as reducing reagent, Reβ(CO)10 

(5.0 mol%) as the catalyst, at r.t., in ‐tβO, under UV irradiation (γ50 nm) in 4κ h. Benzoic acid 

59a and β-naphthoic acid 59b gave good isolated yield of the corresponding aldehydes in 65% 
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and κβ% respectively. Aromatic acids bearing electron donating groups such as methoxy 59c 

and dimethylamino 59d groups led also to the corresponding aldehydes with good yields. 

However, low conversion was observed with 4-chlorobenzoic acid 59e and  

4-(trifluoromethyl)benzoic acid 59f after 4κ h. Heteroaromatic acid with furane, thiophene and 

pyrrole moieties led to the aldehydes in moderate yields (βγ-5κ%). 

7.3.5. Scope for the hydrosilylation of carboxylic esters 

Table 6. Scope of hydrosilylation of carboxylic esters with Mnβ(CO)10 and Reβ(CO)10[a] 

 
[a] General conditionsμ carboxylic ester (0.5 mmol), ‐tγSiH (κκ µL, 0.55 mmol, 

1.1 equiv.), Mnβ(CO)10 (λ.7 mg, 5.0 mol%, method A) or Reβ(CO)10 (1.6 mg, 
0.5 mol%, method B), r.t., toluene (1 mL), UV-L‐D irradiation (γλ5-400 nm, 
45 W), λ hν Conversion of 57 was detected by 1H NMR of the crude mixtureν and 
isolated yields of 58 were shown in parenthesesν  

[b] NMR yield of 58. 

On the other hand, under UV-L‐D irradiation (γλ5-400 nm, 45 W), methyl β-(β-

naphthalenyl)acetate 57a, methyl β-phenylacetate 57b, o- , m-, p-methyls and p- methoxyl 

substituted methyl β-phenylacetate 57c-57f were smoothly converted into the corresponding 

alkyl silyl acetals in 6κ-λβ% isolated yields (Table 6), catalyzed either by Mnβ(CO)10 

(5.0 mol%) or Reβ(CO)10 (0.5 mol%). Starting from methyl β-(4-bromo)phenylacetate 57g, the 

corresponding product 57g was isolated in moderate isolated yield (5λ%) under the catalysis 
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of Mnβ(CO)10 (5.0 mol%), while Reβ(CO)10 (0.5 mol%) gave no conversion of the starting ester 

57g. 

The reactions between ‐tγSiH and benzyl γ-phenylpropanoate 57h, ethyl γ-phenylpropanoate 

57i, methyl γ-phenylpropanoate 57j afforded the corresponding acetals in λγ%, λβ% and 7γ% 

yields, respectively. By contrast, methyl β-phenylbutanoate 57k was converted into 5k in lower 

yield certainly due to the increasing steric hindrance which may inhibit the reactivity. Good 

isolated yield was also obtained with benzoates derivatives, as methyl benzoate 57l led to the 

acetal 57l in κ6% yield when catalyzed by Mnβ(CO)10 (5.0 mol%), although Reβ(CO)10 

(0.5 mol%) gave a slightly lower conversion (75%). Nevertheless, methyl 4-chlorobenzoate 

57m were reduced in 15% and κ0% conversion when catalyzed by Mnβ(CO)10 and Reβ(CO)10, 

respectively. Noticeably, iodo group seems to be problematic to the reaction, as only 4% of the 

conversion was detected starting with the substrate 58n. Heteroaromatic containing substrates 

such as methyl furan-β-carboxylate 57p can be transformed into 58p in 7κ isolated yield. 

Simple ethyl acetate 57q, butyl formate 57r and methyl decanoate 58s gave full conversion 

and led to the compounds 58p-58q in κλ, λ1 and λγ% isolated yields, respectively. The internal 

C=C bond in methyl oleate 57t can be tolerated, leading the acetal 58t in 74% yield using 

Reβ(CO)10 (0.5 mol%). 

7.3.6. Extension of the methodology to the hydrosilylation of carboxylic amides 

This methodology can be extended to carboxylic amides by Mnβ(CO)10 and Reβ(CO)10 

catalyzed hydrosilylation under UV irradiation (γ50 nm). Thus, in two selected examples 

depicted in Table 7, using β.β equiv. of ‐tγSiH, N,N-dimethylbenzamide 61a and N-

benzoylpiperidine 61b afforded the corresponding amines 62a and 62b in full conversion using 

0.5 mol% of Reβ(CO)10 or 5.0 mol% of Mnβ(CO)10. Using Mnβ(CO)10 as the catalyst, 62a and 

62b were isolated in κβ% and λ0% yields, respectively. 

It is worth mentioning that the above results obtained with the irradiation using UV-L‐D (γλ5-

400 nm, 45 W), are quite similar with those using UV (γ50 nm) in a Rayonnet RPR100 

apparatus. So the choice of the irradiation device was based on a practical point of view 

(Rayonet in Rennes, UV-L‐Ds in Toulouse) more than on a chemical requirement. 
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Table 7. Hydrosilylation of carboxylic amides with Mnβ(CO)10 and Reβ(CO)10[a] 

 
[a] General conditionsμ carboxylic amide (0.5 mmol), ‐tγSiH 

(176 µL, 1.1 mmol, β.β equiv.), Mnβ(CO)10 (λ.7 mg, 5.0 mol%, 
method A) or Reβ(CO)10 (1.6 mg, 0.5 mol%, method B), r.t., 
toluene (1 mL), UV irradiation (γ50 nm), λ hν Conversion of the 
61 was detected by 1H NMR of the crude mixtureν and isolated 
yields of 62 were shown in parenthesesν  

7.4. Mechanistic insights 

Kinetic studied were carried out for the hydrosilylation of β-phenylacetic acid 54b (‑igure 1) and 

of methyl β-phenylacetate 57b (‑igure β) catalyzed by 1.0 mol% of Reβ(CO)10 performed in the 

presence of β.β and 1.1 equiv. of ‐tγSiH, respectively at r.t. in toluene under UV (γ50 nm) 

irradiation. 

β-Phenylacetic acid 57b was consumed completely in 4 h. Interestingly, 10% of silyl ester 63 was 

observed in β0 min. resulting from the dehydrogenative silylation between 54b and ‐tγSiH. After 

4 h of reaction, its yield increased to λ5%, the disilyl acetal product 55b being detected in 5%. 

After β4 h of reaction, λκ% yield of 55b and 1% yield of 56b were observed. (‑igure 1). 

 
Time/h Acid 54b/% Silyl ‐ster 63/% disilyl acetal 55b/% Silyl ether 56b/%

0 100 0 0 0 
0.γ λ0 10 0 0 
1 5κ 41 1 0 
β 1γ κ5 β 0 
4 0 λ5 5 0 
5 0 κ1 1λ 0 
10 0 17 κγ 0 
β4 0 1 λκ 1 
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Figure 1. Kinetic profile of the hydrosilylation of β-phenylacetic acid 55b catalyzed by 
Reβ(CO)10 performed with 1.1 equiv. of ‐tγSiH at r.t. in toluene under UV (γ50 nm) irradiation. 

In the case of methyl β-phenylacetate 57b, it was observed λ% of alkyl silyl acetal product 58b 

after β0 min. of reaction. Prolonging the time to 4 h, the acetal was obtained in 7κ%. At 10 h of 

reaction, only 5% of silyl ether by-product 56b, was detected. ‑inally, after β4 h, λ7% conversion 

of 57b was reached and the acetal 5b was obtained in κκ% yield. (‑igure β). 

 
Time/h ‐ster 57b/% Acetal 58b/% Silyl ether 56b/% 

0 100 0 0 
0.γ λ1 λ 0 
1 6κ γβ 0 
β 44 56 0 
γ βλ 71 0 
4 ββ 7κ 0 

10 κ κ7 5 
β4 γ κκ λ 

 
Figure 2. Kinetic profile of the hydrosilylation of methyl β-phenylacetate 57b catalyzed by 
Reβ(CO)10 performed with 1.1 equiv. of ‐tγSiH at r.t. in toluene with UV (γ50 nm) irradiation. 
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Interestingly, when adding 1.0 equiv. of a radical scavenger, T‐MPO (β,β,6,6-

tetramethylpiperidin-1-yl)oxyl to the reaction mixture, full conversion of β-phenylacetic acid 

54b to silyl ester 63 was observed without any formation of the reduction products 55b or 56b 

(equation 1), while methyl β-phenylacetate 57b was not converted into any product, 

(equation β). These results seem to indicate that the reduction of carboxylic acids and esters 

catalyzed by Mnβ(CO)10 and Reβ(CO)10 involved free radical processes.  

 
Scheme 26. T‐MPO addition experiment 

Proposed catalytic cycle 

Based on our mechanistic study above, and those previously published by Wang[45] and ‑an[γ4], 

we propose here a radical mechanism (Scheme β7). It was reported that (CO)5Re• (V-1)was 

generated via the metal–metal bond cleavage of Reβ(CO)10 under photo-irradiation condidtions.[44] 

Then a hydrogen transfer reaction occured between (CO)5Re• and ‐tγSiH, leading to silyl radical 

and HRe(CO)5 (V-2).[44] The silyl radical ‐tγSi• then added to the C=O moiety in the ester substrate 

to afford alkyl radicals, which underwent hydrogenolysis with HRe(CO)5 to form the desired 

product 58 and regenerate the (CO)5Re• species. 

 
Scheme β7. Proposed radical mechanism of the Reβ(CO)10 catalyzed hydrosilylation of ester.  
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7.5. Conclusion of the Part 2 dedicated to Mn2(CO)10 and Re2(CO)10 catalyzed 
hydrosilylation of carboxylic acids, esters and amides 

In summary, with the commercially available Mnβ(CO)10 (5.0 mol%) and Reβ(CO)10 

(0.5 mol%) as catalysts and ‐tγSiH as an inexpensive silane source, three substrates, namely 

carboxylic acids, esters and amides can be chemospecifically reduced to the corresponding 

protected aldehydes (namely acetals) and amines directly, in moderate to good yields at r.t. 

under UV-L‐D (γλ5-400 nm) or UV (γ50 nm) irradiation. ‑unctional groups, such as amino, 

furyl, thienyl, pyridyl and internal C=C double bond, can be well tolerated. Interestingly, 

Reβ(CO)10 seems to be a more active catalyst as it allowed to reduce the catalyst loading by a 

factor of ten compared with Mnβ(CO)10. However, despite that, some bromide substrate were 

not tolerated with Reβ(CO)10   



220 

 

7.6. References 
[1] B. Marciniec, Silicon Chem. 2002, 1, 155-174. 
[β] K. K. Krishnan, A. M. Thomas, K. S. Sindhu, G. Anilkumar, Tetrahedron 2016, 72, 1-16. 
[γ] X. Yang, C. Wang, Chem. Asian J. 2018, 13, βγ07-βγ15. 
[4] a) R. G. Harms, W. A. Herrmann, ‑. ‐. Kühn, Coord. Chem. Rev. 2015, 296, 1-βγν b) G. S. 

Owens, J. Arias, M. M. Abu-Omar, Catal. Today 2000, 55, γ17-γ6γν c) C. C. Romão, ‑. ‐. Kühn, 
W. A. Herrmann, Chem. Rev. 1997, 97, γ1λ7-γβ46ν d) J. H. ‐spenson, Chem. Commun. 1999, 
47λ-4κκ. 

[5] a) W. A. Volkert, T. J. Hoffman, Chem. Rev. 1999, 99, ββ6λ-ββλβν b) J. R. Dilworth, S. J. Parrott, 
Chem. Soc. Rev. 1998, 27, 4γ-55. 

[6] G. Du, M. M. Abu-Omar, Curr. Org. Chem. 2008, 12, 11κ5-11λκ. 
[7] a) J. J. Kennedy-Smith, K. A. Nolin, H. P. Gunterman, ‑. D. Toste, J. Am. Chem. Soc. 2003, 125, 

4056-4057ν b) W. R. Thiel, Angew. Chem. Int. Ed. 2003, 42, 5γλ0-5γλβ. 
[κ] R. L. Yates, J. Catal. 1982, 78, 111-115. 
[λ] a) B. T. Gregg, P. K. Hanna, ‐. J. Crawford, A. R. Cutler, J. Am. Chem. Soc. 1991, 113, γκ4-γκ5ν 

b) P. K. Hanna, B. T. Gregg, A. R. Cutler, Organometallics 1991, 10, γ1-γγν c) B. T. Gregg, A. 
R. Cutler, Organometallics 1993, 12, β006-β00λν d) B. T. Gregg, A. R. Cutler, J. Am. Chem. Soc. 

1996, 118, 1006λ-100κ4ν e) M. D. Cavanaugh, B. T. Gregg, R. Chiulli, A. R. Cutler, J. 

Organomet. Chem. 1997, 547, 17γ-1κβν f) Z. Mao, B. T. Gregg, A. R. Cutler, Organometallics 

1998, 17, 1λλγ-β00βν g) B. T. Gregg, A. R. Cutler, Organometallics 1994, 13, 10γλ-104γν h) Z. 
Mao, B. T. Gregg, A. R. Cutler, J. Am. Chem. Soc. 1995, 117, 101γλ-10140ν i) M. DiBiase 
Cavanaugh, B. T. Gregg, A. R. Cutler, Organometallics 1996, 15, β764-β76λ. 

[10] S. U. Son, S.-J. Paik, I. S. Lee, Y.-A. Lee, Y. K. Chung, W. K. Seok, H. N. Lee, Organometallics 

1999, 18, 4114-411κ. 
[11] P. Magnus, M. R. ‑ielding, Tetrahedron Lett. 2001, 42, 66γγ-66γ6. 
[1β] V. K. Chidara, G. Du, Organometallics 2013, 32, 50γ4-50γ7. 
[1γ] a) J. Zheng, S. ‐langovan, D. A. Valyaev, R. Brousses, V. César, J.-B. Sortais, C. Darcel, N. 

Lugan, G. Lavigne, Adv. Synth. Catal. 2014, 356, 10λγ-10λ7ν b) D. A. Valyaev, D. Wei, S. 
‐langovan, M. Cavailles, V. Dorcet, J.-B. Sortais, C. Darcel, N. Lugan, Organometallics 2016, 
35, 40λ0-40λκ. 

[14] a) I. Ojima, M. Nihonyanagi, T. Kogure, M. Kumagai, S. Horiuchi, K. Nakatsugawa, Y. Nagai, 
J. Organomet. Chem. 1975, 94, 44λ-461ν b) K. Riener, M. P. Högerl, P. Gigler, ‑. ‐. Kühn, ACS 

Catal. 2012, 2, 61γ-6β1. 
[15] M. Pinto, S. ‑riães, ‑. ‑ranco, J. Lloret ‑illol, B. Royo, ChemCatChem 2018, 10, β7γ4-β740. 
[16] a) T. K. Mukhopadhyay, M. ‑lores, T. L. Groy, R. J. Trovitch, J. Am. Chem. Soc. 2014, 136, 

κκβ-κκ5ν b) R. J. Trovitch, Synlett 2014, 25, 16γκ-164βν c) C. Ghosh, T. K. Mukhopadhyay, M. 
‑lores, T. L. Groy, R. J. Trovitch, Inorg. Chem. 2015, 54, 10γλκ-10406ν d) T. K. Mukhopadhyay, 
C. Ghosh, M. ‑lores, T. L. Groy, R. J. Trovitch, Organometallics 2017, 36, γ477-γ4κγν e) T. K. 
Mukhopadhyay, C. L. Rock, M. Hong, D. C. Ashley, T. L. Groy, M.-H. Baik, R. J. Trovitch, J. 

Am. Chem. Soc. 2017, 139, 4λ01-4λ15ν f) R. J. Trovitch, Acc. Chem. Res. 2017, 50, βκ4β-βκ5β. 
[17] Y. Kobayashi, J. Synth. Org. Chem Jpn. 2010, 68, κ66-κ67. 
[1κ] L. W. Chung, H. G. Lee, Z. Lin, Y.-D. Wu, J. Org. Chem. 2006, 71, 6000-600λ. 
[1λ] K. A. Nolin, J. R. Krumper, M. D. Pluth, R. G. Bergman, ‑. D. Toste, J. Am. Chem. Soc. 2007, 

129, 146κ4-146λ6. 
[β0] L. Huang, W. Wang, X. Wei, H. Wei, J. Phys. Chem. A 2015, 119, γ7κλ-γ7λλ. 
[β1] S. Rendler, M. Oestreich, Angew. Chem. Int. Ed. 2008, 47, 5λλ7-6000. 
[ββ] B. Royo, C. C. Romão, J. Mol. Catal. A: Chem. 2005, 236, 107-11β. 
[βγ] ‐. A. Ison, ‐. R. Trivedi, R. A. Corbin, M. M. Abu-Omar, J. Am. Chem. Soc. 2005, 127, 15γ74-

15γ75. 
[β4] a) G. Du, M. M. Abu-Omar, Organometallics 2006, 25, 4λβ0-4λβγν b) ‐. A. Ison, J. ‐. Cessarich, 

G. Du, P. ‐. ‑anwick, M. M. Abu-Omar, Inorg. Chem. 2006, 45, βγκ5-βγκ7. 
[β5] G. Du, P. ‐. ‑anwick, M. M. Abu-Omar, Inorg. Chim. Acta 2008, 361, γ1κ4-γ1λβ. 
[β6] K. A. Nolin, R. W. Ahn, Y. Kobayashi, J. J. Kennedy-Smith, ‑. D. Toste, Chem. Eur. J. 2010, 

16, λ555-λ56β. 



221 

 

[β7] K. A. Nolin, R. W. Ahn, ‑. D. Toste, J. Am. Chem. Soc. 2005, 127, 1β46β-1β46γ. 
[βκ] J. L. Smeltz, P. D. Boyle, ‐. A. Ison, Organometallics 2012, 31, 5λλ4-5λλ7. 
[βλ] D. ‐. Perez, J. L. Smeltz, R. D. Sommer, P. D. Boyle, ‐. A. Ison, Dalton Trans. 2017, 46, 460λ-

4616. 
[γ0] W. Huang, H. Berke, Chimia 2005, 59, 11γ-115. 
[γ1] A. Choualeb, ‐. Maccaroni, O. Blacque, H. W. Schmalle, H. Berke, Organometallics 2008, 27, 

γ474-γ4κ1. 
[γβ] H. Dong, H. Berke, Adv. Synth. Catal. 2009, 351, 17κγ-17κκ. 
[γγ] Y. Jiang, O. Blacque, H. Berke, Dalton Trans. 2011, 40, β57κ-β5κ7. 
[γ4] C. K. Toh, Y. N. Sum, W. K. ‑ong, S. G. Ang, W. Y. ‑an, Organometallics 2012, 31, γκκ0-γκκ7. 
[γ5] S. C. Sousa, A. C. ‑ernandes, Adv. Synth. Catal. 2010, 352, ββ1κ-βββ6. 
[γ6] J. R. Bernardo, S. C. A. Sousa, P. R. ‑lorindo, M. Wolff, B. Machura, A. C. ‑ernandes, 

Tetrahedron 2013, 69, λ145-λ154. 
[γ7] B. G. Das, P. Ghorai, Org. Biomol. Chem. 2013, 11, 4γ7λ-4γκβ. 
[γκ] M. Igarashi, T. ‑uchikami, Tetrahedron Lett. 2001, 42, 1λ45-1λ47. 
[γλ] R. Arias-Ugarte, H. K. Sharma, A. L. C. Morris, K. H. Pannell, J. Am. Chem. Soc. 2012, 134, 

κ4κ-κ51. 
[40] C. M. Kelly, R. McDonald, O. L. Sydora, M. Stradiotto, L. Turculet, Angew. Chem. Int. Ed. 2017, 

56, 15λ01-15λ04. 
[41] J. Zheng, S. Chevance, C. Darcel, J.-B. Sortais, Chem. Commun. 2013, 49, 10010-1001β. 
[4β] I. Cabrita, A. C. ‑ernandes, Tetrahedron 2011, 67, κ1κγ-κ1κ6. 
[4γ] R. G. de Noronha, C. C. Romão, A. C. ‑ernandes, J. Org. Chem. 2009, 74, 6λ60-6λ64. 
[44] M. A. Tehfe, J. Lalevée, D. Gigmes, J. P. ‑ouassier, J. Polym. Sci., Part A: Polym. Chem. 2010, 

48, 1κγ0-1κγ7. 
[45] X. Yang, C. Wang, Angew. Chem. Int. Ed. 2018, 57, λβγ-λβκ. 
 

  



222 

 

7.7. Experimental data 

7.7.1. General information. 
1H, 1γC{1H}, 1λ‑{1H} and βλSi{1H} NMR spectra were recorded in CDClγ at βλκ K unless 
otherwise stated, on Bruker, AVANC‐ 400 and AVANC‐ γ00 spectrometers at 400.1, and 
γ00.1 MHz, respectively. 1H and 1γC{1H} NMR spectra were calibrated using the residual 
solvent signal as internal standard (1Hμ CDClγ 7.β6 ppm, C6D6 1γCμ CDClγ, central peak is 
77.16 ppm C6D6 1βκ.06 ppm). Chemical shift (δ) and coupling constants (J) are given in ppm 
and in Hz, respectively. The peak patterns are indicated as followsμ (s, singletν d, doubletν t, 
tripletν q, quartetν quin, quintetν m, multiplet, and br. for broad). 

7.7.2. Typical procedure for Re2(CO)10 catalyzed hydrosilylation of acids to disilyl acetals 

 
Reβ(CO)10 (1.6 mg, 0.5 mol%) and carboxylic acid 54 (0.5 mmol) were charged in a β0 mL 
Schlenk tube under argon atmosphere, followed by toluene (1 mL), ‐tγSiH (176 µL, 1.1 mmol, 
β.β equiv.), then the Schlenk tube was stirred at room temperature under UV-L‐D irradiation 
(γλ5-400 nm, 45 W) for λ h. The crude solution was then diluted with ethyl acetate (β.0 mL) 
and filtered through a small pad of celite (β cm in a Pasteur pipette). The celite was washed 
with ethyl acetate (β×β.0 mL). The filtrate was evaporated and the crude residue was purified 
by column chromatography (SiOβ, mixture of petroleum ether/ethyl acetate as eluent) to afford 
the desired product 55.  

7.7.3. Typical procedure for Re2(CO)10 catalyzed hydrosilylation of acids to aldehydes 

 
Reβ(CO)10 (κ.β mg, 5.0 mol%) and carboxylic acid 59 (0.β5 mmol) was charged in a β0 mL 
Schlenk tube under argon atmosphere, followed by ‐tβO (0.5 mL), PhβMeSiH (β00 µL, 
1.0 mmol, 4.0 equiv.), then the Schlenk tube was stirred at room temperature under UV 
irradiations (γ50 nm) in a Rayonet RPR100 apparatus for 4κ h. The crude solution was then 
hydrolysed at r.t. with trifluoroacetic acid (λλ%, 0.β5 mL) for γ h. Then the mixture was 
evaporated and the crude residue was purified by column chromatography (SiOβ, mixture of 
petroleum ether/ethyl acetate as eluent) to afford the desired product 60.  

7.7.4. Typical procedure for Mn2(CO)10 or Re2(CO)10 catalyzed hydrosilylation of esters 

 
Mnβ(CO)10 (λ.7 mg, 5.0 mol%) (method A) or Reβ(CO)10 (1.6 mg, 0.5 mol%) (method B) was 
charged in a β0 mL Schlenk tube under argon atmosphere, followed by toluene (1 mL), 
carboxylic ester 57 (0.5 mmol), ‐tγSiH (κκ µL, 0.55 mmol, 1.1 equiv.), then the Schlenk tube 
was stirred at room temperature under UV-L‐D irradiation (γλ5-400 nm, 45 W) for λ h. The 
crude solution was then diluted with ethyl acetate (β.0 mL) and filtered through a small pad of 
celite (β cm in a Pasteur pipette). The celite was washed with ethyl acetate (β×β.0 mL). The 
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filtrate was evaporated and the crude residue was purified by column chromatography (SiOβ, 
mixture of petroleum ether/ethyl acetate as eluent) to afford the desired product 58. 
7.7.5. Typical procedure for Mn2(CO)10 or Re2(CO)10 catalyzed hydrosilylation of amides 

 
Mnβ(CO)10 (λ.7 mg, 5.0 mol%) (method A) or Reβ(CO)10 (1.6 mg, 0.5 mol%) (method B) was 
charged in a β0 mL Schlenk tube under argon atmosphere, followed by toluene (1 mL), 
carboxylic amide 61 (0.5 mmol), ‐tγSiH (176 µL, 1,1 mmol, β.β equiv.), then the Schlenk tube 
was stirred at room temperature under UV (γ50 nm) irradiation for λ h. The crude solution was 
then diluted with ethyl acetate (β.0 mL) and filtered through a small pad of celite (β cm in a 
Pasteur pipette). The celite was washed with ethyl acetate (β×β.0 mL). The filtrate was 
evaporated and the crude residue was purified by column chromatography (SiOβ, mixture of 
petroleum ether/ethyl acetate as eluent) to afford the desired product 62. 
7.7.6. Characterization data for disilyl acetals 

 
The compound 55a was prepared as described in the general procedure (β0β mg) in λ7% yield. 
1H NMR (400 MHz, C6D6) δ 7.7γ – 7.61 (m, 4H), 7.γκ (dd, J = κ.4, 1.6 Hz, 1H), 7.γ1 – 7.β1 
(m, βH), 5.50 (t, J = 5.γ Hz, 1H), γ.0κ (d, J = 5.γ Hz, βH), 0.λ7 (t, J = 7.λ Hz, 1κH), 0.6β (q, J 

= 7.λ Hz, 1βH). 13C{1H} NMR (101 MHz, C6D6) δ 1γ5.5, 1γ4.1, 1γβ.λ, 1βκ.λ (βC), 1βκ.0, 
1β7.λβ, 1β7.κ6, 1β6.β, 1β5.6, λ4.6, 4κ.γ, 7.β, 5.κ. 29Si{1H} NMR (7λ MHz, C6D6) δ 15.7κ. 

 
The compound 55b was prepared as described in the general procedure in λ6% yield 
(176.0 mg).[1] 1H NMR (400 MHz, C6D6) δ 7.β1 – 7.14 (m, 4H), 7.1β – 7.06 (m, 1H), 5.γκ (t, 
J = 5.γ Hz, 1H), β.λ0 (d, J = 5.γ Hz, βH), 0.λκ (t, J = κ.0 Hz, 1κH), 0.61 (q, J = κ.0 Hz, 1βH). 
13C{1H} NMR(101 MHz, C6D6) δ 1γκ.0, 1γ0.γ, 1βκ.4, 1β6.6, λ4.6, 4κ.γ, 7.β, 5.κ. 29Si{1H} 
NMR (7λ MHz, C6D6) δ 15.64. 

 
The compound 55c was prepared as described in the general procedure in 6β% yield 
(11κ.0 mg).[1] 1H NMR (400 MHz, C6D6) δ 7.β1 – 7.1λ (m, 1H), 7.10 – 7.0γ (m, γH), 5.44 (t, 
J = 5.5 Hz, 1H), β.λ7 (d, J = 5.5 Hz, βH), β.βλ (s, γH), 0.λκ (t, J =κ.0 Hz, 1κH), 0.6β (q, J = 

κ.0 Hz, 1βH). 13C{1H} NMR (101 MHz, C6D6) δ 1γ7.0, 1γ6.4, 1γ1.1, 1γ0.4, 1β6.κ, 1β6.1, λ4.γ, 
45.1, β0.1, 7.1, 5.7. 29Si{1H} NMR (7λ MHz, C6D6) δ 15.75. 

 
The compound 55d was prepared as described in the general procedure in κ6% yield 
(16γ.7 mg).[1] 1H NMR (400 MHz, C6D6) δ 7.1γ – 7.05 (m, γH), 6.λ4 (d, J = 7.4 Hz, 1H), 5.4β 
(t, J = 5.γ Hz, 1H), β.λ4 (d, J = 5.γ Hz, βH), β.1λ (s, γH), 1.00 (t, J = 7.λ Hz, 1κH), 0.6γ (q, J 
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= 7.λ Hz, 1βH). 13C{1H} NMR (75 MHz, C6D6) δ 1γ7.λ, 1γ7.6, 1γ1.γ, 1β7.4, λ4.7, 4κ.β, β1.4, 
7.β, 5.κ. 29Si{1H} NMR (7λ MHz, C6D6) δ 15.60. 

OSiEt3

OSiEt3  
The compound 55e was prepared as described in the general procedure in λ0% yield 
(171.γ mg).[1] 1H NMR (400 MHz, C6D6) δ 7.17 (d, J = 7.κ Hz, βH), 7.0β (d, J = 7.κ Hz, βH), 
5.41 (t, J = 5.γ Hz, 1H), β.λγ (d, J = 5.γ Hz, βH), β.14 (s, γH), 1.00 (t, J = 7.λ Hz, 1κH), 0.65 
(q, J = κ.0 Hz, 1βH). 13C{1H} NMR (75 MHz, C6D6) δ 1γ5.λ, 1γ5.0, 1γ0.β, 1βλ.1, λ4.κ, 47.λ, 
β1.1, 7.β, 5.κ. 29Si{1H} NMR (7λ MHz, C6D6) δ 15.5λ. 

 
The compound 55f was prepared as described in the general procedure (1κκ.4 mg) in λ5% 
yield.[1] 1H NMR (400 MHz, C6D6) δ 7.16 (d, J = κ.5 Hz, βH), 6.κβ (d, J = κ.5 Hz, βH), 5.40 
(t, J = 5.β Hz, 1H), γ.γγ (s, γH), β.λ1 (d, J = 5.β Hz, βH), 1.01 (t, J = κ.0 Hz, 1κH), 0.65 (q, J 

= κ.1 Hz, 1βH). 13C{1H} NMR (75 MHz, C6D6) δ 15λ.0, 1γ1.β, 1γ0.0, 114.0, λ4.κ, 54.κ, 47.4, 
7.β, 5.κ. 29Si{1H} NMR (7λ MHz, C6D6) δ 15.60. 

 
The compound 55g was prepared as described in the general procedure (177.0 mg) in λβ% 
yield.[1] 1H NMR (400 MHz, C6D6) δ 6.λλ (dd, J = κ.5, 5.6 Hz, βH), 6.κγ (t, J = κ.7 Hz, βH), 
5.βλ (t, J = 5.β Hz, 1H), β.7λ (d, J = 5.β Hz, βH), 0.λ7 (t, J = 7.λ Hz, 1κH), 0.60 (q, J = κ.β Hz, 
1βH). 13C{1H} NMR (75 MHz, C6D6) δ 16β.γ (d, J = β4γ.λ Hz), 1γγ.6 (d, J = γ.β Hz), 1γ1.7 
(d, J = 7.7 Hz), 115.1 (d, J = β1.0 Hz), λ4.γ, 47.β, 7.1, 5.7. 19F NMR (γ76 MHz, C6D6) δ -
116.76. 29Si{1H} NMR (7λ MHz, C6D6) δ 15.κκ. 

 
The compound 55h was prepared as described in the general procedure (1λ6.6 mg) in λκ% 
yield.[1] 1H NMR (400 MHz, C6D6) δ 7.16 – 7.1γ (m, βH), 6.λ4 (d, J = κ.γ Hz, βH), 5.βκ (t, J 

= 5.β Hz, 1H), β.75 (d, J = 5.β Hz, βH), 0.λ7 (t, J = 7.λ Hz, 1κH), 0.5λ (q, J = κ.β Hz, 1βH). 
13C{1H} NMR (101 MHz, C6D6) δ 1γ6.4, 1γβ.6, 1γ1.7, 1βκ.5, λ4.1, 47.γ, 7.1, 5.7.  
29Si{1H} NMR (7λ MHz, C6D6) δ 15.λκ. 

 
The compound 55j was prepared as described in the general procedure (14γ.1 mg) in 75% 
yield.[1] 1H NMR (400 MHz, C6D6) δ 7.07 (d, J = κ.γ Hz, βH), 6.γ6 (d, J = κ.γ Hz, βH), 5.γλ 
(t, J = 5.γ Hz, 1H), β.κλ (d, J = 5.γ Hz, βH), β.77 (br, βH), 1.0β (t, J = 7.λ Hz, 1κH), 0.65 (q, J 

= κ.1 Hz, 1βH). 13C{1H} NMR (101 MHz, C6D6) δ 145.7, 1γ1.0, 1β7.4, 114.λ, λ5.1, 47.5, 7.β, 
5.κ. 29Si{1H} NMR (7λ MHz, C6D6) δ 15.41. 
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The compound 55l was prepared as described in the general procedure (15κ.4 mg) in 75% 
yield.[1] 1H NMR (γ00 MHz, C6D6) δ κ.1λ (d, J = κ.4 Hz, 1H), 7.67 (d, J = κ.β Hz, 1H), 7.5λ 
(d, J = κ.1 Hz, 1H), 7.γκ – 7.γβ (m, βH), 7.βλ – 7.β4 (m, βH), 5.6γ (t, J = 5.4 Hz, 1H), γ.41 (d, 
J = 5.γ Hz, βH), 0.λγ (t, J = 7.λ Hz, 1κH), 0.56 (q, J = κ.β Hz, 1βH). 13C{1H} NMR (75 MHz, 
C6D6) δ 1γ4.5, 1γ4.4, 1γγ.γ, 1βλ.0, 1βκ.5, 1β7.6, 1β5.λ, 1β5.7 (βC), 1β4.κ, λ4.β, 45.0, 7.1, 5.κ. 
29Si{1H} NMR (7λ MHz, C6D6) δ 15.κ4. 

 
The compound 55m was prepared as described in the general procedure (10λ.0 mg) in 5λ% 
yield.[1] 1H NMR (γ00 MHz, C6D6) δ 6.κκ (dd, J = 4.κ, 1.5 Hz, 1H), 6.7κ – 6.75 (m, βH), 5.41 
(t, J = 5.0 Hz, 1H), γ.0λ (d, J = 4.λ Hz, βH), 1.00 (t, J = 7.λ Hz, 1κH), 0.64 (q, J = κ.0 Hz, 1βH). 
13C{1H} NMR (75 MHz, C6D6) δ 1γλ.5, 1β6.7, 1β6.5, 1β4.4, λγ.λ, 4β.β, 7.β, 5.κ.  
29Si{1H} NMR (7λ MHz, C6D6) δ 16.16. 

 
The compound 55n was prepared as described in the general procedure (1κ0.5 mg) in κλ% 
yield.[1] 1H NMR (γ00 MHz, C6D6) δ 7.κ1 – 7.7κ (m, 1H), 7.β4 – 7.1λ (m, βH), 7.0λ – 7.05 (m, 
1H), 6.7β (s, βH), 5.5κ (t, J = 5.γ Hz, 1H), γ.1κ (d, J = 5.γ Hz, βH), 1.00 (t, J = 7.λ Hz, 1κH), 
0.65 (q, J = κ.0 Hz, 1βH). 13C{1H} NMR (75 MHz, C6D6) δ 1γ6.6, 1βκ.6, 1βγ.0, 1ββ.1, 11λ.6, 
11λ.5, 11β.0, 111.γ, λ4.β, γ7.κ, 7.β, 5.κ. 29Si{1H} NMR (7λ MHz, C6D6) δ 15.5β. 

 
The compound 55o was prepared as described in the general procedure (177.0 mg) in λγ% 
yield.[1] 1H NMR (400 MHz, C6D6) δ 7.β0 – 7.16 (m, 4H), 7. 0κ – 7.04 (m, 1H), 5.βλ (t, J = 

4.λ Hz, 1H), β.κ4 – β.κ0 (m, βH), β.00 – 1.λ5 (m, βH), 1.0γ (t, J = 7.λ Hz, 1κH), 0.67 (q, J = 

7.λ Hz, 1βH). 13C{1H} NMR (101 MHz, C6D6) δ 14β.5, 1βκ.κ (βC), 1β6.β, λγ.β, 4γ.0, γ1.4, 
7.β, 5.λ. 29Si{1H} NMR (7λ MHz, C6D6) δ 15.γ6. 

 
The compound 55p was prepared as described in the general procedure (β1κ.0 mg) in λκ% 
yield.[1] 1H NMR (400 MHz, C6D6) δ 5.γ4 (t, J = 5.0 Hz, 1H), 1.75 – 1.70 (m, βH), 1.5λ-1.5γ 
(m, βH), 1.γ7– 1.γ0 (m, 1κH), 1.07 (t, J = 7.λ Hz, 1κH), 0.λβ (t, J = I6.4 Hz, γH), 0.7β (q, J = 

7.λ Hz, 1βH). 13C{1H} NMR (101 MHz, C6D6) δ λ4.0, 41.4, γβ.4, γ0.ββ, γ0.17, γ0.14, γ0.1γ, 
γ0.10, γ0.0, βλ.κ, β5.1, βγ.1, 14.4, 7.γ, 5.λ. 29Si{1H} NMR (7λ MHz, C6D6) δ 14.λ4. 

 

 



226 

 

 
The compound 55q was prepared as described in the general procedure (βγ6.β mg) in λ7% 
yield.[1] 1H NMR (400 MHz, C6D6) δ 5.βλ (t, J = 5.0 Hz, 1H), 1.6λ – 1.64 (m, βH), 1.5γ-1.50 
(m, βH), 1.γ4 – 1.γ0 (m, β4H), 1.04 (t, J = κ.0 Hz, 1κH), 0.λ1 (t, J = 6.κ Hz, γH), 0.6κ (q, J = 

7.λ Hz, 1βH). 13C{1H} NMR (101 MHz, C6D6) δ λ4.0, 41.5, γβ.4, γ0.γ, γ0.βγ, γ0.17, γ0.1, 
βλ.λ, β5.β, βγ.β, 14.4, 7.γ, 6.0. 29Si{1H} NMR (7λ MHz, C6D6) δ 14.7λ. 

 
The compound 55r was prepared as described in the general procedure (βγκ.5 mg) in λγ% 
yield.[1] 1H NMR (400 MHz, C6D6) δ 5.54 – 5.46 (m, βH), 5.γγ (t, J = 5.0 Hz, 1H), β.1γ – β.0κ 
(m, 4H), 1.74 – 1.6λ (m, βH), 1.56-1.5γ (m, βH), 1.4β – 1.β1jk (m, β0H), 1.07 (t, J = 7.λ Hz, 
1κH), 0.λβ (t, J = 6.7 Hz, γH), 0.7β (q, J = κ.0 Hz, 1βH). 13C{1H} NMR (1β6 MHz, C6D6) δ 
1γ0.γ, 1γ0.β, λγ.λ, 41.4, γβ.γ, γ0.γ, γ0.β, γ0.1, γ0.00, βλ.λκ, βλ.7λ, βλ.77,  βλ.6λ, β7.7, β5.1, 
βγ.1, 14.4, 7.γ, 5.λ. 29Si{1H} NMR (7λ MHz, C6D6) δ 14.λγ. 

 
The compound 55s was prepared as described in the general procedure (βββ.γ mg) in κ7% yield. 
1H NMR (400 MHz, C6D6) δ 5.5γ – 5.4γ (m, 4H), 5.γβ (t, J = 5.0 Hz, 1H), β.κλ (t, J = 6.0 Hz, 
βH), β.11 – β.05 (m, 4H), 1.7γ – 1.6κ (m, βH), 1.50 – 1.β5 (m, 16H), 1.07 (t, J = 7.λ Hz, 1κH), 
0.κλ (t, J = 6.λ Hz, γH), 0.71 (q, J = 7.λ Hz, 1βH). 13C{1H} NMR (101 MHz, C6D6) δ 1γ0.4, 
1γ0.4, 1βκ.5, 1βκ.4, λγ.λ, 41.4, γ1.λ, γ0.14, γ0.1β, γ0.0, βλ.κ, βλ.7, β7.71, β7.66, β6.β, β5.1, 
βγ.0, 14.γ, 7.γ, 5.λ. 29Si{1H} NMR (7λ MHz, C6D6) δ 14.λβ. HR-MS (‐SI)μ m/z calcd for 
Cγ0H6βOβNaSiβ (M + Na+) 5γγ.41κ06, found 5γγ.4176 (1 ppm).  

 
The compound 55t was prepared as described in the general procedure (γ4λ.β mg) in λλ% 
yield.[1] 1H NMR (500 MHz, C6D6) δ 5.γβ – 5.βλ (m, βH), 1.70 – 1.67 (m, 4H), 1.γ4 – 1.γ0 (m, 
1κH), 1.06 (t, J = κ.0 Hz, γ6H), 0.70 (q, J = 7.λ Hz, β4H). 13C{1H} NMR (1β6 MHz, C6D6) δ 
λ4.0, 41.5, γ0.β, γ0.15, γ0.1γ, γ0.0, β5.1, 7.γ, 6.0. 29Si{1H} NMR (7λ MHz, C6D6) δ 14.κ6. 

 
The compound 55u was prepared as described in the general procedure (1γγ.7 mg) in λβ% 
yield.[1] 1H NMR (500 MHz, C6D6) δ 5.40 (q, J = 4.λ Hz, 1H), 1.γγ (d, J = 4.λ Hz, γH), 1.0γ 
(t, J = κ.0 Hz, 1κH), 0.66 (q, J = κ.0 Hz, 1βH). 13C{1H} NMR (1β6 MHz, C6D6) δ λ0.λ, β7.κ, 
7.β, 5.κ. 29Si{1H} NMR (7λ MHz, C6D6) δ 14.κγ. 

 
The compound 55v was prepared as described in the general procedure (1β4.5 mg) in λ0% 
yield.[1] 1H NMR (400 MHz, C6D6) δ 5.05 (s, βH), 1.0β (t, J = 7.λ Hz, 1κH), 0.64 (q, J = κ.0 
Hz, 1βH). 13C{1H} NMR (101 MHz, C6D6) δ κ4.5, 7.0, 5.γ. 29Si{1H} NMR (7λ MHz, C6D6) δ 
1κ.γγ. 
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The compound 55w was prepared as described in the general procedure (16γ.β mg) in λ1% 
yield.[β] 1H NMR (400 MHz, C6D6) δ 5.0λ (d, J = γ.1 Hz, 1H), 1.κλ – 1.66 (m, 5H), 1.47 – 1.β1 
(m, 6H), 1.05 (t, J = 7.λ Hz, 1κH), 0.70 (q, J = 7.λ Hz, 1βH). 13C{1H} NMR (101 MHz, C6D6) 
δ λ6.4, 47.7, β7.5, β7.β, β6.7, 7.γ, 5.λ. 29Si{1H} NMR (7λ MHz, C6D6) δ 14.71. 

 
The compound 55x was prepared as described in the general procedure (155.1 mg) in λ0% 
yield. 1H NMR (400 MHz, C6D6) δ 5.β1 (d, J = 4.1 Hz, 1H), β.15 – β.06 (m, 1H), 1.70 – 1.66 
(m, κH), 1.05 (t, J = 7.λ Hz, 1κH), 0.6λ (q, J = 7.λ Hz, 1βH). 13C{1H} NMR (75 MHz, C6D6) 
δ λ5.λ, 4κ.κ, β7.κ, β6.6, 7.γ, 5.λ. 29Si{1H} NMR (7λ MHz, C6D6) δ 14.6λ. 

7.7.7. Characterization data for aldehydes 

 
The compound 60a was prepared as described in the general procedure (17.β mg) in 65% 
yield.[γ] 1H NMR (400 MHz, CDClγ) 10.0β (s, 1H), 7.λ0 – 7.κ7 (m, βH), 7.66 – 7.61 (m, 1H), 
7.55 – 7.51 (m, βH). 13C{1H} NMR (101 MHz, CDClγ) δ 1λβ.5, 1γ6.6, 1γ4.6, 1βλ.λ, 1βλ.1. 

 
The compound 60b was prepared as described in the general procedure (γβ.0 mg) in κβ% 
yield.[γ] 1H NMR (400 MHz, CDClγ) δ 10.14 (s, 1H), κ.γ1 (s, 1H), 7.λκ (d, J = κ.1 Hz, 1H), 
7.λ6 – 7.κ7 (m, γH), 7.65 – 7.61 (m, 1H), 7.60 – 7.56 (m, 1H). 13C{1H} NMR (101 MHz, 
CDClγ) δ 1λβ.γ, 1γ6.5, 1γ4.6, 1γ4.β, 1γβ.7, 1βλ.6, 1βλ.1κ, 1βλ.15, 1βκ.1, 1β7.β, 1ββ.κ. 

 
The compound 60c was prepared as described in the general procedure (β6.λ mg) in 7λ% 
yield.[4] 1H NMR (400 MHz, CDClγ) δ λ.κκ (s, 1H), 7.κγ (d, J = κ.κ Hz, βH), 6.λλ (d, J = κ.κ 
Hz, βH), γ.κκ (s, γH). 13C{1H} NMR (101 MHz, CDClγ) δ 1λ0.λ, 164.7, 1γβ.1, 1γ0.1, 114.4, 
55.7. 

 
The compound 60d was prepared as described in the general procedure (βγ.5 mg) in 6γ% 
yield.[5] 1H NMR (400 MHz, CDClγ) δ λ.74 (s, 1H), 7.7γ (d, J = κ.λ Hz, βH), 6.70 (d, J = κ.λ 
Hz, βH), γ.0κ (s, 6H). 13C{1H} NMR(101 MHz, CDClγ) δ 1λ0.4, 154.5, 1γβ.1, 1β5.γ, 111.1, 
40.β. 
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The compound 60g was prepared as described in the general procedure (κ.κ mg) in β7% yield.[6] 
1H NMR (400 MHz, CDClγ) δ 10.0λ (s, 1H), 7.λλ (d, J = κ.4 Hz, βH), 7.κ4 (d, J = κ.β Hz, βH). 
13C{1H} NMR (101 MHz, CDClγ) δ 1λ0.7, 1γκ.λ, 1γγ.0, 1γ0.0, 117.κ, 117.7. 

 
The compound 60h was prepared as described in the general procedure (1γ.λ mg) in 5κ% 
yield.[7] 1H NMR (400 MHz, CDClγ) δ λ.65 (s, 1H), 7.6κ – 7.6κ (m, 1H), 7.β4 (dd, J = γ.6, 0.κ 
Hz, 1H), 6.5λ (dd, J = γ.6, 1.7 Hz, 1H). 13C{1H} NMR (101 MHz, CDClγ) δ 17κ.0, 15γ.1, 
14κ.β, 1β1.1, 11β.7. 

 
The compound 60i was prepared as described in the general procedure (17.γ mg) in 55% 
yield.[κ] 1H NMR (400 MHz, CDClγ) δ λ.κ0 (s, 1H), 7.5λ (d, J = γ.7 Hz, 1H), 6.κκ (dd, J = γ.7, 
0.κ Hz, 1H), β.57 (s, γH). 13C{1H} NMR (101 MHz, CDClγ) δ 1κβ.7, 151.κ, 14β.1, 1γ7.4, 
1β7.β, 16.4. 

 
The compound 60j was prepared as described in the general procedure (6.γ mg) in βγ% yield.[λ] 
1H NMR (400 MHz, CDClγ) δ λ.55 (d, J = 0.κ Hz, 1H), 6.λ1 (dd, J = 4.0, 1.7 Hz, 1H), 6.κκ – 
6.κ7 (m, 1H), 6.β1 (dd, J = 4.0, β.4 Hz, 1H), γ.λ5 (s, γH). 13C{1H} NMR (101 MHz, CDClγ)  
δ 17λ.7, 1γβ.15, 1γβ.1β, 1β4.β, 10λ.6, γ6.6. 

7.7.8. Characterization data for the hydrosilylation products 

 
The compound 58a was prepared as described in the general procedure (method A) (1βλ.κ mg) 
in κβ% yield. 1H NMR (400 MHz, CDClγ) δ 7.κβ – 7.76 (m, γH), 7.67 (s, 1H), 7.47 – 7.40 (m, 
βH), 7.γκ (dd, J = κ.4, 1.6, 1H), 4.λ4 (ABX, JAX = 6.1, JBX = 4.7 Hz, 1H), γ.γ4 (s, γH), γ.05 
(ABX, JAB = 1γ.7, JAX = 6.1, JBX = 4.7, ∆ν = 60.4 Hz, βH), 0.λ4 (t, J = 7.λ Hz, λH), 0.60 (q, J = 

κ.β Hz, 6H). 13C{1H} NMR (101 MHz, CDClγ) δ 1γ4.λ, 1γγ.6, 1γβ.4, 1βκ.4, 1βκ.γ, 1β7.κ, 
1β7.7β, 1β7.6κ, 1β6.0, 1β5.4, λλ.λ, 54.1, 44.4, 6.λ, 5.1. 29Si{1H} NMR (κ0 MHz, C6D6) δ 16.κ. 

 
The compound 58b was prepared as described in the general procedure (method B) (11λ.λ mg) 
in λβ% yield.[10] 1H NMR (400 MHz, C6D6) δ 7.βγ – 7.β0 (m, βH), 7.1κ – 7.15 (m, βH), 7.10 
– 7.06 (m, 1H), 4.κκ (ABX, JAX = 5.7, JBX = 5.0 Hz, 1H), γ.15 (s, γH), β.λ4 (ABX, JAB = 1γ.5, 
JAX = 5.7, JBX = 5.0, ∆ν = 65.4 Hz, βH), 0.λ6 (t, J = 7.λ Hz, λH), 0.56 (q, J = κ.1 Hz, 6H). 
13C{1H} NMR (101 MHz, C6D6) δ 1γ7.λ, 1γ0.β, 1βκ.5, 1β6.6, 100.β, 5γ.γ, 44.4, 7.1, 5.4. 
29Si{1H} NMR (7λ MHz, C6D6) δ 16.6κ. 
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The compound 58c was prepared as described in the general procedure (method B) (105.β mg) 
in 75% yield. 1H NMR (γ00 MHz, CDClγ) δ 7.β0 – 7.10 (m, 4H), 4.κ7 (ABX, JAX = 5.λ, JBX = 
5.βk Hz, 1H), γ.γγ (s, γH), β.λβ (ABX, JAB = 1γ.κ, JAX = 5.λ, JBX = 5.β, ∆ν = 4κ.1 Hz, βH), β.γ5 
(s, γH), 0.λγ (t, J = 7.λ Hz, λH), 0.57 (q, J = 7.5 Hz, 6H). 13C{1H} NMR (75 MHz, CDClγ)  
δ 1γ6.λ, 1γ5.κ, 1γ0.6, 1γ0.β, 1β6.6, 1β5.κ, λλ.5, 54.0, 41.β, β0.0, 6.λ, 5.1. 29Si{1H} NMR (κ0 
MHz, C6D6) δ 16.7. 

 
The compound 58d was prepared as described in the general procedure (method B) (λ5.4 mg) 
in 6κ% yield. 1H NMR δ 7.1γ – 7.11 (m, 1H), 7.0κ – 7.06 (m, βH), 6.λγ (d, J = 7.β Hz, 1H), 
4.λ1 (ABX, JAX = 5.6, JBX = 5.1 Hz, 1H), γ.17 (s, γH), β.λ5 (ABX, JAB = 1γ.5, JAX = 5.6, JBX = 
5.1k, ∆ν = 6γ.4 Hz, βH), β.16 (s, γH), 0.λ7 (t, J = 7.λ Hz, λH), 0.5κ (t, J = κ.0 Hz, 6H).  
13C{1H} NMR (101 MHz, C6D6) δ 1γ7.κ, 1γ7.7, 1γ1.1, 1βκ.4, 1β7.4, 1β7.γ, 100.γ, 5γ.γ, 44.4, 
β1.4, 7.1, 5.5. 29Si{1H} NMR (κ0 MHz, C6D6) δ 16.55. 

 
The compound 58e was prepared as described in the general procedure (method A) (11β.β mg) 
in κ0% yield. 1H NMR (γ00 MHz, C6D6) δ 7.17 (d, J = 7.κ Hz, βH), 7.01 (d, J = 7.κ Hz, βH), 
4.λ0 (ABX, JAX = 5.λ, JBX = 4.λ Hz, 1H), γ.17 (s, γH), β.λ5 (ABX, JAB = 1γ.6, JAX = 5.λ, JBX = 
4.λ, ∆ν = 55.γ Hz, βH), β.1γ (s, γH), 0.λ7 (t, J = 7.λ Hz, 10H), 0.5κ (q, J = κ.β Hz, 7H). 
 13C{1H} NMR (75 MHz, C6D6) δ 1γ5.κ, 1γ4.λ, 1γ0.1, 1βλ.β, 100.4, 5γ.4, 44.1, β1.1, 7.1, 5.5. 
29Si{1H} NMR (κ0 MHz, C6D6) δ 16.54. 

 
The compound 58f was prepared as described in the general procedure (method A) (1βλ.0 mg) 
in κ7% yield. 1H NMR (γ00 MHz, C6D6) δ 7.17 – 7.14 (m, βH), 6.κγ – 6.7λ (m, βH), 4.κ7 
(ABX, JAX = 5.κ, JBX = 4.λ Hz, 1H), γ.γβ (s, γH), γ.1κ (s, γH), β.λγ (ABX, JAB = 1γ.7, JAX = 
5.κ, JBX = 4.k, ∆ν = 54.κ Hz, βH), 0.λκ (t, J = 7.λ Hz, 10H), 0.5λ (q, J = κ.β Hz, 7H).  
13C{1H} NMR (75 MHz, C6D6) δ 15λ.0, 1γ1.1, 1βλ.λ, 114.0, 100.4, 54.κ, 5γ.4, 4γ.6, 7.1, 5.5. 
29Si{1H} NMR (κ0 MHz, C6D6) δ 16.5. 

 
The compound 58g was prepared as described in the general procedure (method A) (101.λ mg) 
in 5λ% yield. 1H NMR (γ00 MHz, CDClγ) δ 7.4β – 7.γ7 (m, βH), 7.1β – 7.0κ (m, βH), 4.κ1 
(ABX, JAX = 5.λ, JBX = 4.6 Hz, 1H), γ.γ1 (s, γH), β.κγ (ABX, JAB = 1γ.7, JAX = 5.λ, JBX = 4.6, 
∆ν = 4λ.λ Hz, βH), 0.λ4 (t, J = 7.λ Hz, λH), 0.5λ (q, J = κ.5, κ.0 Hz, 6H). 13C{1H} NMR 
(75 MHz, CDClγ) δ 1γ6.γ, 1γ1.6, 1γ1.γ, 1β0.4, λλ.4, 54.0, 4γ.5, 6.λ, 5.1. 29Si{1H} NMR 
(κ0 MHz, C6D6) δ 16.λ6. 
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The compound 58h was prepared as described in the general procedure (method B) (165.κ mg) 
in λγ% yield. 1H NMR (γ00 MHz, CDClγ) δ 7.40 – 7.γ6 (m, 4H), 7.γ5 – 7.β6 (m, γH), 7.βγ – 
7.16 (m, γH), 4.λγ (ABX, JAX = 6.γ, JBX = 4.0 Hz, 1H), 4.77 (d, J = 11.κ Hz, 1H), 4.4λ (d, J = 

11.κ Hz, 1H), β.κ6 – β.65 (m, βH), β.1β – 1.κγ (m, βH), 1.00 (t, J = 7.λ Hz, λH), 0.67 (q, J = 

7.κ Hz, 6H). 13C{1H} NMR (75 MHz, CDClγ) δ 14β.1, 1γκ.6, 1βκ.5β, 1βκ.4λ, 1βκ.47, 1β7.κ, 
1β7.6, 1β5.λ, λ7.1, 6κ.γ, γλ.5, γ0.λ, 7.0, 5.γ. 29Si{1H} NMR (κ0 MHz, C6D6) δ 17.1. 

 
The compound 58i was prepared as described in the general procedure (method A) (1γ5.5 mg) 
in λβ% yield.[10] 1H NMR (γ00 MHz, C6D6) δ 7.β1 – 7.1κ (m, 4H), 7.1β – 7.05 (m, 1H), 4.κ1 
(ABX, JAX = 5.λ, JBX = 4.γ Hz, 1H)z, γ.7β – γ.6β (m, 1H), γ.γ6 – γ.ββ (m, 1H), β.κγ – β.77 (m, 
βH), β.1β – 1.λ1 (m, βH), 1.16 (t, J = 7.0 Hz, γH), 1.0γ (t, J = 7.λ Hz, λH), 0.64 (q, J = κ.β Hz, 
6H). 13C{1H} NMR (75 MHz, C6D6) δ 14β.5, 1βκ.κ, 1βκ.7, 1β6.1, λ7.7, 61.κ, γλ.κ, γ1.β, 15.6, 
7.β, 5.7. 29Si{1H} NMR (κ0 MHz, C6D6) δ 15.66. 

 
The compound 58j was prepared as described in the general procedure (method B) (10β.4 mg) 
in 7γ% yield. 1H NMR (γ00 MHz, C6D6) δ 7.β1 – 7.1κ (m, 4H), 7.11 – 7.05 (m, 1H), 4.7β 
(ABX, JAX = 5.κ, JBX = 4.4 Hz, 1H), γ.ββ (s, γH), β.7κ (t, J = κ.0 Hz, βH), β.10 – 1.κλ (m, βH), 
1.0β (t, J = 7.λ Hz, λH), 0.64 (q, J = κ.β Hz, 6H). 13C{1H} NMR (101 MHz, C6D6) δ 14β.0, 
1βκ.4, 1βκ.γ, 1β5.7, λκ.γ, 5β.λ, γκ.λ, γ0.κ, 6.7, 5.β. 29Si{1H} NMR (κ0 MHz, C6D6) δ 16.15. 

 
The compound 58l was prepared as described in the general procedure (method A) (1γ5.5 mg) 
in κ6% yield. 1H NMR (400 MHz, C6D6) δ 7.57 – 7.55 (m, βH), 7.ββ – 7.17 (m, βH), 7.1γ – 
7.0λ (m, 1H), 5.κ1 (s, 1H), γ.15 (s, γH), 0.λκ (t, J = 7.λ Hz, λH), 0.6γ (q, J = κ.0 Hz, 6H). 
13C{1H} NMR (101 MHz, C6D6) δ 141.7, 1βκ.5, 1βκ.4, 1β6.λ, λκ.0, 51.6, 7.0, 5.4.  
29Si{1H} NMR (κ0 MHz, C6D6) δ 1κ.6. 

 
The compound 58p was prepared as described in the general procedure (method A) (λ4.5 mg) 
in 7κ% yield. 1H NMR (400 MHz, C6D6) δ 7.0λ (s, 1H), 6.γκ (d, J = γ.0 Hz, 1H), 6.0λ – 6.0κ 
(m, 1H), 5.λ0 (s, 1H), γ.60 – γ.4κ (m, βH), 1.11 (t, J = 7.0 Hz, γH), 1.00 (t, J = 7.λ Hz, λH), 
0.65 (q, J = 7.λ Hz, 6H). 13C{1H} NMR(101 MHz, C6D6) δ 155.0, 14β.0, 110.γ, 107.5, λβ.1, 
60.6, 15.4, 7.0, 5.γ. 29Si{1H} NMR (7λ MHz, C6D6) δ 1λ.10. 
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The compound 58s was prepared as described in the general procedure (method B) (140.7 mg) 
in λγ% yield. 1H NMR (400 MHz, C6D6) δ 4.76 (ABX, JAX = 5.κ, JBX = 4.6 Hz, 1H), γ.βγ (s, 
γH), 1.κγ – 1.64 (m, βH), 1.γ1 – 1.β6 (m, 14H), 1.04 (t, J = 7.λ Hz, λH), 0.λ0 (t, J = 6.κ Hz, 
γH), 0.67 (q, J = 7.λ Hz, 6H). 13C{1H} NMR (101 MHz, C6D6) δ λλ.5, 5γ.1, γ7.6, γβ.γ, γ0.β, 
γ0.1, γ0.0, βλ.κ, β5.0, βγ.1, 14.4, 7.β, 5.7. 29Si{1H} NMR (κ0 MHz, C6D6) δ 15.7. 

 
The compound 58t was prepared as described in the general procedure (method B) (15β.7 mg) 
in 74% yield. 1H NMR (400 MHz, C6D6) δ 5.5γ – 5.4γ (m, βH), 4.75 (ABX, JAX = 5.7, JBX = 
4.6 Hz, 1H), γ.βγ (s, γH), β.1 – β.05 (m, 4H), 1.κ0 – 1.6β (m, βH), 1.γλ – 1.βκ (m, ββH), 1.04 
(t, J = 7.λ Hz, λH), 0.λ1 (t, J = 6.κ Hz, γH), 0.66 (q, J = 7.λ Hz, 6H). 13C{1H} NMR (1β6 MHz, 
C6D6) δ 1γ0.β, λλ.5, 5γ.1, γ7.6, γβ.γ, γβ.γγ, γ0.β6, γ0.βγ, γ0.04, γ0.0β, γ0.00, βλ.κ, βλ.7, β7.7, 
β5.0, βγ.1, 14.4, 7.β, 5.7. 29Si{1H} NMR (7λ MHz, C6D6) δ 15.70. 

 
The compound 58q was prepared as described in the general procedure (method A) (λ1.0 mg) 
in κλ% yield. 1H NMR (400 MHz, C6D6) δ 4.λ1 (q, J = 5.1 Hz, 1H), γ.71 – γ.64 (m, 1H), γ.γβ 
– γ.β4 (m, 1H), 1.γγ (d, J = 4.κ Hz, γH), 1.14 (t, J = 7.0 Hz, γH), 1.01 (t, J = 7.λ Hz, λH), 0.6β 
(q, J = λ.6, κ.7 Hz, 6H). 13C{1H} NMR (101 MHz, C6D6) δ λ5.β, 61.6, β4.4, 15.6, 7.1, 5.6. 
29Si{1H} NMR (κ0 MHz, C6D6) δ 15.0. 

 
The compound 58r was prepared as described in the general procedure (method B) (λλ.4 mg) 
in λ1% yield. 1H NMR (γ00 MHz, CDClγ) δ 4.κ5 (s, βH), γ.55 (t, J = 6.6 Hz, βH), 1.61 – 1.5β 
(m, βH), 1.44 – 1.γβ (m, βH), 0.λ7 (t, J = 7.λ Hz, λH), 0.64 (q, J = κ.γ Hz, 6H). 13C{1H} NMR 
(75 MHz, CDClγ) δ λ0.0, 67.λ, γβ.0, 1λ.5, 14.1, 6.κ, 4.κ. 29Si{1H} NMR (κ0 MHz, CDClγ)  
δ 1λ.λ. 

 
The compound 62a was prepared as described in the general procedure (method B) (55.4 mg) 
in κβ% yield. 1H NMR (400 MHz, C6D6) δ 7.γ5 – 7.γγ (m, βH), 7.β1 – 7.17 (m, βH), 7.1γ – 
7.0κ (m, 1H), γ.β6 (s, βH), β.0κ (s, 6H). 13C{1H} NMR(101 MHz, C6D6) δ 140.0, 1βλ.β, 1βκ.5, 
1β7.β, 64.6, 45.4. 

 
The compound 62b was prepared as described in the general procedure (method A) (7κ.λ mg) 
in λ0% yield. 1H NMR (400 MHz, CDClγ) δ 7.γ5 – 7.β7 (m, 5H), γ.51 (s, br, βH), β.41 (s, br, 
4H), 1.64 – 1.5κ (m, 4H), 1.50 – 1.44 (m, βH). 13C{1H} NMR (101 MHz, CDClγ) δ 1γκ.κ, 
1βλ.γ, 1βκ.β, 1β6.λ, 64.0, 54.6, β6.1, β4.5. 
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Chapter IV - (Transfer)Hydrogenation Reactions Catalyzed by Mn(I) 
Bidentate Complexes 

Introduction 
Hydrogenation with molecular dihydrogen is a clean, atom-economic and efficient reaction 

that has drawn a huge interest for more than a century from the Nobel Prize of Sabatier in 1λ1β 

for heterogeneous hydrogenation to the one of Noyori and Knowles in β001 for asymmetric 

hydrogenation.[1] Homogeneous hydrogenation catalysts are usually complexes based on late 

transition metals including ruthenium, rhodium, iridium, nickel and palladium. In the last 

decade, iron has emerged as a powerful sustainable alternative candidate in catalyzed reduction 

reactions, as it is the most abundant and inexpensive transition metal.[β] Actually, the level of 

the activity, and chemo- and enantioselectivity of iron catalytic systems is now comparable to 

the ones involving noble transition metals.[γ] Manganese, being the third most abundant 

transition metals after iron and titanium, has recently emerged as suitable transition metal for 

the design of efficient hydrogenation catalysts[4] starting with a seminal contribution of Beller 

in β016 using the Mn(I) complex 1 featuring a tridendate bis(phosphino)amine ligand 

(Scheme 1).[5] Soon after, a series of parent Mn(I) complexes exhibiting a variety of tridendate 

ligands including nitrogen and phosphorus donor fragments has been successfully applied in 

hydrogenation[6] and related hydrogen borrowing reactions,[7] selected representative examples 

being shown in Scheme 1. 

 
Scheme 1. Representative examples of manganese catalysts for redox reactions. 

In the course of our investigations directed toward manganese catalyzed reduction reactions,[κ] 

we first demonstrated that the PNγP manganese complex 4 bearing a β,6-(diaminopyridinyl)-

diphosphine ligand was suitable for the hydrogenation of carbonyl derivatives,[6c] yet with 
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moderate activity compared to PN5P analogue 3 developed by Kempe[6a] and based on the β,6-

(diaminotriazinyl)-diphosphine ligand. Searching for simpler catalytic system, we found later 

that the manganese complex 7 featuring a bidentate β-picolylamine ligand was significantly 

more active[6d] than Beller's tridendate dipicolylamine complex 5[6b] in the case of hydrogen 

transfer reaction using β-propanol as the reductant. In the meantime, Pidko and Beller showed 

that the manganese complex 6 bearing bidentate phosphinoamine ligand was as active as 1 for 

the hydrogenation of esters.[5b, λ] 
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IV-1 Hydrogenation of carbonyl derivatives catalyzed by bidentate Mn 
complexes  
Contributions in this partμ Synthesis of the complexesμ Duo Wei, Antoine Bruneau-Voisine, 

Téo Chauvinν Optimization and Scopeμ Duo Wei. 

Publicationμ D. Wei, A. Bruneau-Voisine, T. Chauvin, V. Dorcet, T. Roisnel, D. A. Valyaev, 

N. Lugan, J.-B. Sortais, Adv. Synth. Catal. 2018, 360, 676-6κ1. 

‑ollowing the development of catalyst 7 bearing a bidendate picolylamine ligand which was 

proved to be more active than catalyst 5 supported by analogue tridendate dipicolylamine 

ligand, we wanted to explore simple Mn(I) complexes bearing readily available phosphino-

pyridinyl PN bidentate ligands analogue to our pincer catalyst 4. 

1.1. Results and discussions 

1.1.1. Ligand and complex synthesis 

 
Figure 1. Manganese complexes synthesised for hydrogenation of carbonyl derivatives. 

The ligands RβP–X–Py (L1μ R = iPr, X = NHν L2μ R = Ph, X = NHν L3μ R = Ph, X = CHβ) and 

PhβP–CHβ–Qn (L4) were obtained in high yields starting from the appropriate 

chlorophosphines RβPCl and β-aminopyridine (for L1, L2),[10] β-picoline (for L3),[11] or  

β-methylquinoline (for L4),[1β] respectively, according to literature procedures. The 

corresponding complexes Mn(CO)γBr( βP,N-L1-L4) (8-11) (‑igure 1) were readily obtained 

in excellent yields (κ7-λ1%) upon simple heating of an equimolar mixture of Mn(CO)5Br and 

the given ligand in toluene at 100 °C overnight. They were fully characterised by IR and NMR 

spectroscopy, high-resolution mass spectrometry and elemental analysis. Their solid-state 

structures were determined by single-crystal X-ray diffraction. Perspective views of the 

complexes are displayed on ‑igure β for complexes 8-11, respectively. All complexes show a 

typical octahedral environment for the Mn center, the L1-L4 ligands being coordinated in a 
βP,N mode and the three carbonyl ligands being in facial position (‑igure β). 
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Figure 2. Perspective views of complexes 8-11 with thermal ellipsoids drawn at the 50% 
probability level. Hydrogen atoms, except NH, were omitted for clarity. 

1.1.2. Optimization of reaction conditions 

The catalytic activity of the new complexes 8-11 was then evaluated for the reduction of 

ketones under hydrogenation conditions (Table 1). Under the previously optimized reaction 

conditions determined for the PNγP catalyst 4,[6c] i.e. complex 8 (5.0 mol%), tBuOK (10 mol%) 

as the base, toluene, 110°C, Hβ (50 bar), ββ h, a full conversion of acetophenone 12a to the 

corresponding alcohol 13a was obtained (entry 1). The catalyst loading could be reduced to 

1.0 mol% without any alteration of the activity (Table 1, entry β). The performance of the four 

complexes was then compared at κ0 °C (entries γ-6)μ the complex 8 exhibiting the amino-

bridged diisopropylphosphino-pyridinyl bidentate ligand L1 gave a moderate conversion 

(65%), whereas the diphenylphosphino derivative 9 gave the alcohol in λ0% yield. 

Disappointingly, complexes 10 and 11 featuring the methylene-bridged PN bidentate ligands 

L3 and L4 led to the corresponding derivatives with low conversions (15 and 16% respectively, 

entries 5 and 6). The nature of the base was optimized using 9 as the pre-catalyst. KHMDS 

(potassium bis(trimethylsilyl)amide) appeared to be the best base leading to the alcohol with a 

full conversion with 1.0 mol% of complex 9 and β.0 mol% of base at κ0 °C in toluene (entry 7). 

With this base, the catalyst loading could be even decreased to 0.5 mol% (entries κ and 1β).  
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Table 1. Optimization of the reaction parameters[a] 

 
Entry Cat (mol%) Base (mol%) Temp. (°C) Solvent Yield(%)[b]

1 8 (5.0) tBuOK (10) 110 toluene >λκ 
β 8 (1.0) tBuOK (β.0) 110 toluene >λκ 
γ 8 (1.0) tBuOK (β.0) κ0 toluene 65 
4 9 (1.0) tBuOK (β.0) κ0 toluene λ0 
5 10 (1.0) tBuOK (β.0) κ0 toluene 15 
6 11 (1.0) tBuOK (β.0) κ0 toluene 16 
7 9 (1.0) KHMDS (β.0) κ0 toluene >λκ 
κ 9 (0.5) KHMDS (1.0) κ0 toluene κ1 
λ 9 (0.5) KHMDS (1.0) κ0 t-amyl alcohol 76 
10 9 (0.5) KHMDS (1.0) κ0 1,4-dioxane 11 
11 9 (0.5) KHMDS (1.0) κ0 TH‑ β 
1β 9 (0.5) KHMDS (β.0) κ0 toluene λ5 
1γ[c] 9 (0.5) KHMDS (β.0) κ0 toluene κ7 
14[d] 9 (0.5) KHMDS (β.0) κ0 toluene 7 
15 9 (0.1) KHMDS (1.0) κ0 toluene 4γ 
16 9 (0.5) KHMDS (β.0) 50 toluene λγ 
17 9 (0.5) KHMDS (β.0) 50 t-amyl alcohol 51 
1κ 9 (0.5) KHMDS (β.0) γ0 toluene 44 
1λ - KHMDS (β.0) 50 toluene 0 
β0 9 (0.5) - 50 toluene 0 
β1[e] 9 (0.5) KHMDS (β.0) κ0 toluene λγ 
[a] Typical conditionsμ in an autoclave, 9 (0.5 mol%), toluene (4 mL), ketone (β mmol), 

KHMDS (β.0 mol%), Hβ (50 bar) were added in this order.  
[b] Yield determined by GC and 1H NMR.  
[c]

 γ0 bar of Hβ. 
[d]

 10 bar of Hβ. 
[e]

 γ00 equiv. of Hg (vs 9) were added before Hβ in the reaction mixture. 

The influence of the solvent and of the pressure was also evaluated. Notably, tert-amyl alcohol 

was found to be suitable for this reaction at κ0 °C, as an alternative greener solvent (entries λ 

and 17).[1γ] However, 1,4-dioxane and TH‑ gave low yields of the alcohol 13a (entries 10 and 

11). γ0 bar of Hβ led to a slightly low yield of 13a (κ7%), while 10 bar of Hβ gave only 7% 

yield (entries 1γ and 14). With 0.1 mol% of catalyst, a TON of 4γ0 was achieved (entry 15). 

The temperature could also be lowered to 50 °C without significant loss of efficiency (entries 

16-17). At γ0 °C, however, the conversion dropped to 44% (entry 1κ). Control experiment 

showed that the presence of Hg has no influence on the reaction (entry β1 vs entry 1β). 

‐ventually, the optimal condition selected for the scope of the reaction were catalyst 9 

(0.5 mol%), KHMDS (β.0 mol%), toluene, 50 bar of hydrogen, β0 h (entry 1β). 
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1.1.3. Scope for hydrogenation of carbonyl derivatives 

Table 2. Scope of the hydrogenation of carbonyl derivatives under the catalysis of 9.[a] 

 
[a] General conditionsμ ketone (β mmol), Hβ (50 bar), 9 (0.5 mol%), KHMDS (β.0 mol%), toluene 

(4 mL, 0.5 mol •L-1), 50 °C, β0 h. Conversion determined by 1H NMR, isolated yield in 
parentheses.  

[b] 9 (0.5 mol%), KHMDS (β.0 mol%), κ0 °C.  
[c] 9 (1.0 mol%), tBuOK (β.0 mol%), κ0 °C.  
[d] 9 (5.0 mol%), tBuOK (10 mol%), κ0 °C.  
[e] 9 (1.0 mol%), tBuOK (β.0 mol%), 50 °C. 

Next, we explored the substrates scope amenable for the PN manganese precatalyst 9 in 

hydrogenation (Table β). In general, arylketones bearing both electron withdrawing and 

electron donating substituents were reduced in very good yields. In the case of p-halogenated 

ketones, fluoro- and bromo-derivatives (12e and 12g) were well tolerated with low catalyst 

loading, whereas chloro- and iodo-substituted ketones (12f and 12h) were not fully reduced, 

even under slightly forcing conditions. Steric hindrance had a noticeable influence as 

increasing the length and the branching of the alkyl chains of the ketone from methyl (12a), 

ethyl (12m) to isopropyl (13n) induced a significant drop in the conversion (λγ% for 13a, λ7% 

for 13m to γ5% for 13n). In line with these observations, β’,4’,6’-trimethylacetophenone 12o 

was not reduced with this system. Among the various coordinating functional groups, primary 

amine (13l), benzofurane (13p), and pyridine (13q) were tolerated, but a higher catalyst loading 

was required to reach good conversions. Conversely, the cyano derivative (13j) was reduced 
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in very low yield, and nitro (13k) and thiophene (13r) moieties completely inhibited the 

reaction. (see also Table γ for competitive experiments) 

Additionnally, it must be underlined that the reduction of acetophenone in the presence of 4-

nitrotoluene, in a competitive experiment, was completely inhibited (Table γ, entry 4), which 

underlined that the nitro moiety should coordinate the manganese complex. A series of 

aliphatic and cyclic ketones was reduced smoothly (13s-13w). Isolated tri-substituted C=C 

double bond in 13w remained completely intact during the hydrogenation process. In order to 

confirm this selectivity, a series of competitive reduction of acetophenone, in the presence of 

1-decene, 5-decene and 5-decyne, respectively, were conducted (Table γ, entries 1-γ). ‑inally, 

para-substituted benzaldehydes (12x-12z) were also reduced to the corresponding benzylic 

alcohols in high yields showing the tolerance toward ester (13y) and amide (13z) groups. 

 
Scheme 2. Selective reduction of conjugated enones. 

In the case of α, -unsaturated 4-phenylbut-γ-en-β-one 12aa, under the standard conditions 

(50 bar Hβ, 0.5 mol% 9, β mol% KHMDS, 50 °C, β0 h), a 1γμκ7 mixture of fully reduced 

product 13s and ketone 12s was obtained. Interestingly, under milder conditions, at γ0 °C for 

1κ h, the saturated ketone 12s was obtained selectively in λ4% isolated yield, while under 

hasher ones (50 bar Hβ, 5.0 mol% 9, 10 mol% t-BuOK, κ0 °C, 1κ  h), the saturated alcohol 13s 

was obtained quantitatively in λβ% yield (Scheme β, i and ii). Similarly, chalcone 12ab could 

be reduced selectively to 1,γ-diphenylpropan-1-one 12ac or to 1,γ(diphenylpropan-1-ol 13ac 

(Scheme β, iii and iv). The reduction of (R)-carvone 12ad, bearing both a conjugated and a 

non-conjugated C=C bond, under mild conditions (50 bar Hβ, 1.0 mol% 9, β mol% t-BuOK, 

κ0 °C, 1κ  h), led to the formation of a mixture of isomer of dihydrocarvone[14] 12ae and 12af. 
Under harsher conditions (5.0 mol% 9, 100 °C), dihydrocarveol[15] 13ad was obtained in high 

yield (κ7%). In both cases, the non-conjugated C=C bond remained intact. Compared to the 
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reduction of α, -unsaturated aldehydes by aliphatic PNP manganese catalysts 1,[5a] where the 

unsaturated alcohols were produced selectively, and to the reduction of α, -unsaturated 

esters,[5b] where solely saturated alcohols were obtained, the present catalytic system allows to 

reduce exclusively the conjugated C=C double bond, supplementing the previously described 

ones. 

Table 3. Competition reactionsa 

Entry Substrate mixture 9 [mol%] Base [mol%] Temp. 
[°C] 

Conv. [%]b

12a/14 Ketone Competition substrate 
1  Acetophenone             14a 5.0 tBuOK [10] 110 λβ/0 

β  Acetophenone    14b 5.0 tBuOK [10] 110 λλ/0 

γ  Acetophenone 
      14c 

0.5 KHMDS [β.0] 50 λ7/0 

4  Acetophenone p-Me-C6H4-NOβ 14d 0.5 KHMDS [β.0] κ0 0/0 
[a] Acetophenone 12a (β mmol), competition substrate 14 (β mmol), toluene (0.5 M), Hβ (50 bar), 

1κ h.   
[b] Conversion by 1H NMR. 

In order to evaluate additional functional group tolerance, competition reactions were also 

performed. In all the cases, the reduction of the ketone proceeded without the reduction of the 

unsaturated C-C bond (Table γ, entries 1-γ). However, the presence of nitro group inhibited 

the reduction of acetophenone (entry 4). 

1.2. Conclusion 

 
Scheme 3. Comparison of tridentate/bidentate catalytic systems for hydrogenation of ketones. 

In conclusion of this first paragraph, a series four new Mn(I) complexes bearing readily 

available phosphino-pyridinyl PN bidentate ligands have been prepared, fully characterized, 

and their catalytic activity was evaluated in the hydrogenation of aldehydes and ketones. The 

complex Mn(CO)γBr( βP,N-PhβPN(H)Py) 9 exhibited good performances for the 
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hydrogenation of carbonyl derivatives under mild conditions with low catalyst loading and 

satisfying functional group tolerance, compared to the most active catalytic systems.[6a, 6e]  

In terms of catalyst design and taking the PNγP Mn(I) complex 4 as a reference,[6c] it appears 

that simplifying the ancillary tridentate ligand to a bidentate ligand by removing one of its 

wingtip led to a dramatic increase of the activity of resulting catalytic system. Indeed, the use 

of the PN Mn(I) complex 9 allowed reducing the catalyst loading by a factor of ten, and 

lowering the temperature from 1γ0 °C to 50 °C, still keeping the same level of activity and 

chemoselectivity (Scheme γ).[6c] 
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IV-2 Reductive amination of aldehydes with H2 catalyzed by bidentate Mn 
complexes 
Contributions in this partμ Synthesis of the complexesμ Duo Wei, Antoine Bruneau-Voisineν 

Optimizationμ Duo Weiν Scopeμ Duo Wei, Antoine Bruneau-Voisine. 

Publicationμ D. Wei, A. Bruneau-Voisine, D. A. Valyaev, N. Lugan, J.-B. Sortais, Chem. 

Commun. 2018, 54, 4γ0β-4γ05. 

2.1. Introduction 

Having developed efficient catalysts for the hydrogenation of aldehydes and ketones, we 

continued to explore the potential of these catalysts in the hydrogenation of related imines C=N 

bonds. With manganese based catalysts, at the time, the access to various higher amine 

derivatives using alcohols as alkylating reagents was developed,[5c] including the N-

monomethylation of amines,[5c, 7e, 7f] aminomethylation of (hetero)arenes with methanol/ 

amines,[7j] and multi-component synthesis of quinolines,[7b] pyrroles[7i] and pyrimidines.[7h] 

Reductive amination[16] is one of the chemical reaction in the chemist tool-box for the 

preparation of amines.[17] It relies on the in situ condensation of a ketone or aldehyde with an 

amine to form the corresponding imine, which is subsequently reduced to the desired amine 

(Scheme 4), as already described for the iron catalyzed reductive amination reactions to 

synthetize cyclic amines in the presence of hydrosilanes as the reductants in Chapter III, Part 1. 

When using molecular hydrogen as reductant, it appears that the key step in the reaction 

sequence is the hydrogenation of the intermediate imine. 

 
Scheme 4. Synthesis of amines via reductive amination. 

2.2. Results and discussions 

The same bidendate catalysts 8-11 as the one studied in hydrogenation of ketones (§ β.1.) were 

further explored for the hydrogenation of imines (‑igure 1). 

2.2.1. Optimization of reaction conditions 

We initially focused on the direct hydrogenation of N-benzylideneaniline 15a as model 

substrate, using the catalyst 9 and a base, under 50 bar of Hβ, based on previously optimized 

conditions for the hydrogenation of ketones. ‑irst, we found that alcohols, including t-amyl 
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alcohol, n-BuOH, methanol and notably ethanol, were suitable solvents for the hydrogenation 

step (Table 4, entries β, λ-11) as a green solvent alternative to toluene.  

Table 4. Hydrogenation of benzylideneaniline 15aμ influence of the solvent.[a] 

 
Entry Temp. (°C) Solvent Yield (%) 
1 1γ0 Toluene 4κ 
β 1γ0 t-amyl alcohol κ1 
γ 1γ0 Dimethyl carbonate κ4 
4 1γ0 TH‑ λ5 
5 1γ0 1,4-dioxane 40 
6 1γ0 CPM‐ 4γ 
7 100 TH‑ 71 
κ 100 t-amyl alcohol βκ 
λ 100 ‐tOH λκ 
10 100 n-BuOH λ5 
11 100 MeOH κ4 
[a] Conditionsμ An autoclave was charged in a glovebox with, in this order, 15a 

(45.γ mg, 0.β5 mmol), solvent (β.0 mL), 9 (6.β mg, 5.0 mol%), tBuOK (β.κ mg, 
10 mol%), and then pressurized with Hβ (50 bar) and heated at the indicated 
temperature. Yields determined by GC and by 1H NMR spectroscopy. 

It then appeared that the nature of the base had little influence on the reactionμ tBuONa, tBuOK, 

KHMDS, or CsβCOγ led to satisfactory yieldsμ 9 (1.0 mol%), base (β.0 mol%), 100 °C, ‐tOH, 

ββ h, 41% to 64% yield, Table 5. 

Table 5. Hydrogenation of benzylideneaniline 15aμ influence of the base.[a] 

 
Entry Base (mol%) Yield (%) 
1 tBuOK (β.0) 64 
β tBuONa (β.0) 50 
γ CsβCOγ (β.0) 57 
4 KHMDS (β.0) 41 

[a] Conditionsμ An autoclave was charged in a glovebox with, in this order, 
15a (λ0.6 mg, 0.5 mmol), anhydrous ethanol (β.0 mL), 9 (β.5 mg, 
1.0 mol%), base (β.0 mol%), and then pressurized with Hβ (50 bar) and 
heated at 100 oC. Yield determined by GC and by 1H NMR spectroscopy. 

The activity of complexes 8-11 was compared under the following conditions, at κ0 °C 

with1.0 mol% catalyst and β.0 mol% of tBuOK (Table 6, entries 1-4) and the complex 9 
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appeared to be the most active one. Increasing the catalyst loading of 9 to β.0 mol% led to a 

full conversion (entry 5). Interestingly, the temperature could be decreased to 50 °C without 

any detrimental effect on activity (entry 6), and even to γ0 °C where a decent conversion still 

occurred (76%, entry 7). Controlled experiments were performed in the absence of Mn-

complex (entry κ) or base (entry λ), where nearly no amine 16a was detected. With lower 

hydrogene presure (γ0 bar), slightly lower yield of 16a (κ7%) was obtained (entry 10). 

Table 6. Optimization of the reactions conditions of the hydrogenation of benzylideneaniline 
15a with manganese catalysts 8-11. 

 
Entry[a] Catalyst (mol%) T (°C) Time (h) Yield (%)[c] 
1[a] 8 (1.0) κ0 1λ 40 
β[a] 9 (1.0) κ0 β4 74 
γ[a] 10 (1.0) κ0 1λ 17 
4[a] 11 (1.0) κ0 1λ 1 
5[b] 9 (β.0) κ0 17 >λκ 
6[b] 9 (β.0) 50 17 >λκ 
7[b] 9 (β.0) γ0 β4 76 
κ[b,d] - 50 ββ <1 
λ[b,e] 9 (β.0) 50 ββ γ 
10[b,f] 9 (β.0) 50 ββ κ7 

[a] Conditionsμ an autoclave was charged in a glovebox with, in this order, 
15a (1κ1 mg, 1.0 mmol), ‐tOH (4.0 mL), Mn-complex (1.0 mol%), 
tBuOK (β.β mg, β.0 mol%), and then pressurized with Hβ (50 bar) and 
heatedν 

[b] 15a (λ1 mg, 0.5 mmol), ‐tOH (β.0 mL), 9 (5.0 mg, β.0 mol%), tBuOK 
(β.κ mg, 5.0 mol%)ν 

[c] Yield was determined by 1H NMR spectroscopy and by GC on the crude 
mixtureν 

[d] Without Mn-complex in the presence of the base. 
[e] With 9 and without tBuOKν  

[f] γ0 bar Hβ. 

Although promising results were obtained for the hydrogenation of the aldimine 15a, the more 

challenging reduction of ketimines was not found to be efficient under the catalysis of Mn 

complex 9 (Table 7). ‐ven under harscher conditions (9 (5.0 mol%), tBuOK (10 mol%), 100 °C, 

β4 h), the corresponding amines were not detected, demonstrating that this catalytic system is 

not suitable for the reduction of ketimines.  
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Table 7. Hydrogenation of the ketimine 17a.  

 
Entry[a] 9 (mol%) tBuOK (mol%) Temp. (°C) Yield 18a (%)
1 β.0 5.0 50 <1 
β 5.0 10 100 <1 

[a] Conditionsμ an autoclave was charged in a glovebox with, in this order, ketimine 17a 
(11λ.7 mg, 0.5 mmol), anhydrous ethanol (β.0 mL), 9 (β.0 or 5.0 mol%), tBuOK (5.0 or 
10 mol%), pressurized with Hβ (50 bar), then heated at the indicated temperature. 

In terms of practical and economical synthesis, the direct reductive amination of aldehydes is 

more desirable than hydrogenation of corresponding isolated imines. Hence, we turned our 

attention towards the direct synthesis of benzylaniline 16a from benzaldehyde 19a and aniline 

20a. In a first attempt, all the components, i.e. 9, 19a, 20a, tBuOK, and Hβ, were introduced in 

an autoclave being heated at κ0 °C overnight (Scheme 5, conditions A). Disappointingly, a 

mixture of benzylalcohol 21a (44%), imine 15a (γκ%), and the desired amine 16a (1κ%) was 

obtained, showing that the hydrogenation of benzaldehyde occurred faster than the 

condensation with aniline 20a.  

 
Scheme 5. Optimization of the procedure for reductive amination of benzaldehyde with aniline 
under the catalysis of manganese complex 9.  

Conditions Aμ an autoclave was charged with 9 (5.0 mg, β.0 mol%), anhydrous ethanol 
(β.0 mL), aniline 20a (46 µL, 0.5 mmol), benzaldehyde 19a (51.0 µL, 0.5 mmol), tBuOK 
(β.κ mg, 5.0 mol%) and Hβ (50 bar) and heated at κ0 °C for β0 h. 
Conditions Bμ an autoclave was charged with 9 (5.0 mg, β.0 mol%), anhydrous ethanol 
(β.0 mL), aniline 20a (46 µL, 0.5 mmol), benzaldehyde 19a (51.0 µL, 0.5 mmol) and tBuOK 
(β.κ mg, 5.0 mol%). After heating at κ0 °C for 5 h, Hβ (50 bar) was charged and the mixture 
heated at κ0 °C for β0 h. 
Conditions Cμ in a β0 mL Schlenk tube aniline 20a (46 µL, 0.5 mmol) and benzaldehyde 19a 
(51.0 µL, 0.5 mmol) in anhydrous ethanol (β.0 mL) were heated at 100 °C for β4 h. The reaction 
mixture was transferred into an autoclave followed by 9 (5.0 mg, β.0 mol%), tBuOK (β.κ mg, 
5.0 mol%) and Hβ (50 bar), then heated at κ0 °C for β0 h. 
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In a second strategy, the condensation step was carried out in the presence of the catalyst and 

the base at κ0 °C for 5 h, then the reaction mixture was pressurized under Hβ and stirred at 

κ0 °C overnight (conditions B). Unfortunately, the main products were again alcohol 21a (61%) 

and imine 15a (βλ%). ‑inally, the condensation was first performed by reaction of the aldehyde 

with the amine in ‐tOH, leading to the imine 15a in λ0% yield after β4 h at 100 °C, and then 

the addition of the precatalyst, the base, and Hβ was done to the crude imine before heating 

under stirring at κ0 °C overnight (Conditions C). To our delight, under these conditions, the 

desired N-benzylaniline 16a was obtained in high yield (κ7%). Hereafter, to probe the scope 

of this first manganese catalyzed reductive amination system, 1.β equiv. of amines 20 were 

used to ensure the full conversion of the aldehyde 19 into the imines 15 before the 

hydrogenation step (Table κ). 

2.2.2. Scope of the reductive amination of aldehydes  

In general, as far as the formation of the imines is not a limiting step, the subsequent 

hydrogenation proceeds well for a wide variety of aldehydes and amines (Table κ). Notably, 

for benzaldehyde derivatives with anilines, the condensation takes place at r.t. in typically 

1 hour (Table κ, entry 4). ‑irst, benzaldehyde derivatives bearing either electron donating or 

electron withdrawing groups both react with anilines to afford in fine the corresponding amines 

in good yields (entries 1-16). Noticeably, halogen substituents (16f-16j), including iodo 

substituent, were well tolerated with less than 10% deiodination in the cases of 16i and 16j. 
Noticeably, esters and amides moieties were not reduced under these conditions (16l-16m). 

Interestingly, starting from 4-formylacetophenone 19o in the presence of β.β equiv. of aniline 

20a, only the aldimine moieties was reduced in the transient di-imine intermediate affording 

the corresponding amino-ketimine 16n (κκ%, entry 14) while in the presence of 1 equiv. of 

20a, amino-ketone 16o was obtained in good yield (7γ%, entry 15). In the same vein, the 

reductive amination of benzaldehyde 19a with 4-acetyl-aniline 20p led selectively to the 

corresponding 4-acetylamine 16p (λ6% yield) leaving the ketone functionality untouched 

(entry 16). Organometalllic ferrocenylcarboxaldehyde 19q was also suitable for this protocol 

leading 16q in λκ% yield (entry 17). Several heterocycles, including pyrrole, furane, pyridine, 

thiophene, and thiazole were well tolerated by the catalytic system (entries 1κ-βγ).  
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Table 8. Scope of the reductive amination of aldehydes with amines in presence of 9 as 
precatalyst.[a]  
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[a] Typical reaction conditionsμ a solution of aldehyde 19 (0.5 mmol), amine 20 (0.6 mmol) 
and anhydrous ‐tOH (β.0 mL) was stirred at 100 °C for β4 h, then transferred to a 
β0 mL autoclave followed by 9 (5.0 mg, β.0 mol%) and tBuOK (β.κ mg, 5.0 mol%). 
The autoclave was subsequently charged with Hβ (50 bar) and heated.  

[b] Isolated yield after purification.  
[c] Benzaldehyde 19a (4.γ mmol), condensationμ β h, r.t.  
[d] c.a. 10% of deiodination product.  
[e] Aniline 20a (100 L, 1.1 mmol, β.β equiv.).  
[f] Benzaldehyde 19a  (1ββ L, 1.β mmol).  
[g] 9 (5 %mol), tBuOK (10 mol%). 

It is noteworthy that this reductive amination protocol is not limited to aniline derivatives, as 

benzenesulfonylamide 20x (entry β4) as well as aliphatic primary 20y-20z and secondary 

amines 20aa-20ad (entries β5-γ0) were also successfully coupled. ‐thylenediamine 20ae 

afforded the N,N’-dibenzylethylenediamine 16ae in λ5% yield, without formation of 

imidazolines (entry γ1).[1κ] Remarkably, the amino-alcohols 20af-20ah were alkylated to 

afford selectively the corresponding hydroxyamines 16af-16ah in κγ-λ7% yields, the pending 

hydroxy group not entering into a potentially competitive N-alkylation process (entries γβ-

γ4).[5c] To complete the series of amines amenable for this transformation, α-amino-esters 16ai-
16aj were also alkylated with success  when increasing the catalytic amount of 9 to 5.0 mol% 

(entries γ5 and γ6). A series of aliphalic aldehydes 19ak-19an, including butanal 19ak, readily 

available by hydroformylation, or bio-sourced aldehydes such cinnamaldehyde 19an, were also 

successfully engaged in the present reductive amination protocol (entries γ7-40). Non-

conjugated C=C were typically not reduced in the course of the reaction (entries γκ and γλ), 

while the conjugated C=C bond in cinnalmahedyde 19an was reduced under harsher conditions 

(100 °C, 4κ h, entry 40), e.g.under standard conditions, c.a. 10% of  -unsatured amine 16an’ 

was identified in the crude mixture, which is in line with the selectivity observed for the 

reduction of α, -unsatured ketones.[1λ] ‑inally, it has to be noted that a few functional groups 

such as terminal alkyne, nitro group, or unprotected pyrrole were not tolerated. 

2.3. Conclusion 

In conclusion, we have shown in this paragraph that a well-defined manganese pre-catalyst 

featuring a readily available bidendate diphenyl-(β-aminopyridinyl)-phosphine ligand such as 

9 catalyzes efficiently the reductive amination of aldehydes with a wilde variety of amines 

using Hβ as reductant with a wide functional group tolerance. This higher amine synthesis 

protocol significantly enlarges the scope of reactions catalyzed by manganese complexes and 

nicely complements a previous approach based on alkylation of amines with alcohols. 
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IV-3 Transfer hydrogenation of aldimines catalyzed by bidentate Mn 
complexes 
Contributions in this partμ Synthesis of the complexμ Antoine Bruneau-Voisineν Optimization 

and scopeμ Duo Wei, Antoine Bruneau-Voisine, Maxime Dubois. 

Publicationμ D. Wei,+ A. Bruneau-Voisine,+ M. Dubois, S. Bastin, J.-B. Sortais, 

ChemCatChem. 2019, in press, doi: 10.1002/cctc.201900314. +equal contributions 

3.1. Introduction 

 
Figure 3. Manganese catalysts used in transfer hydrogenation. 

Compared to hydrogenation, only a few catalytic systems based on manganese were developed 

for transfer hydrogenation reactions, including the asymmetric version (‑igure γ).[6b, 6d, 6e, 6g, β0] 

The first system 5 was developed by the group of Beller, with a tridendate ligand, namely 

dipicolamine, for the reduction of ketones.[6b] Zirakzadeh and Kirchner reported the application 

of a chiral catalyst 23 supported by a tridendate PNP ligand bearing a ferrocenyl moiety for the 

enantioselective production of alcohols.[6g] Similar catalytic system, developed by Clarke, 

performed the reduction of ketones in the presence of alcohols, but required hydrogen pressure 

to exhibit enantioselectivity.[6e] More recently, the groups of Leitner[β0a] and Morris,[β0b] 

reported respectively an aminotriazole 22 and a chiral tridentate manganese catalysts 24 

efficient in transfer hydrogenation reactions. Our group demonstrated that simple manganese 

complex based on a bidendate aminomethylpyridine ligand could perform with high efficiency 

the reduction of ketones and aldehydes, even at room temperature.[6d] We also showed that the 

combination of Mn(CO)5Br, as a commercial manganese precursor, and a diamine ligand, for 
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example ethylenediamine or a chiral diamine, namely (1R,βR)-N,N-dimethyl-1,β-

diphenylethane-1,β-diamine, could promote the (asymmetric-) transfer hydrogen of carbonyl 

compound.[β0c] 

So, to date, manganese-catalyzed transfer hydrogenation reactions were limited to the reduction 

of ketones and aldehydes. ‑urthermore, examples of reduction of imines via this methodology 

involving non-noble metals such as iron,[γb, β1] nickel,[ββ] and cobalt[βγ], are quite scarce. Starting 

from this statement, and taking into account the importance of amines in organic synthesis,[17b] 

we found relevant to explore the manganese-catalyzed reduction of imines by hydrogen 

transfer[β4] as a complementary method in the chemist tool box to hydrogenation,[1] 

hydrosilylation[17a] or hydrogen borrowing,[β5] for example.  

3.2. Results and discussions 

We have selected the well-defined Mn(I) complex 7 (‑igure γ) featuring an β-(aminomethyl)-

pyridine ligand for this study as it was the most efficient catalyst for the reduction of carbonyl 

derivatives.[6d] Besides, the synthesis of this complex is very straightforward, as 7 can be 

obtained in high yield in only one step from commercially available reactants.[6d] 

3.2.1. Optimization of reaction conditions 

The conditions of the reaction were optimized for the reduction of N-benzylidene-4-

methylaniline 15d in β-propanol as the solvent (Table λ). At κ0 °C, in the presence of tBuOK 

(β.0 mol%) and manganese complex 7 (1.0 mol%), the corresponding amine 16d, namely N-

benzyl-4-methylaniline, was formed in 77% yield. Various bases were first screened (entries 

1-6), showing that tBuOK and KHMDS gave the best results (77%, entries 1 and γ). 

Interestingly, the common base KOH could also be used, albeit affording a slightly lower 

conversion than the former bases (65%, entry 4) The concentration of the reaction mixture is 

often crucial for the reduction of carbonyl derivatives, as transfer hydrogenation is a reversible 

reaction. Therefore, the influence of the concentration of 15d was examined ranging from 

0.5 to 0.05 mol•L-1. An optimal concentration of 0.1 mol•L-1 (entries 1, 7-λ) was identified. 

With 1.0 mol% catalyst, lengthen the reaction time (γ h) allowed to improve the conversion to 

κκ% (entry 10). However, lowering the temperature had a detrimental effect on the activity as 

the conversion dropped to γλ% at 50 °C and to 7% at γ0 °C (entries 11 and 1β). A satisfying 

yield (λγ%) was obtained using β.0 mol% of catalyst 7 and 4.0 mol% of tBuOK at κ0 °C after 

γ h (entry 1γ). ‑inally, lowering the catalyst loading to 0.5 mol% resulted in a moderate TON 

of 1β0 (7, γ h, 60% conversion, entry 14).  
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Table 9. Optimization of the parameters of the reduction of imine with the catalyst 23.[a] 

 

Entry Cat (mol%) Base (mol%) Conc. (mol•L-1) T (°C) Time(h) Conv. (%) 
1 1.0 tBuOK (β.0) 0.16 κ0 1.5 77 
β 1.0 tBuONa (β.0) 0.16 κ0 1.5 6γ 
γ 1.0 KHMDS (β.0) 0.16 κ0 1.5 77 
4 1.0 KOH (β.0) 0.16 κ0 1.5 65 
5 1.0 NaβCOγ (β.0) 0.16 κ0 1.5 15 
6 1.0 KγPO4 (β.0) 0.16 κ0 1.5 1β 
7 1.0 tBuOK (β.0) 0.5 κ0 1.5 5κ 
κ 1.0 tBuOK (β.0) 0.1 κ0 1.5 κβ 
λ 1.0 tBuOK (β.0) 0.05 κ0 1.5 κγ 
10 1.0 tBuOK (β.0) 0.1 κ0 γ κκ 
11 1.0 tBuOK (β.0) 0.1 50 γ βλ 
1β 1.0 tBuOK (β.0) 0.1 γ0 γ 7 
1γ β.0 tBuOK (4.0) 0.1 κ0 γ λγ 
14 0.5 tBuOK (β.0) 0.1 κ0 γ 60 
[a] Reaction conditionsμ Under inert atmosphere, a β0 mL Schlenk tube was filled sequentially 

with the imine 15d (0.5 mmol), anhydrous β-propanol, complex 7, and the base. The reaction 
was heated in an oil bath. Conversion was determined by 1H NMR spectroscopy 

Given the promising activity of the catalyst 7 for the reduction of aldimine 15d, we then 

investigated its potential for the more challenging reduction of ketimines, with N-(1-

phenylethylidene)-aniline 17b as a model subtrate (Table 10). In a disappointing way, even 

under harsch conditionsμ 7 (5.0 mol%), tBuOK (10 mol%), 1γ0 °C, 1κ h, the corresponding 

amine 18b was obtained in low yield (β0%), demonstrating that this catalytic system is not 

suitable for the reduction of ketimines. 
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Table 10. Optimization of the parameters of the reduction of the ketimine 17b with the catalyst 
23. [a] 

 

Entry Complex 23 (mol%) tBuOK (mol%) T (°C) Time(h) Conv. (%) 
1 1.0 β.0 κ0 γ 5 
β β.0 4.0 κ0 1κ 17 
γ 5.0 10 100 1κ βγ 
4 5.0 50 100 1κ ββ 
5 5.0 10 1γ0 1κ β0 
6 5.0 50 1γ0 1κ 1κ 

[a] Reaction conditionsμ a β0 mL Schlenk tube was charged with the ketimine 17b (0.5 mmol), 
anhydrous isopropanol (5.0 mL), Mn complex 7 and tBuOK under argon. Then the mixture was 
stirred at indicated temperature in an oil bath. After cooling to room temperature, the solution 
was diluted with ethyl acetate (β mL) and filtered through a small pad of celite (β cm in a Pasteur 
pipette). The celite was washed with ethyl acetate (β×β mL). The filtrate was evaporated and 
the conversion were determined by 1H NMR of the crude mixture. 

3.2.2. Scope for the reduction of aldimines 

Having optimized the conditions for the reduction of aldiminesμ complex 7 (β.0 mol%), tBuOK 

(4.0 mol%), iPrOH (C = 0.1 mol •L-1), κ0 °C, γ h, we then explored the scope of this 

transformation (Table 11). In general, a large variety of aldimines, prepared by the 

condensation of benzaldehyde with aniline derivatives, was reduced in high yields. Steric 

hindrance has an influence as increasing the number of ortho substituants on both the 

benzaldehyde (16b, 16ao) or the aniline (16ap, 16aq) moieties, led to the sterically hindered 

amines 16ao and 16aq in lower yields than 16b and 16ap. Halogen substituents (‑, Cl, Br, I) 

were well tolerated (16ar, 16j, 16as, 16f, isolated yields >λ0%), and no product resulting from 

dehalogenation was detected. Interestingly, heteroaromatic imines (15r, 15s, 15t, 15au) 

affording N-substituted-aminomethylheterocycles (16r, 16s, 16t, 16au) were also surprisingly 

reduced without significant loss of activity (γλ-λγ% yields). It should be noticed that the 

structures of the reaction products are very similar to the ones of the ligand used to coordinate 

the manganese center, namely β-(aminomethyl)-pyridine. Under the conditions of the catalysis, 

a dynamic exchange of ligands cannot be ruled out. Since diverse diamines proved to be active 

ligands in transfer hydrogenation of ketones, such an exchange may not alter the reduction.[β0c] 

Likewise, organometallic 4-methyl-N-(ferrocenylmethylidene)-aniline 15q was totally reduced 

and led to the corresponding amine 16q in good isolated yield (κκ%). The tolerance toward 

various functional groups such as amino (16k), methoxy (16av), cyano (16aw), ester (16ay), 
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amido (16m), acetal (16az), vinyl (16ba) and alkynyl (16bb) groups was evaluated and it was 

shown that they did not affect the catalytic system and remained intact after the reduction. Only 

with the nitro-substituted imine 15ax, no reaction occurred. In the case of the conjugated imine 

15bc, the unsaturated amine 16bc was obtained as major product (κ0%) along with β0% of the 

corresponding saturated amine 16am. 

Table 11. Generality of the reduction of aldimines 15 catalyzed by the complex 7 [a] 

 
[a] Reaction conditionsμ Under inert atmosphere, a β0 mL Schlenk tube was filled sequentially with the 

imine (0.5 mmol), anhydrous β-propanol (5 mL), complex 7 (γ.γ mg, β.0 mol%), and tBuOK 
(β.β mg, 4.0 mol%). The reaction was heated in an oil bath at κ0 °C for γ h. Conversion was 
determined by 1H  NMR spectroscopy. Isolated yield in parenthesis.  

[b] Isolated as mixture containing β0% of saturated amine 16am. 
[c] complex 7 (6.6 mg, 4.0 mol%), tBuOK (4.4 mg, κ.0 mol%). 

The inability of our catalytic system to reduce ketimines can appear to be an advantage for the 

selective reduction of substrates displaying both ketimine and aldimine moieties. Gratifyingly, 

for the diimine 15n derived from 4-formylacetophenone, only the aldimine moiety was reduced 

affording the corresponding amino-ketimine 16n in κγ% isolated yield. ‑inally, imines bearing 
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aliphatic substituents were difficult to convert to the desired amines which were obtained in 

low yields (16ae, 16y, 16aa and 16bd, 17%-γκ% yields). 

3.3. Mechanistic insights 

 
Scheme 6. Synthesis of the dimer Mn complex 24. 

Then, to gain insight into the nature of the catalytic active species, we performed stoichiometric 

reactions between complex 7 and 1 equiv. of t-BuOK. After β4 h at r.t., the dimeric manganese 

complex 25, resulting from the deprotonation of the NH moieties, could be isolated in 4β% 

yield (Scheme 6). Unfortunately, further reactions of 25 with β-propanol or 7 with NaBH4 did 

not allow the characterization of any manganese hydride intermediate.[6d] 

 
Figure 4. Perspective view of the molecular structure of the dimer Mn complex 25 with thermal 
ellipsoids drawn at 50% probability. Hydrogens, except the NH, were omitted for clarity. 

The molecular structure of 25 was confirmed by X-ray diffraction studies (‑igure 4).[6d] ‑inally, 

the dimeric complex 25 was tested as a catalyst (β.0 mol%) for the transfer hydrogenation of 

the aldimine 15a, under base-free conditions and κ7% of conversion were achieved (Scheme 7). 

The corresponding deprotonated monomer, formed by the dissociation of the dimer, is likely 

the intermediate of the catalytic cycle, which is in line with the mechanism of ligand-assisted 

hydrogen-transfer reactions. 

 
Scheme 7. Transfer hydrogenation of the aldimine 15a under base-free conditions catalyzed 
by 25. 
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Based on our mechanistic study above and the previous works of other groups on related 

complexes with Mn[λ] we propose the following mechanism (Scheme κ). In a first step, the base 

activated the precatalyst by deprotonation of the NH moieties to give the 16 electrons 

intermediate I-1. This 16 electrons species then dehydrogenated isopropanol forming acetone 

and the amino-hydride intermediate I-2 (or by heterolytic splitting of dihydrogen in the case of 

hydrogenation). The C=X (X = O or NR) reduction was a two-steps process with first hydride 

transfer from Mn to C, followed by proton transfer from N-H of the ligahd to X, regenerating 

the active species I-1.  

 
Scheme 8. Proposed mechanism for (transfer)hydrogenation of carbonyl compounds catalyzed 
by bidentate Mn complex. 

3.4. Conclusion 

In conclusion, we reported in this paragraph the first application of Mn-based catalyst in 

transfer hydrogenation of imines. We have shown that manganese(I) pre-catalyst 23 bearing a 

β-aminomethylpyridine ligand catalyzed efficiently the transfer hydrogenation of aldimines in 

the presence of iPrOH as reductant under mild conditions (β.0 mol% catalyst, 4.0 mol% base, 

κ0 °C, γ to 1κ h). The catalytic process displayied a high tolerance towards a large variey of 

functional groups. This procotol enlarges the scope of reaction catalyzed by manganese, 

highlighting the rising potential of this transition metal in homogeneous catalysis.  
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IV-4 Conclusion of Chapter IV 

In this chapter, we have explored the application of a series of well-defined manganese pre-

catalysts featuring readily available bidendate pyridinyl-phosphine and β-picolylamine ligands 

in hydrogenation type reactions, namely 

1) hydrogenation of carbonyl derivatives with molecular hydrogen, 

2) reductive amination of aldehydes under hydrogenation conditions and  

3) transfer hydrogenation of aldimines in the presence of iPrOH.  

Those bidendate Mn complexes showed good catalytic performances under mild conditions 

with low catalyst loading and exhibited a good functional group tolerance. Those procotols 

enlarge the scope of reactions catalyzed by manganese, highlighting the rising potential of this 

transition metal in homogeneous catalysis.  
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IV-6 Experimental data 
6.1. General information 

Manganese pentacarbonyl bromide, min. λκ%, were purchased from Strem Chemicals. 
Magnetic stirred Parr autoclaves (ββ mL) were used for the hydrogenation reactions. 
1H, 1γC, 1λ‑ and γ1P NMR spectra were recorded in CDClγ, acetone-d6, or CDγOD at βλκ K, on 
Bruker, AVANC‐ 400 and AVANC‐ γ00 spectrometers at 400.1, and γ00.1 MHz, 
respectively. 1H and 1γC NMR spectra were calibrated using the residual solvent signal at the 
corresponding central peak (1Hμ CDClγ 7.β6 ppm, acetone-d6 β.05 ppm, CDγOD γ.γ1 ppmν 1γCμ 
CDClγ 77.16 ppm, acetone-d6 βλ.κ4 ppm, CDγOD 4λ.0 ppm). 1λ‑ and γ1P NMR spectra 
calibrated against C‑Clγ and κ5% HγPO4 internal standard, respectively. Chemical shift (δ) and 
coupling constants (J) are given in ppm and in Hz, respectively. The peak patterns are indicated 
as followsμ (s, singletν d, doubletν t, tripletν q, quartetν quin, quintetν m, multiplet, and br. for 
broad). 
IR spectra were measured in CHβClβ solution with a Shimadzu IR-Affinity 1 instrument and 
given in cm–1 with a relative intensity in the parenthesis (vs, very strongν s, strongν m, medium). 
HR–MS spectra (‐SI positive mode) and microanalysis were carried out by the corresponding 
facilities at the CRMPO (Centre Régional de Mesures Physiques de l’Ouest), Université de 
Rennes 1. 
GC analyses were performed with GC-β014 (Shimadzu) β010 equipped with a γ0 m capillary 
column (Supelco, SPBTM-β0, fused silica capillary column, γ0 m × 0.β5 mm × 0.β5 mm film 
thickness). 
Specific rotations were measured in a 1 dm thermostated quartz cell on a Jasco-P1010 
polarimeter. 
6.2. Part IV-1- Hydrogenation of Carbonyl Derivatives 
6.2.1. Synthesis of PN ligands L1-L4  

 
The ligands L1,[1] L2,[β] L3[γ] and L4[4] were synthesized according to the literature procedures. 

6.2.2. Synthesis of Manganese Complexes 8-11 

Mn(CO)3Br(L1) (8).   

L1 (β10 mg, 0.γ65 mmol) was added to a solution of Mn(CO)5Br (100 mg, 0.γ65 mmol, 
1.0 equiv.) in anhydrous toluene (6 mL). The mixture was stirred at 100 °C overnight, then 
cooled to r.t. and toluene was evaporated under vacuum. The crude residue was dissolved in 
dichloromethane (1 mL) and then pentane (5 mL) was added to afford yellow needle crystals. 
The supernatant was removed and the crystals were washed with pentane (γ×β mL) and dried 
under vacuum to afford pure compound 8 (1γ6 mg, κ7%). Single crystals suitable for X-Ray 
diffraction studies were grown by slow diffusion of pentane into a CHβClβ solution at r.t. 
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1H NMR (400.1 MHz, acetone-d6) δ κ.6κ – κ.44 (m, 1H, Py), 7.77 (br. d, JHH = 5.0 Hz, 1H, 
NH), 7.6γ (t, JHH = 7.7 Hz, 1H, Py), 7.0β (d, JHH = κ.4 Hz, 1H, Py), 6.κ1 (t, JHH = 6.5 Hz, 1H), 
γ.57 – γ.β4 (m, 1H, CH(CHγ)β, β.λκ – β.66 (m, 1H, CH(CHγ)β), 1.5κ – 1.γγ (m, λH, CH(CHγ)β), 
1.β7 (dd, JPH = 15.0, JHH = 7.β Hz, γH, CH(CHγ)β). 13C{1H} NMR (100.6 MHz, acetone-d6) δ 
ββ4.1 (br. s, CO), β16.6 (br. s, CO), 16β.λ (d, βJPC = 1β.6 Hz, CPy), 154.0 (d, J = 4.4 Hz, CHPy), 
140.β (s, CHPy), 116.6 (s, CHPy), 111.λ (d, JPC = 6.λ Hz, CHPy), βκ.7 (d, 1JPC = β4.γ Hz, 
CH(CHγ)β), β7.6 (d, 1JPC = ββ.6 Hz, CH(CHγ)β), 1λ.4 (d, γJPC = 7.7 Hz, CH(CHγ)β), 1λ.0 (d, 
γJPC = 6.β Hz, CH(CHγ)β), 1κ.4 (s, CH(CHγ)β), 17.γ (d, γJPC = 4.6 Hz, CH(CHγ)β). 31P{1H} 
NMR (16β.0 MHz, acetone-d6) δ 1β5.5. IR (CH2Cl2)μ CO β0β1 (s), 1λγ6 (m), 1λ11 (s), 1κκ4 
(vs) cm–1.  Anal. Calcd. (%) for C14H1λBrMnNβOγPμ C, γλ.1κν H, 4.46ν N, 6.5γ. ‑oundμ C, 
γλ.1βν H, 4.44ν N, 6.40. HR-MS (ESI)μ m/z calcd for C14H1λ7λBrMnNβNaOγP (M + Na+) 
450.λ5κλ, found 450.λ5κ7 (0 ppm). 
 

Mn(CO)3Br(L2) (9)   

‑ollowing the general procedure employed for the synthesis of 8, starting from L2 (101 mg, 
0.γ65 mmol) and Mn(CO)5Br (100 mg, 0.γ65 mmol) the product 9 (161 mg, κλ%) was obtained 
as yellow crystals. 
1H NMR (400.1 MHz, acetone-d6) δ κ.κ6 (d, JHH = 5.γ Hz, 1H, NH), κ.6γ (d, JHH = 5.6 Hz, 
1H, Py), 7.λ7 – 7.κ1 (m, βH, Ph), 7.7κ – 7.70 (m, γH, Ph), 7.6γ – 7.γκ (m, 6H, Ph + Py), 7.β7 
(br d, JHH = 6.5 Hz, 1H, Py), 6.λβ (t, JHH = 6.4 Hz, 1H, Py). 13C{1H} NMR (100.6 MHz, 
acetone-d6) δ ββ4.1 (br. s, CO), ββ1.λ (br. s, CO), β17.0 (br. s, CO), 16β.1 (d, βJPC = 15.λ Hz, 
CPy), 154.1 (d, JPC = 4.5 Hz, CHPy), 140.6 (s, CHPy), 1γκ.0 (d, 1JPC = 47.4 Hz, Cipso Ph), 1γγ.5 
(d, 1JPC = 4κ.λ Hz, Cipso Ph), 1γγ.β (d, JPC = 11.β Hz, CHPh), 1γ1.5 (d, JPC = 4.7 Hz, CHPh), 
1γ1.45 (d, JPC = 4.β Hz, CHPh), 1γ0.κ (d, JPC = 1β.γ Hz, CHPh), 1βλ.6 (d, JPC = λ.λ Hz, CHPh), 
1βκ.κ (d, JPC = 10.6 Hz, CHPh), 117.4 (s, CHPy), 11β.6 (d, JPC = κ.1 Hz, CHPy). 31P{1H} NMR 
(16β.0 MHz, acetone-d6) δ 101.λ. IR (CH2Cl2)μ CO β0βγ (s), 1λ4κ (s), 1λ17 (s) cm–1.  
Anal. Calcd. (%) for Cβ0H15BrMnNβOγPμ C, 4κ.γβν H, γ.04ν N, 5.6γ. ‑oundμ C, 47.λκν H, γ.10ν 
N, 5.61. HR-MS (ESI)μ m/z calcd for C17H15MnNβP (M+–γCO–Br) γγγ.0γ47κ, found 
γγγ.0γ45 (1 ppm). 
 

Mn(CO)3Br(L3) (10)   

‑ollowing the general procedure employed for the synthesis of 8, starting from L3 (101 mg, 
0.γ65 mmol) and Mn(CO)5Br (100 mg, 0.γ64 mmol), the product 10 (164.5 mg, λ1%) was 
obtained as yellow crystals. 
1H NMR (400.1 MHz, acetone-d6) δ λ.11 (d, JHH = 5.0 Hz, 1H, Py), κ.14 – 7.λ5 (m, γH, Ph), 
7.λ0 (d, J = 7.1 Hz, 1H, Py), 7.6γ – 7.4λ (m, γH, Ph), 7.4κ – 7.40 (m, 6H, Ph +Py), 4.7λ – 4.5γ 
(m, βH, PCHβ). 13C{1H} NMR (100.6 MHz, acetone-d6) δ ββ5.1 (br. s, CO), ββγ.1 (br. s, CO), 
β17.4 (br. s, CO), 16β.κ (d, βJPC = 7.6 Hz, CPy), 156.β (d, JPC = γ.κ Hz, CHPy), 140.γ (s, CHPy), 
1γ5.7 (d, 1JPC = γλ.β Hz, Cipso Ph), 1γ4.λ (d, JPC = λ.7 Hz, CHPh), 1γβ.0 (d, JPC = β.5 Hz, CHPh), 
1γ1.6 (d, JPC = 10.0 Hz, CHPh), 1γ1.1 (d, JPC = β.1 Hz, CHPh), 1γ1.1 (d, JPC = 44.1 Hz, Cipso Ph), 
1βλ.κ (d, JPC = λ.β Hz, CHPh), 1βλ.5 (d, JPC = 10.0 Hz, CHPh), 1β5.κ (d, JPC = λ.6 Hz, CHPy), 
1β4.4 (s, CHPy) , 41.1 (d, 1JPC = β5.4 Hz, PCHβ). 31P{1H} NMR (16β.0 MHz, acetone-d6) δ 
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57.γ. IR (CH2Cl2)μ CO β0β1 (s), 1λγλ (m), 1λ15 (vs) cm–1.  Anal. Calcd (%). for 
Cβ1H16BrNOγPMnμ C, 50.κγν H, γ.β5ν N, β.κβ. ‑oundμ C, 50.64ν H, γ.βγν N, β.7κ. HR-MS 
(ESI)μ m/z calcd for C1κH16MnNP (M+–γCO–Br) γγβ.0γλ5γ, found γγβ.0404 (γ ppm). 
 

Mn(CO)3Br(L4) (11)   

‑ollowing the general procedure employed for the synthesis of 8, starting from L4 (11λ mg, 
0.γ65 mmol) and Mn(CO)5Br (100 mg, 0.γ65 mmol), the product 11 (17λ mg, λ0%) was 
obtained as yellow crystals. 
1H NMR (400.1 MHz, acetone-d6) δ λ.00 (d, JHH = κ.κ Hz, 1H, Py), κ.56 (s, 1H, Ar), κ.β0 – 
7.κ4 (m, 5H, Ph + Ar), 7.74 (t, JHH = 6.γ Hz, 1H, Ar), 7.6κ – 7.50 (m, γH, Ph + Ar), 7.46 – 7.γγ 
(m, 5H, Ph + Ar), 5.γ0 (dd, βJHH = 16.5 Hz, βJPH = 6.7 Hz, 1H, PCHβ), 4.λ0 (t, βJPH = βJHH = 
16.0 Hz, 1H, PCHβ). 13C{1H} NMR (100.6 MHz, acetone-d6) δ ββ5.λ (br. s, CO), ββγ.λ (br. s, 
CO), β17.7 (br. s, CO), 166.κ (d, JPC = 6.λ Hz, CPy), 150.γ (d, JPC = 1.λ Hz, CHPy), 141.1 (d, 
JPC = 1.7 Hz, CHPh), 1γ4.λ (d, JPC = λ.κ Hz, CHPh), 1γ4.κ (d, 1JPC = γλ.7 Hz, Cipso Ph), 1γ4.0 (s, 
CAr), 1γβ.β (d, JPC = β.4 Hz, CHPh), 1γβ.0 (s, CHAr), 1γ1.7 (d, JPC = 10.0 Hz, CHPh), 1γ1.1 (d, 
JPC = β.β Hz, CHPh), 1γ0.6 (d, JPC = 46.1 Hz, Cipso Ph), 1γ0.γ (s, CHAr), 1γ0.β5 (s, CHAr), 1βλ.κ 
(d, JPC = λ.β Hz, CHPh), 1βλ.6 (d, JPC = 10.1 Hz, CHPh), 1βλ.β (s, CAr), 1βκ.7 (s, CHAr), 1β7.λ 
(s, CHPh), 1βγ.γ (d, JPC = λ.7 Hz, CHPy), 44.7 (d, 1JPC = β6.κ Hz, PCHβ). 31P{1H} NMR 
(16β.0 MHz, acetone-d6) δ 55.4. IR (CH2Cl2)μ CO β015 (s), 1λγ4 (m), 1λ15 (vs) cm–1.  
Anal. Calc (%). for (Cβ5H1κBrMnNOγP).(CHβClβ)μ C, 4λ.4κν H, γ.1λν N, β.ββ. ‑oundμ C, 4λ.4γν 
H, γ.γ0ν N, β.44. HR-MS (ESI)μ m/z calcd for CββH1κMnNP (M+–γCO–Br) γκβ.0551κ, found 
γκβ.0545 (β ppm). 

6.2.3. General procedure for hydrogenation reactions 

In an argon filled glove box, an autoclave was charged with complex 9 (5.0 mg, 0.5 mol%) and 
anhydrous toluene (4.0 mL), followed by ketone (β.0 mmol) and potassium 
bis(trimethylsilyl)amide (KHMDS, κ.0 mg, β.0 mol%), in this order. The autoclave is then 
charged Hβ (50 bar). The mixture was stirred for β0 hours at 50 °C in an oil bath. The solution 
was then diluted with ethyl acetate (β.0 mL) and filtered through a small pad of silica (β cm in 
a Pasteur pipette). The silica was washed with ethyl acetate. The filtrate was evaporated and 
the crude residue was purified by column chromatography (SiOβ, mixture of petroleum 
ether/ethyl acetate as eluent). 

6.2.4. Mercury test 

In an argon filled glove box, an autoclave was charged with complex 9 (0.5 mol%, 5.0 mg), 
KHMDS (β.0 mol%, κ.0 mg) and anhydrous toluene (4.0 mL), followed by Hg (1.5 mmol, 
60β mg) and acetophenone (βγ4 µL, β.0 mmol) in this order. The autoclave is then charged Hβ 
(50 bar). The mixture was stirred for 1κ hours at κ0 °C in an oil bath. The solution was then 
diluted with ethyl acetate (β.0 mL) and filtered through a small pad of silica (β cm in a Pasteur 
pipette). The silica was washed with ethyl acetate (β.0 mL × β). The filtrate was evaporated to 
provide the crude NMR in CDClγ (λγ % conversion). 
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6.2.5. Characterization of the products of the catalysis 

1-Phenylethanol 13a[5] 

 
According to general procedure, acetophenone 12a (βγ4 µL, β.0 mmol) gave the title 
compound 13a as a colorless oil (ββ0 mg, λ0%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.γκ – 7.β5 
(m, 5H), 4.κκ (q, JHH = 6.5 Hz, 1H), 1.λ5 (s, br, 1H), 1.4λ (d, JHH = 6.5 Hz, γH). 13C{1H} NMR 
(100.6 MHz, CDClγ)μ δ 145.λ, 1βκ.6, 1β7.6, 1β5.5, 70.5, β5.γ. 

1-(Naphthalen-2-yl)ethanol 13b[5] 

 
According to general procedure, 1-(naphthalen-β-yl)ethan-1-one 12b (γ40 mg, β.0 mmol) gave 
the title compound 13b as a white solid (γγ0.5 mg, λ5%). 1H NMR (400.1 MHz, CDClγ)μ δ 
7.κ5 – 7.κ1 (m, 4H), 7.5β – 7.45 (m, γH), 5.07 (q, JHH = 6.5 Hz, 1H), 1.λ1 (br. s, 1H), 1.5λ (d, 
JHH = 6.5 Hz, γH). 13C{1H} NMR (100.6 MHz, CDClγ)μ δ 14γ.γ, 1γγ.5, 1γγ.1, 1βκ.4, 1βκ.1, 
1β7.κ, 1β6.γ, 1β5.λ, 1βγ.λ5, 1βγ.λγ, 70.7, β5.γ. 
1-(4-Methylphenyl)ethanol 13c[5] 

 
According to general procedure, 4′-methylacetophenone 12c (β67 µL, β.0 mmol) gave the title 
compound 13c as a colorless oil (βγ4 mg, κ6%).1H NMR (400.1 MHz, CDClγ)μ δ 7.β7 (d, JHH 

= κ.0 Hz, βH), 7.16 (d, JHH = κ.0 Hz, βH), 4.κ7 (q, JHH = 6.5 Hz, 1H), β.γ5 (s, γH), 1.4λ (br. s, 
1H), 1.47 (d, JHH = 6.5 Hz, γH). 1γC{1H} NMR (100.6 MHz, CDClγ)μ δ 14γ.0, 1γ7.γ, 1βλ.γ, 
1β5.5, 70.4, β5.β, β1.β. 
1-(4-Methoxyphenyl)ethanol 13d[5] 

 
According to general procedure, 4′-methoxyacetophenone 12d (γ00 mg, β.0 mmol) gave the 
title compound 13d as a colorless oil (β77 mg, λ1%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.γ0 
(d, JHH = κ.7 Hz, βH), 6.κκ (d, JHH = κ.7 Hz, βH), 4.κ5 (q, JHH = 6.5 Hz, 1H), γ.κ0 (s, γH), 1.7λ 
(br. s, γH), 1.4κ (d, JHH = 6.5 Hz, γH). 13C{1H} NMR (100.6 MHz, CDClγ)μ δ 15λ.1, 1γκ.1, 
1β6.κ, 114.0, 70.1, 55.4, β5.1. 
1-(4-Fluorophenyl)ethanol 13e[5] 

 
According to general procedure, 4′-fluoroacetophenone 12e (β44 µL, β.0 mmol) gave the title 
compound 13e as a pale yellow oil (β6λ mg, λ6%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.γ5 – 
7.γβ (m, βH), 7.05 – 7.00 (m, βH), 4.κκ (q, JHH = 6.5 Hz, 1H), 1.κ4 (br. s, 1H), 1.4κ (d, JHH = 
6.5 Hz, γH). 13C{1H} NMR (100.6 MHz, CDClγ)μ δ 16β.β (d, JC‑ = β45 Hz), 141.6 (d, JC‑ = γ 
Hz), 1β7.β (d, JC‑ = κ Hz), 115.4 (d, JC‑ = β1 Hz), 6λ.λ, β5.4. 19F{1H} NMR (γ76.5 MHz, 
CDClγ)μ δ –115.γ7. 
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1-(4-Chlorophenyl)ethanol 13f[5] 

 
According to general procedure, 4′-chloroacetophenone 12f (β5λ.5 µL, β.0 mmol) gave the title 
compound 13f as a pale yellow oil (1κκ mg, 60%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.γ7 – 
7.β4 (m, 4H), 4.κκ (q, JHH = 6.5 Hz, 1H), 1.λ0 (br. s, 1H), 1.47 (d, JHH = 6.5 Hz, γH).  
13C{1H} NMR (100.6 MHz, CDClγ)μ δ 144.4, 1γγ.β, 1βκ.7, 1β6.λ, 6λ.λ, β5.4. 
1-(4-Bromophenyl)ethanol 13g 

 
According to general procedure, 4′-bromoacetophenone 12g (γλκ mg, β.0 mmol) gave the title 
compound 13g as a pale yellow oil (γ70 mg, λβ%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.4λ (d, 
J = κ.4 Hz, βH), 7.β7 (d, JHH = κ.4 Hz, βH), 4.κλ (q, JHH = 6.5 Hz, 1H), 1.κλ (br. s, 1H), 1.4λ 
(d, JHH = 6.5 Hz, γH). 13C{1H} NMR (100.6 MHz, CDClγ)μ δ 144.7, 1γ1.4, 1β7.1, 1β1.0, 6λ.5, 
β5.1. 
1-(4-Iodophenyl)ethanol 13h[5] 

 
According to general procedure, 4'-iodoacetophenone 12h (β46 mg, 1.0 mmol) gave the title 
compound 13h as a brown oil (1ββ mg, 4λ%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.66 (d, JHH = 
κ.γ Hz, 1H), 7.10 (d, JHH = κ.β Hz, 1H), 4.κβ (q, JHH = 6.β Hz, 1H), β.1β (br. s, 1H), 1.45 (d, 
JHH = 6.β Hz, γH). 13C{1H} NMR (100.6 MHz, CDClγ)μ δ 145.6, 1γ7.6, 1β7.5, λβ.κ, 6λ.λ, β5.γ. 
1-(4-Trifluoromethylphenyl)ethanol 13i[5] 

 
According to general procedure, 4'-trifluoromethylacetophenone 12i (γ76 mg, β.0 mmol) gave 
the title compound 13i as a colorless oil (γ04 mg, κ0%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.61 
(d, JHH = κ.1 Hz, βH), 7.4λ (d, JHH = κ.1 Hz, βH), 4.λ7 (q, JHH = 6.5 Hz, 1H), 1.λ0 (s, br, 1H), 
1.51 (d, JHH = 6.5 Hz, γH). 13C{1H} NMR (100.6 MHz, CDClγ)μ δ 14λ.κ, 1βλ.κ (q, JC‑ = γγ 
Hz), 1β5.κ, 1β5.6 (q, JC‑ = 4 Hz), 1β4.γ (q, JC‑ = β70 Hz), 70.0, β5.5.19F {1H} NMR 
(γ76.5 MHz, CDClγ)μ δ –6β.5. 
1-(4-Aminophenyl)ethanol 13l[5] 

 
According to general procedure, 4'-aminoacetophenone 12l (1γ5 mg, 1.0 mmol) gave the title 
compound 13l as a yellowish brown solid (1βκ mg, λγ%). 1H NMR (400.1 MHz, CDClγ)μ  
δ 7.14 (d, JHH = κ.4 Hz, βH), 6.6γ (d, JHH = κ.4 Hz, βH), 4.75 (q, JHH = 6.5 Hz, 1H), γ.65 (s, 
βH), β.β7 (s, 1H), 1.44 (d, JHH = 6.5 Hz, γH).13C{1H} NMR (100.6 MHz, CDClγ)μ δ 145.7, 
1γ6.1, 1β6.7, 115.β, 70.0, β4.λ. 
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1-Phenylpropanol 13m[5] 

 
According to general procedure, propiophenone 12m (β66 µL, β.0 mmol) gave the title 
compound 13m as a colorless oil (β51 mg, λβ%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.40 – 7.βκ 
(m, 5H), 4.6β (t, JHH = 6.κ Hz, 1H), 1.κλ – 1.74 (m, γH, CHβ+OH), 0.λ5 (t, JHH = 7.5 Hz, γH). 
13C{1H} NMR (100.6 MHz, CDClγ)μ δ 144.7, 1βκ.5, 1β7.6, 1β6.1, 76.β, γβ.0, 10.γ. 
2-Methyl-1-phenylpropanol 13n[5] 

 
According to general procedure, β-methyl-1-phenylpropanone 12n (γ00 µL, β.0 mmol) gave 
the title compound 13n as a colorless oil (λ0 mg, γ0%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.γλ 
– 7.β7 (m, 5H), 4.γκ (d, JHH = 6.λ Hz, 1H), β.05 – 1.λγ (m, βH, CH+OH), 1.0γ (d, JHH = 6.7 
Hz, γH), 0.κγ (d, JHH = 6.7 Hz, γH). 13C{1H} NMR (100.6 MHz, CDClγ)μ δ 14γ.κ, 1βκ.γ, 1β7.5, 
1β6.7, κ0.β, γ5.4, 1λ.1, 1κ.4. 
1-(Benzofuran-2-yl)ethan-1-ol 13p[5] 

 
According to general procedure, 1-(benzofuran-β-yl)ethan-1-one 12p (γβ1 mg, β.0 mmol) gave 
the title compound 13p as a brown oil (βλλ mg, λβ%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.57 
(d, JHH = 7.7 Hz, 1H), 7.4κ (d, JHH = 7.κ Hz, 1H), 7.γ1 – 7.ββ (m, βH), 6.6γ (s, 1H), 5.05 (q, 
JHH = 6.5 Hz, 1H), β.1λ (br. s, 1H), 1.67 (d, JHH = 6.5 Hz, γH). 13C{1H} NMR (100.6 MHz, 
CDClγ)μ δ 160.γ, 154.λ, 1βκ.γ, 1β4.γ, 1ββ.λ, 1β1.β, 111.γ, 101.λ, 64.γ, β1.6. 
1-(Pyridin-2-yl)ethan-1-ol 13q[5] 

 
According to general procedure, 1-(pyridin-β-yl)ethan-1-one 12q (βκ µL, 0.β5 mmol) gave the 
title compound 13q as a dark-red oil (βκ mg, κλ%). 1H NMR (400.1 MHz, CDClγ)μ δ κ.54 (br. 
s, 1H), 7.70 (t, JHH = 7.6 Hz, 1H), 7.βλ (d, JHH = κ.γ Hz, 1H), 7.ββ – 7.1λ (m, 1H), 4.λ1 – 4.κλ 
(br. m, 1H), 1.51 (d, JHH = 6.6 Hz, γH).13C{1H} NMR (100.6 MHz, CDClγ)μ δ 16γ.1, 14κ.γ, 
1γ7.0, 1ββ.4, 1β0.0, 6κ.λ, β4.4. 
4-Phenylbutan-2-ol 13s[6] 

 
According to general procedure, 4-phenyl-β-butanone 12s (βλγ µL, β.0 mmol) gave the title 
compound 13s as a pale yellow oil (β77 mg, λβ%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.γγ – 
7.βκ (m, βH), 7.β4 – 7.1λ (m, γH), γ.κλ – γ.κγ (m, 1H), β.κγ – β.66 (m, βH), 1.κ4 – 1.77 (m, 
βH), 1.γ4 (br. s, 1H), 1.β6 (d, JHH = 6.1 Hz, γH). 13C{1H} NMR (100.6 MHz, CDClγ)μ δ 14β.β, 
1βκ.5, 1β5.λ, 67.7, 41.0, γβ.γ, βγ.κ.  
Cycloheptanol 13t[5] 

 
According to general procedure, cycloheptanone 12t (β56 µL, β.0 mmol) gave the title 
compound 13t as a pale yellow oil (1λ0 mg, κγ%). 1H NMR (400.1 MHz, CDClγ)μ δ γ.κ6 – 
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γ.κ0 (m, 1H), 1.λ4 – 1.κ7 (m, βH), 1.67 – 1.50 (m, κH), 1.4γ – 1.γγ (m, γH). 13C{1H} NMR 
(100.6 MHz, CDClγ) δ 7β.λ, γ7.7, βκ.β, ββ.κ. 
Cyclopropylethan-1-ol 13u[5] 

 
According to general procedure, cyclopropylethan-1-one 12u (1κ6 µL, β.0 mmol) gave the title 
compound 13u as a pale yellow oil (λκ% NMR yield). 1H NMR (400.1 MHz, CDClγ)μ δ γ.10 
– γ.0β (m, 1H), 1.7γ (s, 1H), 1.β7 (d, JHH = 6.β Hz, γH), 0.λ4 – 0.κ5 (m, 1H), 0.5β – 0.44 (m, 
βH), 0.γ1 – 0.1β (m, βH). 13C{1H} NMR (100.6 MHz, CDClγ)μ δ 7γ.1, ββ.6, 1λ.4, γ.1, β.4. 
Undecan-2-ol 13v[5] 

 
According to general procedure, β-undecanone 12v (41γ µL, β.0 mmol) gave the title 
compound 13v as a pale yellow oil (β4κ mg, 7β%). 1H NMR (400.1 MHz, CDClγ)μ δ γ.κγ – 
γ.75 (m, 1H), 1.4κ – 1.βγ (m, 17H), 1.11 (d, JHH = 6.1 Hz, γH), 0.κκ (t, JHH = 6.κ Hz, γH). 
13C{1H} NMR (100.6 MHz, CDClγ)μ δ 6κ.4, γλ.5, γβ.0, βλ.7λ, βλ.7κ, βλ.71, βλ.5, β5.λ, βγ.6, 
ββ.κ, 14.γ. 
6-Methylhept-5-en-2-ol 13w[5] 

 
According to general procedure, 6-methylhept-5-en-β-one 12w (14κ µL, 1.0 mmol) gave the 
title compound 13w as a pale yellow oil (117 mg, λ1%). 1H NMR (400.1 MHz, CDClγ)μ δ 5.1β 
(t, JHH = 7.β Hz, 1H), γ.κγ – γ.76 (m, 1H), β.1β – 1.λλ (m, βH), 1.6κ (s, γH), 1.61 (s, γH), 1.51 
– 1.44 (m, γH), 1.1κ (d, JHH = 6.β Hz, γH). 13C{1H} NMR (100.6 MHz, CDClγ)μ δ 1γβ.β, 1β4.β, 
6κ.1, γλ.γ, β5.κ, β4.6, βγ.6, 17.κ. 
4-Biphenylmethanol 13x[5] 

 
According to general procedure, 4-biphenylmethanal 12x (1κβ mg, 1.0 mmol) gave the title 
compound 13x as a white solid (16κ mg, λ1%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.6γ – 7.5λ 
(m, 4H), 7.4κ – 7.4γ (m, 4H), 7.40 – 7.γ6 (m, 1H), 4.7γ (s, βH), β.0κ (br. s, 1H). 13C{1H} NMR 
(100.6 MHz, CDClγ)μ δ 140.λ, 140.7, 140.0, 1βκ.λ, 1β7.56, 1β7.4β 1β7.γλ, 1β7.β, 65.1. 
Methyl-4-(hydroxymethyl)benzoate 13y[7] 

 
According to general procedure, methyl-4-formylbenzoate 12y (164 mg, 1.0 mmol) gave the 
title compound 13y as a white solid (1γ1 mg, 7λ%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.λ7 (d, 
JHH = κ.β Hz, βH), 7.γκ (d, JHH = κ.β Hz, βH), 4.71 (s, βH), γ.κκ (s, γH), β.56 (br. s, 1H). 
13C{1H} NMR (100.6 MHz, CDClγ)μ δ 167.β, 146.γ, 1βλ.κ, 1βλ.β, 1β6.5, 64.5, 5β.β. 
N-[4-(hydroxymethyl)phenyl]-acetamide 13z[5, 8] 

 
According to general procedure, 4-acetamido-benzaldehyde 12z (16γ mg, 1.0 mmol) gave the 
title compound 13z as a pale yellow solid (15β mg, λβ%). 1H NMR (400.1 MHz, CDγOD)μ  
δ 7.51 (d, JHH = κ.5 Hz, βH), 7.βκ (d, JHH = κ.5 Hz, βH), 4.κ6 (br. s, βH), 4.55 (s, βH), β.10 (s, 
γH). 13C{1H} NMR (100.6 MHz, CDγOD)μ δ 171.7, 1γκ.λ, 1γκ.4, 1βκ.5, 1β1.1, 64.κ, βγ.κ. 
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4-Phenyl-2-butanone 12s[9] 

 
According to general procedure, 4-phenyl-γ-buten-β-one 12aa (βλγ µL, β.0 mmol) gave the 
title compound 12s as a colorless oil (β7λ mg, λ4%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.γγ – 
7.βκ (m, βH), 7.β4 – 7.β0 (m, γH), β.λγ (t, JHH = 7.6 Hz, βH), β.7λ (t, JHH = 7.5 Hz, βH), β.17 
(s, γH). 13C{1H} NMR (100.6 MHz, CDClγ)μ δ β07.λ, 141.1, 1βκ.6, 1βκ.4, 1β6.β, 45.β, γ0.1, 
βλ.κ. 
1,3-Diphenylpropan-1-one 12ac 

 
According to general procedure, (E)-chalcone 12ab (104 mg, 0.5 mmol) gave the title 
compound 12ac as a white solid (λ7 mg, λβ%). 1H NMR (400.1 MHz, CDClγ)μ δ κ.01 (d, JHH 
= 7.4 Hz, βH), 7.60 (t, JHH = 7.4 Hz, 1H), 7.50 (t, JHH = 7.6 Hz, βH), 7.41 – 7.β0 (m, 5H), γ.γ5 
(t, JHH = 7.7 Hz, βH), γ.1γ (t, JHH = 7.7 Hz, βH). 13C{1H} NMR (100.6 MHz, CDClγ)μ δ 1λλ.β, 
141.γ, 1γ6.λ, 1γγ.1, 1βκ.6, 1βκ.6, 1βκ.5, 1βκ.1, 1β6.β, 40.5, γ0.β. 

1,3-diphenylpropan-1-ol 13ac 

 
According to general procedure, (E)-chalcone 12ab (5β mg, 0.β5 mmol) gave the title 
compound 13ac as a pale yellow liquid (51 mg, λ6%). 1H NMR (400.1 MHz, CDClγ)μ δ 7.γ6 
(d, JHH = 4.4 Hz, 4H), 7.γβ – 7.β4 (m, γH), 7.β0 (d, JHH = 7.4 Hz, γH), 4.70 (m, 1H), β.κ4 – 
β.6β (m, βH), β.ββ – 1.λκ (m, βH), 1.κ5 (s, 1H). 13C{1H} NMR (100.6 MHz, CDClγ)μ δ 144.7, 
141.λ, 1βκ.7, 1βκ.6, 1βκ.5, 1β7.κ, 1β6.1, 1β6.0, 74.0, 40.6, γβ.β. 

(1R,4R)-Dihydrocarvone 12ae[10] 

  
According to general procedure, (R)-(−)-Carvone 12ad (157 µL, 1 mmol) gave the title 
compound 12ae as a colorless oil (6γ mg, 41%). 
1H NMR (400.1 MHz, CDClγ)μ δ 4.74 (d, JHH = 10.6 Hz, βH), β.55 – β.β0 (m, 4H), β.1γ (ddt, 
JHH = 1β.λ, 6.γ, γ.γ Hz, 1H), β.01 – 1.κκ (m, 1H), 1.74 (s, γH), 1.70 – 1.55 (m, 1H), 1.4λ – 
1.γ1 (m, 1H), 1.0γ (d, JHH = 6.5 Hz, γH). 13C{1H} NMR (100.6 MHz, CDClγ)μ δ β1β.κ, 147.κ, 
10λ.7, 47.β, 47.0, 44.λ, γ5.1, γ0.λ, β0.6, 14.5. 
(1S,2R,5R)Dihydrocarveol 13ad[11] 

 
According to general procedure, (R)-(−)-Carvone 12ad (γλ.β µL, 0.β5 mmol) gave the title 
compound 13ad as a colorless oil (γγ mg, κ7%). 1H NMR (400.1 MHz, CDClγ)μ δ 4.6λ (s, βH), 
γ.κλ (q, J = β.κ Hz, 1H), β.γ7 – β.17 (m, 1H), 1.λκ – 1.κ6 (m, 1H), 1.κβ – 1.67 (m, 4H), 1.66 – 
1.β7 (m, 5H), 1.β7 – 1.10 (m, 1H), 0.λ7 (d, J = 6.7 Hz, γH). 13C{1H} NMR (100.6 MHz, CDClγ)μ 
δ 150.4, 10κ.5, 71.1, γκ.κ, γ7.λ, γ6.β, γ1.5, βκ.γ, β1.1, 1κ.4.  
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6.2.6. X-ray data 

CCDC-1565β60-1565β6γ contains the supplementary crystallographic data for complexes 1, 
2, 3 and 4. These data can be obtained free of charge from The Cambridge Crystallographic 
Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

X-ray data for the complex 8 

X-ray diffraction data were collected on a Dκ V‐NTUR‐ Bruker AXS diffractometer equipped 
with a PHOTON 100 CMOS detector, using multilayers monochromated Mo-Kα radiation (  
= 0.7107γ Å) at T = 150(β) K. The structure was solved by dual-space algorithm using the 
SHELXT program,[1β] and then refined with full-matrix least-square methods based on Fβ 
(SHELXL-2014).[ ] All non-hydrogen atoms were refined with anisotropic atomic 
displacement parameters. H atoms were finally included in their calculated positions. A final 
refinement on Fβ with 40β4 unique intensities and β0γ parameters converged at ωR(Fβ) = 
0.0κ05 (R(F) = 0.040κ) for γγ15 observed reflections with I > βσ(I).  

 

Figure S1μ Perspective view of the molecular structure of the complex 8 with thermal ellipsoids 
drawn at 50% probability. Hydrogens atoms were omitted for clarity. 

Table S1. Crystal data and structure refinement for the complex 8. 
Empirical formula                      C14 H19 Br Mn N2 O3 P 
Formula weight                         429.13 
Temperature                            150(2) K 
Wavelength                             0.71073 Å  
Crystal system, space group            orthorhombic, P  b c n 
Unit cell dimensions                   a = 29.2332(11) Å, α = 90 ° 
                                       b = 9.9889(4) Å,  = 90 ° 
                                       c = 12.0827(4) Å,  = 90 ° 
Volume                                 3528.2(2) Å3 
Z, Calculated density                  8, 1.616 (g.cm-3) 
Absorption coefficient                 3.115 mm-1 
F(000)                                 1728 
Crystal size                           0.600 x 0.100 x 0.060 mm 
Crystal color                          yellow 
Theta range for data collection        2.920 to 27.473 ° 
h_min, h_max                           -37, 37 
k_min, k_max                           -12, 12 
l_min, l_max                           -15, 13 
Reflections collected / unique         20407 / 4024 [R(int)a = 0.0477] 
Reflections [I>2σ]                     3315                                        
Completeness to theta_max              0.997 
Absorption correction type             multi-scan 
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Max. and min. transmission             0.830 , 0.608 
Refinement method                      Full-matrix least-squares on F2 
Data / restraints / parameters         4024 / 0 / 203 
bGoodness-of-fit                       1.099 
Final R indices [I>2σ]                 R1c = 0.0408, wR2d = 0.0805 
R indices (all data)                   R1c = 0.0539, wR2d = 0.0847 
Largest diff. peak and hole            0.605 and -0.881 e-.Å-3 
 aRint = ∑ |Fo2  - < Fo2>| / ∑[Fo2] 
  bS = {∑ [w(Fo2  -  Fc2)2] / (n - p)}1/2  
  cR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo| 
  dwR2 = {∑ [w(Fo2 -  Fc2)2] / ∑ [w(Fo2)2]}1/2  
  w = 1 / [σ(Fo2) + aP2 + bP] where P = [2Fc2 + MAX(Fo2, 0)] /3 

X-ray data for the complex 9 
X-ray diffraction data were collected on a AP‐XII Bruker AXS diffractometer equipped with 
a CCD detector, using graphite-monochromated Mo-Kα radiation (  = 0.7107γ Å) at T = 150 
(β) K. The structure was solved by dual-space algorithm using the SHELXT program,[1β] and 
then refined with full-matrix least-square methods based on Fβ (SHELXL-2014).[ ] All non-
hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were 
finally included in their calculated positions. A final refinement on Fβ with 4664 unique 
intensities and β5γ parameters converged at ωR(Fβ) = 0.0λ66 (R(F) = 0.07βλ) for β4γκ 
observed reflections with I > βσ(I).  

 

Figure S2μ Perspective view of the molecular structure of the complex 9 with thermal ellipsoids 
drawn at 50% probability. 

Table S2. Crystal data and structure refinement for the complex 9. 
Empirical formula                      C20 H15 Br Mn N2 O3 P 
Formula weight                         497.16 
Temperature                            150(2) K 
Wavelength                             0.71073 Å  
Crystal system, space group            monoclinic, P  21/c 
Unit cell dimensions                  a = 10.298(2) Å, α = 90 ° 
                                      b = 12.401(2) Å,  = 105.890(7) ° 
                                      c = 16.675(4) Å,  = 90 ° 
Volume                                 2048.0(8) Å3 
Z, Calculated density                  4, 1.612 (g.cm-3) 
Absorption coefficient                 2.696 mm-1 
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F(000)                                 992 
Crystal size                           0.250 x 0.200 x 0.110 mm 
Crystal color                          colourless 
Theta range for data collection        3.025 to 27.482 ° 
h_min, h_max                           -13, 13 
k_min, k_max                           -15, 15 
l_min, l_max                           -21, 21 
Reflections collected / unique         13584 / 4664 [R(int)a = 0.1067] 
Reflections [I>2σ]                     2438                                        
Completeness to theta_max              0.994 
Absorption correction type             multi-scan 
Max. and min. transmission             0.743 , 0.633 
Refinement method                      Full-matrix least-squares on F2 
Data / restraints / parameters         4664 / 0 / 253 
bGoodness-of-fit                       0.989 
Final R indices [I>2σ]                 R1c = 0.0729, wR2d = 0.0966 
R indices (all data)                   R1c = 0.1610, wR2d = 0.1225 
Largest diff. peak and hole            0.750 and -0.616 e-.Å-3 
 
aRint = ∑ |Fo2  - < Fo2>| / ∑[Fo2] 
 bS = {∑ [w(Fo2  -  Fc2)2] / (n - p)}1/2  
 cR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo| 
 dwR2 = {∑ [w(Fo2 -  Fc2)2] / ∑ [w(Fo2)2]}1/2  
 w = 1 / [σ(Fo2) + aP2 + bP] where P = [2Fc2 + MAX(Fo2, 0)] /3 

X-ray data for the complex 10 

X-ray diffraction data were collected on a Dκ V‐NTUR‐ Bruker AXS diffractometer equipped 
with a PHOTON 100 CMOS detector, using multilayers monochromated Mo-Kα radiation (  
= 0.7107γ Å) at T = 150(β) K. The structure was solved by dual-space algorithm using the 
SHELXT program,[1β] and then refined with full-matrix least-square methods based on Fβ 
(SHELXL-2014).[ ] All non-hydrogen atoms were refined with anisotropic atomic 
displacement parameters. H atoms were finally included in their calculated positions. A final 
refinement on Fβ with 46κκ unique intensities and β5γ parameters converged at ωR(Fβ) = 
0.050κ (R(F) = 0.0β14) for 4γ40 observed reflections with I > βσ(I).  

 
Figure S3μ Perspective view of the molecular structure of complex 10 with thermal ellipsoids 
drawn at 50% probability. Hydrogens atoms were omitted for clarity. 

Table S3. Crystal data and structure refinement for complex 10. 
Empirical formula                      C21 H16 Br Mn N O3 P 
Formula weight                         496.17 
Temperature                            150 K 
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Wavelength                             0.71073 Å  
Crystal system, space group            monoclinic, P 21/c 
Unit cell dimensions                  a = 9.2456(5) Å, α = 90 ° 
                                      b = 8.5879(3) Å,  = 90.599(3) ° 
                                      c = 25.8035(10) Å,  = 90 ° 
Volume                                 2048.69(15) Å3 
Z, Calculated density                  4, 1.609 (g.cm-3) 
Absorption coefficient                 2.694 mm-1 
F(000)                                 992 
Crystal size                           0.280 x 0.180 x 0.150 mm 
Crystal color                          yellow 
Theta range for data collection        3.158 to 27.482 ° 
h_min, h_max                           -12, 12 
k_min, k_max                           -11, 11 
l_min, l_max                           -33, 33 
Reflections collected / unique         22344 / 4688 [R(int)a = 0.0259] 
Reflections [I>2σ]                     4340                                         
Completeness to theta_max              0.999 
Absorption correction type             multi-scan 
Max. and min. transmission             0.668 , 0.584 
Refinement method                      Full-matrix least-squares on F2 
Data / restraints / parameters         4688 / 0 / 253 
bS (Goodness-of-fit)                   1.071 
Final R indices [I>2σ]                 R1c = 0.0214, wR2d = 0.0508 
R indices (all data)                   R1c = 0.0244, wR2d = 0.0520 
Largest diff. peak and hole            0.314 and -0.516 e-.Å-3 
 
aRint = ∑ |Fo2  - < Fo2>| / ∑[Fo2] 
bS = {∑ [w(Fo2  -  Fc2)2] / (n - p)}1/2  
cR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo| 
dwR2 = {∑ [w(Fo2 -  Fc2)2] / ∑ [w(Fo2)2]}1/2  
w = 1 / [σ(Fo2) + aP2 + bP] where P = [2Fc2 + MAX(Fo2, 0)] /3 

X-ray data for the complex 11 

X-ray diffraction data were collected on a AP‐XII Bruker AXS diffractometer equipped with 
a CCD detector, using graphite-monochromated Mo-Kα radiation (  = 0.7107γ Å) at T = βλ5 
K. The structure was solved by dual-space algorithm using the SHELXT program,[1β] and then 
refined with full-matrix least-square methods based on Fβ (SHELXL-2014).[ ] The contribution 
of the disordered solvents to the structure factors was calculated by the PLATON SQU‐‐Z‐ 
procedure[ ] and then taken into account in the final SHELXL-2014 least-square refinement. 
All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H 
atoms were finally included in their calculated positions. A final refinement on Fβ with 64γγ 
unique intensities and β17 parameters converged at ωR(Fβ) = 0.1417 (R(F) = 0.0601) for 4κκ4 
observed reflections with I > βσ(I).  
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Figure S4μ Perspective view of the molecular structure of complex 11 with thermal ellipsoids 
drawn at 50% probability. Hydrogens atoms were omitted for clarity. 

Table S4. Crystal data and structure refinement for complex 11. 
Empirical formula                     C25 H18 Br Mn N O3 P 
Formula weight                        546.22 
Temperature                           295 K 
Wavelength                            0.71073 Å  
Crystal system, space group           triclinic, P -1 
Unit cell dimensions                  a = 10.966(4) Å, α = 72.966(11) ° 
                                      b = 11.067(4) Å,  = 81.251(11) ° 
                                      c = 13.178(4) Å,  = 67.615(11) ° 
Volume                                 1412.4(8) Å3 
Z, Calculated density                  2, 1.284 (g.cm-3) 
Absorption coefficient                 1.961 mm-1 
F(000)                                 548 
Crystal size                           0.580 x 0.360 x 0.140 mm 
Crystal color                          yellow 
Theta range for data collection        2.929 to 27.484 ° 
h_min, h_max                           -14, 14 
k_min, k_max                           -13, 14 
l_min, l_max                           -17, 16 
Reflections collected / unique         35439 / 6433 [R(int)a = 0.0281] 
Reflections [I>2σ]                     4884                                         
Completeness to theta_max              0.993 
Absorption correction type             multi-scan 
Max. and min. transmission             0.760 , 0.573 
Refinement method                      Full-matrix least-squares on F2 
Data / restraints / parameters         6433 / 0 / 217 
bS (Goodness-of-fit)                   1.022 
Final R indices [I>2σ]                 R1c = 0.0601, wR2d = 0.1417 
R indices (all data)                   R1c = 0.0840, wR2d = 0.1617 
Largest diff. peak and hole            2.149 and -1.171 e-.Å-3 
 
 aRint = ∑ |Fo2  - < Fo2>| / ∑[Fo2] 
 bS = {∑ [w(Fo2  -  Fc2)2] / (n - p)}1/2  
 cR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo| 
 dwR2 = {∑ [w(Fo2 -  Fc2)2] / ∑ [w(Fo2)2]}1/2  
  w = 1 / [σ(Fo2) + aP2 + bP] where P = [2Fc2 + MAX(Fo2, 0)] /3 
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6.3. Part IV-2- Reductive amination of aldehydes with H2 
6.3.1. General procedure for reductive amination reaction. 

In an argon filled glove box, a β0 mL Schlenk tube was charged with aldehyde 18 (0.5 mmol), 
amine 19 (0.6 mmol) and anhydrous ethanol (β.0 mL). The reaction mixture was stirred at 
100 oC (or at room temperature for aldehyde containing α-protons) for β4 h. After cooling to 
room temperature, the mixture was transferred to a β0 mL autoclave followed by manganese 
complex 9 (5.0 mg, β.0 mol%) and tBuOK (β.κ mg, 5.0 mol%). The autoclave was charged 
with Hβ (50 bar) and the mixture was stirred at indicated temperature in an oil bath (see Table 
κ, § β.β.1). After cooling to room temperature, the solution was diluted with ethyl acetate (β mL) 
and filtered through a small pad of celite (β cm in a Pasteur pipette). The celite was washed 
with ethyl acetate (β×β mL). The filtrate was evaporated and the crude residue was purified by 
column chromatography (SiOβ, mixture of petroleum ether/ethyl acetate as eluent). 

III-2. Specific procedure for reductive amination reaction on large scale (Table 8, entry 
4). 

A 50 mL Maximator autoclave (“Réacteur à ouverture rapide”) was purged with Nβ and then 
charged with a solution of benzaldehyde (475 L, 4.γ mmol) and p-toluidine (500 mg, 
4.6 mmol, 1.0κ equiv.) in ‐tOH (10 mL). After stirring for β h at r.t., a solution of complex 9 
(4γ mg, β.0 mol%) in ‐tOH (4 mL) and a solution of tBuOK (βκ mg, 5.0 mol%) in ‐tOH 
(4 mL) were added under Nβ flow. The autoclave was charged with Hβ (50 bar) and the mixture 
was stirred at 100 °C for β4 h. The solution was concentrated under reduced pressure, and the 
crude residue was purified by column chromatography (SiOβ, mixture of petroleum ether/ethyl 
acetate as eluent). N-benzyl-4-methylaniline 16d was obtained as pale yellow oil (66γ mg, 7κ%) 

III-3. Characterization of the products of the catalysis 

N-Benzylaniline 16a[15] 

 
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and aniline (54.κ µL, 
0.6 mmol) gave the title compound 16a as a brown liquid (κ5.β mg, λγ% yield).  
1H NMR (400.1 MHz, CDClγ) δ 7.4γ – 7.γ6 (m, 4H), 7.γ4 – 7.βκ (m, 1H), 7.βγ – 7.1λ (m, βH), 
6.76 (td, J = 7.γ, 1.1 Hz, 1H), 6.6κ (d, J = 7.7 Hz, βH), 4.γ6 (s, βH), 4.0κ (br, 1H). 
13C{1H} NMR (100.6 MHz, CDClγ) δ 14κ.β, 1γλ.5, 1βλ.4, 1βκ.7, 1β7.6, 1β7.γ, 117.7, 11γ.0, 
4κ.5. 

N-(2-Methylbenzyl)aniline 16b[16] 

 
‑ollowing the general procedure, β-methylbenzaldehyde (57.κ µL, 0.5 mmol) and aniline 
(54.κ µL, 0.6 mmol) gave the title compound 16b as a dark brown liquid (5β.7 mg, λ4% yield). 
1H NMR (400.1 MHz, CDClγ) δ 7.γ5 (d, J = 6.7 Hz, 1H), 7.β6 – 7.17 (m, 5H), 6.74 (tt, J = 7.γ, 
1.1 Hz, 1H), 6.67 – 6.64 (m, βH), 4.βλ (s, βH), γ.κ4 (s, 1H), β.γλ (s, γH). 13C{1H} NMR (100.6 
MHz, CDClγ) δ 14κ.4, 1γ7.1, 1γ6.5, 1γ0.5, 1βλ.4, 1βκ.4, 1β7.6, 1β6.γ, 117.6, 11β.κ, 46.5, 1λ.1. 
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N-Benzyl-4-methoxyaniline 16c[15] 

  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and 4-methoxyaniline 
(7γ.λ mg, 0.6 mmol) gave the title compound 16c as a brown solid (76.κ mg, 7β% yield). 
1H NMR (400.1 MHz, CDClγ) δ 7.40 – 7.γγ (m, 4H), 7.βλ (d, J = 7.1 Hz, 1H), 6.κ1 – 6.77 (m, 
βH), 6.64 – 6.60 (m, βH), 4.γ0 (s, βH), γ.75 (s, γH). 13C{1H} NMR (100.6 MHz, CDClγ)  
δ 15β.4, 14β.5, 1γλ.κ, 1βκ.7, 1β7.7, 1β7.γ, 115.0, 114.γ, 55.λ, 4λ.4. 

N-Benzyl-4-methylaniline 16d[15] 

  
‑ollowing the specific procedure, benzaldehyde (475.0 µL, 4.γ mmol) and 4-methylaniline 
(500.0 mg, 4.6 mmol) gave the title compound 16d as a pale yellow oil (66γ mg, 7κ% yield). 
1H NMR (400.1 MHz, CDClγ) δ 7.50 – 7.β1 (m, 5H), 7.14 – 6.λ6 (m, βH), 6.6κ – 6.57 (m, βH), 
4.γ6 (s, βH), γ.λ4 (s, 1H), β.γ1 (s, γH).13C{1H} NMR (100.6 MHz, CDClγ) δ 146.0, 1γλ.κ, 
1βλ.λ, 1βκ.7, 1β7.6, 1β7.β, 1β6.κ, 11γ.1, 4κ.7, β0.5. 

N-(4-Methoxybenzyl)aniline 16e[15] 

 
‑ollowing the general procedure, 4-methoxybenzaldehyde (60.κ µL, 0.5 mmol) and aniline 
(54.κ µL, 0.6 mmol) gave the title compound 16e as a yellow liquid (λβ.κ mg, κ7% yield).  
1H NMR (400.1 MHz, CDClγ) δ 7.γ0 (d, J = κ.6, βH), 7.β1 – 7.16 (m, βH), 6.κλ (d, J = κ.6 Hz, 
βH), 6.7γ (t, J = 7.γ Hz, 1H), 6.66 (dd, J = 7.7, 1.1 Hz, βH), 4.β7 (s, βH), γ.κ1 (s, γH). 
13C{1H} NMR (100.6 MHz, CDClγ) δ = 15λ.0, 14κ.β, 1γ1.4, 1βλ.4, 1βλ.0, 117.κ, 114.β, 11γ.1, 
55.4, 4κ.0. 

N-Benzyl-4-fluoroaniline 16f[15] 

  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and 4-fluoroaniline 
(57.6 µL, 0.6 mmol) gave the title compound 16f as a brown solid (βκ.β mg, βκ% yield). 
1H NMR (400.1 MHz, CDClγ) δ 7.γλ – 7.β6 (m, 5H), 6.κλ (t, J = κ.7, βH), 6.60 – 6.55 (m, βH), 
4.γ0 (s, βH), γ.λ4 (br, 1H). 13C{1H} NMR (100.6 MHz, CDClγ) δ 156.0 (d, 1JC‑ = βγ5.0), 144.6 
(d, JC‑ = 1.5 Hz), 1γλ.4, 1βκ.κ, 1β7.6, 1β7.4, 115.κ (d, JC‑ = ββ.γ Hz), 11γ.κ (d, JC‑ = 7.4 Hz), 
4λ.1. 19F NMR (γ76.5 MHz, CDClγ) δ -1β7.λ1.  

N-(3-Fluorobenzyl)aniline 16g[17] 

 
‑ollowing the general procedure, γ-fluorobenzaldehyde (5γ.0 µL, 0.5 mmol) and aniline 
(54.κ µL, 0.6 mmol) gave the title compound 16g as a pale yellow solid (λ0.6 mg, λ0% yield). 
1H NMR (400.1 MHz, CDClγ) δ  7.γ0 (td, J = 7.λ, 7.γ Hz, 1H), 7.β0-7.14 (m, γH), 7.0λ (dt, J 

= λ.κ, β.0 Hz, 1H), 6.λ6 (td, J = κ.4, β.6 Hz, 1H), 6.74 (t, J = 7.γ Hz, 1H), 6.6β (d, J = 7.λ Hz, 
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βH), 4.γ5 (s, βH), 4.0λ (br, 1H). 13C{1H} NMR (75 MHz, CDClγ) δ  16γ.β (d, 1JC‑ = β46.β Hz), 
147.λ, 14β.4 (d, JC‑ = 6.κ Hz), 1γ0.β (d, JC‑ = κ.β Hz), 1βλ.4, 1ββ.λ (d, JC‑  = β.κ Hz), 117.λ, 
114.4 (d, JC‑ = κ.γ Hz), 114.1 (d, JC‑ = 7.λ Hz), 11γ.0, 47.λ. 19F NMR (γ76 MHz, CDClγ) δ -
11γ.00. GC-MS, m/z (%) = β01 ([M]+, 100), 10λ (100), 77 (57), 65 (1κ), 51 (β0). 

N-(4-Chlorobenzyl)aniline 16h[18] 

  
‑ollowing the general procedure, 4-chlorobenzaldehyde (70.γ mg, 0.5 mmol) and aniline 
(54.κ µL, 0.6 mmol) gave the title compound 16h as a pale yellow liquid (κ7.1 mg, κ0% yield). 
1H NMR (400.1 MHz, CDClγ) δ  7.γ1 (s, 4H), 7.1κ (t, J = 7.λ Hz, βH), 6.74 (t, J = 7.γ Hz, 1H), 
6.6β (d, J = 7.κ Hz, βH), 4.γβ (s, βH), 4.06 (br, 1H). 13C{1H} NMR (100.6 MHz, CDClγ)  
δ 147.λ, 1γκ.1, 1γγ.0, 1βλ.4, 1βκ.λ, 1βκ.κ, 117.λ, 11γ.0, 47.κ. 

N-(4-Bromobenzyl)-4-iodoaniline 16i 

  
‑ollowing the general procedure, 4-bromobenzaldehyde (λβ.5 mg, 0.5 mmol) and 4-
iodoaniline (1γ1.4 mg, 0.6 mmol) gave the title compound 16i as a white solid (1λ0.1 mg, λκ% 
yield). The isolated product contains about 1γ% of 4-bromobenzylaniline resulting from 
deiodination. 1H NMR (400.1 MHz, CDClγ) δ = 7.46 (d, J = 7.λ, βH), 7.41 (d, J = κ.1, βH), 
7.β1 (d, J = κ.1, βH), 6.γκ (d, J = κ.β, βH), 4.β6 (s, βH), 4.1β (br, 1H). 13C{1H} NMR (100.6 
MHz, CDClγ) δ = 147.4, 1γκ.0γ, 1γ7.λλ, 1γ1.λ, 1βλ.1, 1β1.γ, 115.β, 7κ.6, 47.6. GC-MS, m/z 
(%) = γκλ ([M]+, 67), γ0κ (κ), 16λ (100), λ0 (5γ), 76 (1κ), 6γ (11), 50 (10). 

N-Benzyl-4-iodoaniline 16j[19] 

  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and 4-iodoaniline 
(1γ1.4 mg, 0.6 mmol) gave the title compound 16j as a brown liquid (14λ.λ mg, λ7% yield). 
The isolated product contains about 10% of benzylaniline resulting from deiodination.  
1H NMR (400.1 MHz, CDClγ) δ 7.41 (d, J = κ.6 Hz, βH), 7.γ7 – 7.γ4 (m, 5H), 6.4β (d, J = κ.6 
Hz, βH), 4.γ0 (d, J = γ.λ Hz, βH), 4.10 (br, 1H). 13C{1H} NMR (100.6 MHz, CDClγ) δ 147.κ, 
1γλ.0, 1γ7.λ, 1βκ.κ, 1β7.6, 1β7.5, 115.β, 7κ.γ, 4κ.β. 

N,N-Dimethyl-4-((p-tolylamino)methyl)aniline 16k[20] 

  
‑ollowing the general procedure, 4-(dimethylamino)benzaldehyde (74.6 mg, 0.5 mmol) and  
p-toluidine (64.γ mg, 0.6 mmol) gave the title compound 16k as a colorless solid (117.κ mg, 
λ7% yield). 1H NMR (400.1 MHz, CDClγ) δ 7.β5 (d, J = κ.κ Hz, βH), 6.λλ (d, J = 7.λ Hz, βH), 
6.7γ (d, J = κ.β Hz, βH), 6.5κ (d, J = κ.0 Hz, βH), 4.1λ (s, βH), γ.76 (br, 1H), β.λ4 (s, 6H), β.β5 
(s, γH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 150.1, 146.4, 1βλ.κ, 1βκ.κ, 1β7.5, 1β6.6, 11γ.1, 
11β.λ, 4κ.4, 40.λ, β0.5. 
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Ethyl 4-((phenylamino)methyl)benzoate 16l 

  
‑ollowing the general procedure, methyl 4-formylbenzoate (κβ.1 mg, 0.5 mmol) and aniline 
(54.κ µL, 0.6 mmol) gave the title compound 16l as a pale yellow liquid (117.4 mg, λβ% yield). 
1H NMR (400.1 MHz, CDClγ) δ κ.0β (d, J = κ.β Hz, 1H), 7.44 (d, J = κ.1 Hz, βH), 7.17 (t, J = 

7.λ Hz, βH), 6.7γ (t, J = 7.γ Hz, 1H), 6.61 (d, J = κ.1 Hz, βH), 4.41 – 4.γ4 (m, 5H, N-
CHβ+CHβ+NH), 1.γλ (t, J = 7.1 Hz, γH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 166.6, 147.λ, 
145.0, 1γ0.0, 1βλ.4, 1β7.β, 11κ.0, 11γ.0, 61.1, 4κ.1, 14.5. GC-MS, m/z(%) = β55 ([M]+, 100), 
ββ6(β4), β10(βκ), 1κβ(4λ), 16γ(100), 1γ5(60), 106(51), κλ(γ4), 77(40), 65(10), 51(κ). 

N-(4-(((4-Methoxyphenyl)amino)methyl)phenyl)acetamide 16m[15] 

N
H

OMe

N
H

O

  
‑ollowing the general procedure, N-(4-formylphenyl)acetamide (κ1.6 mg, 0.5 mmol) and  
4-methoxyaniline (7γ.λ, 0.6 mmol) gave the title compound 16m as a pale yellow solid 
(1βκ.4 mg, λ5% yield). 1H NMR (400.1 MHz, CDClγ) δ 7.45 (d, J = κ.γ Hz, βH), 7.γ1 (d, J = 

κ.β Hz, βH), 6.77 (d, J = κ.λ Hz, βH), 6.5λ (d, J = κ.λ Hz, βH), 4.β4 (s, βH), γ.74 (s, γH), β.16 
(s, γH), 1.67 (br, 1H). 13C{1H} NMR (100.6 MHz, CDClγ) δ 16κ.4, 15β.γ, 14β.5, 1γ7.0, 1γ5.κ, 
1βκ.γ, 1β0.γ, 115.0, 114.γ, 56.0, 4κ.λ, β4.7. 

N-(4-(1-(Phenylimino)ethyl)benzyl)aniline 16n 

  
‑ollowing the general procedure, 4-acetylbenzaldehyde (74.1 mg, 0.5 mmol) and aniline 
(100.4 µL, 1.1 mmol) gave the title compound 16n as a dark brown liquid (1γβ.β mg, κκ% 
yield, λ5% purity). 1H NMR (400.1 MHz, CDClγ) δ 7.λ6 (d, J = κ.γ Hz, βH), 7.45 (d, J = κ.1 
Hz, βH), 7.γ6 (t, J = 7.κ Hz, βH), 7.1κ (t, J = 7.γ Hz, βH), 7.0λ (t, J = 7.γ Hz, 1H), 6.κ0 (d, J = 

7.γ Hz, βH), 6.74 (t, J = 7.γ Hz, 1H), 6.64 (d, J = 7.κ Hz, βH), 4.41 (s, βH), 4.1β (br, 1H), β.βγ 
(s, γH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 165.γ, 151.κ, 14κ.1, 14β.γ, 1γκ.7, 1βλ.4, 1βλ.1, 
1β7.7, 1β7.4, 1βγ.γ, 11λ.5, 117.λ, 11γ.1, 4κ.1, 17.5. GC-MS, m/z(%) = γ00 ([M]+, 100), 
βκ5(βγ), β0κ(6κ), 1λγ(γγ), 14γ(17), 116(15), 105(κκ), λ0(γ0), 77(55), 51(14) 

1-(4-((Phenylamino)methyl)phenyl)ethan-1-one 16o[β1] 

 
‑ollowing the general procedure, 4-acetylbenzaldehyde (74.1 mg, 0.5 mmol) and aniline 
(54.κ L, 0.6 mmol) gave the title compound 16o as a pale yellow solid (κβ.β mg, 7γ% yield).  
1H NMR (400.1 MHz, CDClγ) δ 7.λγ (d, J = κ.β Hz, βH), 7.47 (d, J = κ.β Hz, βH), 7.17 (dd, J 

= κ.6, 7.β Hz, βH), 6.7γ (t, J = 7.γ Hz, 1H), 6.61 (d, J = 7.7 Hz, βH), 4.4β (s, βH), 4.1λ (s, br, 
1H), β.5λ (s, γH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 1λ7.λ, 147.κ, 145.γ, 1γ6.γ, 1βλ.4, 
1βκ.λ, 1β7.4, 11κ.0, 11γ.1, 4κ.1, β6.7. 
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1-(4-(Benzylamino)phenyl)ethan-1-one 16p[ββ] 

  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and 4-amino 
acetophenone (67.6 mg, 0.5 mmol) gave the title compound 16p as a pale yellow solid 
(10κ.1 mg, λ6% yield). 1H NMR (400.1 MHz, CDClγ) δ 7.κβ (d, J = κ.6 Hz, βH), 7.γκ – 7.γ0 
(m, 5H), 6.60 (d, J = κ.6 Hz, βH), 4.5κ (br, 1H), 4.41 (d, J = 5.5 Hz, βH), β.4λ (s, γH). 
13C{1H} NMR (100.6 MHz, CDClγ) δ 1λ6.5, 15β.1, 1γκ.4, 1γ0.λ, 1βκ.λ, 1β7.6, 1β7.4, 1β7.0, 
111.7, 47.6, β6.1. 

N-(Ferrocenylmethyl)-4-methylaniline 16q[20] 

  
‑ollowing the general procedure, ferrocenecarboxaldehyde (107.0 mg, 0.5 mmol) and  
p-toluidine (64.γ mg, 0.6 mmol) gave the title compound 16q as a dark brown liquid (14λ.5 mg, 
λκ% yield). 1H NMR (400.1 MHz, CDClγ) δ 7.0β (d, J = κ.1 Hz, βH), 6.60 (d, J = κ.γ Hz, βH), 
4.β4 (t, J = 1.λ Hz, βH), 4.1κ (s, 5H), 4.14 (t, J = 1.κ Hz, βH), γ.λ4 (s, βH), γ.75 (br, 1H), β.β6 
(s, γH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 146.γ, 1βλ.λ, 1β6.λ, 11γ.β, κ6.λ, 6κ.6, 6κ.β, 
6κ.0, 4γ.λ, β0.6. 

4-Methoxy-N-((1-methyl-1H-pyrrol-2-yl)methyl)aniline 16r[β0] 

  
‑ollowing the general procedure, 1-methyl-1H-pyrrole-β-carbaldehyde (5γ.7 µL, 0.5 mmol) 
and 4-methoxyaniline (7γ.λ mg, 0.6 mmol) gave the title compound 16r as a dark brown liquid 
(104.λ mg, λ7% yield). 1H NMR (400.1 MHz, CDClγ) δ 6.κ4 – 6.7λ (m, βH), 6.67 – 6.66 (m, 
βH), 6.6γ – 6.6β (m, 1H), 6.1β – 6.11 (m, 1H), 6.0κ (t, J = γ.1 Hz, 1H), 4.17 (s, βH), γ.76 (s, 
γH), γ.64 (s, γH), γ.41 (br, 1H). 13C{1H} NMR (100.6 MHz, CDClγ) δ 15β.5, 14β.6, 1γ0.1, 
1ββ.λ, 115.1, 114.4, 10κ.5, 106.λ, 56.0, 41.5, γγ.λ. 

4-Methoxy-N-((5-methylfuran-2-yl)methyl)aniline 16s[β0] 

  
‑ollowing the general procedure, 5-methylfuran-β-carbaldehyde (50.1 µL, 0.5 mmol) and  
4-methoxyaniline (7γ.λ mg, 0.6 mmol) gave the title compound 16s as a brown solid (λ7.κ mg, 
λ0% yield). 1H NMR (400.1 MHz, CDClγ) δ 6.7λ (d, J = κ.λ Hz, βH), 6.65 (d, J = κ.κ Hz, βH), 
6.0λ (d, J = γ.0 Hz, 1H), 5.λκ (d, J = β.5 Hz, 1H), 4.β1 (s, βH), γ.75 (s, 4H, OCHγ+NH), β.βκ 
(s, γH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 15β.7, 151.7, 151.β, 14β.1, 115.0, 114.κ, 107.λ, 
106.β, 55.λ, 4β.7, 1γ.7. 
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N-(Pyridin-2-ylmethyl)aniline 16t[16] 

 
‑ollowing the general procedure, pyridine-β-carboxaldehyde (47.6 µL, 0.5 mmol) and aniline 
(54.κ µL, 0.6 mmol) gave the title compound 16t as a brown liquid (6β.6 mg, 6κ% yield, λ0% 
purity by 1H NMR). 1H NMR (400.1 MHz, CDClγ) δ κ.5λ (d, J = 4.κ Hz, 1H), 7.6γ (td, J = 

7.7, 1.κ Hz, 1H), 7.γ4 (d, J = 7.κ Hz, 1H), 7.β1 – 7.16 (m, γH), 6.7γ (tt, J = 7.4, 1.1 Hz, 1H), 
6.6λ – 6.66 (m, βH), 4.κ4 (br, 1H), 4.47 (s, βH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 15κ.6, 
14λ.β, 147.λ, 1γ6.7, 1βλ.γ, 1ββ.β, 1β1.7, 117.6, 11γ.1, 4λ.γ. 

N-Benzylpyridin-2-amine 16u[1κ] 

  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and β-aninopyridine 
(56.5 mg, 0.6 mmol) gave the title compound 16u as a colorless solid (50.7 mg, 55% yield). 
1H NMR (400.1 MHz, CDClγ) δ κ.1β (ddd, J = 5.0, β.0, 0.λ Hz, 1H), 7.44 – 7.γ4 (m, 5H), 
7.γβ-7.βκ (m, 1H), 6.61 (ddd, J = 7.1, 5.0, 0.λ Hz, 1H), 6.γλ (dt, J = κ.γ, 1.0 Hz, 1H), 5.05 (s, 
1H), 4.5γ (d, J = 5.κ Hz, βH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 15κ.κ, 14κ.γ, 1γλ.γ, 1γ7.6, 
1βκ.7, 1β7.5, 1β7.γ, 11γ.β, 106.λ, 46.4. 

2-(Benzylamino)thiophene-3-carbonitrile 16v 

  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and β-aminothiophene- 
γ-carbonitrile (74.5 mg, 0.6 mmol) gave the title compound 16v as a dark green solid (λ6.4 mg, 
λ0% yield). 1H NMR (400.1 MHz, CDClγ) δ 7.41 – 7.γ0 (m, 5H), 6.7κ (d, J = 5.7 Hz, 1H), 
6.βλ (d, J = 5.7 Hz, 1H), 5.57 (br, 1H), 4.41 (s, βH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 
165.γ, 1γ6.6, 1βκ.λ, 1βκ.β, 1β7.κ, 1β6.1, 116.4, 10κ.7, κ4.5, 51.κ. GC-MS, m/z(%) = β14 
([M]+, 1λ), λ1(100), 65(15). 

N-Benzyl-5-methylthiazol-2-amine 16w[23] 

  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and 5-methylthiazol- β-
amine (6κ.5 mg, 0.6 mmol) gave the title compound 16w as a colorless solid (λ4.0 mg, λβ% 
yield, λ5% purity). 1H NMR (400.1 MHz, CDClγ) δ 7.γκ – 7.β6 (m, 5H), 6.65 (s, 1H), 6.βκ 
(br, 1H), 4.4β (s, βH), β.β6 (s, γH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 16λ.β, 1γκ.0, 1γ5.γ, 
1βκ.7, 1β7.74, 1β7.66, 1β1.0, 4λ.λ, 1β.1. 

N-(4-Bromobenzyl)benzenesulfonamide 16x 

  
‑ollowing the general procedure, 4-bromobenzaldehyde (λβ.5 mg, 0.5 mmol) and 
benzenesulfonamide (λ4.γ mg, 0.6 mmol) gave the title compound 16x as a white solid (151.7 
mg, λγ% yield, λ0% purity). 1H NMR (400.1 MHz, CDClγ) δ 7.κ1 (d, J = 7.6 Hz, βH), 7.57 (t, 
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J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, βH), 7.γ4 (d, J = κ.γ Hz, βH), 7.04 (d, J = κ.β Hz, βH), 
5.4γ (t, J = 6.4 Hz, 1H), 4.06 (d, J = 5.κ Hz, βH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 1γλ.λ, 
1γ5.5, 1γβ.λ, 1γ1.λ, 1βλ.6, 1βλ.γ, 1β7.β, 1β1.λ, 46.7. GC-MS, m/z(%) = γβ5 ([M]+, 0.5), 
β46(0.5), 1κ4(100), 157(10), 14γ(β0), 1β5(11), 104(10), λ0(1γ), 77(λ1), 51(γ1). 

Dibenzylamine 16y[15] 

N
H

  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and benzylamine (65.5 µL, 
0.6 mmol) gave the title compound 16y as a pale yellow liquid (κκ.κ mg, λ0% yield).  
1H NMR (400.1 MHz, CDClγ) δ 7.γκ – 7.β6 (m, 10H), γ.κ4 (s, 4H), 1.λ1 (br, 1H). 
13C{1H} NMR (100.6 MHz, CDClγ) δ 140.4, 1βκ.5, 1βκ.γ, 1β7.1, 5γ.γ. 

N-Benzyldodecan-1-amine 16z[24] 

  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and dodecylamine 
(111.β mg, 0.6 mmol) gave the title compound 16z as a pale yellow liquid (1γ0.λ mg, λ5% 
yield). 1H NMR (400.1 MHz, CDClγ) δ 7.γ7 – 7.ββ (m, 5H), γ.7λ (s, βH), β.6γ (t, J = 7.0 Hz, 
βH), 1.5κ -1.47 (m, βH), 1.γ5 –1.β6 (m, β0H), 0.κκ (t, J = 6.κ Hz, γH). 13C{1H} NMR 
(100.6 MHz, CDClγ) δ 140.7, 1βκ.5, 1βκ.γ, 1β7.0, 54.β, 4λ.7, γβ.1, γ0.γ, βλ.κ1, βλ.7λ, βλ.76, 
βλ.7β, βλ.5, β7.5, ββ.κ, 14.γ. 

N-Benzylcyclohexanamine 16aa[β5] 

  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and cyclohexanamine 
(6κ.κ µL, 0.6 mmol) gave the title compound 16aa as a pale yellow liquid (κλ.0 mg, λ4% yield). 
1H NMR (400.1 MHz, CDClγ) δ 7.γ5 – 7.ββ (m, 5H), γ.κβ (s, βH), β.5β – β.47 (m, 1H), 1.λγ 
– 1.λ1 (m, βH), 1.76 – 1.71 (m, βH), 1.64 – 1.5λ (m, 1H), 1.4β (br, 1H), 1.γ1 – 1.0κ (m, 5H). 
13C{1H} NMR (100.6 MHz, CDClγ) δ 141.1, 1βκ.5, 1βκ.β, 1β6.λ, 56.γ, 51.β, γγ.7, β6.γ, β5.β. 

Tribenzylamine 16ab[26] 

 
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and dibenzylamine 
(116.1 µL, 0.6 mmol) gave the title compound 16ab as a pale yellow solid (1γκ.0 mg, λ6% 
yield). 1H NMR (400.1 MHz, CDClγ) δ 7.47 (d, J = 7.5 Hz, 6H), 7.γ7 (t, J = 7.4 Hz, 6H), 7.βλ 
(d, J = 7.β Hz, γH), γ.6β (s, 6H). 13C{1H} NMR (100.6 MHz, CDClγ) δ 1γλ.κ, 1βκ.λ, 1βκ.γ, 
1β7.0, 5κ.1. 

N-Benzyl-N-ethylethanamine 16ac[27] 

  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and diethylamine 
(61.κ µL, 0.6 mmol) gave the title compound d29 as a pale yellow liquid (76.7 mg, λ4% yield). 
1H NMR (400.1 MHz, CDClγ) δ 7.γκ – 7.β1 (m, 5H), γ.57 (s, βH), β.5β (q, J = 7.1 Hz, 4H), 
1.04 (t, J = 7.1 Hz, 6H). 13C{1H} NMR (100.6 MHz, CDClγ) δ 1γκ.κ, 1βλ.γ, 1βκ.γ, 1β7.1, 57.β, 
46.5, 11.4. 



283 

 

1-Benzylpiperidine 16ad[26] 

  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and piperidine (5λ.γ µL, 
0.6 mmol) gave the title compound 16ad as a pale yellow liquid (κ1.5 mg, λγ% yield). 
1H NMR (400.1 MHz, CDClγ) δ 7.γλ – 7.βκ (m, 5H), γ.5γ (s, βH), β.50 – β.41 (m, 4H), 1.6γ – 
1.57 (m, 4H), 1.45 – 1.4γ (m, βH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 1γκ.0, 1βλ.6, 1βκ.γ, 
1β7.β, 6γ.7, 54.4, β5.λ, β4.4. 

N,N’-Dibenzylethane-1,2-diamine 16ae[28] 

  
‑ollowing the general procedure, benzaldehyde (1ββ.4 µL, 1.β mmol) and ethane-1,β-diamine 
(γγ.5 µL, 0.5 mmol) gave the title compound 16ae as a pale yellow solid (114.β mg, λ5% yield). 
1H NMR (400.1 MHz, CDClγ) δ 7.γ7-7.β5 (m, 10H), γ.κ1 (s, 4H), β.7λ (s, 4H), 1.κ6 (s, βH, 
NH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 140.5, 1βκ.5, 1βκ.β, 1β7.0, 54.0, 4κ.κ. 

2-(Benzylamino)ethan-1-ol 16af[29] 

  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and β-aminoethan-1-ol 
(γ0.0 µL, 0.5 mmol) gave the title compound 16af as a pale yellow liquid (65.0 mg, κ6% yield).  
1H NMR (400.1 MHz, CDClγ) δ 7.γ5 – 7.βγ (m, 5H), γ.κ1 (s, βH), γ.65 (t, J = 5.β Hz, βH), 
β.κ0 (t, J = 5.β Hz, βH), β.07 (br, βH, NH + OH + HβO). 13C{1H} NMR (100.6 MHz, CDClγ) 
δ 140.1, 1βκ.6, 1βκ.γ, 1β7.β, 61.1, 5γ.6, 50.7. 

3-(Benzylamino)propan-1-ol 16ag 

  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and γ-aminopropan-1-ol 
(γκ.β µL, 0.5 mmol) gave the title compound 16ag as a colorless liquid (6κ.6 mg, κγ% yield). 
1H NMR (400.1 MHz, CDClγ) δ = 7.γ5 – 7.βγ (m, 5H), γ.κ1 (t, J = 5.β, βH), γ.7λ (s, βH), 
β.κλ (t, J = 5.κ Hz, βH), β.κ1 (br, βH), 1.7β (quint., J = 5.5 Hz, βH). 13C{1H} NMR (100.6 MHz, 
CDClγ) δ = 1γλ.7, 1βκ.6, 1βκ.γ, 1β7.γ, 64.4, 54.1, 4λ.5, γ0.λ. GC-MS, m/z(%) = 165([M]+, 
β), 1β0(50), 106(1λ), λ1(100), 77(γ), 65(λ). 

(R)-2-(Benzylamino)butan-1-ol 16ah[30] 

 
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and (R)-β-amino-1-
butanol (CASμ 5κ56-6γ-γ, 47.5 µL, 0.5 mmol) gave the title compound 16ah as a white solid 
(κ6.λ mg, λ7% yield). 1H NMR (400.1 MHz, CDClγ) δ 7.γ7 – 7.β4 (m, 5H), γ.λ1 – γ.7λ (m, 
βH), γ.67 – γ.65 (m, 1H), γ.γ4 (br, 1H), β.64 (br, 1H), 1.56 – 1.4β (m, βH), 0.λγ (t, J = 6.κ, 
γH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 140.5, 1βκ.6, 1βκ.β, 1β7.β, 6β.7, 5λ.κ, 51.β, β4.5, 
10.5. [α]D

20= -γ0.61 (C= 0.5, CHβClβ). 
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Ethyl (R)-2-(benzylamino)-2-phenylacetate 16ai[31] 

 
(R)-β-Phenylglycinemethyl ester hydrochloride (CASμ 1λκκγ-41-1, 1β1.0 mg, 0.6 mmol) was 
added into an ‐tγN (111.5 µL, 0.κ mmol) solution in TH‑ (5.0 mL) and stirred for β h. The 
solution was filtered through celite then washed with ethyl acetate (γ×β.0 mL). The filtrate was 
evaporated to dryness to afford (R)-β-phenylglycinemethyl ester, which was used for the 
following step without further purification.  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and (R)-β-
phenylglycinemethyl ester hydrochloride (1β1.0 mg, 0.6 mmol) gave the title compound 16ai 
as a pale yellow liquid (1β1.β mg, λ0% yield).  1H NMR (400.1 MHz, CDClγ) δ 7.41 – 7.β4 
(m, 10H), 4.γλ (s, 1H), 4.β4 – 4.0λ (m, βH), γ.75 (s, βH), 1.β1 (t, J = 7.0 Hz, γH).  
13C{1H} NMR (100.6 MHz, CDClγ) δ 17γ.1, 1γλ.6, 1γκ.γ, 1βκ.7, 1βκ.5, 1βκ.4, 1βκ.1, 1β7.6, 
1β7.β, 64.5, 61.β, 51.5, 14.β. [α]D

20= -4.λκ (C= 1.β, CHβClβ) 

Ethyl benzyl-L-alaninate 16aj[32] 

 
L-Alanine ethyl ester hydrochloride (CASμ 1115-5λ-λ, λβ.β mg, 0.6 mmol) was added into an 
‐tγN (111.5 µL, 0.κ mmol) solution in TH‑ (5.0 mL) and stirred for β h. The solution was 
filtered through celite then washed with ethyl acetate (γ×β.0 mL mL). The filtrate was 
evaporated to dryness to afford L-alanine ethyl ester, which was used for the following step 
without further purification.  
‑ollowing the general procedure, benzaldehyde (51.0 µL, 0.5 mmol) and L-alanine ethyl ester 
hydrochloride (λβ.β mg, 0.6 mmol) gave the title compound 16aj as a pale yellow liquid 
(λ4.γ mg, λ1% yield). 1H NMR (400.1 MHz, CDClγ) δ = 7.γ4– 7.ββ (m, 5H), 4.1λ (q, J = 7.1, 
βH), γ.κγ – γ.66 (m, βH), γ.40 – γ.γκ (m, 1H), β.10 (br, 1H), 1.γβ (d, J = 6.γ, γH), 1.βλ (t, J = 

7.0, 4H). 13C{1H} NMR (100.6 MHz, CDClγ) δ = 175.λ, 1γλ.7, 1βκ.5, 1βκ.4, 1β7.β, 60.κ, 56.0, 
5β.β, 1λ.β, 14.4. [α]D

20= + γ.17 (C= 0.λ, CHβClβ)  

N-Butyldodecan-1-amine 16ak 

  
‑ollowing the general procedure, butyraldehyde (45.1 µL, 0.5 mmol) and dodecylamine 
(111.β mg, 0.6 mmol) gave the title compound 16ak as a yellow-green liquid (115.λ mg, λ6% 
yield). This compound was further purified by bulb to bulb distillation. 1H NMR (400.1 MHz, 
CDClγ) δ β.5λ (m, 4H), 1.70 – 1.1β (m, β5H), 0.λγ – 0.κ6 (m, 6H). 13C{1H} NMR (100.6 MHz, 
CDClγ) δ 50.γ, 4λ.λ, γβ.4, γβ.1, γ0.β, βλ.κβ, βλ.7λ, βλ.77, βλ.74, βλ.5, β7.6, ββ.κ, β0.7, 14.β7, 
14.1κ. GC-MS, m/z(%) = β41 ([M]+, β5), 1λκ(100), 1κ4(λ), 14β(λ), κ7(100), 70(11), 57(β7). 

N-(Bicyclo[2.2.1]hept-5-en-2-ylmethyl)aniline 16al 

  
‑ollowing the general procedure, 5-norbornene-β-carboxaldehyde (5β.6 µL, 0.5 mmol) and 
aniline (54.κ µL, 0.6 mmol) gave the title compound 16al as mixture of endo/exo isomers as a 
brown liquid (λ4.7mg, λ5% yield). 
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M = Major isomer endo, m = minor isomer exo, ratio Mμm = 60μ40 
1H NMR (400.1 MHz, CDClγ) δ 7.β0-7.16 (m, βH, M + m, CHAr), 6.75 – 6.66 (m, 1H, M + m, 
CHAr), 6.64 – 6.5κ (m, βH, CHAr), 6.1λ (dd, J = 5.7, γ.0 Hz, 1H, M, CH=CH), 6.15 – 6.0β (m, 
βH, m, CH=CH), 5.λ7 (dd, J = 5.κ, β.λ Hz, 1H, M, CH=CH), γ.1κ (dd, J = 11.λ, 6.λ Hz, 1H, m, 
CHβN), γ.0λ (dd, J = 11.λ, κ.γ Hz, 1H, m, CHβN), β.λβ (br s, 1H, M, CH), β.λ0 – β.76 (m, 4H, 
M, CHβN +CH, m, CH), β.7γ (br s, 1H, m, CH), β.γ6 (m, 1H, M, CH), 1.λβ (ddd, J = 11.5, λ.1, 
γ.λ Hz, 1H, M, CHβ), 1.76 – 1.64 (m, 1H, m, CH), 1.47 (dd, J = κ.β, β.β Hz, 1H, M, CHβ), 1.44 
– 1.γγ (m, γH, m, CHβ), 1.βκ (dt, J = κ.γ, 1.6 Hz, 1H, M, CHβ), 1.βγ (dt, J = 11.6, γ.κ Hz, 1H, 
m, CHβ), 0.64 (ddd, J = 11.5, 4.4, β.6 Hz, 1H, M, CHβ). 13C{1H} NMR (100.6 MHz, CDClγ) δ 
14κ.6λ (CqAr, M), 14κ.6γ (CqAr, m), 1γ7.76 (M, CH=CH), 1γ6.λ1 (m, CH=CH), 1γ6.56 (m, 
CH=CH), 1γβ.1λ (M, CH=CH), 1βλ.γ7 (m, CHAr), 1βλ.γ4 (M, CHAr), 117.β4 (m, CHAr), 
117.β0 (M, CHAr), 11β.κγ (M, CHAr), 11β.7κ (m, CHAr), 4λ.7β (m, CHβ), 4λ.70 (M, CHβ), 4κ.γγ 
(M, CHβ), 45.γλ (m, CHβ), 44.6γ (m, CH), 44.γκ (M, CH), 4β.5γ (M, CH), 41.κγ (m, CH), γλ.14 
(m, CH), γκ.κ7 (M, CH), γ1.41 (m, CHβ), γ0.5λ (M, CHβ). GC-MS, m/z(%) = 1λλ([M]+, 47), 
15κ(1β), 1γβ(κκ), 106(100), λ1(1γ), 77(4β), 65(1γ), 51(1γ) 

N-(2,6-Dimethylhept-5-en-1-yl)aniline 16am 

  
‑ollowing the general procedure, β,6-dimethyl-5-heptenal (κ4.β µL, 0.5 mmol) and aniline 
(54.κ µL, 0.6 mmol) gave the title compound 16am as a brown liquid (104.γ mg, λ6% yield). 
1H NMR (400.1 MHz, CDClγ) δ 7.17 (td, J = 7.4, 1.κ Hz, βH), 6.6κ (tt, J = 7.γ, 1.1 Hz, 1H), 
6.60 (dd, J = κ.6, 1.1 Hz, βH), 5.11 (m , 1H), γ.70 (br, 1H), γ.06 (dd, J = 1β.β, 5.λ Hz, 1H), 
β.κλ (dd, J = 1β.β, 7.γ Hz, 1H), β.14 – 1.λ4 (m, βH), 1.κβ – 1.7β (m, 1H), 1.6λ (s, γH), 1.6β (s, 
γH), 1.54 – 1.4β (m, 1H), 1.γβ – 1.0κ (m, 1H), 0.λλ (d, J = 6.7, γH). 13C{1H} NMR (100.6 
MHz, CDClγ) δ 14κ.77, 1γ1.71, 1βλ.γ5, 1β4.64, 117.07, 11β.77, 50.40, γ5.0β, γβ.70, β5.κ7, 
β5.5λ, 1κ.17, 17.κ5. GC-MS, m/z(%) = β17([M]+, 60), 146(100), 1γγ(10), 106(λ5), λγ(β0), 
77(γ5), 6λ(λ), 51(λ). 

N-(3-Phenylpropyl)aniline 16an[33] 

  
‑ollowing the general procedure cinnamaldehyde (6β.λ µL, 0.5 mmol) and aniline (54.κ µL, 
0.6 mmol) gave the title compound 16an as pale yellow liquid (λκ.γ mg, λγ% yield).  
1H NMR (400.1 MHz, CDClγ) δ 7.γ6 – 7.11 (m, 7H), 6.70 (t, J = 7.γ Hz, 1H), 6.5λ (d, J = 7.λ 
Hz, βH), γ.6β (s, 1H), γ.16 (t, J = 7.0 Hz, βH), β.75 (t, J = 7.5 Hz, βH), 1.λ7 (p, J = 7.β Hz, 
βH). 13C{1H} NMR (100.6 MHz, CDClγ) δ 14κ.5, 141.κ, 1βλ.4, 1βκ.6, 1βκ.5, 1β6.1, 117.γ, 
11β.λ, 4γ.6, γγ.5, γ1.β. 

6.4. Part IV-3- Transfer hydrogenation of aldimines 
The manganese complex 23 was synthesized according to the literature procedure.[γ4] 

6.4.1. Typical procedure for transfer hydrogenation of imines 

 
A β0 mL Schlenk tube was charged with imine (0.5 mmol), anhydrous isopropanol (5.0 mL), 
Mn complex 23 (β.0 mol%), and t-BuOK (4.0 mol%) under argon. Then the mixture was stirred 
at κ0 oC in an oil bath for γ h. After cooling to room temperature, the solution was diluted with 
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ethyl acetate (β mL) and filtered through a small pad of celite (β cm in a Pasteur pipette). The 
celite was washed with ethyl acetate (β×β mL). The filtrate was evaporated and the crude 
residue was purified by column chromatography (SiOβ, mixture of petroleum ether/ethyl 
acetate as eluent) to afford the desired product.  

6.4.2. Characterization data for amines 

N-Benzylaniline 16a[γ5] 

 
The compound 16a was prepared as described in the general procedure (κγ.γ mg) in λ1% yield. 
1H NMR (400 MHz, CDClγ) δ 7.41 – 7.γ4 (m, 4H), 7.γβ – 7.βκ (m, 1H), 7.ββ – 7.1κ (m, βH), 
6.76 – 6.7β (m, 1H), 6.67 – 6.65 (m, βH), 4.γ5 (s, βH), 4.04 (br, 1H). 13C NMR (101 MHz, 
CDClγ) δ 14κ.γ, 1γλ.6, 1βλ.4, 1βκ.κ, 1β7.6, 1β7.4, 117.7, 11γ.0, 4κ.5. 
 
N-(2-Methylbenzyl)aniline 16b[16] 

 
The compound 16b was prepared as described in the general procedure (λ1.7 mg) in λ5% yield. 
1H NMR (400 MHz, CDClγ) δ 7.γ4 (d, J = 6.κ Hz, 1H), 7.ββ – 7.1κ (m, 5H), 6.7γ (t, J = 7.γ 
Hz, 1H), 6.65 (d, J = 7.λ Hz, βH), 4.βκ (d, J = 5.0 Hz, βH), γ.κ4 (br, 1H), β.γκ (s, γH).  
13C NMR (101 MHz, CDClγ) δ 14κ.5, 1γ7.1, 1γ6.5, 1γ0.6, 1βλ.4, 1βκ.4, 1β7.6, 1β6.γ, 117.6, 
11β.κ, 46.5, 1λ.1. 
 
N-(2,4,6-Trimethylbenzyl)aniline 16ao[γ6] 

 
The compound 16ao was prepared as described in the general procedure (5λ.7 mg) in 5γ% 
yield. 1H NMR (400 MHz, CDClγ) δ 7.γ5 – 7.1κ (m, βH), 6.λ6 (s, βH), 6.7λ (td, J = 7.γ, 1.γ 
Hz, 1H), 6.7β (d, J = κ.4 Hz, βH), 4.β5 (s, βH), γ.46 (s, 1H), β.41 (s, 6H), β.γ6 (s, γH).  
13C NMR (101 MHz, CDClγ) δ 14κ.7, 1γ7.6, 1γ7.4, 1γβ.γ, 1βλ.4, 1βλ.β, 117.γ, 11β.5, 4β.5, 
β1.1, 1λ.5. 
 
N-(benzyl)-2-metyhylaniline 16ap[γ7] 

 
The compound 16ap was prepared as described in the general procedure (λγ.7 mg) in λ5% 
yield. 1H NMR (γ00 MHz, CDClγ) δ 7.γ6 (dt, J = β1.γ, 7.4 Hz, 5H), 7.17 – 7.05 (m, βH), 6.6λ 
(td, J = 7.4, 1.β Hz, βH), 6.6γ (d, J = 7.λ Hz, 1H), 4.γλ (d, J = 5.4 Hz, βH), γ.κ7 (t, J = 5.4 Hz, 
1H), β.1λ (s, γH). 13C NMR (101 MHz, CDClγ) δ 146.β, 1γλ.6, 1γ0.β, 1βκ.κ, 1β7.7, 1β7.4, 
1β7.γ, 1ββ.1, 117.γ, 110.1, 4κ.5, 17.7. 

N-(4- Bromobenzyl)aniline 16ar[γκ] 

 
The compound 16ar was prepared as described in the general procedure (1βγ.β mg) in λ4% 
yield. 1H NMR (400 MHz, CDClγ) δ 7.4κ – 7.4γ (m, βH), 7.β5 – 7.βγ (m, 1H), 7.β0 – 7.15 (m, 
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βH), 6.75 – 6.70 (m, 1H), 6.6γ – 6.5λ (m, βH), 4.γ0 (d, J = 5.7 Hz, βH), 4.05 (br, 1H).  
13C NMR (101 MHz, CDClγ) δ 147.λ, 1γκ.7, 1γ1.κ, 1βλ.4, 1βλ.β, 1β1.1, 11κ.0, 11γ.0, 47.κ. 
 
N-(Benzyl)-4-iodo-aniline 16j[1λ,γ5] 

 
The compound 16j was prepared as described in the general procedure (14γ.κ mg) in λγ% yield. 
1H NMR (400 MHz, CDClγ) δ 7.4β – 7.γλ (m, βH), 7.γ5 – 7.β6‑ (m, 5H), 6.4γ – 6.40 (m, βH), 
4.γ0 (d, J = 5.6 Hz, βH), 4.10 (br, 1H). 13C NMR (101 MHz, CDClγ) δ 147.κ, 1γλ.0, 1γ7.λ, 
1βκ.κ, 1β7.6, 1β7.5, 115.β, 7κ.γ, 4κ.β. 
 
N-(4-Chlorobenzyl)aniline 16as[γ5] 

 
The compound 16as was prepared as described in the general procedure (106.6 mg) in λβ% 
yield. 1H NMR (400 MHz, CDClγ) δ 7.γ0 (s, 4H), 6.λλ (d, J = κ.1 Hz, βH), 6.54 (d, J = κ.4 Hz, 
βH), 4.βλ (s, βH), γ.λγ (s, 1H), β.β4 (s, γH). 13C NMR (101 MHz, CDClγ) δ 145.7, 1γκ.4, 
1γβ.λ, 1βλ.λ, 1βκ.κ, 1βκ.κ, 1β7.β, 11γ.β, 4κ.1, β0.5. 
 
N-Benzyl-4-fluoroaniline 16f[15] 

 
The compound 16f was prepared as described in the general procedure (λ6.6 mg) in λ6% yield. 
1H NMR (400 MHz, CDClγ) δ 7.40 – 7.β7 (m, 5H), 6.λβ – 6.κ6 (m, βH), 6.5λ – 6.56 (m, βH), 
4.γ0 (d, J = 5.7 Hz, βH), γ.λγ (t, J = 5.7 Hz, 1H). 13C NMR (101 MHz, CDClγ) δ 156.0 (d, J = 

βγ5.0 Hz), 144.6 (d, J = 1.λ Hz), 1γλ.4, 1βκ.κ, 1β7.6, 1β7.4, 115.κ (d, J = ββ.γ Hz), 11γ.κ (d, 
J = 7.γ Hz), 4λ.1. 19F NMR (γ76 MHz, CDClγ) δ -1β7.λβ. 
 
4-Methoxy-N-((1-methyl-1H-pyrrol-2-yl)methyl)aniline 16r[β0] 

 
The compound 16r was prepared as described in the general procedure (4β.β mg) in γλ% yield.  
1H NMR (400 MHz, CDClγ) δ 6.κγ – 6.7λ (m, βH), 6.66 – 6.6β (m, γH), 6.11 – 6.0κ (m, 1H), 
6.0λ – 6.07 (m, 1H), 4.17 (s, βH), γ.76 (s, γH), γ.64 (s, γH), γ.41 (br, 1H). 13C NMR (101 MHz, 
CDClγ) δ 15β.5, 14β.6, 1γ0.1, 1ββ.λ, 115.1, 114.4, 10κ.5, 106.λ, 56.0, 41.5, γγ.λ. 
 
4-Methoxy-N-((5-methylfuran-2-yl)methyl)aniline 16s[β0] 

 
The compound 16s was prepared as described in the general procedure (κβ.6 mg) in 76% yield.  
1H NMR (400 MHz, CDClγ) δ 6.κγ – 6.7γ (m, βH), 6.70 – 6.61 (m, βH), 6.0λ (d, J = γ.1 Hz, 
1H), 5.κκ (d, J = γ.1 Hz, 1H), 4.β0 (s, βH), γ.75 (s, γH), β.β7 (s, γH). 
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13C NMR (101 MHz, CDClγ) δ 15β.7, 151.7, 151.β, 14β.1, 114.λ, 114. , 107.λ, 106.β, 55.λ, 
4β.7, 1γ.7. 
 
N-(Pyridin-2-ylmethyl)aniline 16t[16] 

 
The compound 16t was prepared as described in the general procedure (λλ.6 mg) in λγ% yield.  
1H NMR (400 MHz, CDClγ) δ κ.5κ (d, J = 4.4 Hz, 1H), 7.64 (td, J = 7.7, 1.7 Hz, 1H), 7.γ4 (d, 
J = 7.κ Hz, 1H), 7.17 (dd, J = 7.0, 5.β Hz, 1H), 6.7λ – 6.77 (m, βH), 6.66 – 6.6γ (m, βH), 4.4κ 
(br, 1H), 4.4β (d, J = 5.5 Hz, βH), γ.74 (s, γH). 13C NMR (101 MHz, CDClγ) δ 15λ.0, 15β.4, 
14λ.4, 14β.γ, 1γ6.7, 1ββ.β, 1β1.κ, 115.0, 114.5, 55.λ, 50.4. 
 
N-(Quinolin-2-ylmethyl)aniline 16au[16] 

 
The compound 16au was prepared as described in the general procedure (107.κ mg) in λβ% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.1β (d, J = κ.4 Hz, βH), 7.κ1 (dd, J = κ.1, 1.β Hz, 1H), 
7.7γ (ddd, J = κ.4, 6.κ, 1.γ Hz, 1H), 7.54 (ddd, J = κ.1, 6.λ, 1.β Hz, 1H), 7.45 (d, J = κ.5 Hz, 
1H), 7.βγ – 7.1λ (m, βH), 6.76 – 6.74 (m, γH), 5.15 (t, J = 5.β Hz, 1H), 4.64 (d, J = 5.β Hz, 
βH). 13C NMR (101 MHz, CDClγ) δ 15κ.κ, 14κ.1, 147.κ, 1γ6.κ, 1βλ.κ, 1βλ.4, 1βλ.1, 1β7.κ, 
1β7.5, 1β6.4, 11λ.λ, 117.7, 11γ.β, 4λ.λ. 
 
N-(Ferrocenylmethyl)-4-methylaniline 16q[20] 

 
The compound 16q was prepared as described in the general procedure (1γ4.γ mg) in κκ% 
yield. 1H NMR (400 MHz, CDClγ) δ 7.0β (d, J = κ.1 Hz, βH), 6.60 (d, J = κ.1 Hz, βH), 4.β5 
(t, J = 1.κ Hz, βH), 4.1κ (s, 5H), 4.14 (t, J = 1.κ Hz, βH), γ.λ5 (s, βH), γ.75 (br, 1H), β.β6 (s, 
γH). 13C NMR (101 MHz, CDClγ) δ 146.γ, 1βλ.λ, 1β6.λ, 11γ.β, κ6.λ, 6κ.6, 6κ.β, 6κ.0, 4γ.λ, 
β0.5. 
 
N,N-Dimethyl-4-((p-tolylamino)methyl)aniline 16k[20] 

 
The compound 16k was prepared as described in the general procedure (51.7 mg) in 4γ% yield.  
1H NMR (400 MHz, CDClγ) δ 7.β5 (d, J = κ.6 Hz, βH), 6.λλ (d, J = κ.γ Hz, βH), 6.7γ (d, J = 

κ.6 Hz, βH), 6.5κ (d, J = κ.γ Hz, βH), 4.1λ (s, βH), γ.75 (be, 1H), β.λ5 (s, 6H), β.β5 (s, γH). 
13C NMR (101 MHz, CDClγ) δ 150.β, 146.4, 1βλ.κ, 1βκ.κ, 1β7.5, 1β6.6, 11γ.1, 11β.λ, 4κ.4, 
40.λ, β0.5. 
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N-(3,4,5-Trimethoxylbenzyl)4-methyl-aniline 16ao[1λ] 

 
The compound was prepared as described in the general procedure (1β6.4 mg) in κκ% yield. 
1H NMR (400 MHz, CDClγ) δ 7.01 (d, J = κ.β Hz, βH), 6.6γ (s, βH), 6.5λ (d, J = κ.γ Hz, βH), 
4.β4 (d, J = 5.5 Hz, βH), γ.λβ (t, J = 5.7 Hz, 1H), γ.κ6 (s, λH), γ.κ5 (s, λH), β.β6 (s, γH). 
13C NMR (101 MHz, CDClγ) δ 15γ.4, 146.0, 1γ7.0, 1γ5.5, 1βλ.κ, 1β6.λ, 11γ.1, 104.4, 60.λ, 
56.1, 4λ.1, β0.4. 
 
4-(4-Methylphenylamino)methyl)benzonitrile 16aw[γλ] 

 
The compound 16aw was prepared as described in the general procedure (λκ.λ mg) in κλ% 
yield. 1H NMR (400 MHz, CDClγ) δ 7.6β (d, J = κ.β Hz, βH), 7.47 (d, J = κ.β Hz, βH), 6.λκ 
(d, J = κ.1 Hz, βH), 6.50 (d, J = κ.4 Hz, βH), 4.41 (d, J = 5.6 Hz, βH), 4.07 (t, J = 5.6 Hz, 1H), 
β.βγ (s, γH). 13C NMR (101 MHz, CDClγ) δ 145.κ, 145.γ, 1γβ.6, 1γ0.0, 1β7.κ, 1β7.5, 11λ.0, 
11γ.1, 111.0, 4κ.β, β0.5. 
 
Isoprpoyl 4-((phenylamino)methyl)benzoate 16ay 

 
The compound 16ay was prepared as described in the general procedure (1γ0.6 mg) in λ7% 
yield. 1H NMR (γ00 MHz, CDClγ) δ κ.01 (d, J = κ.β Hz, βH), 7.4γ (d, J = κ.1 Hz, βH), 7.β0 – 
7.1γ (m, βH), 6.7β (t, J = 7.γ Hz, 1H), 6.61 (d, J = 7.κ Hz, βH), 5.β5 (hept, J = 6.β Hz, 1H), 
4.41 (d, J = 5.κ Hz, βH), 4.1γ (t, J = 5.κ Hz, 1H), 1.γ6 (d, J = 6.β Hz, 6H). 13C NMR (101 MHz, 
CDClγ) δ 166.1, 147.λ, 144.κ, 1γ0.0, 1βλ.4, 1β7.β, 11κ.0, 11γ.0, 6κ.4, 4κ.1, ββ.1. 
 
N-(4-(((4-Methoxyphenyl)amino)methyl)phenyl)acetamide 16m[15] 

 
The compound 16m was prepared as described in the general procedure (117.6 mg) in κ7% 
yield. 1H NMR (400 MHz, CDClγ) δ 7.46 (d, J = κ.0 Hz, βH), 7.γβ (d, J = κ.1 Hz, βH), 6.77 
(d, J = κ.κ Hz, βH), 6.5λ (d, J = κ.κ Hz, βH), 4.β4 (s, βH), γ.74 (s, γH), β.17 (s, γH), 1.5β (d, J 

= 50.λ Hz, 1H). 13C NMR (101 MHz, CDClγ) δ 16κ.7, 15β.γ, 14β.5, 1γ7.1, 1γ5.7, 1βκ.β, 1β0.γ, 
115.0, 114.β, 55.λ, 4κ.κ, β4.6. 
 
N-(benzo[d][1,3]dioxol-5-ylmethyl)aniline 16az[40] 

 
The compound 16az was prepared as described in the general procedure (λ4.γ mg) in κγ% 
yield. 1H NMR (γ00 MHz, CDClγ) δ 7.βλ – 7.βγ (m, βH), 6.λ4 – 6.7κ (m, 4H), 6.71 – 6.6κ (m, 
βH), 5.λλ (s, βH), 4.βλ (s, βH), 4.05 (br, 1H). 13C NMR (75 MHz, CDClγ) δ 14κ.1, 14κ.0, 
146.κ, 1γγ.4, 1βλ.γ, 1β0.6, 117.6, 11β.λ, 10κ.γ, 10κ.1, 101.0, 4κ.1. 
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N-benzyl-4-vinylaniline 16ba[41] 

 
The compound 16ba was prepared as described in the general procedure (λκ.4 mg) in λ4% 
yield. 1H NMR (400 MHz, CDClγ) δ 7.γκ – 7.γγ (m, 4H), 7.γ0 – 7.β4 (m, γH), 6.65 – 6.5κ (m, 
γH), 5.5γ (dd, J = 17.5, 1.1 Hz, 1H), 5.0β (dd, J = 10.λ, 1.1 Hz, 1H), 4.γ5 (s, γH), 4.1β (br, 
1H). 13C NMR (101 MHz, CDClγ) δ 14κ.0, 1γλ.4, 1γ6.κ, 1βκ.κ, 1β7.6, 1β7.6, 1β7.5, 1β7.4, 
11β.λ, 10λ.7, 4κ.4. 
 
N-benzyl-4-ethynylaniline 16bb[4β] 

 
The compound 16bb was prepared as described in the general procedure (λ4.γ mg) in λ1% 
yield. 1H NMR (400 MHz, CDClγ) δ 7.γ7 – 7.β6 (m, 7H), 6.57 – 6.54 (m, βH), 4.γ5 (d, J = 5.5 
Hz, βH), 4.β4 (br, 1H), β.λ7 (s, 1H). 13C NMR (101 MHz, CDClγ) δ 14κ.5, 1γκ.λ, 1γγ.6, 1βκ.λ, 
1β7.6, 114.7, 11β.5, 110.4, κ4.κ, 74.λ, 4κ.1. GC-MS, m/z(%) = β6λ([M]+, λλ), β10(1κ), 
1κβ(βλ), 1γ5(100), 106(γ4), κλ(β7), 77(βκ). 
 
N-cinnamylaniline 16bc[Sβ, S14] 

 
The compound 16bc was prepared as described in the general procedure (λ7.γ mg) in λγ% 
yield, and was isolated as κ0μβ0 mixture of N-cinnamylaniline and N-γ-phenylpropyl-aniline. 
Characteristic signals are listed below.  

 
1H NMR (400.1 MHz, CDClγ) δ 6.γ4 (dt, J = 15.λ, 5.7 Hz, 1H), γ.λ5 (d, J = 5.4 Hz, βH), 

 
1H NMR (400.1 MHz, CDClγ) δ γ.16 (t, J = 7.0 Hz, βH), β.75 (t, J = 7.5 Hz, βH), 1.λ7 (p, J = 
7.β Hz, βH). 
 
N-(4-(1-(Phenylimino)ethyl)benzyl)aniline 16n[γ5] 

 
The compound 16n was prepared as described in the general procedure (1β4.7 mg) in κγ% 
yield. 1H NMR (400 MHz, CDClγ) δ 7.λ6 (d, J = κ.1 Hz, βH), 7.45 (d, J = κ.0 Hz, βH), 7.γ5 
(t, J = 7.6 Hz, βH), 7.1κ (t, J = 7.6 Hz, βH), 7.0λ (t, J = 7.γ Hz, 1H), 6.κ0 (d, J = 7.7 Hz, βH), 
6.7γ (t, J = 7.γ, 6.λ Hz, 1H), 6.64 (d, J = κ.0 Hz, βH), 4.41 (d, J = 5.7 Hz, βH), 4.1β (br, 1H), 
β.βγ (s, γH). 13C NMR (101 MHz, CDClγ) δ 165.γ, 151.κ, 14κ.1, 14β.γ, 1γκ.7, 1βλ.4, 1βλ.1, 
1β7.7, 1β7.4, 1βγ.4, 11λ.5, 117.λ, 11γ.1, 4κ.1, 17.5. 
 
Dibenzylamine 16y[15] 

 
The compound 16y was prepared as described in the general procedure (γ4.5 mg) in γ5% yield.  
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1H NMR (400 MHz, CDClγ) δ 7.γ7 – 7.β6 (m, 10H), γ.κ7 (s, 4H), 1.71 (br, 1H).  
13C NMR (101 MHz, CDClγ) δ 140.5, 1βκ.5, 1βκ.γ, 1β7.1, 5γ.γ. 
 
N-Benzylcyclohexanamine 16aa[β5] 

 
The compound 16aa was prepared as described in the general procedure (11.4 mg) in 1β% 
yield. 1H NMR (400 MHz, CDClγ) δ 7.4γ – 7.14 (m, 5H), γ.κβ (s, βH), β.4λ (tt, J = 10.1, γ.κ 
Hz, 1H), β.11 – 0.6λ (m, 11H). 13C NMR (101 MHz, CDClγ) δ 141.0, 1βκ.5, 1βκ.β, 1β6.λ, 
56.γ, 51.1, γγ.7, β6.γ, β5.1. 
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Chapter V - (De)Hydrogenative Synthesis Catalyzed by Rhenium 
Introduction 
Hydrogenation reactions have been of central importance in chemistry for more than a 

century.[1] Nevertheless, it remains an important field of investigation, notably with the current 

challenge of the transformation of highly oxygenated biomass-resources into less 

functionalized chemical building blocks.[β] Compared to the transition metals of groups κ, λ, 

and 10 (‑e, Co, Ni) which are classical in reduction area, group 7 transition metals have been 

scarcely applied in hydrogenation or related reduction reactions[γ] Nevertheless, since few 

years, manganese has been proved to be a suitable transition metal for the design of efficient 

hydrogenation and hydrogen borrowing catalysts (see introduction in Chapter IV for more 

details).[γa, 4] In the case of rhenium, after the seminal work of ‐phritikhine on dehydrogenation 

of alkanes to alkenes,[5] rare examples of stoichiometric[6] and catalytic[7] hydrogenation of 

alkenes have been described with rhenium nitrosyl hydride complexes mainly by Berke, and a 

single example of the hydrogenation of acetophenone is reported.[7b] Interestingly, Berke has 

also developed a bifunctional rhenium complex, bearing a non-innocent cyclopentadienol 

ligand, as hydrogen transfer catalyst for the reduction of ketones and imines.[7f, κ] Due to the 

importance of cooperative metal-ligand complexes in hydrogenation,[λ] notably through the so-

called NH-effect,[10] we became interested in the preparation of well-defined rhenium PN(H)P 

pincer complexes as catalysts for reduction reactions. The first part of this chapter will focus 

on the hydrogenation of carbonyl derivatives catalyzed by Re PN(H)P pincer complex 

(Scheme 1a).  

In the context of green and sustainable development, the utilization of non-toxic, inexpensive, 

renewable and readily available reagents is highly desirable. As such, the replacement of 

hazardous and waste-generating reactants embraces several of the 1β principles of green 

chemistry, especially when coupled with catalysis.[11]  

In this respect and considering the importance of N-methylated amines as key intermediates 

and building blocks in synthetic chemistry, the development of methylation reagents greener 

than the classical formaldehyde, methyl iodide, methyl triflate, or dimethyl sulfate is a topical 

challenge. ‑or selective mono N-methylation of amines, sustainable sources of “methyl” group 

were investigated,[1β] including carbon dioxide,[1γ] dialkylcarbonate[14] and formic acid.[15] 

Methanol, the simplest alcohol, can also be used as a green and renewable C1 source for 

methylation reactions[16] using the hydrogen borrowing methodology.[17] Actually, “Methanol 
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‐conomy” identifies and promotes methanol as a substitute for petroleum oil in the field of 

energy and chemistry.[1κ] Methanol is a biodegradable liquid, easy to handle and a safe 

chemical to produce, for example, formaldehyde, acetic acid, or ethylene.[1λ] In addition, due 

to the plurality of its supplies including from renewable sources,[β0] methanol is a sustainable 

building block. Therefore, in the second part of this chapter, we will describe the mono N-

methylation of anilines with methanol catalyzed by Re PN(H)P pincer complexes (Scheme 1b). 

 
Scheme 1. (De)Hydrogenative synthesis catalyzed by rhenium. 

On the other hand, N-heterocycles are ubiquitous skeleton in natural products and biologically 

active molecules.[β1] Among this family, substituted quinolines are extensively used in 

pharmaceuticals, medicinal chemistry,[ββ] agrochemicals, and functional materials.[βγ] 

Accordingly, new synthetic protocols are continuously needed to access a large diversity of 

functionalized quinolines. Conventional routes for the access of quinolines,[β1] such as 

Skraup[β4], Camps[β5] and Knorr[β6] synthesis, have been reported over a century ago. However 

most of these methods suffer from multiple steps synthesis, harsh conditions (high temperature, 

excess of bases or acids), low chemoselectivity leading to overall low yields and poor atom 

economy.[β7] Among those synthetic approaches, the ‑riedländer reaction has been proven to 

be one of the simplest and most efficient methods.[βκ] Although the ‑riedländer method is quite 

versatile, the primary limitation of this approach is the preparation and stability of the starting 

materials, i.e. β-aminobenzaldehyde derivatives, since these compounds undergo easily self-

condensation. To overcome these limitations, the indirect ‑riedländer reaction, involving the 

oxidative annulation of stable β-aminobenzylalcohols with either readily available secondary 

alcohols or ketones, via hydrogen auto-transfer reactions, is a powerful and sustainable way to 
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access quinolines.[17g, βλ] The synthesis of quinolines through acceptorless dehydrogenative 

coupling catalyzed by the same type of rhenium complexes will be depicted in the third part of 

this chapter (Scheme 1c). 
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V-1 Hydrogenation of carbonyl derivatives catalyzed by Re PN(H)P 
complexes 
Contributions in this partμ Synthesis of the complexes, optimization, scope and mechanistic 

studiesμ Duo Weiν X-ray diffraction studiesμ Thierry Roisnelν D‑T calculationsμ ‐ric Clot. 

Publicationμ D. Wei, T. Roisnel, C. Darcel, ‐. Clot, J.-B. Sortais, ChemCatChem, 2017, 9, κ0-

κγ 

In the field of hydrogenation reactions, until now, rhenium PNP pincer type complexes have 

been sparsely discussed in the literature.[7f, γ0] We report in this first paragraph the first efficient 

and broad scope hydrogenation of carbonyl derivatives with a well-defined rhenium complex 

based on a PN(H)P ligand. 

1.1. Results and discussions 

1.1.1. Rhenium complex synthesis 

A new series of cationic tricarbonyl Re(I) complexes bearing tridentate PNP [7f, γ0b-d, γ0f-l, γ1] 

based on NH(CHβCHβPRβ)β ligands with different alkyl or aryl substituents on the phosphorus 

atoms (1, R = iPrν 2, R = Cyν 3, R = Phν 4, R = tBuν 5, R = Ad), was prepared upon reaction of 

one equivalent of ligand with one equivalent of ReBr(CO)5 in toluene at 100 °C overnight. ‑or 

comparative purpose, the 1-5 series of complexes was complemented with the dipicolylamine 

analogue 6, prepared following the same procedure from ReBr(CO)5 and dipicolylamine. 

Complexes 1-6 were thus obtained in excellent yields (λ0-λ7% yields, Scheme β). It must be 

noted that the complex 6 has been previously prepared starting from the [N‐t4]β[Re(CO)γBrγ] 

cationic precursor.[γβ]  

All the new complexes 1-5 were characterized by NMR, elemental analysis, IR, HR-MS and 

X-ray diffraction studies (‑igures 1, β and γ). Surprisingly, the coordination mode of the 

tridentate ligands in 1, 2 and 3 adopted a facial coordination at Re contrary to other octahedral 

complexes with Mn,[4h] ‑e,[γγ] Ru[γ4] or Os[γ5] that exhibit a meridional coordination mode of 

the ligand (‑igures 1 and β). While for the complexes 4 and 5, meridional coordination modes 

were observed when the size of the substituents on the phosphorus atom increased (‑igure γ). 

According to our calculations (Scheme 4, in mechanistic studies), mer-isomers correspond to 

a thermodynamic stable geometry, and thus isolated fac-isomers are the kinetic products of the 

reaction. 
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(Isolated yield indicated in parenthesis)  
Scheme 2. Synthesis and structures of the rhenium complexes 1-6.  

In the case of the bulkiest adamantyl derivative, the complex 5 was obtained as an orange solid, 

in sharp contrast with the white color of all the other complexes. The 1γC{1H} NMR displayed 

only two signals of seemingly equal intensity for the carbonyl ligands, while complexes 1-4 

and 6 typically displayed three distinct signals. In the IR spectrum, only two equally intense 

CO stretching bands were present, while three were present for complexes 1-4 and 6 (Table 1). 

‑inally, the X-ray structure confirmed the sole presence of two carbonyl coordinated to the 

rhenium center (‑igure γ, right), along with the PNP ligand, thus highlighting the unsatured 

coordination sphere of the metal.  

 
Figure 1. Perspective view of the cationic part of complex 1 (thermal ellipsoids drawn at the 
50% probability level, hydrogen atoms, except NH, were omitted for clarity). 
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Figure 2. Perspective view of the cationic part of the complexes 2 (left) and 3 (right) (thermal 
ellipsoids drawn at the 50% probability level, hydrogen atoms, except NH, were omitted for 
clarity). 

 

Figure 3. Perspective view of the cationic part of the complexes 4 (left) and 5 (right) (thermal 
ellipsoids drawn at the 50% probability level, hydrogen atoms, except NH, were omitted for 
clarity). 

Table 1. Stretching frequencies of carbonyl ligands in IR for complexes 1-6[a] 

Complex CO (cm−1) 
1 β0γ1, 1λ44, 1λβ1 
2 β0βλ, 1λ40, 1λ1λ 
3 β04β, 1λ67, 1λβγ 
4 β0β7, 1λβγ, 1λ1γ 
5 1λβ5, 1κγκ 
6 β0γγ, 1λγ5, 1λ11 

[a] CO (cm-1) CHβClβ solution.  

1.1.2. Optimization of the reaction conditions for the hydrogenation of acetophenone 

In our first attempt, we investigated only the activity of the complex 1 in hydrogenation 

reactions. The 5 others complexes 2-6 were mainly used for the mono N-methylation of anilines 

and the acceptorless dehydrogenative synthesis of quinolines (see § 5.β and 5.γ). 
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Aiming at probing the hydrogenation catalytic activity of the complex 1, the initial 

investigations were carried out on acetophenone 7a (Table β). ‑ull reduction of 7a to the 

corresponding 1-phenylethanol 8a was achieved in the presence of 5.0 mol% of the complex 

1, 10 mol% t-BuOK, 50 bar of Hβ at 110 °C for 16 h (entry 1). Interestingly, these conditions 

resulted in full conversion already after β hours (entry β). Using only Re(CO)5Br precursor, 

without any ligand, resulted in no hydrogenation activity (entry γ). The same lack of reactivity 

was also observed in the absence of a base (entry 4).  

Table 2. Optimization of the reaction parameters[a] 

 
Entry Complex (mol%) t-BuOK (mol%) H2 (bar) T (°C) t (h) Yield (%)
1 1 (5.0) 10 50 110 16 >λκ 
β 1 (5.0) 10 50 110 β >λκ 
γ Re(CO)5Br (5.0) 10 50 110 β <γ 
4 1 (5.0) - 50 110 β <γ 
5 1 (5.0) 10 50 70 16 >λκ 
6 1 (5.0) 10 50 γ0 16 <γ 
7 1 (0.5) 1.0 50 70 16 >λκ 
κ 1 (0.1) 5.0 50 70 1κ 6γ 
λ 1 (0.5) 1.0 γ0 70 16 >λκ 
10 1 (1.0) β.0 10 70 1κ λ0 
11 1 (5.0) 10 1 110 16 κ5 
1β 1 (5.0) 10 1[b] 110 16 κ1 

[a] Reaction conditionsμ in a glove box, an autoclave is filled with 1) complex 1, β) toluene, γ) 
acetophenone 7a 4) t-BuOK, then pressurized with Hβ. The reaction was heated in an oil bath. 

[b] A balloon of Hβ was used. 

The influence of reaction parameters such as temperature, catalyst loading and pressure was 

then investigated. At 70 °C, full conversion of 7a was still observed after 16 hours (entry 5), 

but lowering the temperature to γ0 °C completely shuts down the catalytic activity (entry 6). 

Under 50 bar of Hβ, at 70 °C, the catalyst loading could be decreased to 0.5 mol% without 

losing any activity, however, with only 0.1 mol% of 1, the conversion dropped to 6γ% (TON 

6γ0, entries 7-κ). The pressure of hydrogen can be lowered to γ0 bar in the presence of 0.5 mol% 

of catalyst (entry λ). Ketone hydrogenation still takes place with lower pressure, down to 1 bar, 

even with a balloon of Hβ, although at the expense of the charge of catalyst and temperature 

(entries 10-1β). The optimal conditions selected to probe the substrate scope of the reaction 

were 0.5 mol% 1, 1.0 mol% base, γ0 bar Hβ, 70oC, 16 h (Table γ). 

1.1.3. Scope for rhenium-catalyzed hydrogenation of ketones 
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Table 3. Scope of the hydrogenation of ketones 7 giving alcohols 8 under the catalysis of 1. 

R1 R2

OH

R1

O

R2
1 (0.5 mol%), t-BuOK (1.0 mol%)

+   H2
H

     7             30 bar                                                       8

OH

8a 17 h, >98 (98)

OHMe

8b 17 h, >98 (97)

OH

Me
8c 17 h, >98 (95)

OH

MeO
8d 17 h, >98 (93)

OHOMe

8e 2 h, >98 (92)a

OH

8f 17 h, >98 (96)

OH

O
N

8g 17 h, >98 (98)

OH

F3C

8h 17 h, 84 (80)

OH

H2N

8j 38 h, >98 (94)c

OH

F

OH

Cl

8k 17h, >98 (96) 8l 24 h, >98 (97)

OH

Cl
8m 17 h, >98 (95)

OH

I

8n 17 h, >98 (98)b

OH

8o 24 h, >98 (95)

OH

Br
8p 17 h, >98 (94)

OH

8q 17 h, >98 (97)b

OH

8r 17 h, >98 (95)b

OH

8s 20 h, 79(72)a

OH

F
F

F

Br
8t 38 h, >98 (95)b

OH

8u 17 h, >98 (96)c

OH

8v 17 h, >98 (94)c

Bn
OH

8w 24 h, >98 (96)

Ph
OH

8x 2 h, >98 (93)a

OH

OH

8i 17 h, >98 (94)b

OH

Ph

8y 2 h, >98 (94)a

S
OHOH

8aa 17 h, >98 (96)c

S
Cl

OH

8ab 21 h, >98 (95)c

O
OH

8ac 6 h, >98 (92)a
O

OH

8ad 2 h, >98 (94)a

N
OH

8ae 17 h, >98 (97)c

N
OHOH

8af 17 h, >98 (96)b

N

OH

8ag 4 h, 93 (88)a

N

S

OH

8ah 19 h, >98 (95)c

Fe

OH

8ai 24 h, >98 (97)

OH

NN

8aj 2 h, 93(89)a,e

OH OH

8

OH

OH

OH OH

8ap 2 h, >98 
(cis/trans = 32/63)a

8ao 17 h, >98c,f8an 17 h, 86 (80)b8am 24 h, >98 (94)b8al 38 h, >98 (96)c8ak 17 h, >98 (95)c

8z 17 h, >98b,d

toluene, 70 oC

 
General conditionsμ ketone 7 (β.5 mmol), Hβ (γ0 bar), 1 (0.5 mol%), t-BuOK (1.0 mol%), toluene, 
70 °Cν Isolated yields of 8 in parenthesesν 
[a] Hβ (50 bar), 1 (5.0 mol%), t-BuOK (10 mol%), 110 oCν  
[b] Hβ (50 bar), 1 (1.0 mol%), t-BuOK (β.0 mol%), 110 oCν  
[c] Hβ (γ0 bar), 1 (0.5 mol%), t-BuOK (1.0 mol%), 110 oCν  
[d] 10% of the unsaturated alcohol was detected in the crude mixtureν 
[e] Isolated yield with γ% of starting materialν  
[f] TH‑ as the solvent. 

In general, ketones bearing electron-donating and electron-withdrawing substituents, e.g. o- 

and p-methyl (7b, 7c), p- and o-methoxy (7d, 7e), p-morpholinyl (7g), p-fluoro (7k), p- and o-

chloro (7l, 7m), p-bromide (7p, 7t), p-trifluoromethyl (7h), p-amino (7j) and the more reactive 
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p-iodo (7n) groups were reduced without alteration of the functional groups. Harsher 

conditions were needed for the hydrogenation of o-methoxy- acetophenone 7e (Hβ (50 bar), 1 

(5.0 mol%), t-BuOK (10 mol%), 110 oC). In addition, β'-acetonaphthone 7f and di- ketones (7i) 

were also reduced with good yields.  

Next, we explored the activity of the rhenium catalyst 1 towards a collection of more sterically 

hindered ketones 7o-7t, 7w, 7x. As a representative example, pivalophenone 7s was 

successfully hydrogenated to the corresponding alcohol 8s in 7β% isolated yield. 1-Indanone 

7u, α-tetralone 7v could be converted to the corresponding alcohols when the reaction was 

performed at 110 °C. Noteworthy, the α, -unsaturated chalcone afforded selectively the 

saturated alcohol 8y in good yield, and the reduction of benzylideneacetone led to 4-

phenylbutan-β-ol 8z as the major product, contaminated with unsaturated alcohol, 4-phenylbut-

γ-en-β-ol (ratio λ0μ10). Additionally, the heteroaromatic ketones (7aa-7ah) based on thiophene, 

furane, pyridine, pyrole and thiazole were smoothly converted into the corresponding alcohols 

(κκ-λ7% isolated yields). 

‐ven the challenging di(p-dimethylaminophenyl)methanone 7aj can be hydrogenated in κλ% 

yield with this catalytic system. Then, we explored the scope of aliphatic ketones (7ak-7ap). 

Under these conditions, the rhenium-based catalyst 1 tolerated cyclic, long-chain and remote 

C=C bond (8ak-8an). Starting from the enantiopure (R)-carvone 7an, (-)-cis-carveol was 

obtained as a single diastereoisomer 8an in κ0% yield. Besides, the internal tri-substituted 

conjugated C=C in 7an was not reduced. Notably, the cyclopropyl-substituted ketone 7ao 

furnished a quantitative yield of the alcohol 8ao indicating that the reaction does not proceed 

via stable radical intermediates. Hydrogenation of 4-(tert- butyl)cyclohexanone 7ap gave full 

conversion and a mixture of alcohols 8ap was obtained with a cis/trans ratio of γβμ6γ. 

1.1.4. Scope for the hydrogenation of aldehydes 

Aldehydes can also be reduced to the corresponding alcohols with this catalytic system 

(‑igure 4). ‑or example, 4-biphenylaldehyde 9a was hydrogenated to the corresponding 

primary alcohol smoothly in β h. Noticeably, internal C-C triple bond and amide moieties were 

tolerated (10b-10c). 
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Figure 4. Scope of the hydrogenation of aldehydes leading to the corresponding alcohols under 
the catalysis of 1. [General conditionsμ Hβ (50 bar), 1 (5.0 mol%), t-BuOK (10 mol%), 110 °C, 
toluene.] 

1.1.5. Scope for the hydrogenation of γ-keto-esters 

Next, -keto-esters, such as methyl γ-benzoylpropionate 11a were subjected to the reductive 

conditions in the presence of 1. To our delight, -phenyl -butyrolactone 12a was obtained in 

high conversion and κ1% isolated yield, showing the tolerance toward ester/lactone functional 

groups. Interestingly, starting from the biomass derived ethyl levunilate 11b, -valerolactone 

12b, which can be used as liquid fuel, additive, solvent or intermediate for organic synthesis,[16] 

was obtained in good yield (7κ%) using standard conditions, i.e. 5.0 mol% of 1, 50 bar of Hβ, 

at 110 °C for β h (Scheme γ).[17] 

 

Scheme 3. Synthesis of -lactones from -keto esters. Yields of the isolated products are given 
in parentheses. 

‑inally, despite this significant scope and functional group tolerance, a few limitations also 

need to be noted (‑igure 5). No conversion was detected with acetophenone derivatives 

containing p-groups such as coordinating cyano, acidic phenolic and boric acid as well as 

chelating -ester (e.g. ethyl γ-oxo-γ-phenylpropanoate) and -acetyl substituents (e.g. 1-

phenylbutane-1,γ-dione).  

 

Figure 5. Non-working substrates 

1.2. Mechanistic insights 

On the basis of previous works of other groups on related complexes with ‑e and Ru,[γ6] as 

well as our D‑T(PB‐0-Dγ) calculations, we propose the following mechanism (Scheme 4).  
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Scheme 4. Proposed catalytic cycle for the rhenium hydrogenation of ketones to give alcohols 
based on PB‐0-Dγ calculations. D‑T computed Gibbs free energies (kcal•mol-1) relative to I-
2 are shown. 

In a first step, the base activates the precatalyst 1 by exoergic deprotonation of the NH moieties 

to form I-1 (ΔG = -46.6 kcal•mol-1), followed by the isomerisation to the more stable mer-

[Re(P(N)P)(CO)γ] complex I-2 (ΔG = -γ.λ kcal•mol-1). Dissociation of CO from I-2 is slightly 

uphill (ΔG = 6.γ kcal•mol-1) and forms the 16-electron dicarbonyl complex I-3 that is the active 

form of the catalyst. ‐ndoergic coordination of Hβ to form I-4 (ΔG = β0.5 kcal•mol-1) is 

followed by facile heterolytic splitting of dihydrogen (ΔG# = 5.1 kcal•mol-1) to yield the amino-

hydride intermediate I-5, only slightly less stable than I-3 (ΔG = 1.λ kcal•mol-1). Acetophenone 

forms an adduct with I-5 essentially upon interaction of the carbonyl oxygen with the N-H 

proton (ΔG = 6.5 kcal•mol-1). The carbonyl reduction is a two-steps process with first hydride 

transfer from Re to C (ΔG# = 1γ.5 kcal•mol-1 and ΔG = 10.5 kcal•mol-1), followed by proton 

transfer from N-H to O, regenerating the active species I-3. Although TS-(I-7)-(I-3) is 

computed at higher electronic energy than I-7, this energy difference is reversed when Gibbs 

free energies are considered. Overall, the rate-determining step is the Hβ heterolytic splitting 

with an activation barrier of ΔG# = γ1.λ kcal•mol-1 from I-2.  
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‑or the kinetic modeling, the Copasi software[γ7] was used and three reactions were considered 

to represent the catalytic transformationμ 

1) CO dissociation from I-2μ I-2 = I-3 + CO. ‑or this reaction, the reverse rate constant 

k-1 was considered to result from a diffusion limited coordination of CO and a value of 

1.β•1010 mL/(mmol•s) was used. This corresponds to an activation barrier ΔG# = 

4.5 kcal•mol-1 at γ5γ K. The forward reaction rate constant k1 was thus the sum of the 

thermodynamic energy difference ΔG = 6.γ and this 4.5 value, resulting in k1 =  

1.6•106 s-1. 

β) Hβ splitting on I-3μ I-3 + Hβ = I-5. The forward rate constant kβ is associated to the 

energy difference between TS-(I-4)-(I-5) and I-3. With ΔG# = β5.6 kcal•mol-1, this 

translates to kβ = λ.65 10-4 mL/(mmol•s) at γ5γ K. ‑or the forward reaction, the rate 

constant k-β is obtained using the energy difference between TS-(I-4)-(I-5) and I-5.  

A value of k-β = 0.0145 s-1 is obtained at γ5γ K. 

γ) Ketone hydrogenationμ I-5 + PhC(O)CHγ = I-3 + PhCH(OH)(CHγ). ‑or this last step, 

the forward reaction is associated to a rate constant kγ obtained using the energy 

difference between TS-(I-6)-(I-7) and I-5, ΔG# = β0 kcal•mol-1. A value of kγ = 

γ.07 mL/(mmol•s) is obtained at γ5γ K. ‑or the reverse reaction, it is necessary to 

include the thermodynamic of the reaction, ΔG = -β.κ in the new energy of the active 

species I-3. Consequently the value of the reverse rate constant at γ5γ K is k-γ =  

γ.λγ•10-γ mL/(mmol•s).  

 

Figure 6. Rate of product of 1-phenylethanol depending on the concentration of Hβ using the 
kinetic modelling with Copasi with the calculated activation barriers. 
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With all these values for the various rate constants and using the initial concentration of [I-2]0 

= 0.005 mmol/mL, [Hβ]0 = [PhC(O)(CHγ)]0 = 1 mmol/mL, the time evolution of the 

concentration in alcohol formed is shown in ‑igure 6 (black curve). This result indicated that 

with 0.5 mol% I-2 and an equimolar ratio of acetophenone and Hβ, the yield in alcohol after 

β0 h is only approximately 5%. Changing the initial ration [Hβ]0/[PhC(O)(CHγ)]0 to 10μ1 and 

β0μ1 resulted in higher conversion to the alcohol (red and green curves, respectively). The 

conversion evolves from 5% in β0 hours (1μ1) to 50% (10μ1) and λκ% (β0μ1). This qualitatively 

shows the importance of using significantly high pressure of Hβ and good stirring to facilitate 

the energy-demanding first step of the reaction by increasing the concentration of Hβ. 

1.3. Conclusion 

In conclusion, we have developed an efficient and general hydrogenation of carbonyl 

derivatives using a well-defined rhenium PN(H)P complex 1. Of notable interest, the reduction 

proceeded well for a large range of substrates with low catalyst loading (0.5 mol%) under mild 

conditions (70 °C) and γ0 bar of Hβ. 

D‑T calculations suggested that the hydrogen transfer from the catalyst to the ketone is a two-

step process with first a hydride transfer from Re to C followed by proton transfer from N to 

O. However, the rate-determining step of the transformation has been found to be the 

heterotypic cleavage of Hβ across the Re-N bond. Kinetic modeling highlighted the importance 

of the actual value of the concentration of Hβ to induce full conversion. 
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V-2 Mono N-methylation of anilines with methanol catalyzed by Re PN(H)P 
complexes 
Contributions in this partμ Synthesis of the complexes, optimization, and mechanistic studiesμ 

Duo Weiν Scopeμ Duo Wei, Omar Sadekν X-ray diffraction studiesμ Vincent Dorcet, Thierry 

Roisnelν D‑T calculationsμ ‐ric Clot. 

Publicationμ D. Wei, O. Sadek, V. Dorcet, T. Roisnel, C. Darcel, ‐. Gras, ‐. Clot, J.-B. Sortais, 

J. Catal. 2018, 366, γ00-γ0λ. 

2.1. Introduction 

The first methylations of amines with methanol as alkylating reagent were developed using 

group κ-10 transition metal-based catalysts.[γκ] By contrast, group 7 transition metals remained 

in the shadow for designing catalysts for hydrogen borrowing reactions and related 

hydrogenations.[γ] In particular, the activation of methanol[γλ] allowed mono N-methylation of 

amines,[40] formylation of amines,[41] and amino-methylation of aromatic compounds.[4β]  

With rhenium-based catalysts, hydrogen auto-transfer reactions are quite rare. Rhenium 

polyhydride phosphine complexes catalyzed acceptorless deshydrogenative coupling of 

alcohols with carbonyl derivatives,[4γ] amines or alcohols, [44] and amination of alcohols.[45] 

Heterogeneous rhenium catalysts promoted the N-methylation of amines with COβ and Hβ.[46]  

In the course of the present study, Beller’s group independently reported hydrogen autotransfer 

and related dehydrogenative coupling reactions to form α-alkylated ketones and substituted 

pyrroles, using the rhenium PN(H)P pincer complex 1.[47] 

2.2. Results and discussions 

2.2.1. Optimization of the reaction conditions for the mono N-methylation of aniline 

In the previous part, we have demonstrated that the complex 1 efficiently promotes the 

hydrogenation of carbonyl derivatives with low catalyst loading.[4κ] Pursuing our investigations 

of this class of rhenium complexes, we decided to investigate the challenging methylation of 

amines with MeOH as alkylation agent. Hereafter, we describe the first example of methylation 

of aromatic amines with methanol catalyzed by rhenium catalysts with the exclusive formation 

of the mono N-methylated products.  

Initial screening of the catalytic activity of the complexes 1-6 focused on the methylation of 

aniline 13a with methanol (Table 4), using similar conditions as those optimized for manganese 

catalysts,[40b] i.e. in the presence of tBuOK (β5 mol%) as the base, at 1γ0 °C for 4κ h (entries 
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1-7), and in a 1μ1 (vμv) mixture of methanol and toluene as solvent. Gratifyingly, catalysts 1-3 

were active, 3 giving the highest conversion (75%), whereas the complexes 4-6 and Re(CO)5Br 

were totally inactive (entries 4-7). It is worth noting that in all the reactions, the mono-

methylated product 14a was obtained nearly exclusively and that N,N-dimethylaniline was not 

detected by GC or NMR.  

Table 4. Optimisation of the reaction parameters for N-methylation of aniline 13a with 
methanol[a] 

 

Entry Catalyst (mol%) Base (mol%) T (°C) Yield (%) 
1[b] 1 (5.0) tBuOK (β5) 1γ0 70 
β[b] 2 (5.0) tBuOK (β5) 1γ0 56 
γ[b] 3 (5.0) tBuOK (β5) 1γ0 75 
4[b] 4 (5.0) tBuOK (β5) 1γ0 1 
5[b] 5 (5.0) tBuOK (β5) 1γ0 0 
6[b] 6 (5.0) tBuOK (β5) 1γ0 0 
7[b] Re(CO)5Br (5.0) tBuOK (β5) 1γ0 0 
κ[b] 3 (1.0) tBuOK (10) 140 κ7 
λ[c] 3 (1.0) tBuOK (10) 140 κ5 
10[c] 3 (1.0) KOH (10) 140 47 
11[c] 3 (1.0) KβCOγ (10) 140 7β 
1β[c] 3 (1.0) CsβCOγ (10) 140 λ6 
1γ[c] 3 (1.0) No base 140 0 
14[c] No catalyst CsβCOγ (10) 140 1 
15[c] 3 (1.0) CsβCOγ (5) 140 λ7 
16[c] 3 (0.5) CsβCOγ (5) 140 λ6 
17[c] 3 (0.5) CsβCOγ (1) 140 γβ 

[a] General conditionsμ an AC‐® pressure tube was charged in a glovebox with 
rhenium catalyst, aniline 13a, base, and solvent, in that order. The tube was 
heated in an oil bath for 4κ h. The yield was determined by GC and 1H NMR of 
the crude mixtureν  

[b] 0.β5 mmol scale, MeOH / toluene (0.5 mL / 0.5 mL) as solventν  
[c] 0.5 mmol scale, MeOH (β mL) as solvent. 

The reaction conditions were further optimized with the catalyst 3 at 140 °C, various bases 

were tested (entries κ-1β), CsβCOγ being identified as the best one. The loading of catalyst was 

decreased to 0.5 mol% and the quantity of base could be lowered to 5.0 mol% without 
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significant loss of activity (entry 16). Blank reactions carried out in the absence of the catalyst 

3 or a base demonstrated that both components were crucial, as no conversion was detected in 

each case (entries 1γ and 14). ‑inally, the reaction could be performed directly in methanol 

acting as sole solvent and reactant. Compared to the parent manganese system (γ.0 mol%, 

100 mol% tBuOK, 100 °C, β4 h),[40a] the present rhenium system is more robust as the reaction 

proceeds well with both a lower catalyst loading and a lower amount of base, but displays a 

lower activity as 4κ h at 140 °C are required to reach full conversions. 

2.2.2. Scope for the mono N-methylation of anilines with methanol 

With the optimized conditions in hand, we then evaluated the catalytic performance of 3 in the 

methylation of other aniline derivatives (Table 5). Almost quantitative conversions were 

obtained starting with p-methoxy- and p-methyl-aniline 13b and 13c. On the opposite, the 

conversion decreased as the hindrance of the anilines increased (14d-14h, 0-5κ% conversion). 

This behavior is in line with the trend observed in the case of the hydrogenation of ketones 

with the catalyst 1, where slightly harsher conditions were required to convert sterically 

hindered ketones to the corresponding alcohols.[4κ] Halogenated anilines 13i-13n were 

smoothly mono-methylated, even if the iodo substituted anilines led to lower performance. The 

tolerance toward various reducible and chelating functional groups was next evaluated. p-

Nitro- (13o), p-acetyl-(13q) and p-benzyloxy-aniline (13t) were converted with moderate to 

good yields (50-λ0%) while anilines bearing a nitrile (13p), an ester (13r), a boronic ester (13u) 

or an primary amide (13s) groups were methylated in low conversions (4-β1%).[4κ] Interestingly, 

each amino group of 1,γ-diaminobenzene (13w) was methylated leading to 14w in λβ% 

isolated yield. On the opposite, the chelating 1,κ-diaminonaphtalene (13x) poisoned the 

catalyst and no conversion was detected, in contrast with manganese catalyzed reaction for 

which 1H-perimidine was obtained.[40b] Tolylsulfonamide 13y can be also methylated 

efficiently using 1 equiv. of base. ‑inally, heteroaromatic amines (13z-13af) such as pyrazolyl-

amine, pyridinyl-amine, and benzothiazolyl-derivatives were successfully converted to the 

corresponding mono N-methylamine in 5γ-λ5% yields. Notably, β,6-diaminopyridine 13ac 

was fully converted selectively to the corresponding N,N’-dimethyl-β,6-diaminopyridine 14ac 
in λ0% yield. It is worth noting that aliphatic amines, such as dodecylamine or benzylamine, 

were no methylated even under forcing conditions (conditions d, Table 5).  
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Table 5. Scope of the reaction of methylation of aniline derivatives[a] 

 
[a] General conditionsμ, an AC‐® pressure tube was charged in a glovebox with the rhenium 

catalyst 3, aniline 13 (0.5 mmol), base, and solvent (β mL), in that order. The tube was heated 
in an oil bath. Conversion was determined by 1H NMR (isolated yield in parentheses)ν 

[b] 3 (0.5 mol%), CsβCOγ (5.0 mol%)ν 
[c] 3 (1.0 mol%), CsβCOγ (5.0 mol%)ν  

[d] 3 (1.0 mol%), CsβCOγ (10.0 mol%)ν  
[e] Starting material aniline was neutralized with 1 equiv. t-BuOKν 
[f] 3 (1.0 mol%), CsβCOγ (100 mol%)ν  
[g] 3 (5.0 mol%), CsβCOγ (100 mol%)ν 5 days. 

2.3. Mechanistic insights 

In order to get insight in the reaction mechanism, we have performed a series of experiments 

with deuterated methanol (Scheme 5).[4λ] In the presence of methanol-d1, N-methylaniline was 

obtained with no incorporation of deuterium on the methyl-group (Scheme 5, equation 1). This 

experiment suggests that during the reaction, H-D is not released as a gas, and that the protic 

deuterium O-D is selectively transferred to the nitrogen of the product via the catalyst. In a 
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second step, a mixture of CDγOD/CHγOH (1μ1, vμv) was used in a competitive experiment 

(Scheme 5, equation β)μ by analysis of the 1H NMR of the crude mixture, we observed the 

incorporation of zero, one, two or three deuterium on the methyl of the product. The distribution 

of the product is in line with (i) the formation of methylidine-aniline Ph-N=CHβ (7κ%) and 

deuterated methylidine-aniline-dβ Ph-N=CDβ (ββ%) and the corresponding hydrido-rhenium 

complexes, then (ii) the reduction of the mixture of imines statistically by the mixture of 

hydrido-and deuterio-rhenium complexes. ‑inally, we have checked the conversion after ββ h 

in parallel experimentsμ the conversion was 6κ% for CHγOH and 5κ% for CDγOD leading to a 

kinetic isotope effect of 1.17.  

 

Scheme 5. Labelling experiments with deuterated methanol. 

In order to rationalize the mechanism of this reaction, D‑T (PB‐0-Dγ) calculations have been 

carried out for the reaction of methanol with aniline catalyzed by 1+. The active form of the 

catalyst was considered to be the neutral complex II-2 resulting from deprotonation by the 

strong base of the nitrogen atom on the PNP ligand. That later adopts in II-2 a meridional 

geometry (‑igure 7). Dissociation of CO from II-2 to yield II-3 is computed to be slightly 

endergonic in methanol as a solvent (ΔG = 0.κ kcal•mol-1). The same process was computed to 

be more demanding energetically in toluene (ΔG = 6.γ kcal•mol-1).[4κ] All Gibbs free energy 

values given are referenced with respect to II-3 + CHγOH + PhNHβ. Creation of a hydrogen 

bond between methanol and the nitrogen atom of the PNP ligand leads to complex II-8 
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computed to lie at ΔG = λ.0 kcal•mol-1 above II-3 (‑igure 7). A transition state structure, TS-
(II-8)-(II-9), could be located on the potential energy surface at ΔG# = βλ.κ kcal•mol-1 with 

respect to II-3. In TS-(II-8)-(II-9), formaldehyde, the product of methanol dehydrogenation, 

is interacting through a hydrogen bond with the protonated nitrogen (N-H…O = 1.λ54 Å). The 

distance between the carbonyl carbon and the hydride is long at β.7 Å. The geometry of the 

hydride rhenium complex II-9 after dissociation of formaldehyde is almost identical to that of 

the corresponding fragment in TS-(II-8)-(II-9). Thus dehydrogenation of methanol to 

formaldehyde catalyzed by 1 is computed to be an endergonic process (ΔG = 1λ.5 kcal•mol-1) 

with an activation barrier of ΔG# = βλ.κ kcal•mol-1 associated to a late TS structure. 

 
Figure 7. Computed reaction mechanism (Gibbs free energies in kcal•mol-1 relative to II-3 + 
MeOH + PhNHβ) for the dehydrogenation of methanol. Most H atoms omitted for clarity. 

Once formaldehyde is formed from methanol, it is considered to react easily with an amine to 

form an imine, with the formation of an hemiaminal as an intermediate. The hemiaminal is 

computed to be ΔG = 0.4 kcal•mol-1 less stable than formaldehyde + amine, whereas the water 

+ imine system is computed to lie at ΔG = -γ.7 kcal•mol-1 [The numbers in ‑igure 7 are for a 

reaction forming HβC=O from MeOH and thus the free molecules in the evaluation of the 

energy of II-9 are HβC=O, CO and PhNHβ. On ‑igure κ, the transformation is for the 

hydrogenation of the imine that was considered to be formed independently. Therefore, there 

is a shift in energy of γ.7 kcal•mol-1 corresponding to the reaction energy of the transformation 
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PhNHβ + HβCO = HβO + PhNCHβ]. Therefore, the imine formation is thermodynamically 

favored. Contrary to the case of methanol dehydrogenation, where no adduct could be found 

between formaldehyde and the hydride complex II-9, the adduct II-10 between II-11 and the 

imine is located at ΔG = β5.κ kcal•mol-1 above II-3 (‑igure κ). ‑rom II-10, hydride transfer 

from Re to C, through TS-(II-10)-(II-11), leads directly to II-11 with ΔG# = 5.7 kcal•mol-1 and 

ΔG = -β6.4 kcal•mol-1 with respect to II-10. The dissociation of the amine from II-11 

regenerating the active catalyst II-3 is favored thermodynamically with ΔG = -κ.γ kcal•mol-1.  

 
Figure 8. Computed reaction mechanism (Gibbs free energies in kcal•mol-1 relative to II-3+ + 
MeOH + PhNHβ) for the hydrogenation of imine. Most H atoms omitted for clarity. 

Overall, when the rhenium-dihydride II-9 and imine are considered as the origin of energy, 

hydrogenation is associated to an activation barrier of ΔG# = 15.κ kcal•mol-1 and is favored 

thermodynamically with ΔG = -β4.κ kcal•mol-1. This is to be compared with the hydrogenation 

of formaldehyde that has an activation barrier of ΔG# = 10.γ kcal•mol-1 and is favored 

thermodynamically by ΔG = -1λ.5 kcal•mol-1 (see ‑igure 7). So once formaldehyde and imine 

are both present, hydrogenation by the rhenium-dihydride is kinetically preferred, while 

hydrogenation of the later is thermodynamically preferred. In comparison to the two 

aforementioned hydrogenation processes, formation of Hβ from II-9 to regenerate II-3 is 

computed to have an activation barrier of ΔG# = βκ.6 kcal•mol-1 and is slightly exergonic (ΔG 

= -β.4 kcal•mol-1). Therefore, the formation of Hβ from II-9 is not a competitive pathway with 
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the hydrogenation processes to recover methanol from aldehyde or to form amine from imine. 

A simplified catalytic cycle is depicted on Scheme 6[50]. 

 
Scheme 6. Simplified catalytic cycle. 

A simplified kinetic model to describe the transformation from methanol to amine is given 

below (eq. 5-7, Scheme 7). The rate constants k1, k-1 and kγ can be estimated, using ‐yring 

equation, from the computed values shown in ‑igures 7 and κ. The ratio kβ/k-β is known from 

the computed value of the imine formation (ΔG = -γ.7 kcal•mol-1). The only unknown is the 

value of the activation barrier for the imine formation from nucleophilic attack of the amine on 

the aldehyde.  

 
Scheme 7. Simplified kinetic model. 
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The experimental conditions shown in Scheme 5 equation (1) correspond to a ratio of 

100μ1μ0.01 between methanol, aniline and catalyst initial concentrations. ‑igure λ represents 

the evolution with time of the amine product concentration computed with the Copasi software 

using the kinetic model above and initial concentrations of the reactants in the same ratio as 

that of the actual experiments.[γ7] The different curves correspond to different values, ranging 

from 15 kcal•mol-1 to β5 kcal•mol-1, for the activation barrier for the imine formation. 

 
Figure 9. Time evolution of the concentration of the amine product Ph-NH-CHγ using the 
kinetic model described by eq. 5-7 for different values of the rate constant kβ.  

The results clearly illustrate the critical influence of the actual kinetics of imine formation on 

the overall reaction time. ‑or a fast formation of imine from aldehyde, the reaction should be 

complete in less than 6 hours. The experimental observation of ca. 70% NMR yield after 

ββ hours (Scheme 5, eq. 4) is more in agreement with a significantly slow imine formation 

from aldehyde (ΔG# = ββ.5 kcal•mol-1, see ‑igure λ). Concentrating on the reactions occurring 

in the coordination sphere of the transition metal complex is not necessarily enough to fully 

understand the reactivity, and in particular the kinetics, of a catalytic system. Using an 

activation barrier of ΔG# = ββ.5 kcal•mol-1 for the imine formation, the time evolution of the 

concentration of Ph-ND-CDγ and Ph-NH-CHγ are compared in ‑igure 10. The conversions 

after ββ hours are 70.κ and 5κ% for Ph-NH-CHγ and Ph-ND-CDγ, respectively. These results 

are in excellent agreement with the experimental observations for the parallel experiment. In 

addition, the ratio between the values of k1 for the dehydrogenation of CHγOH and CDγOD is 

computed to be γ.κ, in very good agreement with the value of γ.54 deduced from the ratio of 

the different products observed in the competitive experiment [Scheme 5, eq. β, ratio Ph-

N=CHβμPh-N=CDβ = (6γ+15)/(1κ+4) = 7κ/ββ].  
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Figure 10. Time evolution of the concentration of Ph-NH-CHγ and Ph-ND-CDγ with an 
assumed activation barrier of ΔG# = ββ.5 kcal•mol-1.  

2.4. Conclusion 

In conclusion, a series of new rhenium complexes bearing aliphatic tridendate PNP ligands 

with various substituents on the phosphorus atom was proven to catalyze efficiently the 

selective N-methylation of aromatic amines with methanol with low amount of both catalyst 

(0.5 mol%) and base (5.0 mol%). The reaction proceeds well for a large range of substrates. 

The mechanism of the reaction was investigated by D‑T calculations, showing the importance 

not only of the metal catalyzed processes on the kinetics but also the role of the formation of 

the organic intermediate, namely the imine. 
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V-3 Synthesis of quinolines through acceptorless dehydrogenative coupling 
catalyzed by Re PN(H)P complexes 
Contributions in this partμ Synthesis of the complexes, optimization and scopeμ Duo Weiν  

X-ray diffraction studiesμ Vincent Dorcet. 

Publicationμ D. Wei, V. Dorcet, C. Darcel, J.-B. Sortais, ChemSusChem 2019, 12, γ07κ-γ0κβ. 

3.1. Introduction 

‑or the indirect ‑riedländer reaction, several catalytic systems based on group κ to 10 transition 

metals (Ru,[51], Rh,[5β] Pd,[5γ] Ir,[54], Au[55], Cu,[56], Co[57]) have been developed. In particular, 

our group reported the first non-noble metal catalyzed ‑riedländer annulation reaction using 

iron Knölker-type complexes.[5κ] It is also worth noting that stoichiometric amount of bases are 

also able to promote metal-free indirect ‑rieländer reactions.[5λ]  

By contrast, group 7 transition metals based catalysts have just emerged very recently as 

suitable metals for promoting hydrogen borrowing reactions.[γ] Manganese catalysis for (de)-

hydrogenation reactions has grown exponentially over the last two years.[4c, 4h-j, 40a, 40c, 60] 

Nevertheless, to date, only three catalytic systems are reported for the synthesis of quinolines, 

two of which are using over-stoichiometric amount of bases.[61] On the opposite, hydrogen 

auto-transfer reactions catalyzed by rhenium are still quite rare.[4γ-46] Interestingly, an efficient 

synthesis of quinolines, pyrimidines, quinoxalines, pyrroles, and aminomethylated aromatic 

compounds catalyzed by a Re(I) PNγP pincer complex was described by the group of Kirchner, 

in succession of this current study.[6β] In the last two parts of this chapter, we have developed 

a series of rhenium complexes with the tridentate PN(H)P ligands (Scheme β, 1-5), which are 

efficiently employed in the hydrogenation of carbonyl derivatives[4κ] and mono N-methylation 

of anilines with methanol as C1 source via hydrogen auto-transfer.[6γ] 

3.2. Results and discussions 

Inspired by these recent developments in the area of synthesis of N-heterocycles and following 

our interest in hydrogenation[60g, 64] and hydrogenation borrowing reactions[40b] based on group 

7 transition metal complexes, we described herefin the first example synthesis of quinolines 

via acceptorless dehydrogenative coupling catalyzed by rhenium catalysts in the presence of a 

catalytic amount of base.  
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3.2.1. Optimization of reaction conditions of the quinoline synthesis 

Initially, we selected β-aminobenzyl alcohol (15a, 1.0 equiv.) and 1-phenylethanol (16a, 

1.0 equiv.) as a benchmark system for the dehydrogenative cross-coupling formation of β-

phenylquinoline (Table 6). All reactions were performed with a stoichiometric ratio between 

the two coupling partners. Complexes 1, 2 and 3 showed excellent reactivity (entries 1-γ) at a 

catalyst loading of 5.0 mol% in toluene at 140 °C for β4 h in the presence of catalytic amount 

of t-BuOK (10 mol%), giving respectively κκ%, κ7% and, λ0% yields. Not surprisingly, 

complexes 4 and 5, bearing the more steric hindered PNP ligands, and the precursor Re(CO)5Br 

were not active, (entries 4-6) which is in line with the reactivity already observed for the mono 

N-methylation of anilines.[6γ]  

Table 6. Optimization of the parameters of the reaction.[a]  
cat.

base+
NH2

OH

Ph

OH

N Ph

15a 16a 17a

Toluene, 24 h

N CO

P
Re

CO
CO

PR2
H N PtBu2

P
Re

CO

CO

CO

H N PAd2

P
Re

CO

CO

H

R2

Br Br
tBu2

Br
Ad2

R = iPr, 1
R = Cy, 2
R = Ph, 3

4 5

 
Entry Cat.(mol%) Base (mol%) Temp. (°C) Yield (%) 
1 1 (5.0) t-BuOK (10) 140 κκ 
β 2 (5.0) t-BuOK (10) 140 κ7 
γ 3 (5.0) t-BuOK (10) 140 λ0 
4 4 (5.0) t-BuOK (10) 140 7 
5 5 (5.0) t-BuOK (10) 140 5 
6 Re(CO)5Br (5.0) t-BuOK (10) 140 0 
7 3 (1.0) t-BuOK (10) 150 κ7 
κ 3 (1.0) KOH (10) 150 70 
λ 3 (1.0) CsβCOγ (10) 150 5κ 
10 3 (1.0) KβCOγ (10) 150 γ 
11 3 (1.0) None 150 0 
1β No catalyst t-BuOK (10) 150 γ 
1γ 3 (1.0) t-BuOK (5.0) 150 74 
14 3 (1.0) t-BuOK (β.0) 150 50 

[a] General conditionsμ in an argon-filled glovebox, a Schlenk tube was 
charged with rhenium catalyst, 15a, 16a, base and solvent, in that order. 
The reaction was heated in an oil bath with argon stream. The yield of 
17a was determined by 1H NMR. 
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The conditions of the reaction were further optimized with catalyst 3 (1.0 mol%) at 150 °Cμ 

various bases were tested (entries 7-10), showing that t-BuOK was the best candidate, giving 

κ7% yield. ‑urther decreasing of the amount of base to 5.0 or β.0 mol% led to lower yields, 

74% and 54% respectively (entries 1γ and 14). Two blank reactions, in the absence of catalyst 

or base, gave no detectable conversion, demonstrating that the presence of both components is 

important in this protocol (entries 11 and 1β). 

3.2.2 Scope for synthesis of quinolines 

With our optimized conditions in hands, we then explored the substrates amenable for this 

transformation (Tables 7, κ and λ).  

Table 7. Synthesis of quinolines via the annulation of β-aminobenzyl alcohol with aromatic 
alcohols and ketones under the catalysis of rhenium complex 3. 

 
[a] General reaction conditionsμ 15a (0.5 mmol), 16 or 17 (0.5 mmol), catalyst 3 (1.0 mol%), toluene 

(β mL), t-BuOK (10 mol%) at 150 oC with argon stream for β4 hν isolated yield in parenthesis.  
[b] Acetophenone was used instead of 1-phenylethanol.  
[c] Yield of isolated product with 7% of starting material 16l.  
[d] 1.0 mmol of 15a was used. 

‑irstly, with β-aminobenzyl alcohol 15a, a series of secondary aromatic alcohols or ketones 

were engaged as coupling partners (Table 7). The reaction proceeded well for various 
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substituted 1-phenylethanol derivatives. (Table 7, entries 1-λ). 1-(naphthalen-β-yl)ethanol (16b) 

gave full conversion and 18b was isolated with an excellent isolated yield (λγ%). Halide 

substituents, such as fluoro, chloro, bromo and even iodo groups at the para-position of the 

phenyl ring were well-tolerated (18c-18f, 75-λβ% isolated yields, entries 4-7).  

Substrates bearing electron-donating and electron-withdrawing groups, such as p-methoxy-1-

phenylethanol 16g, p-trifluoromethyl-1-phenylethanol 16h, were well tolerated, affording the 

products 18g and 18h in 7λ% and κ5% isolated yields, respectively (entries 7 and κ). It should 

be noted that starting from acetophenone instead of 1-phenylethanol (Table 7 entry 1 vs entry 

β), slightly higher conversion and isolated yield were obtained (>λκ vs λ0% conversion), as the 

dehydrogenation reaction step is not needed when using ketones. 1-Phenylpropanol 16i and 1-

tetralol 16j gave the corresponding β,γ-disubstituted quinolines 18i and 18j in good isolated 

yields (entries 10 and 11). Interestingly, heteroaromatic alcohols (16k, 16m and 16n) or 

ketones (17l, 17o-q), based on pyridine, thiophene and benzofuran core, were smoothly 

converted into corresponding β-heteroaryl quinolines. In particular, 1,β or 1,γ-diketones, such 

17o, 17p and 17q, gave di-quinolinyl (hetero)-arene products in quantitative yields, which 

could be further employed in coordination chemistry as polydentate ligands (entries 16-1κ). 

Then, aliphatic and cyclic alcohols were engaged in this acceptorless dehydrogenative coupling. 

Disappointingly, the coupling of cyclohexanol, used as the model aliphatic secondary alcohols, 

did not proceed (4% yield, Table κ, entry 1), even if 15a was fully consumed yielding mostly 

β-aminobenzaldehyde. It is likely that the dehydrogenative oxidation of aliphatic alcohol is 

more difficult than the one of 1-phenylethanol derivatives leading to relatively stable 

arylketone intermediates. Therefore, we continued to explore the scope with aliphatic ketones. 

Under our standard conditions, starting from cyclic substrates and aliphatic ketones 17r-17v, 
the corresponding quinolines 17r-17v were obtained in good isolated yields (up to λ6%). 

Notably, a cyclopropyl-substituted ketone 17u furnished 18u in quantitative yield, which 

indicated that the reaction did not proceed via stable radical intermediates. The reaction of 

phenylacetaldehyde (17w) with 15a led to γ-phenylquinoline 18w in moderate yield (6γ%, 

entry 7). ‑inally, β-aminoacetophenone 15b can be converted smoothly into β-phenyl-4-

methylquinoline 18x by coupling with 16a (entry κ).  
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Table 8. Scope of the synthesis of quinoline derivatives with aliphatic ketones and aldehydes. 

 
[a] General reaction conditionsμ catalyst 3 (1.0 mmol%),  

15 (0.5 mmol), 16 or 17 (0.5 mmol), toluene (β mL), t-BuOK 
(10 mol%) at 150 oC under argon stream for β4 hν isolated 
yield in parenthesis.  

[b] Cyclohexanol was used instead of cyclohexanone and NMR 
yield is shown in parentheses.  

[c] Yield of isolated product with κ% of starting material 15a.  
[d] 1.0 mL of acetone was used.  
[e] 1γ0 oC 

Interestingly, β-phenylacetonitrile 19a has been recently proven to be an effective annulation 

partner in the synthesis of β-alkylaminoquinolines.[65] To our delight, 19a could also be 

smoothly converted to β-amino-γ-phenylquinoline 20a with our catalytic system at 140 oC 

(Table λ). The molecular structure of 20a (as well as 20b) were confirmed by X-Ray diffraction 

studies (‑igure 11).  

As shown in Table λ, all the reactions proceeded smoothly and gave the desired products in 

moderate to good isolated yields. In particular, bromo-substituted β-phenylacetonitriles 19b 
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and 19c gave the corresponding products 20b and 20c, in 67% and γγ% yield respectively 

(entries β and γ). Interestingly, halogen-containing products, such as 19b and 19c, can be 

further converted into more complex molecules via cross-coupling reactions. β-(β-

thiophenyl)acetonitrile 19d afforded the corresponfding product in high yield (λ0%, entry 4) 

while, unexpectedly, the parent β-(γ-thiophenyl)acetonitrile 19e led to moderate conversion 

(4β%) (entries 4 and 5). ‐ventually, aliphatic butyronitrile 19f gave β-amino-γ-ethylquinoline 

20f in good yield κ0%. 

Table 9. Scope of the synthesis of β-amino-quinoline derivatives with nitriles. 

 
[a] General reaction conditionsμ catalyst 3 (1.0 mmol%),  

15a (0.5 mmol), 19 (0.5 mmol), t-BuOK (10 mol%), toluene 
(β mL) at 140 oC for β4 hν isolated yield in parenthesis.  

[b] β.0 equiv. of 19f was used  
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Figure 11. Perspective view of the products 20a (left) and 20b (right), thermal ellipsoids drawn 
at the 50% probability level. 

3.3. Conclusion 

In summary, a practical and sustainable synthesis of substituted quinolines was achieved via 

the annulation of β-aminobenzyl alcohol with a variety of secondary alcohols, ketones, 

aldehyde or nitriles. The reaction proceeds with a high atom efficiency via a sequence of 

dehydrogenation and condensation steps that give rise to selective C−C and C−N bond 

formations. The key to develop this first rhenium catalyzed acceptorless dehydrogenative 

coupling was the use of a well-defined complex bearing a tridentate diphosphinoamino ligand 

as the catalyst (1.0 mol%) in the presence of t-BuOK (10 mol%) at 150 °C.  
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V-4 Conclusion of Chapter V 

In this chapter, we have described that a series of amino-bisphosphino ligands coordinated 

rhenium catalysts (synthesized and fully characterized) can efficiently promote theμ  

1) hydrogenation of carbonyl derivatives with a gerenal substrate scope. D‑T calculations 

suggested that the rate-determining step of the transformation is the heterotypic cleavage 

of Hβ across the Re-N bond. 

2) mono N-methylation of anilines using methanol with low amount of both catalyst 

(0.5 mol%) and base (5.0 mol%). The reaction proceeds well for a large range of substrates. 

The mechanism of the reaction was also investigated by D‑T calculations, showing the 

importance not only of the metal catalyzed processes on the kinetics but also the role of 

the formation of the organic intermediateμ imine. 

3) practical and sustainable synthesis of quinolines derivatives through acceptorless 

dehydrogenative coupling with low catalyst loading (1.0 mol%) in the presence of t-BuOK 

(10 mol%) and broad substrates scope were developed thereafter. 
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V-6 Experimental data 
6.1. General information 

All reactions were carried out with oven-dried glassware using standard Schlenk techniques 
under an inert atmosphere of dry argon or in an argon-filled glove-box. Toluene, TH‑, diethyl 
ether (‐tβO), and CHβClβ were dried over Braun MB-SPS-κ00 solvent purification system and 
degased by thaw-freeze cycles. Technical grade petroleum ether, diethyl ether were used for 
chromatography column. Analytical TLC was performed on Merck 60‑β54 silica gel plates 
(0.β5 mm thickness). Column chromatography was performed on Across Organics Ultrapure 
silica gel (mesh size 40-60 m, 60 Å). All reagents were obtained from commercial sources 
and liquid reagents were dried on 4 Å molecular sieves and degased prior to use.  

Rhenium pentacarbonyl bromide, min. λκ%, and PN(H)P ligands were purchased from Strem 
Chemicals. Bis[(β-di-alkyl-phosphino)ethyl]amine ligands were purchased from Strem 
Chemicals Inc. 
1H, 1γC and γ1P NMR spectra were recorded in CDClγ, C6D6, C7Dκ at βλκ K unless otherwise 
stated, on Bruker, AVANC‐ 400 and AVANC‐ γ00 spectrometers at 400.1 and γ00.1 MHz, 
respectively. 1H and 1γC NMR spectra were calibrated using the residual solvent signal as 
internal standard (1Hμ CDClγ 7.β6 ppm, C6D6 7.16 ppm, C7Hκ β.0κ ppm, 1γCμ CDClγ, central 
peak is 77.16 ppm, C6D6, central peak is 1βκ.1 ppm, C7Dκ, central peak is β0.4 ppm). γ1P NMR 
spectra were calibrated against an external HγPO4 standard. Chemical shift (δ) and coupling 
constants (J) are given in ppm and in Hz, respectively. The peak patterns are indicated as 
followsμ (s, singletν d, doubletν t, tripletν q, quartetν quin, quintetν m, multiplet, and br. for broad). 

HR–MS spectra and microanalysis were carried out by the corresponding facilities at the 
CRMPO (Centre Régional de Mesures Physiques de l’Ouest), Université de Rennes 1 
Magnetic stirred Parr autoclaves (ββ mL) were used for the hydrogenation. 

AC‐ pressure tubes (sealed tube) (15 mL) were used for the methylation reactions.  
6.2. Synthesis of rhenium complexes 1-5 

6.2.1. General procedure for synthesis of rhenium complexes 1-5 

 

Bis[(β-di-alkyl-phosphino)ethyl]amine (0.4λβ mmol) was added to a solution of Re(CO)5Br 
(0.4λβ mmol, β00 mg, 1.0 equiv.) in anhydrous toluene (κ mL). The mixture was stirred at 
100 °C overnight. Toluene was then evaporated. The crude residue was then recrystallized from 
dichloromethane (1 mL) and pentane (5 mL) to afford crystals. The solid was washed with 
pentane (β mL × β) to afford pure compound.   
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6.2.2. Characterization of Re PN(H)P complexes 1-5 and the Re NN(H)N complex 6. 

Rhenium complex 1:  

  

According to the general procedure, bis[(β-di-iso-propylphosphino)ethyl]amine (0.4λβ mmol, 
1.7 mL, 10 wt% in TH‑, 1.0 equiv.) gave the title complex as white needle crystals (βλ7 mg, 
λβ%). Single crystals suitable for X-Ray diffraction studies have been grown by slow diffusion 
of pentane into a CHβClβ solution at r.t. 1H NMR (400 MHz, CDClγ) δ = 7.κκ (s, 1H, NH), 
γ.04 – γ.00 (m, 4H, NH-CH2), β.46 – β.41 (m, βH, CH), β.10 – β.0γ (m, 6H, CH + CH2-P), 
1.γκ – 1.β4 (m, β4H, CHγ). 13C{1H} NMR (101 MHz, CDClγ) δ = 1λ5.0 (t, J = 7 Hz, CO), 
1λ0.1 (t, J = 1λ Hz, CO), 1κλ.6 (t, J = 1κ Hz, CO), 5γ.λ (br., NH-CHβ), γ0.β – βλ.7 (m, CH), 
β7.β – β6.7 (m, CH2-P), β6.β – β5.7 (m, CH), β1.λ (CHγ), β0.1 (CHγ), 1λ.5 (CHγ), 1κ.β (t, J = 

γ Hz, CHγ). 31P{1H} NMR (16β MHz, CDClγ) δ = γκ.0. 

1H NMR (400 MHz, CDβClβ) δ κ.β0 (s, 1H, NH), γ.10 – β.κβ (m, 4H, NH-CH2), β.55 – β.41 
(m, βH, CH), β.β1 – β.10 (m, βH, CHβ), β.0κ – 1.λ7 (m, βH, CH), 1.λ4 – 1.κ4 (m, βH, CHβ), 
1.44 – 1.β5 (m, β4H, CHγ). 13C{1H} NMR (101 MHz, CDβClβ) δ = 1λ5.4 (t, J = 6 Hz, CO), 
1λ0.7 (t, J = 17 Hz, CO), 1λ0.γ (t, J = 1κ Hz, CO), 54.β (NH-CH2)*, 54.1 (br, NH-CH2)*, γ0.7-
γ0.β (m, CH), β7.6-β7.1 (m, CH2-P), β6.6-β6.1 (m, CH), ββ.0 (CHγ), β0.β (CHγ), 1λ.6 (CHγ), 
1κ.1 (t, J = γ Hz, CHγ). 31P{1H} NMR (16β MHz, CDβClβ) δ = γκ.0. 

*= overlapping with the solvent residual signal 

Anal. Calc (%). for (C1λHγ7NOγBrPβRe)μ C, γ4.κ1ν H, 5.6λν N, β.14. ‑oundμ C, γ4.7λν H, 5.6γν 
N, β.00. HR-MS (‐SI)μ m/z [M]+ calcd for C1λ Hγ7 N Oγ Pβ 1κ7Re 576.1κ00λ, found 576.1κ06 
(1 ppm)ν m/z [M-CO]+ calcd for C1κ Hγ7 N Oβ Pβ 1κ7Re 546.1κ517 m/z found 54κ.1κ5κ (1 ppm)ν 
m/z [βM+, Br-]+ calcd for Cγκ H74 Nβ O6 7λBr P4 1κ7Reβ 1βγ1.β7λ06 m/z found 1βγ1.β7κβ 
(1 ppm). IR ( , cm-1, CHβClβ)μ β0γ1, 1λ44, 1λβ1. 

Rhenium complex 2:  

N CO

P
Cy2

Re

CO
CO

PCy2 Br
H

 

According to the general procedure, bis[(β-di-cyclohexylphosphino)ethyl]amine (ββλ mg, 
0.4λβ mmol) gave the title complex as white crystals (γ61.β mg, λ0%). Single crystals suitable 
for X-Ray diffraction studies have been grown by slow diffusion of pentane into a CHβClβ 
solution at r.t. 1H NMR (400 MHz, CDβClβ)μ δ κ.β5 (s, 1H), γ.07 – β.λκ (m, βH), β.κλ – β.κ1 
(m, βH), β.1λ – β.05 (m, 4H), 1.λ6 – 1.γ0 (m, 44H). 13C{1H} NMR (101 MHz, CDβClβ)μ δ 
1λ5.4 (t, J = 6.5 Hz, CO), 1λ0.λ (t, J = 1λ.1 Hz, CO), 1λ0.4 (t, J = 17.1 Hz, CO), 5γ.1 (t, J = 

β.κ Hz, CHβ), 41.γ – γλ.7 (m, CH), γκ.λ – γ7.5 (m, CH), γβ.7 (CHβ), γ0.0 (CHβ), βλ.7 (CHβ), 
βκ.γ (t, J = γ.6 Hz, CHβ), β7.λ – β7.5 (m, CHβ), β7.γ (t, J = γ.λ Hz, CHβ), β6.β (d, J = 10.5 Hz, 
CHβ), β5.κ – β5.1 (m, CHβ). 31P{1H} NMR (16β MHz, CDβClβ)μ δ βκ.7. Anal. Calc (%). for 
(Cγ1H5γNOγBrPβRe)μ C, 45.64ν H, 6.55ν N, 1.7β. ‑oundμ C, 45.56ν H, 6.6γν N, 1.6γ. HR-MS 
(‐SI)μ m/z [M]+ calcd for Cγ1H5γNOγPβ1κ7Re 7γ6.γ05γ, found 7γ6.γ051 (0 ppm). IR ( , cm-1, 
CHβClβ)μ β0βλ, 1λ40, 1λ1λ. 
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Rhenium complex 3:  

 

To a β0 mL round-bottomed flask were added bis[β-(di-phenylphosphino)ethyl]amine 
hydrochloride (1λ1 mg, 0.40 mmol), 10% NaOH aq. (β mL), and toluene (4 mL). The mixture 
was stirred at room temperature until all the solids dissolved. After decantation of the solution, 
the organic layer was washed with HβO (β mL × γ), dried over NaβSO4, and then concentrated 
under reduced pressure.[1] The resulting bis[β-(di-phenylphosphino)ethyl]amine ligand was 
directly used for the coordination with Re(CO)5Br (16γ mg, 0.4 mmol) following the general 
procedure, giving the title complex as white crystals (γ00.κ mg, λ5%). Single crystals suitable 
for X-Ray diffraction studies have been grown by slow evaporation from MeOH at r.t.  
1H NMR (400 MHz, CDγOD)μ δ 7.75 – 7.6λ (m, 4H), 7.5β – 7.4γ (m, 6H), 7.1λ – 7.1γ (m, 6H), 
7.0γ – 6.λλ (m, 4H), γ.71 – γ.57 (m, βH), γ.βλ – γ.1λ* (m, βH), γ.11 – γ.0γ (m, βH), β.κλ – 
β.κ0 (m, βH). 13C{1H} NMR (101 MHz, CDγOD)μ δ 1λ6.γ (t, J = 7.β Hz, CO), 1λ1.0 (t, J = 

1κ.κ Hz, CO), 1λ0.5 (d, J = 17.β Hz, CO), 1γ5.κ-1γ5.β (m, CqAr), 1γβ.5-1γβ.4 (m, CHAr), 1γβ.β, 
1γ1.κ-1γ1.7 (m, CHAr), 1γ0.4-1γ0.β (m, CHAr), 56.β-56.0 (m, CHβ), βλ.0 (m, CHβ), βκ.κ (m, 
CHβ). 31P{1H} NMR (16β MHz, CDγOD)μ δ β4.1. 

*= overlapping with the solvent residual signal. 

Anal. Calc (%). for (Cγ1HβλNOγBrPβRe)μ C, 47.0γν H, γ.6λν N, 1.77. ‑oundμ C, 47.1κν H, γ.76ν 
N, 1.77. HR-MS (‐SI)μ m/z [M]+ calcd for Cγ1HβλNOγPβ1κ7Re 71β.1175, found 71β.117κ 
(0 ppm). IR ( , cm-1, CHβClβ)μ β04β, 1λ67, 1λβγ. 

Rhenium complex 4: 

 

According to the general procedure, bis[(β-di-t-butylphosphino)ethyl]amine (10 wt% in 
hexanes, 17κ mg, 0.4λβ mmol) gave the title complex as white crystals (41κ.0 mg, λ7%). Single 
crystals suitable for X-Ray diffraction studies have been grown by slow diffusion of pentane 
into a CHβClβ solution at r.t. 1H NMR (400 MHz, CDβClβ)μ δ 7.βγ (br. s, 1H, NH), γ.74 (t, J = 

1γ.7 Hz, βH, CHβ), β.β5 (s, 6H, CHβ), 1.50 (s, 1κH, tBu), 1.44 (s, 1κH, tBu). 13C{1H} NMR 
(101 MHz, CDβClβ)μ δ β00.7 (t, J = κ.0 Hz, CO), 1λ7.κ (t, J = κ.γ Hz, CO), 1λ5.λ (t, J = γ Hz, 
CO), 5κ.4 (t, J = β.κ Hz, CHβ), γκ.κ (t, J = λ.1 Hz, C(CHγ)γ), γκ.5 (t, J = 10.κ Hz, C(CHγ)γ), 
γ1.5 (CHγ), γ0.λ (CHγ), β5.1 (t, J = 10.1 Hz, CHβ). 31P{1H} NMR (16β MHz, CDβClβ)μ δ 74.λ. 
Anal. Calc (%). for (CβγH45NOγBrPβRe)μ C, γκ.κβν H, 6.γ7ν N, 1.λ7. ‑oundμ C, γκ.5λν H, 6.45ν 
N, β.01. HR-MS (‐SI)μ m/z [M]+ calcd for CβγH45NOγPβ1κ7Re 6γβ.β4β7, found 6γβ.β4γ4 
(1 ppm)ν m/z [M-CO]+ calcd for CββH45NOβPβ1κ7Re 604.β47κ m/z found 604.β47γ (1 ppm).  
IR ( , cm-1, CHβClβ)μ β0β7, 1λβγ, 1λ1γ.  
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Rhenium complex 5: 

 

According to the general procedure, bis[(β-di-1-adamantylphosphino)ethyl]amine (γγβ mg, 
0.4λβ mmol) gave the title complex as orange crystals (465.6 mg, λ5%). Single crystals suitable 
for X-Ray diffraction studies have been grown by slow diffusion of pentane into a CHβClβ 
solution at r.t. 1H NMR (400 MHz, CDβClβ)μ δ 7.1κ (br. s, 1H), γ.λγ – γ.κβ (m, βH), β.60 – 
β.γ4 (m, 1βH), β.1λ – 1.λκ (m, β4H), 1.κ0 – 1.6κ (m, β4H), 1.41 – 1.1κ (m, 6H). 13C{1H} NMR 
(101 MHz, CDβClβ)μ δ β11.0 (t, J = 4.5 Hz, CO), 1λλ.λ (t, J = 6.5 Hz, CO), 57.0 (t, J = γ.6 Hz, 
CHβ), 44.6 (t, J = 10.β Hz, Cq), 41.β (t, J = λ.7 Hz, Cq), γλ.7 (CHβ), γλ.5 (CHβ), γ6.7 (CHβ), 
γ6.7 (CHβ), βλ.0 (t, J = 4.4 Hz, CH), βκ.κ (t, J = 4.4 Hz, CH), β1.0 (t, J = 10.β Hz, CHβ).  
31P{1H} NMR (16β MHz, CDβClβ)μ δ 7γ.6. Anal. Calc (%). for (C46H6λNOβBrPβRe)μ C, 55.47ν 
H, 6.λκν N, 1.41. ‑oundμ C, 55.55ν H, 7.11ν N, 1.γ1. HR-MS (‐SI)μ m/z [M]+ calcd for 
C46H6λNOβPβ1κ7Re λ16.4γ56, found λ16.4γ56 (0 ppm). IR ( , cm-1, CHβClβ)μ 1λβ5, 1κγκ. 

Rhenium complex 6:  

 

Complex 6 has been already prepared in the literature starting from [N‐t4]β[ReBrγ(CO)γ].[β] As 
an alternative, following the general procedure, at 100 °C, after 70 h, dipicolylamine (50 mg, 
0.β5 mmol) and Re(CO)5Br (101.5 mg, 0.β5 mmol) gave rhenium complex 6 in λ0 % yield 
(1β4 mg) as a white solid. Single crystals suitable for X-Ray diffraction studies have been 
grown by slow diffusion of pentane into a CHβClβ solution at r.t. X-Ray diffraction studies on 
single crystals confirmed the fac-geometry of the Re(CO)γ fragment.[β] 1H NMR (400 MHz, 
CDβClβ) δ κ.κ0 (d, J = 5.γ Hz, βH), κ.54 (t, J = 6.β Hz, 1H), 7.κβ (td, J = 7.κ, 1.4 Hz, βH), 7.5κ 
(d, J = 7.λ Hz, βH), 7.β5 (t, J = 6.5 Hz, βH), 5.05 (dd, J = 17.6, 6.κ Hz, βH), 4.75 (d, J = 17.7 
Hz, βH). 13C{1H} NMR (101 MHz, CDβClβ) δ 1λ5.5, 161.λ, 151.λ, 140.1, 1β5.5, 1βγ.7, 6γ.γ. 
IR ( , cm-1, CHβClβ)μ β0γγ, 1λγ5, 1λ11. 

6.3. Part V-1- Hydrogenation of Carbonyl Derivatives 

6.3.1. General procedure for hydrogenation reactions of ketones 

In an argon filled glove box, an autoclave was charged with Re-PNP complex 1 (κ.β mg, 
0.5 mol%) and toluene (β.5 mL), followed by ketone (β.5 mmol) and t-BuOK (β.κ mg, 
1.0 mol%), in this order. The autoclave is then charged Hβ (γ0 bar). The mixture was stirred 
for 17 hours at 70°C in an oil bath. The solution was then diluted with diethyl ether (β mL) and 
filtered through a small pad of silica (β cm in a Pasteur pipette). The silica was washed with 
diethyl ether. The filtrate was evaporated and the crude residue was purified by column 
chromatography (SiOβ, mixture of petroleum ether/ethyl acetate as eluent).  
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6.3.2. Characterization of the hydrogenated products 

1-Phenylethanol 8a[3]  

 

According to general procedure, acetophenone (βλγ µL, β.5 mmol) gave the title compound 8a 
as a colourless oil (βλλ.4 mg, λκ%). 1H NMR (400 MHz, CDClγ) δ = 7.γλ – 7.βλ (m, 5H), 4.κ6 
(q, J = 6.5 Hz, 1H), γ.00 (s, 1H), 1.50 (d, J = 6.5 Hz, γH).13C{1H} NMR (101 MHz, CDClγ) δ 
= 145.λ, 1βκ.4, 1β7.γ, 1β5.4, 70.β, β5.1. 

1-(2-Methylphenyl)ethanol 8b[4] 

 

According to general procedure, β′-methylacetophenone (γβ7 µL, β.5 mmol) gave the title 
compound 8b as a pale yellow oil (γγ0.γ mg, λ7%). 1H NMR (400 MHz, CDClγ) δ = 7.5β (d, 
J = 7.5 Hz, 1H), 7.βκ – 7.ββ (m, 1H), 7.β1 – 7.10 (m, βH), 5.1γ (qd, J = 6.4 Hz, J = γ.6 Hz, 
1H), β.γ5 (s, γH), 1.κκ – 1.71 (m, 1H), 1.47 (d, J = 6.4, γH). 13C{1H} NMR (101 MHz, CDClγ) 
δ = 14γ.λ, 1γ4.γ, 1γ0.5, 1β7.γ, 1β6.5, 1β4.6, 67.0, β4.1, 1λ.0. 

1-(4-Methylphenyl)ethanol 8c[3] 

 
According to general procedure, 4′-methylacetophenone (γγ4 µL, β.5 mmol) gave the title 
compound 8c as a colourless oil (γβγ.5 mg, λ5%). 1H NMR (400 MHz, CDClγ) δ = 7.βλ (d, J 

= κ.0 Hz, βH), 7.β0 (d, J = 7.λ Hz, βH), 4.κκ (qd, J = 6.5 Hz, J = γ.1 Hz, 1H), β.γκ (s, γH), 
β.05 (d, J = γ.1 Hz, 1H), 1.51 (d, J = 6.5 Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ = 14γ.0, 
1γ7.β, 1βλ.β, 1β5.5, 70.γ, β5.β, β1.β. 

1-(4-Methoxyphenyl)ethanol 8d[3] 

 
According to general procedure B, 4′-methoxyacetophenone (γ75.4 mg, β.5 mmol) gave the 
title compound 8d as a colourless oil (γ5γ.λ mg, λγ%). 1H NMR (γ00 MHz, CDClγ) δ = 7.βλ 
(d, J = κ.7 Hz, βH), 6.κλ (d, J = κ.7 Hz, βH), 4.κγ (q, J = 6.4 Hz, 1H), γ.κ1 (s, γH), β.γ5 (s, 
1H), 1.47 (d, J = 6.4 Hz, γH). 13C{1H} NMR (75 MHz, CDClγ) δ = 15κ.λ, 1γκ.β, 1β6.7, 11γ.λ, 
6λ.λ, 55.γ, β5.1. 

1-(2-Methoxyphenyl)ethanol 8e[4] 

 
According to general procedure, β′-methoxyacetophenone (γ4 µL, 0.β5 mmol) gave the title 
compound 8e as a pale yellow oil (γ5.0 mg, λβ%). 1H NMR (γ00 MHz, CDClγ) δ = 7.γ4 (dd, 
J = 7.5 Hz, J = 1.7 Hz, 1H), 7.β5 (td, J = 7.λ Hz, J = 1.7 Hz, 1H), 6.λ7 (td, J = 7.5 Hz, J = 1.0 
Hz, 1H), 6.κλ (dd, J = κ.1 Hz, J = 0.7 Hz, 1H), 5.14 – 5.06 (m, 1H), γ.κ7 (s, γH), β.64 (d, J = 

4.λ Hz, 1H), 1.51 (d, J = 6.5 Hz, γH). 13C{1H} NMR (75 MHz, CDClγ) δ = 156.7, 1γγ.6, 1βκ.4, 
1β6.β, 1β0.λ, 110.6, 66.7, 55.4, βγ.0. 
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1-(2-naphthyl)ethanol 8f[5] 

 
According to general procedure, β'-acetonaphthone (4β5.5 mg, β.5 mmol) gave the title 
compound 8f as a white solid (41γ.γ mg, λ6%). 1H NMR (γ00 MHz, CDClγ) δ = 7.κ6 – 7.7λ 
(m, 4H), 7.5γ – 7.46 (m, γH), 5.0γ (qd, J = 6.5 Hz, J = γ.6 Hz, 1H), β.γκ (d, J = γ.6 Hz, 1H), 
1.5κ (d, J = 6.5 Hz, γH). 13C{1H} NMR (75 MHz, CDClγ) δ = 14γ.γ, 1γγ.4, 1γγ.0, 1βκ.γ, 1βκ.0, 
1β7.7, 1β6.β, 1β5.κ, 1βγ.λβ, 1βγ.κκ, 70.5, β5.β. 

1-(4-Morpholinylphenyl)ethanol 8g[4] 
 

According to general procedure, 4'-morpholinoacetophenone (51γ.1 mg, β.5 mmol) gave the 
title compound 8g as a pale yellow solid (507.λ mg, λκ%). 1H NMR (400 MHz, CDClγ) δ = 
7.β4 (d, J = κ.6 Hz, βH), 6.κ4 (d, J = κ.6 Hz, βH), 4.74 (qd, J = 6.4 Hz, J = γ.5 Hz, 1H), γ.7κ 
(m, 4H), γ.β7 (d, J = γ.5 Hz, 1H), γ.06 (m, 4H), 1.4γ (d, J = 6.4 Hz, γH). 13C{1H} NMR (101 
MHz, CDClγ) δ = 150.γ, 1γ7.6, 1β6.β, 115.5, 6λ.γ, 66.6, 4λ.γ, β4.λ. 

1-(4-Trifluoromethylphenyl)ethanol 8h[6] 

 

According to general procedure, 4'-trifluoromethylacetophenone (470.1 mg, β.5 mmol) gave 
the title compound 8h as a colourless oil (γκ0.4 mg, κ0%). 1H NMR (γ00 MHz, CDClγ) δ = 
7.60 (d, J = κ.β Hz, βH), 7.4κ (d, J = κ.β Hz, βH), 4.λ6 (q, J = 6.1 Hz, 1H), β.0β (s, 1H), 1.50 
(d, J = 6.4 Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ = 14λ.κ, 1βλ.κ (q, JC-‑ = γβ Hz), 1β5.κ, 
1β5.6 (q, JC-‑ = 4 Hz), 1β4.0 (q, JC-‑ = β71 Hz), 70.0, β5.5. 19F NMR (γ76 MHz, CDClγ) δ = -
6β.4κ. 

1,4-Bis(1-hydroxyethyl)benzene 8i[7] 

 

According to general procedure, 1,4-diacetylbenzene (β0γ.0 mg, 1.β5 mmol) gave the title 
compound 8i as a pale yellow solid (1λ5.γ mg, λ4%). 1H NMR (γ00 MHz, CDClγ) δ = 7.γ4 (s, 
4H), 4.κκ (q, J= 6.5 Hz, βH), 1.λλ (s, βH), 1.4κ (d, J = 6.5 Hz, 6H). 1γC{1H} NMR (75 MHz, 
CDClγ) δ = 145.β, 1β5.7, 70.γ, β5.γ. 

1-(4-Aminophenyl)ethanol 8j[8] 

 

According to general procedure, 4'-aminoacetophenone (γγκ.0 mg, β.5 mmol) gave the title 
compound 8j as a yellowish brown solid (γββ.4 mg, λ4%). 1H NMR (400 MHz, CDClγ) δ = 
7.14 (d, J = 7.κ Hz, βH), 6.6γ (d, J = 7.λ Hz, βH), 4.76 (q, J = 5.λ Hz, 1H), γ.14 (br. s, γH), 
1.44 (d, J = 6.β Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ = 145.7, 1γ6.1, 1β6.7, 115.β, 
70.1, β4.λ. 
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1-(4-Fluorophenyl)ethanol 8k[3] 

 
According to general procedure, 4′-fluoroacetophenone (γβ4 µL, β.5 mmol) gave the title 
compound 8k as a pale yellow oil (γ7λ.κ mg, λ7%). 1H NMR (400 MHz, CDClγ) δ = 7.γ6 – 
7.βλ (m, βH), 7.06-7.00 (m, βH), 4.λ4 – 4.κβ (m, 1H), 1.κ4(br. s, 1H, OH), 1.47 (d, J = 6.4 Hz, 
γH). 1γC{1H} NMR (101 MHz, CDClγ) δ = 16β.β (d, JC-F = β45 Hz), 141.6 (d, JC-F = γ Hz), 
1β7.1 (d, JC-F = 7 Hz), 115.γ (d, JC-F = β1 Hz), 6λ.λ, β5.4. 19F NMR (γ76 MHz, CDClγ) δ = -
115.44. 

1-(4-Chlorophenyl)ethanol 8l[9] 

 

According to general procedure, 4′-chloroacetophenone (γβ4 µL, β.5 mmol) gave the title 
compound 8l as a pale yellow oil (γ7λ.κ mg, λ7%). 1H NMR (400 MHz, CDClγ) δ = 7.γ1 (m, 
4H), 4.κκ (qd, J = 6.5 Hz, J = γ.6 Hz, 1H), 1.κλ (d, J = γ.6 Hz, 1H), 1.47 (d, J = 6.5 Hz, γH). 
13C{1H} NMR (101 MHz, CDClγ) δ = 144.4, 1γγ.β, 1βκ.7, 1β6.λ, 6λ.λ, β5.4. 

1-(2-Chlorophenyl)ethanol 8m[10] 

 
According to general procedure, β′-chloroacetophenone (γβ5 µL, β.5 mmol) gave the title 
compound 8m as a pale yellow oil (γ71.λ mg, λ5%). 1H NMR (γ00 MHz, CDClγ) δ = 7.5λ (dd, 
J = 7.6 Hz, J = 1.7 Hz, 1H), 7.γ7 – 7.β7 (m, βH), 7.β0 (td, J = 7.6 Hz, J = 1.κ Hz, 1H), 5.γ0 
(qd, J = 6.4 Hz, J = γ.7 Hz, 1H), β.0β (d, J = γ.7 Hz, 1H), 1.4λ (d, J = 6.4 Hz, γH). 13C{1H} 
NMR (75 MHz, CDClγ) δ = 14γ.β, 1γ1.κ, 1βλ.5, 1βκ.5, 1β7.γ, 1β6.5, 67.1, βγ.6. 

1-(4-Iodophenyl)ethanol 8n 

 
According to general procedure, 4'-iodoacetophenone (γ07.6 mg, 1.β5 mmol) gave the title 
compound 8n as a brown oil (γ0γ.λ mg, λκ%). 1H NMR (400 MHz, CDClγ) δ = 7.66 (d, J = 

κ.γ Hz, βH), 7.10 (d, J = κ.β Hz, βH), 4.κ1 (qd, J = 6.1 Hz, J = γ.γ Hz, 1H), β.β1 (br.s, 1H), 
1.44 (d, J = 6.5 Hz, γH). 13C{1H} NMR (75 MHz, CDClγ) δ = 145.6, 1γ7.7, 1β7.5, λβ.κ, 70.0, 
β5.4. 

1-Phenylpropanol 8o 

 

According to general procedure, propiophenone (γγβ µL, β.5 mmol) gave the title compound 
8o as a colourless oil (γβγ.5 mg, λ5%). 1H NMR (400 MHz, CDClγ) δ = 7.50 – 7.16 (m, 5H), 
4.60 (td, J = 6.6 Hz, J = γ.4 Hz, 1H), β.β0 (d, J = γ.4 Hz, 1H), 1.λβ – 1.70 (m, βH), 0.λ4 (t, J = 

7.4 Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ = 144.7, 1βκ.5, 1β7.5, 1β6.1, 76.1, γβ.0, 10.β. 
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1-(4-Bromophenyl)propanol 8p 

 

According to general procedure, 1-(4-bromophenyl)propanone (5γβ.7 mg, β.5 mmol) gave the 
title compound 8p as a pale yellow oil (505.5 mg, λ4%). 1H NMR (γ00 MHz, CDClγ) δ = 7.44 
(d, J = κ.4 Hz, βH), 7.16 (d, J = κ.4 Hz, βH), 4.50 (td, J = 6.5 Hz, J = γ.5 Hz, 1H), β.4γ (d, J = 

γ.4 Hz, 1H), 1.κ7 – 1.56 (m, βH), 0.κ7 (t, J = 7.4 Hz, γH). 13C{1H} NMR (75 MHz, CDClγ) δ 
= 14γ.6, 1γ1.5, 1β7.κ, 1β1.β, 75.γ, γ1.λ, 10.0. 

1-Mesitylethanol 8q[4] 

 

According to general procedure, 1-mesitylethanone (β0κ µL, 1.β5 mmol) gave the title 
compound 8q as a white solid (1λλ.1 mg, λ7%). 1H NMR (400 MHz, CDClγ) δ = 6.κ4 (s, βH), 
5.γ6 (q, J = 6.κ Hz, 1H), β.4γ (s, 6H), β.βκ (s, γH), 1.λ4 (br. s, 1H), 1.54 (d, J = 6.κ Hz, γH). 
13C{1H} NMR (101 MHz, CDClγ) δ = 1γ7.κ, 1γ6.5, 1γ5.7, 1γ0.β, 67.5, β1.7, β0.κ, β0.6. 

1-Phenyl-2-methylpropanol 8r[3] 

 

According to general procedure, isobutyrophenone (1κ7µL, 1.β5 mmol) gave the title 
compound 8r as a colourless oil (17κ.4 mg, λ5%). 1H NMR (400 MHz, CDClγ) δ = 7.44 – 7.β4 
(m, 5H), 4.γλ (dd, J = 6.κ Hz, J = γ.β Hz, 1H), 1.λκ (oct, J = 6.κ Hz, 1H), 1.λ0 – 1.κ1 (br. s, 
1H), 1.0γ (d, J = 6.κ Hz, γH), 0.κγ (d, J = 6.κ Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ = 
14γ. κ, 1βκ.γ, 1β7.5, 1β6.7, κ0.β, γ5.4, 1λ.β, 1κ.4. 

2,2-Dimethyl-1-phenylpropanol 8s[9] 

 

According to general procedure, pivalophenone (4β µL, 0.β5 mmol) gave the title compound 
8s as a colourless oil (βλ.6 mg, 7β%). 1H NMR (400 MHz, CDClγ) δ = 7.γ4 – 7.βκ (m, 5H), 
4.4β (s, 1H), 1.λ0 (s, 1H), 0.λ5 (s, λH). 13C{1H} NMR (75 MHz, CDClγ) δ = 14β.γ, 1β7.7, 
1β7.7, 1β7.4, κβ.6, γ5.κ, β6.1. 

1-(4-Bromophenyl)-2,2,2-trifluoroethanol 8t[4] 

 

According to general procedure, 4-bromo-α,α,α-trifluoroacetophenone (γ16.γ mg, 1.β5 mmol) 
gave the title compound 8t as a brown oil (γ0β.κ mg, λ5%). 1H NMR (400 MHz, CDClγ) δ = 
7.55 (d, J = κ.γ Hz, βH), 7.γ6 (d, J = κ.γ Hz, βH), 5.00 (q, J = 6.6 Hz, 1H), β.70 (s, 1H).  
13C{1H} NMR (101 MHz, CDClγ) δ = 1γβ.λ, 1γ1.λ, 1βλ.β, 1β4.β (q, JC-‑ = βκ1 Hz), 1βγ.λ, 
7β.4 (q, JC-‑ = γβ Hz). 1λ‑ NMR (γ76 MHz, CDClγ) δ = -7κ.5γ. 

1-Indanol 8u[3] 

 

According to general procedure, 1-indanone (γγ0.4 mg, β.5 mmol) gave the title compound 8u 
as a red oil (γββ.1 mg, λ6%). 1H NMR (γ00 MHz, CDClγ) δ = 7.4λ – 7.γλ (m, 1H), 7.γβ – 7.β4 
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(m, γH), 5.β7 (q, J = 6.κ Hz, 1H), γ.0λ (ddd, J = 16.0 Hz, J = κ.5 Hz, J = 4.κ Hz, 1H), β.κγ (m, 
1H), β.5β (m, 1H), 1.λ7 (m, 1H), 1.κ0 (d, J = 7.1, 1H). 13C{1H} NMR (75 MHz, CDClγ) δ = 
145.1, 14γ.5, 1βκ.5, 1β6.λ, 1β5.0, 1β4.γ, 76.6, γ6.1, βλ.λ. 

1-Tetralol[4] 

 
According to general procedure, 1-oxotetralin (γγγ µL, β.5 mmol) gave the title compound 2v 
as a brown oil (γ4κ.γ mg, λ4%). 1H NMR (γ00 MHz, CDClγ) δ = 7.4λ – 7.γλ (m, 1H), 7.β7 – 
7.14 (m, βH), 7.17 – 7.06 (m, 1H), 4.7λ (q, J = 5.4 Hz, 1H), β.λβ – β.64 (m, βH), β.0β – 1.7γ 
(m, 5H). 13C{1H} NMR (75 MHz, CDClγ) δ = 1γλ.0, 1γ7.γ, 1βλ.β, 1βκ.κ, 1β7.7, 1β6.γ, 6κ.γ, 
γβ.4, βλ.4, 1κ.λ. 

1,3-Diphenylpropan-1-ol 8w 

 

According to general procedure, 1,γ-diphenylpropan-1-one (5β5.7 mg, β.5 mmol) gave the title 
compound 8w as a colourless oil (50λ.5 mg, λ6%). 1H NMR (400 MHz, CDClγ) δ = 7.γκ – 
7.γ7 (m, 4H), 7.γγ – 7.βλ (m, γH), 7.βγ – 7.β0 (m, γH), 4.7β-4.6κ (m, 1H), β.κβ – β.65 (m, 
βH), β.β0 – β.04 (m, βH), β.0γ (d, J=γ.5, 1H). 1γC{1H} NMR (101 MHz, CDClγ) δ = 144.7, 
141.λ, 1βκ.61, 1βκ.55, 1βκ.4λ, 1β7.7, 1β6.04, 1β5.λ6, 74.0, 40.6, γβ.β. 

1,2-Diphenylethanol 8x 

 

According to general procedure, 1,β-diphenylethanol (4λ.1 mg, 0.β5 mmol) gave the title 
compound 8x as a white solid (46.1 mg, λγ%). 1H NMR (γ00 MHz, CDClγ) δ = 7.41 – 7.βγ 
(m, 10H), 4.λ6-4.λ0 (m, 1H), γ.1γ – γ.0β (m, βH), β.11 (d, J = β.7 Hz, 1H). 13C{1H} NMR 
(75 MHz, CDClγ) δ = 14γ.λ, 1γκ.β, 1βλ.6, 1βκ.6, 1βκ.5, 1β7.7, 1β6.7, 1β6.0, 75.4, 46.β. 

1-(Thiophen-2-yl)ethanol 8aa 

 

According to general procedure, 1-(thiophen-β-yl)ethanone (β7γ µL, β.5 mmol) gave the title 
compound 8aa as a orange oil (γ07.7 mg, λ6%). 1H NMR (γ00 MHz, CDClγ) δ = 7.γ1 – 7.β1 
(m, 1H), 7.04 – 6.λ4 (m, βH), 5.14 (br. q, J = 6.4 Hz, 1H), β.14 (br. s, 1H), 1.6β (d, J = 6.4 Hz, 
γH). 13C{1H} NMR (75 MHz, CDClγ) δ = 150.0, 1β6.κ, 1β4.5, 1βγ.γ, 66.4, β5.4. 

1-(5-Chlorothiophen-2-yl)ethan-1-ol 8ab 

 

According to general procedure, 1-(5-chlorothiophen-β-yl)ethanone (401.6 mg, β.5 mmol) 
gave the title compound 8ab as an orange-red oil (γκ6.β mg, λ5%). 1H NMR (400 MHz, CDClγ) 
δ = 6.75 (d, J = γ.7 Hz, 1H), 6.7β (d, J = γ.7 Hz, 1H), 5.00 (m, 1H), β.16 (d, J = 4.7 Hz, 1H), 
1.55 (d, J = 6.4 Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ = 14κ.7, 1βλ.β, 1β5.7, 1ββ.5, 
66.6, β5.1. 
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1-(5-Methylfuran-2-yl)ethan-1-ol 8ac 

 

According to general procedure, 1-(5-methylfuran-β-yl)ethanone (βλ µL, 0.β5 mmol) gave the 
title compound 8ac as a brown oil (βλ.0 mg, λβ%). 1H NMR (γ00 MHz, CDClγ) δ = 6.0λ (d, J 

= γ.1 Hz, 1H), 5.λ0 – 5.κκ (m, 1H), 4.κ6 – 4.7κ (m, 1H), β.βκ (s, γH), 1.λγ (d, J = 4.4 Hz, 1H), 
1.5β (d, J = 6.6 Hz, γH). 13C{1H} NMR (75 MHz, CDClγ) δ = 155.λ, 151.κ, 106.0λ, 106.07, 
6γ.κ, β1.γ, 1γ.7. 

1-(Benzofuran-2-yl)ethanol 8ad 

 

According to general procedure, 1-(benzofuran-β-yl)ethanone (40 mg, 0.β5 mmol) gave the 
title compound 8ad as a brown oil (γκ.1 mg, λ4%). 1H NMR (400 MHz, CDClγ) δ = 7.57 (d, J 
= 7.7 Hz, 1H), 7.4λ (d, J = κ.β Hz, 1H), 7.γβ – 7.ββ (m, βH), 6.64 (s, 1H), 5.0κ – 5.0β (m, 1H), 
β.17 (br. s, 1H), 1.67 (d, J = 6.6 Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ = 160.γ, 154.λ, 
1βκ.γ, 1β4.γ, 1ββ.λ, 1β1.β, 111.γ, 101.λ, 64.γ, β1.6. 

1-(Pyridin-2-yl)ethanol 8ae 

 

According to general procedure, 1-(pyridin-β-yl)ethanone (βκ0.4 µL, β.5 mmol) gave the title 
compound 8ae as a dark-red oil (βλκ.κ mg, λ7%). 1H NMR (400 MHz, CDClγ) δ = κ.55 (d, J 

= 4.7 Hz, 1H), 7.70 (td, J = 7.κ Hz, J = 1.6 Hz, 1H), 7.γ0 (d, J = κ.γ Hz, 1H), 7.β1 (dd, J = 7.β 
Hz, J = 5.0 Hz, 1H), 4.λ4 – 4.κκ (m, 1H), 4.γ6 (d, J = 4.5 Hz, 1H), 1.5β (d, J = 6.6 Hz, γH). 
13C{1H} NMR (101 MHz, CDClγ) δ = 16γ.β, 14κ.γ, 1γ6. λ, 1ββ.γ, 11λ.λ, 6λ.0, β4.4. 

1,2-bis(1-hydroxyethyl)pyridine 8af 

 

According to general procedure, β,6-diacetylpyridine (β04 mg, 1.β5 mmol) gave the title 
compound 8af as a pale yellow oil (β00.6 mg, λ6%, 1μ1 mixture of meso and rac).  
1H NMR (400 MHz, CDClγ) δ = 7.65 (t, J = 7.7 Hz, 1H), 7.1κ (m, βH), 4.κ5 (q, J = 6.5 Hz, 
βH), 4.1λ (s, βH), 1.46 (d, J = 6.6 Hz, 6H). 13C{1H} NMR (101 MHz, CDClγ) δ = 16β.β1, 
16β.1κ, 1γ7.7, 11κ.γβ, 11κ.βκ, 6λ.γ, β4.14, β4.10. 

1-(N-methylpyrrol-3-yl)ethanol 8ag 

 

According to general procedure, γ-acetyl-N-methylpyrrole (γ1 µL, 0.β5 mmol) gave the title 
compound 8ag as a orange-red solid (β7.5 mg, κκ%). 1H NMR (γ00 MHz, CDClγ) δ = 6.5λ (t, 
J = 1.λ Hz, 1H), 6.55 (t, J = β.4 Hz, 1H), 6.14 (t, J = β.1 Hz, 1H), 4.κ5 (q, J = 6.4 Hz, 1H), γ.6γ 
(s, γH), 1.61 (br. s, 1H), 1.50 (d, J = 6.4 Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ = 1βλ.6, 
1ββ.1, 11κ.7, 106.β, 64.κ, γ6.γ, β4.4. 
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1-(2,4-Dimethylthiazol-5-yl)ethanol 8ah  

 

According to general procedure, 1-(β,4-dimethylthiazol-5-yl)ethanone (γγ7 µL, β.5 mmol) 
gave the title compound 8ah as a yellow oil (γ7γ.4 mg, λ5%).1H NMR (γ00 MHz, CDClγ)  
δ = 5.11 (qd, J = 6.4 Hz, J = γ.γ Hz, 1H), β.60 (s, γH), β.γ0 (s, γH), 1.κ7 (s, 1H), 1.50 (d, J = 

6.4 Hz, γH). 13C{1H} NMR (75 MHz, CDClγ) δ = 16γ.6, 146.κ, 1γ6.6, 6γ.κ, β5.7, 1λ.β, 15.1. 

1-Ferrocenylethanol 8ai[3] 

 

According to general procedure, acetylferrocene (570.0 mg, β.5 mmol) gave the title compound 
8ai as an orange solid (55κ.0 mg, λ7%). 1H NMR (400 MHz, CDClγ) δ = 4.56 – 4.54 (m, 1H), 
4.ββ – 4.16 (m, λH), 1.κ7 (d, J = 4.7 Hz, 1H), 1.44 (d, J = 6.4 Hz, γH). 13C{1H} NMR (101 
MHz, CDClγ) δ = λ4.λ, 6κ.4, 6κ.1, 6κ.0, 66.γ, 66.β, 65.7, βγ.λ. 

Bis(4-(N,N-dimethylamino)phenyl)methanol 8aj 

 

According to general procedure, bis(4-(dimethylamino)phenyl)methanone (67 mg, 0.β5 mmol) 
gave the title compound 8aj as a yellow-green solid (60 mg, κλ%, isolated yield with γ % of 
starting material). 1H NMR (400 MHz, CDClγ) δ = 7.βγ (d, J = κ.7 Hz, 4H), 6.70 (d, J = κ.7, 
Hz, 4H), 5.6λ (s, 1H), β.λβ (s, 1βH), β.β5 (br. s, 1H). 13C{1H} NMR (101 MHz, CDClγ) δ = 
150.1, 1γβ.7, 1β7.6, 11β.6, 75.κ, 40.κ. 

Cycloheptanol 8ak[3] 

 

According to general procedure, cycloheptanone (βλ5 µL, β.5 mmol) gave the title compound 
8ak as a pale yellow oil (β71.β mg, λ5%). 1H NMR (γ00 MHz, CDClγ) δ = γ.κλ – γ.7λ (m, 
1H), 1.λ5 – 1.κ7 (m, βH), 1.70 – 1.4λ (m, κH), 1.44 – 1.γ5 (m, γH). 13C{1H} NMR (75 MHz, 
CDClγ) δ = 7β.λ, γ7.κ, βκ.γ, ββ.κ. 

Undecan-2-ol 8al[3] 
 

According to general procedure B, undecan-β-one (517 µL, β.5 mmol) gave the title compound 
2al as a pale yellow oil (41γ.5 mg, λ6%). 1H NMR (400 MHz, CDClγ) δ = γ.κβ – γ.74 (m, 1H), 
1.47 – 1.β6 (m, 17H), 1.1κ (d, J = 6.1 Hz, γH), 0.κ7 (t, J = 6.κ Hz, γH). 13C{1H} NMR 
(101 MHz, CDClγ) δ = 6κ.γ, γλ.5, γβ.1, βλ.κ, βλ.κ, βλ.7, βλ.5, β5.λ, βγ.6, ββ.κ, 14.γ. 

6-Methylhept-5-en-2-ol 8am 
 

According to general procedure, 6-methylhept-5-en-β-one (1κ5 µL, 1.β5 mmol) gave the title 
compound 8am as a pale yellow oil (150.6 mg, λ4%). 1H NMR (400 MHz, CDClγ) δ = 5.1γ (t, 
J = 7.1 Hz, 1H), γ.κ4 – γ.76 (m, 1H), β.14 – 1.λλ (m, βH), 1.6λ (s, γH), 1.6β (s, γH), 1.55 – 
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1.4β (m, γH), 1.1κ (d, J = 6.β Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) δ = 1γβ.β, 1β4.β, 
6κ.1, γλ.4, β5.λ, β4.6, βγ.6, 17.κ. 

(-)-cis-Carveol 8an 

 

According to general procedure, (R)-(-)-carvone (1λ6 µL, 1.β5 mmol) gave the title compound 
8an as a colourless oil (15β.β mg, κ0%). 1H NMR (400 MHz, CDClγ) δ = 5.4λ (m, 1H), 4.7β 
(s, βH), 4.1κ (s, 1H), β.γ0 – β.ββ (m, 1H), β.1κ – β.1β (m, 1H), β.10 – β.07 (m, 1H), 1.λλ – 
1.κλ (m, 1H), 1.75 – 1.7γ (m, 6H), 1.65 (s, 1H), 1.50 (m, 1H). 13C{1H} NMR (101 MHz, CDClγ) 
δ = 14λ.1, 1γ6.γ, 1β4.0, 10λ.γ, 71.0, 40.6, γκ.1, γ1.β, β0.κ, 1λ.1. 

1-Cyclopropylethan-1-ol 8ao 

 

According to general procedure, cyclopropylethan-1-one (βγγ µL, β.5 mmol) gave the title 
compound 8ao as a pale yellow oil (λκ% NMR yield). 1H NMR (γ00 MHz, CDClγ) δ = γ.1 – 
γ.0β (m, 1H), β.15 (s, 1H), 1.β6 (d, J = 6.β Hz, γH), 0.λ5 – 0.κγ (m, 1H), 0.5γ – 0.4β (m, βH), 
0.γβ – 0.10 (m, βH). 13C{1H} NMR (75 MHz, CDClγ) δ = 7γ.1, ββ.6, 1λ.γ, γ.1, β.γ. 

cis-4-t-Butyl-1-cyclohexanol 8ap-cis 

 
According to general procedure, 4-(tert-butyl)cyclohexan-1-one (γκ.6 mg, 0.β5 mmol,) gave 
the title compound 8ap-cis as a white solid (1β.5 mg, γβ%). 1H NMR (400 MHz, CDClγ) δ = 
4.04 – 4.0γ (m, 1H), 1.κ5 – 1.κ1 (m, βH), 1.56 – 1.β1 (m, 7H), 1.0γ – 0.λ5 (m, 1H), 0.κ6 (s, 
λH). 13C{1H} NMR (101 MHz, CDClγ) δ = 66.1, 4κ.β, γγ.5, γβ.7, β7.6, β1.0. 

trans-4-t-Butyl-1-cyclohexanol 8ap-trans 

 
According to general procedure, 4-(tert-butyl)cyclohexan-1-one (γκ.6 mg, 0.β5 mmol) gave 
the title compound 8ap-trans as a white solid (β4.6 mg, 6γ%). 1H NMR (400 MHz, CDClγ)  
δ = γ.55 – γ.47 (m, 1H), β.01 – 1.κλ (m, βH), 1.7λ – 1.76 (m, βH), 1.45 (s, 1H), 1.β5 – 1.17 (m, 
βH), 1.0λ – 0.λ6 (m, βH), 0.κ4 (s, λH). 13C{1H} NMR (101 MHz, CDClγ) δ = 71.4, 47.γ, γ6.γ, 
γβ.4, β7.κ, β5.κ 

4-Biphenylmethanol 10a[11] 

 
According to general procedure, 4-biphenylmethanal (46 mg, 0.β5 mmol) gave the title 
compound 10a as a white solid (γ6.κ mg, κ0%). 1H NMR (400 MHz, CDClγ) δ = 7.60 – 7.60 
(m, 4H), 7.47 – 7.44 (m, 4H), 7.γλ – 7.γ4 (m, 1H), 4.74 (s, βH), 1.κλ (s, 1H).  
13C{1H} NMR (101 MHz, CDClγ) δ = 140.λ, 140.7, 140.0, 1βκ.λ, 1β7.6  1β7.4, 1β7.β, 65.β.  
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(4-Phenylethynyl)benzyl alcohol 10b[1β] 

 
According to general procedure, 4-phenylethynyl-benzaldehyde (ββ mg, 0.11 mmol) gave the 
title compound 10b as a white solid (1λ mg, κβ%). 1H NMR (γ00 MHz, CDClγ) δ = 7.55 – 
7.5β (m, 4H), 7.γ7 – 7.γγ (m, 5H), 4.71 (s, βH). 13C{1H} NMR (75 MHz, CDClγ) δ = 141.1, 
1γ1.λ, 1γ1.7, 1βκ.5, 1βκ.4, 1β7.0, 1βγ.4, 1ββ.7, κλ.6, κλ.γ, 65.1.  

N-[4-(hydroxymethyl)phenyl]-acetamide 10c[1γ]  

 
According to general procedure, 4-acetamido-benzaldehyde (40 mg, 0.β5 mmol) gave the title 
compound 10c as an orange solid (γ4 mg, κγ%).1H NMR (400 MHz, CDβClβ) δ = 7.47 (d, J = 

κ.4 Hz, βH), 7.γλ (br. s, 1H), 7.γ0 (d, J = κ.4 Hz, βH), 4.61 (s, βH), β.1β (s, γH), 1.λ1 (br. s, 
1H).13C{1H} NMR (100 MHz, CDβClβ) δ =16κ.7, 1γ7.λ, 1γ7.4, 1βκ.0, 1β0.1, 65.0, β4.7. 

-phenyl- -butyrolactone 12a[14] 

 
According to general procedure, methyl γ-benzoylpropionate (44 µL, 0.β5 mmol) gave the title 
compound 12a as a colorless oil (γβ.κ mg, κ1%). 1H NMR (400 MHz, CDClγ) δ = 7.4β – 7.γβ 
(m, 5H), 5.5β (dd, J = κ.1 Hz, J = 6.1 Hz, 1H), β.71 – β.6β (m, γH), β.β6 – β.14 (m, 1H). 
13C{1H} NMR (101 MHz, CDClγ) δ = 177.0, 1γλ.5, 1βκ.λ, 1βκ.6, 1β5.4, κ1.4, γ1.1, βλ.1. 

-Valerolactone 12b 

 
According to general procedure, ethyl levulinate (71 µL, 0.5 mmol) gave the title compound 
12b as a colorless oil (γλ.0 mg, 7κ%). 1H NMR (400 MHz, CDClγ) δ = 4.6β (m, 1H), β.55 – 
β.51 (m, βH), β.γκ – β.γ0 (m, 1H), 1.κ6 – 1.76 (m, 1H), 1.γλ (d, J = 6.γ Hz, γH). 13C{1H} NMR 
(75 MHz, CDClγ) δ = 177.γ, 77.4, βλ.κ, βλ.β, β1.β.  

6.3.3. Computational details for hydrogenation of carbonyl derivatives 

Geometry optimizations have been performed with the Gaussian 0λ package[15] at the PB‐0 
level of hybrid density functional theory,[16] with inclusion of Dγ(bj) corrections in the 
optimization process.[17] The geometry of all the structures optimized is available as a single 
xyz file in the Supporting Information. The atoms C, H, N, P, and O were represented by a 
defβ-svp basis set.[1κ] The atom Re was represented by Dolg's pseudopotential and the 
associated basis set.[1λ] The solvent (toluene) influence was taken into consideration through 
single-point calculations on the gas-phase optimized geometry with SCR‑ calculations within 
the SMD model.[β0] ‑or the SCR‑ calculations, the atoms were treated with a defβ-qzvpp basis 
set.[β1] All energies reported in the present work are Gibbs free energies obtained by summing 
the SMD energy (including Dγ corrections) and the gas-phase Gibbs contribution at γ5γ K 
and 1 atm. The calculated values are given below. ‑ull details on calculated geometries are 
included in the file “Geom-Calculated.xyz” given as supporting materials. 
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6.3.4. X-ray data 

X-ray data for the complex 1  

CCDC 1501λ0β contains the supplementary crystallographic data for this complex.  
X-ray diffraction data were collected on a Dκ V‐NTUR‐ Bruker AXS diffractometer equipped 
with a PHOTON 100 CMOS detector, using multilayers monochromated Mo-Kα radiation (  
= 0.7107γ Å) at T = 150(β) K. The structure was solved by direct methods using the SHELXT 
program,[ββ] and then refined with full-matrix least-square methods based on Fβ (SHELXL-

2014).[βγ] The contribution of the disordered solvents to the calculated structure factors was 
estimated following the BYPASS algorithm,[β4] implemented as the SQUEEZE option in 
PLATON.[β5] A new data set, free of solvent contribution, was then used in the final refinement. 
All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. ‐xcept 
nitrogen linked hydrogen atoms that were introduced in the structural model through ‑ourier 
difference maps analysis, H atoms were finally included in their calculated positions. A final 
refinement on Fβ with 1γ0β6 unique intensities and 5γ6 parameters converged at ωR(Fβ) = 
0.0557 (R(F) = 0.0βγγ) for 1147κ observed reflections with I > βσ(I).  

 
Figure S1μ ORT‐P view of the molecular structure of complex 1 with thermal ellipsoids drawn 
at 50% probability. Hydrogens atoms, except the NH, bromide, and one molecule of CHβClβ 
were omitted for clarity. 
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Table S1. Crystal data and structure refinement for complex 1. 

E pi i al fo ula  C  H  B  Cl  N  O  P  Re  
E te ded fo ula  C  H  N O  P  Re ,  B , CH Cl  
Fo ula  eight  .  
Te pe atu e   K 
Wa ele gth  .  Å 
C stal s ste , spa e g oup  T i li i , P  ‐  
U it  ell di e sio s  a =  .  Å, α =  .  
   =  .  Å, β =  .  
   =  .  Å, γ =  .  
Volu e  .  Å  
), Cal ulated de sit   ,  .   g. ‐  
A so ptio   oeffi ie t  .   ‐  
F    
C stal size  .     .     .    
C stal  olo   olou less 
Theta  a ge fo  data  olle tio   .  to  .  ° 
h_ i , h_ a   ‐ ,   
k_ i , k_ a   ‐ ,   
l_ i , l_ a   ‐ ,   
Refle tio s  olle ted / u i ue   /   [R i t a =  . ] 
Refle tio s [I> σ]   
Co plete ess to theta_ a   .  
A so ptio   o e tio  t pe  ulti‐s a  
Ma . a d  i . t a s issio   .  ,  .  
Refi e e t  ethod  Full‐ at i  least‐s ua es o  F  
Data /  est ai ts / pa a ete s   /   /   
Good ess‐of‐fit  .  

Fi al R i di es [I> σ]  R  =  . ,  R d =  .  
R i di es  all data   R  =  . ,  R d =  .  
La gest diff. peak a d hole  .  a d ‐ .  e‐.Å‐  
aRint = ∑ |Fo2  - < Fo2>| / ∑[Fo2] 
bS = {∑ [w(Fo2  -  Fc2)2] / (n - p)}c1/2  
cR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo| 
dwR2 = {∑ [w(Fo2 -  Fc2)2] / ∑ [w(Fo2)2]}1/2  
w = 1 / [σ(Fo2) + aP2 + bP] where P = [2Fc2 + MAX(Fo2, 0)] /3 

X-ray data for the complex 2  

CCDC 1κγκγ14 contains the supplementary crystallographic data for this complex  
X-ray diffraction data were collected on a Dκ V‐NTUR‐ Bruker AXS diffractometer equipped 
with a PHOTON 100 CMOS detector, using multilayers monochromated Mo-Kα radiation (  
= 0.7107γ Å) at T = βλ5 K. The structure was solved by dual-space algorithm using the 
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SHELXT program[ββ], and then refined with full-matrix least-square methods based on Fβ 
(SHELXL-2014).[βγ] All non-hydrogen atoms were refined with anisotropic atomic 
displacement parameters. H atoms were finally included in their calculated positions. A final 
refinement on Fβ with λγ70 unique intensities and 407 parameters converged at ωR(Fβ) = 
0.0λ4κ (R(F) = 0.041γ) for 7λγλ observed reflections with I > βσ(I).  

  
Figure S2μ ORT‐P view of the molecular structure of the complex 2 with thermal ellipsoids 
drawn at 50% probability. Hydrogen atoms, except NH, bromide, and two molecules of CHβClβ 
were omitted for clarity. 

Table S2. Crystal data and structure refinement for complex 2. 
Empirical formula                      C33 H57 Br Cl4 N O3 P2 Re 
Extended  formula                      C31 H53 N O3 P2 Re, 2(C H2 Cl2), Br 
Formula weight                         985.64 
Temperature                            295 (2) K 
Wavelength                             0.71073 Å 
Crystal system, space group            monoclinic, P  21/c 
Unit cell dimensions                 a = 13.7303(8) Å, α = 90 ° 
                                     b = 15.5912(7) Å,  = 106.434(2) ° 
                                     c = 19.9472(11) Å,  = 90 ° 
Volume                                 4095.7(4) Å3 
Z, Calculated density                  4, 1.598 (g.cm-3) 
Absorption coefficient                 4.313 mm-1 
F(000)                                 1976 
Crystal size                           0.480 x 0.390 x 0.300 mm 
Crystal color                          colourless 
Theta range for data collection        2.965 to 27.483 ° 
h_min, h_max                           -17, 17 
k_min, k_max                           -17, 20 
l_min, l_max                           -25, 25 
Reflections collected / unique         61054 / 9370 [R(int)a = 0.0658] 
Reflections [I>2σ]                     7939 
Completeness to theta_max              0.999 
Absorption correction type             multi-scan 
Max. and min. transmission             0.274 , 0.110 
Refinement method                      Full-matrix least-squares on F2 
Data / restraints / parameters         9370 / 0 / 407 
bGoodness-of-fit                       1.108 
Final R indices [I>2σ]                 R1c = 0.0413, wR2d = 0.0948 
R indices (all data)                   R1c = 0.0525, wR2d = 0.1041 
Largest diff. peak and hole            2.275 and -2.907 e-.Å-3 
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aRint = ∑ |Fo2  - < Fo2>| / ∑[Fo2] 
bS = {∑ [w(Fo2  -  Fc2)2] / (n - p)}1/2  
cR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo| 
dwR2 = {∑ [w(Fo2 -  Fc2)2] / ∑ [w(Fo2)2]}1/2  
w = 1 / [σ(Fo2) + aP2 + bP] where P = [2Fc2 + MAX(Fo2, 0)] /3 

X-ray data for the complex 3  

CCDC 1κγκγ15 contains the supplementary crystallographic data for this complex  
X-ray diffraction data were collected on a Dκ V‐NTUR‐ Bruker AXS diffractometer equipped 
with a PHOTON 100 CMOS detector, using multilayers monochromated Mo-Kα radiation (  
= 0.7107γ Å) at T = 150(β) K. The structure was solved by dual-space algorithm using the 
SHELXT program [1],[ββ] and then refined with full-matrix least-square methods based on Fβ 
(SHELXL-2014) [β].[βγ] The contribution of the disordered solvents to the structure factors was 
calculated by the PLATON SQU‐‐Z‐ procedure[β6] [γ] and then taken into account in the final 
SHELXL-2014 least-square refinement. All non-hydrogen atoms were refined with anisotropic 
atomic displacement parameters. H atoms were finally included in their calculated positions. 
A final refinement on Fβ with 14407 unique intensities and 70γ parameters converged at ωR(Fβ) 
= 0.0λ65 (R(F) = 0.0471) for 10ββ7 observed reflections with I > βσ(I).  

 
Figure S3μ ORT‐P view of the molecular structure of the complex 3 with thermal ellipsoids 
drawn at 50% probability. Hydrogen atoms, except NH, and bromide were omitted for clarity. 

Table S3. Crystal data and structure refinement for complex 3. 
Empirical formula                      C62 H58 Br2 N2 O6 P4 Re2 
Extended  formula                      2(C31 H29 N O3 P2 Re), 2(Br) 
Formula weight                         1583.20 
Temperature                            150 (2) K 
Wavelength                             0.71073 Å  
Crystal system, space group            monoclinic, P  2/n 
Unit cell dimensions                 a = 18.6981(12) Å, α = 90 ° 
                                     b = 13.0817(8) Å,  = 91.262(3) ° 
                                     c = 25.7348(17) Å,  = 90 ° 
Volume                                 6293.3(7) Å3 
Z, Calculated density                  4, 1.671 (g.cm-3) 
Absorption coefficient                 5.264 mm-1 
F(000)                                 3088 
Crystal size                           0.290 x 0.180 x 0.030 mm 
Crystal color                          colourless 
Theta range for data collection        3.023 to 27.484 ° 
h_min, h_max                           -24, 23 
k_min, k_max                           -16, 16 
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l_min, l_max                           -32, 33 
Reflections collected / unique         43525 / 14407 [R(int)a = 0.0659] 
Reflections [I>2σ]                     10227                                        
Completeness to theta_max              0.997 
Absorption correction type             multi-scan 
Max. and min. transmission             0.854 , 0.604 
Refinement method                      Full-matrix least-squares on F2 
Data / restraints / parameters         14407 / 0 / 703 
bGoodness-of-fit                       1.019 
Final R indices [I>2σ]                 R1c = 0.0471, wR2d = 0.0965 
R indices (all data)                   R1c = 0.0816, wR2d = 0.1114 
Largest diff. peak and hole            2.668 and -2.390 e-.Å-3 
 
aRint = ∑ |Fo2  - < Fo2>| / ∑[Fo2] 
bS = {∑ [w(Fo2  -  Fc2)2] / (n - p)}1/2  
cR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo| 
dwR2 = {∑ [w(Fo2 -  Fc2)2] / ∑ [w(Fo2)2]}1/2  
w = 1 / [σ(Fo2) + aP2 + bP] where P = [2Fc2 + MAX(Fo2, 0)] /3 

X-ray data for the complex 4  

CCDC 1κγκγ17 contains the supplementary crystallographic data for this complex  
X-ray diffraction data were collected on a AP‐XII Bruker AXS diffractometer equipped with 
an AP‐XII CCDC detector, using graphite monochromated  Mo-Kα radiation (  = 0.7107γ Å) 
at T = 150(β) K. The structure was solved by dual-space algorithm using the SHELXT 

program,[ββ] and then refined with full-matrix least-square methods based on Fβ (SHELXL-

2014).[βγ] All non-hydrogen atoms were refined with anisotropic atomic displacement 
parameters. H atoms were finally included in their calculated positions. A final refinement on 
Fβ with 6γ7λ unique intensities and βλβ parameters converged at ωR(Fβ) = 0.047γ (R(F) = 
0.0β50) for 54κβ observed reflections with I > βσ(I).  

 
Figure S4μ ORT‐P view of the molecular structure of complex 4 with thermal ellipsoids drawn 
at 50% probability. Hydrogen atoms, except NH, and bromide were omitted for clarity. 

Table S4. Crystal data and structure refinement for complex 4. 
Empirical formula                      C23 H45 Br N O3 P2 Re 
Extended  formula                      C23 H45 N O3 P2 Re, Br 
Formula weight                         711.65 
Temperature                            150(2) K 
Wavelength                             0.71073 Å  
Crystal system, space group            monoclinic, P  21/c 
Unit cell dimensions                 a = 14.3480(8) Å, α = 90 ° 
                                     b = 13.1393(6) Å,  = 110.032(2) ° 
                                     c = 15.7971(8) Å,  = 90 ° 
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Volume 2797.9(2) Å3 
Z, Calculated density 4, 1.689 (g.cm-3) 
Absorption coefficient 5.909 mm-1

F(000) 1416 
Crystal size 0.560 x 0.500 x 0.480 mm 
Crystal color colourless 
Theta range for data collection 3.022 to 27.481 ° 
h_min, h_max -18, 15 
k_min, k_max -16, 17 
l_min, l_max -20, 19 
Reflections collected / unique 18356 / 6379 [R(int)a = 0.0331] 
Reflections [I>2σ] 5482
Completeness to theta_max 0.994 
Absorption correction type multi-scan 
Max. and min. transmission 0.059 , 0.047 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 6379 / 0 / 292 
bGoodness-of-fit 1.043 
Final R indices [I>2σ] R1c = 0.0250, wR2d = 0.0473 
R indices (all data) R1c = 0.0334, wR2d = 0.0494 
Largest diff. peak and hole 0.774 and -0.789 e-.Å-3 
aRint = ∑ |Fo2  - < Fo2>| / ∑[Fo2]
bS = {∑ [w(Fo2  -  Fc2)2] / (n - p)}1/2
cR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo|
dwR2 = {∑ [w(Fo2 -  Fc2)2] / ∑ [w(Fo2)2]}1/2
w = 1 / [σ(Fo2) + aP2 + bP] where P = [2Fc2 + MAX(Fo2, 0)] /3

X-ray data for the complex 5  

CCDC 1κγκγ16 contains the supplementary crystallographic data for this complex  
X-ray diffraction data were collected on an AP‐XII Bruker AXS diffractometer equipped with 
an AP‐XII CCDC detector, using graphite monochromated Mo-Kα radiation (  = 0.7107γ Å) 
at T = 150(β) K. The structure was solved by dual-space algorithm using the SHELXT 

program,[ββ] and then refined with full-matrix least-square methods based on Fβ (SHELXL-2014) 
[β].[βγ] All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. 
H atoms were finally included in their calculated positions. A final refinement on Fβ with β06γλ 
unique intensities and λβλ parameters converged at ωR(Fβ) = 0.0647 (R(F) = 0.0γβλ) for 1κκ5κ 
observed reflections with I > βσ(I).  

Figure S5μ ORT‐P view of the molecular structure of complex 5 with thermal ellipsoids drawn 
at 50% probability. Two molecules of 5 and γ molecules of CHβClβ are present in the crystal 
unit. Hydrogen atoms, except NH, bromide, and molecules of CHβClβ were omitted for clarity. 
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Table S5. Crystal data and structure refinement for complex 5. 
Empirical formula                      C95 H144 Br2 Cl6 N2 O4 P4 Re2 
Extended  formula               2(C46 H69 N O2 P2 Re), 3(C H2 Cl2), 2(Br) 
Formula weight                         2246.91 
Temperature                            150 (2) K 
Wavelength                             0.71073 Å  
Crystal system, space group            monoclinic, P  21 
Unit cell dimensions               a = 16.1581(4) Å, α = 90 ° 
                                   b = 19.2559(5) Å,  = 113.5370(10) ° 
                                   c = 16.2039(4) Å,  = 90 ° 
Volume                                 4622.2(2) Å3 
Z, Calculated density                  2, 1.614 (g.cm-3) 
Absorption coefficient                 3.776 mm-1 
F(000)                                 2284 
Crystal size                           0.320 x 0.110 x 0.080 mm 
Crystal color                          orange 
Theta range for data collection        2.939 to 27.484 ° 
h_min, h_max                           -12, 20 
k_min, k_max                           -25, 25 
l_min, l_max                           -21, 21 
Reflections collected / unique         50150 / 20639 [R(int)a = 0.0413] 
Reflections [I>2σ]                     18858                                        
Completeness to theta_max              0.990 
Absorption correction type             multi-scan 
Max. and min. transmission             0.739 , 0.605 
Refinement method                      Full-matrix least-squares on F2 
Data / restraints / parameters         20639 / 1 / 929 
Flack parameter                        0.487(5) 
bGoodness-of-fit                       1.032 
Final R indices [I>2σ]                 R1c = 0.0329, wR2d = 0.0647 
R indices (all data)                   R1c = 0.0388, wR2d = 0.0672 
Largest diff. peak and hole            0.941 and -0.932 e-.Å-3 
 
aRint = ∑ |Fo2  - < Fo2>| / ∑[Fo2] 
bS = {∑ [w(Fo2  -  Fc2)2] / (n - p)}1/2  
cR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo| 
dwR2 = {∑ [w(Fo2 -  Fc2)2] / ∑ [w(Fo2)2]}1/2  
w = 1 / [σ(Fo2) + aP2 + bP] where P = [2Fc2 + MAX(Fo2, 0)] /3 

 

6.4. Part V-2- Mono N-methylation of anilines with methanol 

6.4.1. General procedure for methylation reactions 

In an argon filled glove box, an AC‐ pressure tube (15 mL) was charged with 3 (γ.λ mg, 
1.0 mol%) and methanol (β.0 mL), followed by aniline (0.5 mmol) and CsβCOγ (κ.β mg, 
5.0 mol%), in this order. The mixture was then stirred for 4κ hours at 140 °C in an oil bath. 
The solution was then diluted with ethyl acetate (β.0 mL) and filtered through a small pad of 
silica (β cm in a Pasteur pipette). The silica was washed with ethyl acetate. The filtrate was 
evaporated and the crude residue was purified by column chromatography (SiOβ, mixture of 
petroleum ether/ethyl acetate as eluent).  
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6.4.2. Characterization of the methylated products 

N-Methylaniline 14a[27] 

 
According to the general procedure, aniline (46 L, 0.5 mmol) gave the title compound 14a as 
a colorless oil (51.0 mg, λ5%). 1H NMR (400 MHz, CDClγ)μ δ 7.β4 – 7.1λ (m, βH), 6.76-6.71 
(m, 1H), 6.66 – 6.6β (m, βH), γ.70 (br, 1H), β.κ5 (s, γH). 13C{1H} NMR (101 MHz, CDClγ)μ  
δ 14λ.5, 1βλ.γ, 117.4, 11β.5, γ0.λ. 

4-Methoxy-N-methylaniline 14b[28] 

 
According to the general procedure, 4-methoxyaniline (6β mg, 0.5 mmol) gave the title 
compound 14b as a colorless oil (6β.4 mg, λ1%). 1H NMR (γ00 MHz, CDClγ)μ δ 6.κ6 – 6.κ1 
(m, βH), 6.6γ – 6.5κ (m, βH), γ.77 (s, γH), γ.γκ (br, 1H), β.κβ (s, γH). 13C{1H} NMR (75 MHz, 
CDClγ)μ δ 15β.1, 14γ.κ, 115.0, 11γ.7, 55.λ, γ1.6. 

N-Methyl-4-methylaniline 14c[27] 

 
According to the general procedure, 4-methylaniline (54 mg, 0.5 mmol) gave the title 
compound 14c as a colorless oil (57.0 mg, λ4%). 1H NMR (γ00 MHz, CDClγ)μ δ 7.04 (d, J = 

κ.β Hz, βH), 6.57 (d, J = κ.β Hz, βH), γ.56 (br s, 1H), β.κ4 (d, J = 5.5 Hz, γH), β.βκ (s, γH).  

N-Methyl-3,4-dimethylaniline 14d[29] 

 
According to the general procedure, γ,4-dimethylaniline (61 mg, 0.5 mmol) gave the title 
compound 14d as a colorless oil (γλ.β mg, 5κ%). 1H NMR (400 MHz, CDClγ)μ δ 6.λ6 (d, J = 

κ.1 Hz, 1H), 6.47 (d, J = β.κ Hz, 1H), 6.41 (dd, J = κ.1, β.7 Hz, 1H), γ.10 (br, 1H), β.κβ (s, γH), 
β.β1 (s, γH), β.17 (s, γH). 13C{1H} NMR (101 MHz, CDClγ)μ δ 147.6, 1γ7.4, 1γ0.4, 1β5.5, 
114.6, 110.β, γ1.γ, β0.β, 1κ.κ. 

N-Methyl-2-methylaniline 14e[27] 

 
According to the general procedure, β-methylaniline (54 L, 0.5 mmol) gave the title 
compound 14e s a colorless oil (16.4 mg, β7%). 1H NMR (400 MHz, CDClγ)μ δ 7.βγ – 7.1β 
(m, 1H), 7.1β – 7.0γ (m, 1H), 6.67 (td, J = 7.γ, 1.γ Hz, 1H), 6.6β (dd, J = κ.0, 1.β Hz, 1H), γ.55 
(s, 1H), β.λ0 (s, γH), β.14 (s, γH). 

 

 

 



353 

 

N-Methyl-1-naphthylamine 14f[30] 

 
According to the general procedure, 1-naphthylamine (71 mg, 0.5 mmol) gave the title 
compound 14f as a colorless oil (41.7 mg, 5γ%). 1H NMR (γ00 MHz, CDClγ)μ δ 7.κ6 – 7.7κ 
(m, βH), 7.5γ – 7.40 (m, γH), 7.γ0 (d, J = κ.1 Hz, 1H), 6.64 (dd, J = 7.5, 1.1 Hz, 1H), 4.γκ (br, 
1H), γ.04 (s, γH). 13C{1H} NMR (75 MHz, CDClγ)μ δ 144.5, 1γ4.γ, 1βκ.κ, 1β6.κ, 1β5.κ, 1β4.κ, 
1βγ.6, 11λ.λ, 117.5, 104.1, γ1.β. 

4-Fluoro-N-methylaniline 14i[31] 

 
According to the general procedure, 4-fluoroaniline (4κ L, 0.5 mmol) gave the title compound 
14i as a colorless oil (60.0 mg, λ6%). 1H NMR (400 MHz, CDClγ)μ δ 6.λ4 – 6.κ7 (m, βH), 6.57 
– 6.5β (m, βH), γ.55 (br, 1H), β.κ1 (s, γH). 13C{1H} NMR (101 MHz, CDClγ)μ δ 155.λ (d, J = 

βγ4.γ Hz), 145.κ (d, J = 1.λ Hz), 115.7 (d, J = ββ.γ Hz), 11γ.γ (d, J = 7.7 Hz), γ1.5.  
19F NMR (γ76 MHz, CDClγ) δ -1βκ.5. 

4-Chloro-N-methylaniline 14j[27] 

 
According to the general procedure, 4-chloroaniline (64 mg, 0.5 mmol) gave the title 
compound 14j as a colorless oil (60.β mg, κ5%). 1H NMR (γ00 MHz, CDClγ)μ δ 7.15 (d, J = 

λ.0 Hz, βH), 6.5γ (d, J = κ.λ Hz, βH), γ.6γ (br, 1H), β.κ1 (s, γH). 13C{1H} NMR (75 MHz, 
CDClγ)μ δ 14κ.0, 1βλ.1, 1β1.κ, 11γ.5, γ0.λ. 

3-Bromo-N-methylaniline 14k[28] 

 
According to the general procedure, γ-bromoaniline (55 L, 0.5 mmol) gave the title compound 
14k as a colorless oil (κβ.κ mg, κλ%). 1H NMR (400 MHz, CDClγ) δ 7.0β (t, J = κ.0 Hz, 1H), 
6.κ1 (d, J = 7.κ Hz, 1H), 6.74 (t, J = β.1 Hz, 1H), 6.51 (dd, J = κ.β, β.4 Hz, 1H), γ.76 (br, 1H), 
β.κβ (s, γH). 13C{1H} NMR (101 MHz, CDClγ)μ δ 150.7, 1γ0.5, 1βγ.4, 1β0.0, 114.λ, 111.4, 
γ0.6.  

4-Iodo-N-methylaniline 14l[27] 

  
According to the general procedure, 4-iodoaniline (110 mg, 0.5 mmol) gave the title compound 
14l as a colorless oil (κ1.6 mg, 70%). 1H NMR (400 MHz, CDClγ)μ δ 7.4γ (d, J = κ.λ Hz, 1H), 
6.γλ (d, J = κ.λ Hz, 1H), γ.71 (br, 1H), β.κ1 (s, γH). 13C{1H} NMR (101 MHz, CDClγ)μ δ 14λ.0, 
1γ7.λ, 114.7, 77.κ, γ0.7. 
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2-Fluoro-4-Iodo-N-methylaniline 14m 

 
According to the general procedure, β-fluoro-4-iodo-aniline (11λ mg, 0.5 mmol) gave the title 
compound 14m as a colorless oil (76.6 mg, 61%). 1H NMR (400 MHz, CDClγ)μ δ 7.γβ (dt, J 

= κ.4, 1.6 Hz, 1H), 7.β7 (dd, J = 10.λ, β.0 Hz, 1H), 6.45 (t, J = κ.κ Hz, 1H), γ.λκ (br, 1H), β.κ7 
(s, γH). 13C{1H} NMR (101 MHz, CDClγ)μ δ 151.4 (d, J = β4γ.λ Hz), 1γ7.κ (d, J = 11.6 Hz), 
1γγ.6 (d, J = γ.5 Hz), 1βγ.0 (d, J = β0.κ Hz), 11γ.β (d, J = γ.λ Hz), 74.κ (d, J = 7.7 Hz), γ0.1.  
19F NMR (γ76 MHz, CDClγ)μ δ -1γ4.4. GC-MS, m/z(%) = β51([M]+, 100), βγ6(λ), β0λ(10), 
1βγ(5κ), 10λ(10), λ7(16), 77(γκ), 6γ(κ), 50(10). 

N-Methyl-4-trifluoromethylaniline[28] 
H
N

F3C

Me

 
According to the general procedure, 4-trifluoromethylaniline hydrochloride, (λλ mg, 0.5 mmol) 
gave the title compound 14n as a colorless oil (β7.β mg, γ1%). 1H NMR (400 MHz, CDClγ)μ 
δ 7.4β (d, J = κ.5 Hz, βH), 6.60 (d, J = κ.5 Hz, βH), 4.04 (br, 1H), β.κ7 (d, J = 5.1 Hz, γH). 
13C{1H} NMR (101 MHz, CDClγ)μ δ 151.κ, 1β6.7 (q, J = γ.λ Hz), 1β5.β (q, J = β70 Hz), 11κ.7 
(q, J = γβ.6 Hz), 111.6, γ0.4. 19F NMR (γ76 MHz, CDClγ)μ δ -60.λ. 

N-Methyl-4-nitroaniline 14o[32] 

 
According to the general procedure, 4-nitroaniline (70 mg, 0.5 mmol) gave the title compound 
14o as a colorless oil (γκ.1 mg, 50%). 1H NMR (400 MHz, CDClγ)μ δ κ.0λ (d, J = λ.β Hz, βH), 
6.5β (d, J = λ.γ Hz, βH), 4.65 (br. s, 1H), β.λγ (d, J = 5.1 Hz, γH). 13C{1H} NMR (101 MHz, 
CDClγ)μ δ 154.γ, 1γκ.0, 1β6.5, 110.κ, γ0.γ. 

4-Acetyl-N-methylaniline 14q[27] 

 
According to the general procedure, 4-aminoacetophenone (6κ mg, 0.5 mmol) gave the title 
compound 14q as a colorless oil (44.κ mg, 60%). 1H NMR (400 MHz, CDClγ)μ δ 7.κ1 (d, J = 

κ.7 Hz, βH), 6.5γ (d, J = κ.7 Hz, βH), 4.4λ (br. s, 1H), β.κ6 (d, J = 1.6 Hz, γH), β.4κ (s, γH). 
13C{1H} NMR (101 MHz, CDClγ) δ 1λ6.5, 15γ.γ, 1γ0.κ, 1β6.4, 111.0, γ0.1, β6.0. 

N-Methyl-4-benzyloxyaniline 14t 

 
According to the general procedure, 4-(benzyloxy)aniline hydrochloride, (11κ mg, 0.5 mmol) 
gave the title compound 14t as a colorless oil (10β.γ mg, λ0%). 1H NMR (400 MHz, CDClγ)μ 
δ 7.46-7.4β (m, βH), 7.41 – 7.γ7 (m, βH), 7.γ4 – 7.γ0 (m, 1H), 6.κλ (d, J = κ.λ Hz, βH), 6.60 
(d, J = κ.κ Hz, βH), 5.01 (s, βH), γ.βλ (br, 1H), β.κβ (s, γH). 13C{1H} NMR (101 MHz, CDClγ)μ 
δ 151.4, 144.1, 1γ7.κ, 1βκ.6, 1β7.λ, 1β7.6, 116.γ, 11γ.7, 71.0, γ1.7. 



355 

 

N-Methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-aniline 14u 

 
According to the general procedure, 4-(4,4,5,5-tetramethyl-1,γ,β-dioxaborolan-β-yl)-aniline, 
(10λ mg, 0.5 mmol) gave the title compound 14u as a colorless oil (βγ.γ mg, β0%).  
1H NMR (400 MHz, CDClγ)μ δ 7.65 (d, J = κ.γ Hz, βH), 6.5κ (d, J = κ.4 Hz, βH), γ.κ7 (br, 
1H), β.κ5 (s, γH), 1.γβ (s, 1βH). 13C{1H} NMR (101 MHz, CDClγ, the carbon attached to 
quadrupole B was not observed due to low intensity)μ δ 151.λ, 1γ6.4, 111.6, κγ.γ, γ0.4, β5.0. 
11B{1H} NMR (1βκ MHz, CDClγ)μ δ γ0.κ. GC-MS, m/z(%) = βγγ([M]+, 100), β1κ(1λ), 
175(ββ), 160(44), 147(β5), 1γ4(λ7), 11λ(κ), 10κ(14), 77(1γ). 

N,N'-Dimethyl-1,3-diaminobenzene 14w[33] 

 
According to the general procedure, 1,γ-diaminobenzene, (54 mg, 0.5 mmol) gave the title 
compound 14w as a colorless oil (6β.7 mg, λβ%). 1H NMR (γ00 MHz, CDClγ)μ δ 7.0γ (t, J = 

κ.0 Hz, 1H), 6.05 (dd, J = κ.0, β.β Hz, βH), 5.κλ (t, J = β.β Hz, 1H), γ.5γ (br. s, βH), β.κγ (s, 
6H). 13C{1H} NMR (101 MHz, CDClγ)μ δ 150.7, 1γ0.0, 10β.6, λ6.5, γ0.λ. 

N-Methyl-4-methylbenzenesulfonamide 14y[27]  

 
According to the general procedure, 4-methylbenzenesulfonamide, (κ6 mg, 0.5 mmol) gave the 
title compound 14y as a colorless oil (77.0 mg, λ1%). 1H NMR (γ00 MHz, CDClγ)μ δ 7.74 (d, 
J = κ.β Hz, 1H), 7.γ0 (d, J = κ.β Hz, 1H), 4.κ5 (d, J = 5.γ Hz, 1H), β.61 (d, J = 5.4 Hz, γH), 
β.41 (s, γH). 13C{1H} NMR (75 MHz, CDClγ)μ δ 14γ.6, 1γ5.κ, 1βλ.κ, 1β7.γ, βλ.4, β1.6. 

N-Methyl-1,3-dimethyl-1H-pyrazol-5-amine 14z 

 
According to the general procedure, 1,γ-dimethyl-1H-pyrazol-5-amine, (56 mg, 0.5 mmol) 
gave the title compound 14z as a colorless oil (5λ.5 mg, λ5%). 1H NMR (400 MHz, CDClγ)μ  
δ 5.β1 (s, 1H), γ.46 (s, γH), γ.45 (br. s, 1H), β.74 (d, J = 5.4 Hz, γH), β.1β (s, γH).  
13C{1H} NMR (101 MHz, CDClγ)μ δ 14λ.λ, 147.1, κ7.1, γγ.7, γβ.4, 1γ.λ. GC-MS, m/z(%) = 
1β5([M]+, 100), 110(41), λ5(10), κγ(β4), 66(1κ), 55(γ6). 

N-Methyl-2-aminopyridine 14aa[34] 

 
According to the general procedure, β-aminopyridine, (47 mg, 0.5 mmol) gave the title 
compound 14aa as a colorless oil (βκ.6 mg, 5γ%). 1H NMR (400 MHz, CDClγ)μ δ κ.0κ (ddd, 
J = 5.0, β.0, 0.λ Hz, 1H), 7.4β (ddd, J = κ.κ, 7.β, 1.λ Hz, 1H), 6.56 (ddd, J = 7.β, 5.0, 1.0 Hz, 
1H), 6.γ7 (dt, J = κ.4, 1.0 Hz, 1H), 4.5κ (br, 1H), β.λ1 (d, J = 5.γ Hz, γH). 13C{1H} NMR 
(101 MHz, CDClγ)μ δ 15λ.7, 14κ.γ, 1γ7.5, 11β.κ, 106.γ, βλ.β. 
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5-Bromo-2-methylamino-pyridine[35] 

 
According to the general procedure, β-amino-5-bromo-β-pyridine, (κ7 mg, 0.5 mmol) gave the 
title compound 14ab as a colorless oil (66.4 mg, 71%). 1H NMR (400 MHz, CDClγ)μ δ κ.0λ 
(d, J = β.7 Hz, 1H), 7.46 (dd, J = κ.λ, β.5 Hz, 1H), 6.β7 (d, J = κ.κ Hz, 1H), 4.74 (br. s, 1H), 
β.κ7 (d, J = 5.1 Hz, γH). 13C{1H} NMR (101 MHz, CDClγ)μ δ 15κ.β, 14κ.7, 1γλ.κ, 107.7, 106.λ, 
βλ.β. 

N,N'-Dimethyl-2,6-diaminopyridine 14ac[33] 

 
According to the general procedure, β,6-diaminopyridine, (55 mg, 0.5 mmol) gave the title 
compound 14ac as a colorless oil (βκ.6 mg, λ0%). 1H NMR (γ00 MHz, CDClγ)μ δ 7.βκ (t, J = 

7.λ Hz, 1H), 5.7γ (d, J = κ.0 Hz, βH), 4.βκ (br. s, βH), β.κ5 (d, J = 5.β Hz, 6H).  
13C{1H} NMR (75 MHz, CDClγ)μ δ 15λ.β, 1γλ.β, λ4.β, βλ.γ. 

4-Bromo-2-(2-N-Methylaminophenyl)-benzothiazole 14ad 

 
An oven dried 10 mL Pyrex Wheaton vial was charged with a stir bar, 3 (βγ mg, 0.0β5 mmol, 
5.0 mol%), CsβCOγ (1κκ.λ mg, 0.6 mmol, 100 mol%), β-(β-aminophenyl)-4-
bromobenzothiazole (174.5 mg, 0.6 mmol) and dry MeOH (β mL). The vial was purged with 
Ar, then the reaction mixture degassed (γ cycles of freeze-pump-thaw) and left under an 
atmosphere of Ar before being sealed with a Teflon lined cap. The vial was then placed in an 
oil bath at 140 °C and reaction progress monitored by TLC (λμ1 cyclohexane/‐tOAc). After 5 
days, the reaction mixture was cooled to rt, diluted with ‐tOAc and passed through a Silica 
plug in a Pasteur pipette and eluted with ‐tOAc. The residue was concentrated onto Celite and 
purified using Silica gel flash column chromatography using 100% cyclohexane to 
cyclohexane/CHβClβ (7μγ). Desired fractions were collected and concentrated under reduced 
pressure to furnish the desired product 14ad as a yellow powder, which was further dried under 
high vacuum overnight (14λ.γ mg, 7κ%). 1H NMR (400 MHz, CDClγ) δ 7.7κ (dd, J = 7.λ, 1.0 
Hz), 7.6κ (dd, J = 7.λ, 1.5 Hz), 7.6γ (dd, J = 7.κ, 1.0 Hz), 7.γ6 (ddd, J = κ.6, 7.1, 1.5 Hz), 7.1λ 
(t, J = 7.λ Hz), 6.κ0 (dd, J = κ.5, 1.1 Hz), 6.6λ (ddd, J = κ.1, 7.1, 1.1 Hz), γ.0κ (d, J = 4.4 Hz, 
γH). 13C{1H} NMR (101 MHz, CDClγ) δ 170.0, 151.κ, 14κ.λ, 1γ4.0, 1γβ.κ, 1γ0.6, 1βλ.4, 1β5.7, 
1β0.4, 115.κ, 115.1, 114.β, 111.β, γ0.0. HR-MS-ESI (m/z)μ found [M7λBr+H]+ γ1κ.λκλβ, calcd 
C14H1βNβS7λBr requires γ1κ.λλ05. 

2-(2-Hydroxyphenyl)-4-(2-N-Methylaminophenyl)-benzothiazole 14ae 

 
An oven dried 10 mL Pyrex Wheaton vial was charged with a stir bar, 3 (β1 mg, 0.0β5 mmol, 
5.0 mol%), CsβCOγ (170 mg, 0.5 mmol, 100 mol%), β-(β-hydroxyphenyl)-4-(β-
aminophenyl)benzothiazole (156.7 mg, 0.5 mmol) and dry MeOH (β mL). The vial was purged 
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with Ar, then the reaction mixture degassed (γ cycles of freeze-pump-thaw) and left under an 
atmosphere of Ar before being sealed with a Teflon lined cap. The vial was then placed in an 
oil bath at 140 °C and reaction progress monitored by TLC (λμ1 cyclohexane/‐tOAc). After 5 
days, the reaction mixture was cooled to rt, diluted with ‐tOAc and passed through a Silica 
plug in a Pasteur pipette and eluted with ‐tOAc. The residue was concentrated onto Celite and 
purified using Silica gel flash column chromatography using 100% cyclohexane to 
cyclohexane/‐tOAc (λμ1). Desired fractions were collected and concentrated under reduced 
pressure to furnish the desired product 14ae as a yellow powder, which was further dried under 
high vacuum overnight (54.7 mg, γγ%). Starting material could be recovered from purification 
(75 mg, 4κ% recovery). 1H NMR (400 MHz, CDClγ) δ 7.λβ (dd, J = 7.7, 1.5 Hz, 1H), 7.6κ (dd, 
J = 7.λ, 1.6 Hz, 1H), 7.55 (dd, J = 7.4, 1.5 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.γ6 (dddd, J = 

κ.β, 7.β, 6.γ, 1.6 Hz, βH), 7.β4 (dd, J = 7.5, 1.7 Hz, 1H), 7.0γ (dd, J = κ.4, 1.1 Hz, 1H), 6.λ7 – 
6.λ0 (m, 1H), 6.κ6 (td, J = 7.5, 1.β Hz, 1H), 6.κβ (d, J = κ.β Hz, 1H), β.κβ (s, γH).  
13C{1H} NMR (101 MHz, CDClγ) δ 16λ.1, 15κ.1, 150.γ, 146.5, 1γγ.6, 1γγ.5, 1γγ.0, 1γ0.λ, 
1βλ.7, 1βκ.4β, 1βκ.γλ, 1β6.β, 1β4.β, 1β0.λ, 11λ.5, 11κ.1, 117.0, 116.λ, 110.4, γ0.λ.  
HR-MS-ESI (m/z)μ found [M+H]+ γγγ.106β, calcd Cβ0H17NβOS requires γγγ.106β. 

2, 4-di-(2-N-Methylaminophenyl) benzothiazole 14af 

 
An oven dried 10 mL Pyrex Wheaton vial was charged with a stir bar, 3 (β0 mg, 0.0β5 mmol, 
5.0 mol%), CsβCOγ (1λ0 mg, 0.6 mmol, 100 mol%), β,β'-(benzo[d]thiazole-β,4-diyl)dianiline 
(1κ0 mg, 0.6 mmol) and dry MeOH (β mL). The vial was purged with Ar, then the reaction 
mixture degassed (γ cycles of freeze-pump-thaw) and left under an atmosphere of Ar before 
being sealed with a Teflon lined cap. The vial was placed in an oil bath at 140 °C for 5 daysν 
reaction progress monitored by LCMS and TLC (4μ1 cyclohexane/‐tOAc). The reaction 
mixture was cooled to rt, and diluted with ‐tOAc (10 mL) and passed through a Silica plug, 
and the Silica washed with ‐tOAc. The organic phase was washed with saturated aqueous 
NaHCOγ (1 x β5 mL) and brine (1 x 50 mL). The organic phase was dried over anhydrous 
MgSO4, then filtered and concentrated onto Celite and purified by Silica flash column 
chromatography (eluentμ 100% cyclohexane to λμ1 cyclohexane/‐tOAc). Desired fractions 
were combined and concentrated under reduced pressure to provide the product 14af as a 
yellow foam (15λ.6 mg, 77%). 1H NMR (400 MHz, CDClγ) δ 7.κκ (dd, J = 7.κ, 1.γ Hz, 1H), 
7.71 (dd, J = 7.λ, 1.5 Hz, 1H), 7.50 (dd, J = 7.4, 1.γ Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.γλ (td, 
J = κ.0, 1.6 Hz, 1H), 7.γ5 – 7.βλ (m, βH), 6.λ0 (t, J = 6.κ Hz, βH), 6.74 – 6.64 (m, βH), β.κγ 
(s, γH), β.κ1 (s, γH). 13C{1H} NMR (101 MHz, CDClγ) δ 16λ.γ, 151.5, 14κ.6, 146.β, 1γγ.κ, 
1γγ.1, 1γβ.4, 1γ1.γ, 1γ0.4, 1βλ.4, 1β7.6, 1β5.7, 1β5.5, 1β0.6, 117.5, 115.0, 114.5, 111.1, 110.κ, 
γ1.γ, βλ.κ. HR-MS-ESI (m/z)μ found [M+H]+ γ46.1γκ7, calc’d Cβ1Hβ0NγS requires γ46.1γ7κ. 

6.4.3. Computational details for N-methylation of anilines with methanol 

Geometry optimizations have been performed with the Gaussian 0λ package[15] at the PB‐0 
level of hybrid density functional theory,[16] with inclusion of Dγ(bj) corrections in the 
optimization process.[17] The geometry of all the structures optimized is available as a single 
xyz file in the Supporting Information. The atoms C, H, N, P, and O were represented by a 
defβ-svp basis set.[1κ] The atom Re was represented by Dolg's pseudopotential and the 
associated basis set.[1λ] The solvent (methanol) influence was taken into consideration through 
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single-point calculations on the gas-phase optimized geometry with SCR‑ calculations within 
the SMD model.[β0] ‑or the SCR‑ calculations, the atoms were treated with a defβ-qzvpp basis 
set.[β1] All energies reported in the present work are Gibbs free energies obtained by summing 
the SMD energy (including Dγ corrections) and the gas-phase Gibbs contribution at γ5γ K and 
1 atm. The calculated values are given below. ‑ull details on calculated geometries are included 
In the file “Geom-Calculated.xyz” given as supporting materials. 

 
E SMD/Def Q)VPP  
Metha ol  G  H  G  D 

H O  -76,39832905 -0,005477
H   -1,168765243 -0,007457
CH =O  -114,4292551 -0,004923 ‐ ,
PhNH   -287,4096815 0,074144
He ia i al  -401,8696272 0,100581
CH OH  -115,6557789 0,018135 ,
Ph‐N=CH   -325,4481097 0,076268 ,
Ph‐NH‐CH   -326,6820497 0,098229 ,
CO  -113,2278569 -0,022797
II‐   -1786,448498 0,423873
II‐   -1673,190243 0,417468
II‐   -1788,859659 0,463613 ,
TS‐ II‐ ‐ II‐   -1788,821375 0,458462 ,
II‐   -1674,383931 0,438776 ,
TS‐ II‐ ‐H   -1674,333164 0,433574 ,
II‐   -1999,844726 0,543823 ,
TS‐ II‐ ‐ II‐   -1999,838212 0,546365 ,
II‐   -1999,886788 0,543791 ,

6.5. Part V-3- Synthesis of quinolines through acceptorless dehydrogenative coupling 

6.5.1. General procedure for synthesis of quinolines using 2-aminobenzyl alcohol with 
alcohols or ketones 

 
In an argon filled glove box, a β0 mL Schlenk tube was charged with β-aminobenzyl alcohol 
15a (0.5 mmol), 16 or 17 (0.5 mmol), 3 (1.0 mol%), t-BuOK (10 mol%) and toluene (β mL) in 
this order. Then the reaction mixture was heated at 150 oC with argon stream for β4 h. After 
cooling to room temperature, the solution was diluted with ethyl acetate (β mL) and filtered 
through a small pad of silica (β cm in a Pasteur pipette). The silica was washed with ethyl 
acetate. The filtrate was evaporated and the crude residue was purified by column 
chromatography (SiOβ, mixture of petroleum ether/ethyl acetate as eluent). 
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6.5.2. General procedure for synthesis of 2-amino quinolines with nitriles 

 
In an argon filled glove box, a β0 mL Schlenk tube was charged with β-aminobenzyl alcohol 
15a (0.5 mmol), 19 (0.5 mmol), 3 (1.0 mol%), t-BuOK (10 mol%) and toluene (β mL) in this 
order. Then the reaction mixture was heated at 140 oC with argon stream for β4 h. After cooling 
to room temperature, the solution was diluted with ethyl acetate (β mL) and filtered through a 
small pad of silica (β cm in a Pasteur pipette). The silica was washed with ethyl acetate. The 
filtrate was evaporated and the crude residue was purified by column chromatography (SiOβ, 
mixture of petroleum ether/ethyl acetate as eluent). 
6.5.3. Characterization of quinolines 

2-Phenylquinoline 18a[36] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 1-
phenylethanol 16a (60 L, 0.5 mmol) gave the title compound 18a as white solid (κλ mg, κ7%). 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 
acetophenone (60 L, 0.5 mmol) gave the title compound 18a as white solid (λγ.γ mg, λ1%). 
1H NMR (400 MHz, CDClγ)μ δ κ.βγ (d, J = κ.7 Hz, 1H), κ.1λ – κ.16 (m, γH), 7.κλ (d, J = κ.6 
Hz, 1H), 7.κ4 (d, J = κ.1 Hz, 1H), 7.7γ (ddd, J = κ.6, 6.κ, 1.6 Hz, 1H), 7.56 – 7.51 (m, γH), 
7.4λ – 7.45 (m, 1H). 13C{1H} NMR (101 MHz, CDClγ) δ 157.5, 14κ.4, 1γλ.κ, 1γ6.λ, 1βλ.λ, 
1βλ.κ, 1βλ.5, 1βλ.0, 1β7.7, 1β7.6, 1β7.γ, 1β6.4, 11λ.β. 

2-(Naphthalen-2-yl)quinoline 18b[37] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 1-
(naphthalen-β-yl)ethanol 16b (κ6 mg, 0.5 mmol) gave the title compound 18b as colorless 
crystals (11λ mg, λγ%). 1H NMR (400 MHz, CDClγ)μ δ κ.6γ (d, J = β.1 Hz, 1H), κ.γλ (dd, J = 

κ.6, 1.λ Hz, 1H), κ.β5 (t, J = κ.5 Hz, βH), κ.0κ – 7.λ7 (m, γH), 7.λγ-7.κλ (m, 1H), 7.κ5 (dd, J 

= κ.1, 1.5 Hz, 1H), 7.76 (ddd, J = κ.4, 6.κ, 1.6 Hz, 1H), 7.5κ – 7.4λ (m, γH). 13C{1H} NMR 
(101 MHz, CDClγ)μ δ 157.γ, 14κ.5, 1γ7.1, 1γ6.λ, 1γ4.0, 1γγ.7, 1βλ.λ, 1βλ.κ, 1βλ.0, 1βκ.7, 
1β7.λ, 1β7.6, 1β7.4, 1β7.γ, 1β6.κ, 1β6.6, 1β6.5, 1β5.β, 11λ.γ.  

2-(4-Fluorophenyl)quinoline 18c[37-38] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 1-
(4-fluorophenyl)ethanol 16c (70 mg, 0.5 mmol) gave the title compound 18c as colorless 
crystals (κλ mg, κ0%). 1H NMR (400 MHz, CDClγ)μ δ κ.β1 – κ.16 (m, 4H), 7.κ1 (t, J = κ.0 Hz, 
βH), 7.7κ-7.7γ (m, 1H), 7.54 (ddd, J = κ.1, 6.κ, 1.γ Hz, 1H), 7.βγ (t, J = κ.7 Hz, βH).  
13C{1H} NMR (101 MHz, CDClγ)μ δ 16γ.κ (d, J = β4κ.λ Hz), 156.β, 14κ.γ, 1γ6.λ, 1γ5.κ (d, J 

= γ.1 Hz), 1βλ.κ, 1βλ.7, 1βλ.4 (d, J = κ.1 Hz), 1β7.5, 1β7.1, 1β6.4, 11κ.6, 115.κ (d, J = β1.6 
Hz). 19F{1H} NMR (γ76 MHz, CDClγ) δ -11β.γλ. 
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2-(4-Chlorophenyl)quinoline 18d[37] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 1-
(4-chlorophenyl)ethanol 16d (7κ mg, 0.5 mmol) gave the title compound 18d as colorless 
crystals (110 mg, λβ%). 1H NMR (400 MHz, CDClγ)μ δ κ.β0 (dd, J = κ.6, β.1 Hz, 1H), κ.16 (d, 
J = κ.6 Hz, 1H), κ.14 – κ.0λ (m, βH), 7.κβ (dd, J = κ.6, β.0 Hz, βH), 7.74 (ddd, J = κ.4, 6.λ, 1.6 
Hz, 1H), 7.5γ (ddd, J = κ.1, 6.κ, 1.γ Hz, 1H), 7.51 – 7.47 (m, βH). 13C{1H} NMR (101 MHz, 
CDClγ)μ δ 156.1, 14κ.γ, 1γκ.β, 1γ7.0, 1γ5.6, 1βλ.λ, 1βλ.κ, 1βλ.1, 1βκ.λ, 1β7.6, 1β7.γ, 1β6.6, 
11κ.6. 

2-(4-Bromophenyl)quinoline 18e[36] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 1-
(4-bromophenyl)ethanol 16e (101 mg, 0.5 mmol) gave the title compound 18e as colorless 
crystals (1β6 mg, κλ%). 1H NMR (400 MHz, CDClγ)μ δ κ.1κ – κ.14 (m, βH), κ.05 – κ.0β (m, 
βH), 7.κ1 – 7.76 (m, βH), 7.7γ (ddd, J = κ.4, 6.λ, 1.5 Hz, 1H), 7.65 – 7.6β (m, βH), 7.5β (ddd, 
J = κ.1, 6.κ, 1.β Hz, 1H). 13C{1H} NMR (101 MHz, CDClγ) δ 156.0, 14κ.γ, 1γκ.5, 1γ7.0, 1γβ.0, 
1βλ.λ, 1βλ.κ, 1βλ.1, 1β7.6, 1β7.γ, 1β6.6, 1β4.0, 11κ.5. 

2-(4-Iodophenyl)quinoline 18f[39] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 1-
(4-iodophenyl)ethanol 16f (1β4 mg, 0.5 mmol) gave the title compound 18f as colorless 
crystals (1β4 mg, 75%). 1H NMR (400 MHz, CDClγ) δ κ.1λ-κ.15 (m, βH), 7.λ4 – 7.κ1 (m, 4H), 
7.κ1-7.7κ (m, βH), 7.7γ (ddd, J = κ.4, 6.κ, 1.6 Hz, 1H), 7.5γ (t, J = 7.β Hz, 1H). 
13C{1H} NMR (101 MHz, CDClγ) δ 156.β, 14κ.γ, 1γλ.1, 1γκ.0, 1γ7.0, 1βλ.λ, 1βλ.κ, 1βλ.γ, 
1β7.6, 1β7.4, 1β6.6, 11κ.5, λ6.0.  

2-(4-Methoxyphenyl)quinoline 18g[36] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 1-
(4-methoxyphenyl)ethanol 16g (76 mg, 0.5 mmol) gave the title compound 18g as colorless 
crystals (λγ mg, 7λ%). 1H NMR (400 MHz, CDClγ) δ κ.17-κ.1γ (m, 4H), 7.κβ (d, J = κ.6, 1H), 
7.7λ ( d, J = 7.κ Hz, 1H), 7.71 (ddd, J = κ.4, 6.κ, 1.6 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.05 (d, 
J = κ.λ Hz, βH), γ.κκ (s, γH). 13C{1H} NMR (101 MHz, CDClγ) δ 160.λ, 157.0, 14κ.4, 1γ6.7, 
1γβ.γ, 1βλ.7, 1βλ.6, 1βλ.0, 1β7.5, 1β7.0, 1β6.0, 11κ.6, 114.γ, 55.5. 

2-(4-(Trifluoromethyl)phenyl)quinoline 18h[36] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 1-
(4-trifluoromethylphenyl)ethanol 16h (λ5 mg, 0.5 mmol) gave the title compound 18h as 
colorless crystals (116 mg, κ5%). 1H NMR (400 MHz, CDClγ) δ κ.β7 (d, J = 7.λ Hz, βH), κ.β4 
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– κ.1κ (m, βH), 7.κ6 – 7.κβ (m, βH), 7.7κ – 7.74 (m, γH), 7.56 (ddd, J = κ.β, 6.κ, 1.γ Hz, 1H). 
13C{1H} NMR (101 MHz, CDClγ) δ 155.7, 14κ.4, 14γ.0 (q, J = 1.1 Hz), 1γ7.β, 1γ1.β (q, J = 

γβ.4 Hz), 1γ0.1, 1γ0.0, 1β7.λ, 1β7.6, 1β7.5, 1β7.0, 1β5.κ (q, J = γ.7 Hz), 1β4.γ (q, J = β7β.1 
Hz), 11κ.κ. 19F{1H} NMR (γ76 MHz, CDClγ) δ -6β.5. 

3-Methyl-2-phenylquinoline 18i[36] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 1-
phenylpropan-1-ol 16i (6κ mg, 0.5 mmol) gave the title compound 18i as colorless crystals 
(κ7 mg, 7λ%). 1H NMR (400 MHz, CDClγ)μ δ κ.1γ (d, J = κ.γ Hz, 1H), κ.0γ (s, 1H), 7.7λ (d, 
J = 7.7 Hz, 1H), 7.67 (ddd, J = κ.6, 7.0, 1.6 Hz, 1H), 7.6γ – 7.55 (m, βH), 7.57 – 7.γλ (m, 4H), 
β.47 (d, J = 1.0 Hz, γH). 13C{1H} NMR (101 MHz, CDClγ)μ δ 160.7, 146.κ, 141.0, 1γ6.λ, 1βλ.4, 
1βλ.4, 1βλ.0, 1βκ.λ, 1βκ.5, 1βκ.γ, 1β7.κ, 1β6.κ, 1β6.6, β0.κ. 

5,6-Dihydrobenzo[c]acridine 18j[36] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 1-
tetralol 16j (74 mg, 0.5 mmol) gave the title compound 18j as colorless crystals (λβ mg, κ0%). 
 1H NMR (400 MHz, CDClγ) δ κ.64 (dd, J = 7.7, 1.7 Hz, 1H), κ.1κ (d, J = κ.4 Hz, 1H), 7.κκ 
(s, 1H), 7.7γ (d, J = κ.1 Hz, 1H), 7.67 (ddd, J = κ.4, 6.κ, 1.5 Hz, 1H), 7.50 – 7.44 (m, βH), 7.γλ 
(td, J = 7.4, 1.5 Hz, 1H), 7.βλ (d, J = 7.5 Hz, 1H), γ.1γ – γ.0κ (m, βH), γ.04-β.λλ (m, βH). 
13C{1H} NMR (101 MHz, CDClγ) δ 15γ.4, 147.7, 1γλ.5, 1γ4.κ, 1γγ.7, 1γ0.6, 1βλ.7, 1βλ.5, 
1βκ.7, 1βκ.0, 1β7.λ, 1β7.4, 1β7.0, 1β6.1, 1β6.1, βκ.λ, βκ.5. 

2-(Pyridin-2-yl)quinoline 18k[36] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 1-
(β-pyridinyl)ethanol 16k (6β mg, 0.5 mmol) gave the title compound 18k as colorless crystals 
(λ4 mg, λ1%). 1H NMR (400 MHz, CDClγ)μ δ κ.74 (ddd, J = 4.κ, 1.λ, 1.0 Hz, 1H), κ.66 (dt, J 

= κ.1, 1.β Hz, 1H), κ.57 (d, J = κ.6 Hz, 1H), κ.β7 (d, J = κ.7 Hz, 1H), κ.1λ (d, J = κ.4 Hz, 1H), 
7.λ0 – 7.κ1 (m, βH), 7.7γ (ddd, J = κ.6, 7.0, 1.6 Hz, 1H), 7.54 (ddd, J = κ.1, 6.κ, 1.γ Hz, 1H), 
7.γ5 (ddd, J = 7.5, 4.κ, 1.β Hz, 1H). 13C{1H} NMR (101 MHz, CDClγ)μ δ 156.5, 156.γ, 14λ.γ, 
14κ.1, 1γ7.0, 1γ6.λ, 1γ0.0, 1βλ.7, 1βκ.4, 1β7.7, 1β6.λ, 1β4.1, 1β1.λ, 11λ.1. 

2-(5-Bromopyridin-3-yl)quinoline 18l 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 5-
bromo-γ-acetylpyridine 17l (100 mg, 0.5 mmol) gave the title compound 18l as colorless 
crystals (1γ0 mg, λ1%, contaminated with 7% of 6l). 1H NMR (400 MHz, CDClγ)μ δ λ.β4 (s, 
1H), κ.75 (s, 1H), κ.6λ (s, 1H), κ.β5 (d, J = κ.6 Hz, 1H), κ.15 (d, J = κ.4 Hz, 1H), 7.κ5-7.κ1 (m, 
βH), 7.76 (ddd, J = κ.6, 6.κ, 1.6 Hz, 1H), 7.57 (m, βH). 13C{1H} NMR (101 MHz, CDClγ)μ  
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δ 15γ.0, 151.β, 14κ.4, 146.κ, 1γ7.6, 1γ7.5, 1γ6.7, 1γ0.γ, 1βλ.λ, 1β7.7, 1β7.6, 1β7.γ, 1β1.4, 
11κ.4.  

2-(Benzofuran-2-yl)quinoline 18m[40] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 1-
(benzofuran-β-yl)ethanol 16m (κ1 mg, 0.5 mmol) gave the title compound 18m as colorless 
crystals (11γ mg, λβ%). 1H NMR (400 MHz, CDClγ)μ δ κ.β1 (d, J = κ.γ Hz, βH), κ.00 (d, J = 

κ.6 Hz, 1H), 7.κ0 (dd, J = κ.β, 1.7 Hz, 1H), 7.74 (ddd, J = κ.4, 6.κ, 1.5 Hz, 1H), 7.6λ (d, J = 

7.6 Hz, 1H), 7.65 (d, J = κ.β Hz, 1H), 7.60 (d, J = 1.1 Hz, 1H), 7.5γ (ddd, J = κ.1, 6.κ, 1.β Hz, 
1H), 7.γκ (ddd, J = κ.γ, 7.β, 1.4 Hz, 1H), 7.βλ (td, J = 7.5, 1.0 Hz, 1H). 13C{1H} NMR 

(101 MHz, CDClγ)μ δ 155.7, 155.γ, 14λ.1, 14κ.4, 1γ6.λ, 1γ0.1, 1βλ.7, 1βκ.λ, 1β7.7, 1β7.7, 
1β6.κ, 1β5.6, 1βγ.4, 1β1.λ, 11κ.β, 111.λ, 106.γ.  

2-(Thiophen-2-yl)quinoline 18n[41] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 1-
(thiophen-β-yl)ethanol 16n (64 mg, 0.5 mmol) gave the title compound 18n as colorless 
crystals (100 mg, λ5%). 1H NMR (400 MHz, CDClγ)μ δ κ.1β (d, J = κ.6, 1H), κ.0λ (d, J = κ.4 
Hz, 1H), 7.7κ-7.6κ (m, 4H), 7.54 – 7.40 (m, βH), 7.16 (dd, J = 5.0, γ.7 Hz, 1H). 13C{1H} NMR 
(101 MHz, CDClγ)μ δ 15β.5, 14κ.γ, 145.5, 1γ6.7, 1βλ.λ, 1βλ.4, 1βκ.7, 1βκ.β, 1β7.6, 1β7.γ, 
1β6.β, 1β6.0, 117.κ. 

2,6-Di(quinolin-2-yl)pyridine 18o[42] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (1βγ mg, 1.0 mmol) and 
β,5-diacetylpyridine 17o (κβ mg, 0.5 mmol) gave the title compound 18o as colorless crystals 
(15κ mg, λ5%). 1H NMR (400 MHz, CDClγ)μ δ κ.κ6 (d, J = κ.6 Hz, βH), κ.7κ (d, J = 7.κ Hz, 
βH), κ.γ5 (d, J = κ.7 Hz, βH), κ.ββ (d, J = κ.4 Hz, βH), κ.0κ (t, J = 7.κ Hz, 1H), 7.κλ (d, J = 

κ.1 Hz, βH), 7.76 (ddd, J = κ.4, 6.λ, 1.5 Hz, βH), 7.5κ (ddd, J = κ.β, 6.κ, 1.β Hz, βH).  
13C{1H} NMR (101 MHz, CDClγ)μ δ 156.4, 155.7, 14κ.1, 1γκ.1, 1γ6.λ, 1γ0.0, 1βλ.7, 1βκ.5, 
1β7.κ, 1β6.λ, 1ββ.β, 11λ.β. 

1,3-Di(quinolin-2-yl)benzene 18p[43] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (1βγ mg, 1.0 mmol) and 
1,γ-diacetylbenzene 17p (κ1 mg, 0.5 mmol) gave the title compound 18p as colorless crystals 
(14γ mg, κ6%). 1H NMR (400 MHz, CDClγ)μ δ κ.λ7 (t, J = 1.7 Hz 1H), κ.γ0 (dd, J = 7.κ, 1.λ 
Hz, βH), κ.β5 (t, J = λ.γ Hz, 4H), κ.0γ (d, J = κ.6 Hz, βH), 7.κ5 (d, J = κ.1 Hz, βH), 7.75 (ddd, 
J = κ.6, 6.λ, 1.5 Hz, βH), 7.70 (t, J = 7.κ Hz, 1H), 7.55 (ddd, J = κ.1, 6.κ, 1.β Hz, βH).  
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13C{1H} NMR (101 MHz, CDClγ) δ 157.β, 14κ.4, 140.4, 1γ7.0, 1βλ.λ, 1βλ.κ, 1βλ.5, 1βκ.6, 
1β7.6, 1β7.4, 1β6.λ, 1β6.5, 11λ.γ. 

1,4-Di(quinolin-2-yl)benzene 18q[44] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (1βγ mg, 1.0 mmol) and 
1,4-diacetylbenzene 17q (κ1 mg, 0.5 mmol) gave the title compound 18q as colorless crystals 
(15λ mg, λ6%). 1H NMR (400 MHz, CDClγ)μ δ κ.γ6 (s, 4H), κ.β6 (d, J = κ.6 Hz, βH), κ.ββ (d, 
J = κ.4 Hz, βH), 7.λκ (d, J = κ.6 Hz, βH), 7.κ6 (d, J = κ.0 Hz, βH), 7.76 (ddd, J = κ.4, 6.λ, 1.5 
Hz, βH), 7.55 (ddd, J = κ.1, 6.κ, 1.β Hz, βH). 13C{1H} NMR (101 MHz, CDClγ)μ δ 156.λ, 14κ.5, 
140.5, 1γ7.0, 1γ0.0, 1βλ.λ, 1βκ.1, 1β7.6, 1β7.5, 1β6.6, 11λ.β.  

1,2,3,4-Tetrahydroacridine 18r[36] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 
cyclohexanone 17r (5β L, 0.5 mmol) gave the title compound 18r as colorless crystals (7λ mg, 
κ6%). 1H NMR (400 MHz, CDClγ) δ 7.λκ (d, J = κ.4 Hz, 1H), 7.74 (s, 1H), 7.65 (d, J = κ.β 
Hz, 1H), 7.5κ (ddd, J = κ.4, 6.7, 1.5 Hz, 1H), 7.40 (m, 1H), γ.11 (t, J = 6.5 Hz, βH), β.λβ (t, J 

= 6.γ Hz, βH), 1.λλ – 1.λβ (m, βH), 1.κλ – 1.κβ (m, βH). 13C{1H} NMR (101 MHz, CDClγ)μ δ 
15λ.γ, 146.5, 1γ5.1, 1γ1.0, 1βκ.6, 1βκ.β, 1β7.β, 1β6.λ, 1β5.6, γγ.5, βλ.γ, βγ.β, ββ.λ. 

7,8,9,10-Tetrahydro-6H-cyclohepta[b]quinoline 18s[45] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 
cycloheptanone 17s (5λ L, 0.5 mmol) gave the title compound 18s as colorless crystals (κ7 mg, 
κκ%, isolated with κ% of 5a). 1H NMR (400 MHz, CDClγ)μ δ κ.04 (d, J = κ.4 Hz, 1H), 7.77 
(s, 1H), 7.66 (d, J = κ.1 Hz, 1H), 7.5λ (t, J = 7.β Hz, 1H), 7.4β (t, J = 7.5 Hz, 1H), γ.ββ – γ.1λ 
(m, βH), β.λ0 – β.κ7 (m, βH), 1.κ7 – 1.6κ (m, 6H). 13C{1H} NMR (101 MHz, CDClγ)μ δ 164.5, 
145.7, 1γ6.6, 1γ5.0, 1βκ.7, 1βκ.0, 1β7.γ, 1β6.κ, 1β5.λ, γλ.6, γ5.4, γβ.β, βκ.κ, β7.0. 

2-Nonylquinoline 18t[46] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and β-
undecanone 17t (10γ L, 0.5 mmol) gave the title compound 18t as colorless crystals (λ7.0 mg, 
76%). 1H NMR (400 MHz, CDClγ) δ κ.05 (d, J = κ.4 Hz, βH), 7.77 (d, J = κ.β Hz, 1H), 7.6κ 
(t, J = 7.7 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.βλ (d, J = κ.4 Hz, 1H), β.λ7 (t, J = 7.λ Hz, βH), 
1.κ5 – 1.77 (m, βH), 1.44 – 1.ββ (m, 1βH), 0.κ7 (t, J = 6.λ Hz, γH). 13C{1H} NMR (101 MHz, 
CDClγ) δ 16γ.γ, 14κ.1, 1γ6.γ, 1βλ.4, 1βλ.0, 1β7.6, 1β6.κ, 1β5.7, 1β1.5, γλ.5, γβ.0, γ0.β, βλ.7, 
βλ.7, βλ.7, βλ.4, ββ.κ, 14.β.  
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2-Cyclopropylquinoline 18u[47] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 
cyclopropylethan-1-one 17u (47 L, 0.5 mmol) gave the title compound 18u as colorless 
crystals (75 mg, κλ%). 1H NMR (400 MHz, CDClγ) δ 7.λκ (t, J = 7.λ Hz, βH), 7.7γ (dd, J = 

κ.1, 1.7 Hz, 1H), 7.64 (ddd, J = κ.4, 6.κ, 1.5 Hz, 1H), 7.4γ (ddd, J = κ.1, 6.λ, 1.γ Hz, 1H), 7.16 
(d, J = κ.4 Hz, 1H), β.βκ-β.β1 (m, 1H), 1.1λ – 1.1γ (m, βH), 1.1γ – 1.07 (m, βH). 13C{1H} NMR 
(101 MHz, CDClγ)μ δ 16γ.5, 14κ.1, 1γ5.λ, 1βλ.4, 1βκ.κ, 1β7.6, 1β6.λ, 1β5.γ, 11λ.5, 1κ.β, 10.4. 

2-Methylquinoline 18v[48] 

  
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 
acetone 17v (1 mL) gave the title compound 18v as pale yellow oil (6λ mg, λ6%).  
1H NMR (400 MHz, CDClγ)μ δ κ.01 (d, J = κ.5 Hz, 1H), 7.λ7 (d, J = κ.5 Hz, 1H), 7.71 (d, J = 

κ.1 Hz, 1H), 7.64 (ddd, J = κ.6, 7.0, 1.6 Hz, 1H), 7.4γ (t, J = 7.5 Hz, 1H), 7.ββ (d, J = κ.4 Hz, 
1H), β.71 (s, γH). 13C{1H} NMR (75 MHz, CDClγ)μ δ 15λ.0, 147.λ, 1γ6.1, 1βλ.4, 1βκ.6, 1β7.5, 
1β6.5, 1β5.7, 1ββ.0, β5.4. 

3-Phenylquinoline 18w[49] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and β-
phenylacetaldehyde 17w (60 mg, 0.5 mmol) gave the title compound 18w as yellow oil (65 mg, 
6γ%, moderate purity see NMR Spectra). 1H NMR (400 MHz, CDClγ)μ δ λ.β0 (d, J = β.4 Hz, 
1H), κ.γγ (d, J = β.4 Hz, 1H), κ.17 (d, J = κ.4 Hz, 1H), 7.λ0 (dd, J = κ.β, 1.6 Hz, 1H), 7.76 – 
7.7β (m, γH), 7.5λ (t, J = 7.6 Hz, 1H), 7.56 – 7.5β (m, βH), 7.47 – 7.4γ (m, 1H). 13C{1H} NMR 
(101 MHz, CDClγ) δ 150.0, 147.4, 1γκ.0, 1γ4.0, 1γγ.5, 1βλ.6, 1βλ.γγ, 1βλ.βλ, 1βκ.γ, 1βκ.1λ, 
1βκ.15, 1β7.6, 1β7.β. 

4-Methyl-2-phenylquinoline 18x[36] 

 
According to the general procedure, β-aminoacetophenone 15b (6κ mg, 0.5 mmol) and 1-
phenylethanol 16a (60 L, 0.5 mmol) gave the title compound 18x as colorless crystals (λκ mg, 
κλ%). 1H NMR (γ00 MHz, CDClγ) δ κ.β0-κ0.14 (m, γH), κ.00 (dd, J = κ.6, 1.6 Hz, 1H), 7.75 
– 7.70 (m, βH), 7.5κ – 7.4γ (m, 4H), β.77 (d, J = 1.0 Hz, γH). 13C{1H} NMR (101 MHz, CDClγ) 
δ 157.β, 14κ.γ, 144.λ, 140.0, 1γ0.4, 1βλ.5, 1βλ.γ, 1βκ.λ, 1β7.7, 1β7.4, 1β6.β, 1βγ.7, 11λ.λ, 1λ.β. 

2-Amino-3-phenylquinoline 20a[50] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and β-
phenylacetonitrile 19a (5κ L, 0.5 mmol) gave the title compound 20a as colorless crystals 
(74 mg, 67%). 1H NMR (400 MHz, CDClγ)μ δ 7.κ1 (s, 1H), 7.7β (d, J = κ.4 Hz, 1H), 7.67 (dd, 
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J = κ.0, 1.7 Hz, 1H), 7.61 – 7.4γ (m, 6H), 7.γ1 – 7.β7 (m, 1H), 5.07 (br s, βH). 13C{1H} NMR 
(101 MHz, CDClγ)μ δ 155.γ, 147.γ, 1γ7.7, 1γ7.4, 1βλ.κ, 1βλ.γ, 1βλ.0, 1βκ.4, 1β7.6, 1β5.7, 
1β5.β, 1β4.γ, 1ββ.λ.  

2-Amino-3-(4-bromophenyl)quinoline 20b 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and  
β-(4-bromophenyl)acetonitrile 19b (λκ mg, 0.5 mmol) gave the title compound 20b as pale 
yellow crystals (7κ mg, 5β%). 1H NMR (400 MHz, CDClγ)μ δ = 7.7λ (s, 1H), 7.71 (d, J = κ.4 
Hz, 1H), 7.67 – 7.6γ (m, γH), 7.60 (ddd, J = κ.4, 6.λ, 1.5 Hz, 1H), 7.4β – 7.γλ (m, βH), 7.γ0 
(ddd, J = κ.1, 6.λ, 1.β Hz, 1H), 5.0γ (br, βH). 13C{1H} NMR (101 MHz, CDClγ)μ δ = 154.κ, 
146.7, 1γ7.κ, 1γ6.γ, 1γβ.6, 1γ0.7, 1γ0.γ, 1β7.7, 1β5.5, 1β4.1, 1β4.0, 1βγ.4, 1ββ.κ.  

2-Amino-3-(Thiophen-2-yl)quinoline 20d[51] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and  
β-(β-thiophenyl)acetonitrile 19d (6β mg, 0.5 mmol) gave the title compound 20d as pale yellow 
crystals (10β mg, λ0%). 1H NMR (400 MHz, CDClγ)μ δ = 7.λγ (s, 1H), 7.67 (d, J = κ.5 Hz, 
1H), 7.64 (d, J = κ.0 Hz, 1H), 7.57 (ddd, J = κ.6, 6.λ, 1.5 Hz, 1H), 7.4γ (dd, J = 5.1, 1.β Hz, 
1H), 7.γγ (dd, J = γ.5, 1.1 Hz, 1H), 7.β7 (ddd, J = κ.0, 6.κ, 1.1 Hz, 1H), 7.17 (dd, J = 5.1, γ.5 
Hz, 1H), 5.βγ (br s, βH). 13C{1H} NMR (101 MHz, CDClγ)μ δ = 155.1, 147.β, 1γλ.0, 1γκ.β, 
1γ0.β, 1βκ.1, 1β7.7, 1β6.λ, 1β6.6, 1β5.7, 1β4.0, 1βγ.β, 117.λ. 

2-Amino-3-ethylquinoline 20f[50] 

 
According to the general procedure, β-(hydroxymethyl)aniline 15a (6β mg, 0.5 mmol) and 
butyronitrile 19f (6λ.1 L, 1.0 mmol, β equiv.) gave the title compound 20f as pale yellow 
crystals (6λ mg, κ0%). 1H NMR (400 MHz, CDβClβ)μ δ = 7.7β (s, 1H), 7.64 – 7.5λ (m, βH), 
7.4λ (ddd, J = κ.4, 6.λ, 1.6 Hz, 1H), 7.β4 (ddd, J = 7.λ, 6.κ, 1.β Hz, 1H), 4.λκ (s, βH), β.61 (q, 
J = 7.4, βH), 1.γ6 (t, J = 7.5, γH). 13C{1H} NMR (101 MHz, CDβClβ)μ δ = 156.7, 146.5, 1γ4.5, 
1βλ.0, 1β7.γ, 1β5.7, 1β5.5, 1β4.λ, 1ββ.κ, β4.β, 1β.4. 
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Chapter VI - Mn-Catalyzed Imine and N-Heteroaromatic Compounds 
Synthesis via Aerobic Oxidation of Amines 
Contributions in this partμ Optimization, scope and mechanistic studiesμ Duo Wei. 

1. Introduction 
Imines are important intermediates in organic synthesis. They can be used as electrophilic 

reagents in many transformations such as alkylations, condensations and cycloadditions 

including aza–Diels–Alder reactions.[1] Imines also serve as versatile starting materials for the 

synthesis of chiral amines, which are important intermediates in the preparation of biologically 

active compounds.[β] N-heteroaromatics (especially quinoline derivatives) are ubiquitous 

skeleton in natural products and biologically active molecules (see also Chapter V-γ for more 

details). The traditional protocol for the synthesis of imines involves the condensation of an 

amine with a carbonyl compound such as aldehyde or ketone but alternative routes are still 

desirable. Significant progress has been made in the development of mild and green methods 

for the synthesis of imines including metal-catalyzed dehydrogenation of amines.[γ] 

Interestingly, the syntheses of some imines through the dehydrogenative coupling of alcohols 

and amines have been reported during the past two decades.[4] Recently, direct oxidations of 

amines to imines have attracted much attention.[5] A few examples of organic catalysts[6] and 

transition metal catalyzed oxidations of amines have also been reported with PhIO[7], KβSβOκ[κ], 

MnOβ[λ] and tBuOOH[10], 4-tbutylcatechol (TBC) as stoichiometric oxidants.[11] 

Selective oxidation of organic compounds with Oβ (and more particularly air) as a sole oxidant 

is valuable from both environmental and economic points of view.[1β] ‑or these reasons, 

considerable efforts have been devoted in recent years to develop transition metal-catalyzed 

aerobic oxidation of amines using iron,[1γ] cobalt,[14] copper,[15] gold,[16] palladium,[17] 

ruthenium,[1κ] titanium,[1λ] or vanadium[β0] compounds and also organic catalysts.[β1] However, 

many of these catalytic systems have limited substrate scopes, some of them are only active for 

secondary amines and the use of stoichiometric amount of organic oxidants simultaneously is 

unavoidable in most cases. 

It is also well-known since 1λ50’s that activated manganese dioxide (MnOβ)[ββ] is a powerful 

reagent for selective oxidation of alcohols to carbonyl compounds, amines to imines or nitriles, 

heterocycles to heteroaromatics.[βγ] Although several methods for preparation of activated 

MnOβ have been reported, preparations are very tedious and sometimes the oxidation efficiency 

lacks of reproducibility and the utilization of stoichiometric amount of such reagent is widely 
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adopted. Commercially available activated MnOβ can also be used, but again its activity varies 

widely. In β011, an interesting example of MnOβ catalyzed N-alkylation of sulfonamides and 

amines with alcohols under air was reported by Xu et al.[β4] However base co-catalyst like 

KβCOγ (up to 50 mol%) is required in this protocol. And yet it is comparatively rare that low 

oxidation state manganese were employed as catalysts in the oxidation of amines.[β5] In this 

chapter, we report the first Mn(I)-catalyzed ligand- and additive-free aerobic oxidation of 

amines to prepare aldimines, N-heteroaromatics and also benzoimidazoles. 

2. Results and discussions 
2.1. Optimization of reaction conditions 

N-benzylaniline 1a was selected as the model substrate (Table 1) for the manganese catalyzed 

formation of aldimine. ‑irstly, blank reactions were performed in the absence of manganese 

precursors. N-benzylaniline 1a remained intact after 16h in TH‑ at 100 oC under argon 

atmosphere (entry 1). However, λ% of N-benzylideneaniline 2a was detected when the reaction 

was set up under air atmosphere (entry β). In the presence of Mn(CO)5Br as the catalyst 

(5.0 mol%), nearly no reaction occured under argon or with argon stream (entries γ and 4). The 

reactivity changed dramatically under normal air atmosphere, as N-benzylideneaniline 2a was 

detected in 46% GC-yield (entry 5). 

Table 1. Optimization of reaction conditions[a] 

 
Entry Mn [mol%] Atmosphere GC-yield of 2a[b] [%] 

1  None argon 0 
β  None normal air λ (10) 
γ  Mn(CO)5Br [5.0] argon γ 
4  Mn(CO)5Br [5.0] argon stream β 
5  Mn(CO)5Br [5.0] normal air 46 (47) 

[a] The reaction was set up with 1a (0.5 mmol), TH‑ (1 mL) under indicated 
atmosphere in a closed Schlenk tube (β0 mL) then heat at 100 oC for 16 hν 

[b] NMR yield in parenthesesν 

‐ncouraged by this first result, different manganese precursors (all are commercially available) 

were then tested as catalysts under normal air atmosphere (Table β)μ CpMn(CO)γ gave a low 

yield of 1a (βλ%). All the other precurors, such as Mnβ(CO)10, Mn‑β, Mn(acac)γ, Mn(OTf)β, 

MnO, MnOβ, activated MnOβ and KMnO4 gave less than 10% yield of 2a (entries γ-10). The 
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rhenium analogues such as Re(CO)5Br and Reβ(CO)10 were inactive for the current reaction 

(entries 10 and 11). 

Table 2. ‐valuation of Mn salts and complexes in aerobic oxidation of amine[a] 

 
Entry Mn [5.0 mol%] GC-yield of 2a [%] 
1  Mn(CO)5Br 46 
β  CpMn(CO)γ βλ 
γ  Mnβ(CO)10 7 
4  Mn‑β 5 
5  Mn(acac)γ 5 
6  Mn(OTf)β 6 
7  MnOβ 4 
κ  MnOβ (activated) 6 
λ  KMnO4 5 

10  MnO λ 
11  Re(CO)5Br 1 
1β  Reβ(CO)10 4 
[a] The reaction was set up with 1a (0.5 mmol), catalyst 

(5.0 mol%) and TH‑ (1 mL) under normal air atmosphere 
(1 bar) in a closed Schlenk tube (β0 mL) then heat at 100 oC 
for 16 hν 

Then a screening of different solvents was performed (Table γ). The reaction proceeded well 

in t-amyl alcohol and ethyl acetate, leading to 2a in 4β% and 56% yield, respectively (entries 

β and γ). Other alcohol solvents like ‐tOH, MeOH, iPrOH and nBuOH, were less beneficial 

for the reaction (entries 4-7). In water, dimethyl carbonate, cyclopentyl methyl ether and 1,4-

dioxane, the conversions were very low (entries κ-11). ‑uther control experiments were 

conducted. The use of dry air (Alphagaz 1, Air Liquide, Oβ = β0 M%, Nβ = κ0 M%, COβ < 1 

PPM, CO < 1 ppm, HβO < γ ppm, total CnHm < 100 ppb) instead of normal air (1 bar for both 

cases) led to the same conversion (entries 1β vs 1). The addition of 10 equiv. of HβO to the 

TH‑ solution quenched the reaction, as a low conversion of 1a was detected (entries 1γ vs 1).
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Table 3. ‐valuation of solvents[a] 

 

Entry Solvent GC-yield of 2a [%] 

1  THF 46 
β  Ethyl acetate 56 
γ  tAmylOH 42 
4  ‐tOH ββ 
5  MeOH β0 
6  iPrOH γβ 
7  nBuOH γ4 
κ  HβO λ 
λ  DMC 7 

10  CPM‐ <1 
11  1,4-dioxane κ 
1β  TH‑ 4κ[b] 
1γ  TH‑ <1[c] 
[a] The reaction was set up with 1a (0.5 mmol), Mn(CO)5Br (5.0 mol%) and solvent (1 mL) 

under normal air atmosphere (1 bar) in a closed Schlenk tube (β0 mL) then heat at 100 oC 
for 16 hν 

[b] Under dry air atmosphere (1 bar). Dry airμ (ALPHAGAZ 1 AIR) Oβ = β0 M%, Nβ = 
κ0 M%, COβ < 1 ppm, CO < 1 ppm, HβO < γ ppm, total CnHm < 100 ppbν 

[c] With 10 equiv. HβO. 

The influence of the pression of air was then evaluated using dry air as oxidant (Table 4). 

Surprisingly, a full conversion was obtained when charging β bar of dry air in the reaction 

Schlenk tube in TH‑ (entry 1). The imine 2a was isolated in λ1% yield using bulb-to-bulb 

distillation. With CpMn(CO)γ (5.0 mol%), using dry air (β bar), the conversion was improved 

to 67%, without reaching the one obtained with Mn(CO)5Br (entry β). Reaction in t-Amyl 

alcohol and ethyl acetate permitted to obtain 2a in 71% and κκ% yield under the same 

conditions (β bar of dry air, entries γ and 4). ‑ull conversion could be obtained in t-amyl alcohol 

by increasing the pressure 50 bar of dry air in an autoclave (entry 5). In the absence of any 

manganese precursor, 10% of 2a were observed in TH‑ under β bar of dry air, while 50 bar of 

dry air led to β% of 2a in t-amyl alcohol (entries 6 and 7). The effect of water was also carefully 

analyzedμ with β equiv. with respect to 1a, low conversion was detected (15%, entry κ), while 

with 1 equiv. κ5% of 2a and 15% of benzaldehyde and aniline, resulting from hydrolysis of 2a, 

were detected (entry λ).  
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Table 4. Optimization of the pressure of air.[a] 

 
Entry Solvent Dry air[b] [bar]  GC-yield of 2a [%] 
1  THF 2 >98 (91[c]) 
β [d] TH‑ β 67 
γ  tAmylOH β 71 
4  ‐thyl acetate β κκ 
5  tAmylOH 50 >98 
6 [e] TH‑ β 10 
7 [e] tAmylOH 50 β 
κ [f] TH‑ β 15 
λ [g] TH‑ β κ5 

[a] The reaction was set up with 1a (0.5 mmol), Mn(CO)5Br (5.0 mol%) and solvent 
(1 mL) under dry air atmosphere (β or 50 bar) in a closed Schlenk tube or 
autoclave (β0 mL) then heat at 100 oC for 16 hν 

[b] Dry airμ (ALPHAGAZ 1 AIR) Oβ = β0 M%, Nβ = κ0 M%, COβ < 1 ppm, CO < 1 
ppm, HβO < γ ppm, total CnHm < 100 ppbν 

[c] Isolated yield after purification by bulb-to-bulb distillationν 
[d] With CpMn(CO)γ (5.0 mol%), instead of MnBr(CO)5ν 
[e] Without any Mnν 
[f] With β equiv. HβO with respect to 1aν 
[g] With 1 equiv. HβO with respect to 1a, 15% of hydrolyzed product (benzaldehyde 

and aniline) was detected. 

The modification of the temperature (100 to γ0 oC) and catalyst loading (5.0 to 0.5 mol%) 

(Table 5) demonstrated that 100 °C and 5.0 mol% of Mn(CO)5Br were the optimal conditions. 

Table 5. Optimization of the temperature and the catalyst loading.[a] 

 
Entry Mn(CO)5Br [mol%] T [oC] GC-yield 2a [%] 

1  5.0 100 >98 
β  5.0 κ0 46 
γ  5.0 50 1λ 
4  5.0 γ0 β 
5  1.0 100 1κ 
6  0.5 100 1β 

[a] The reaction was set up with 1a (0.5 mmol), Mn(CO)5Br (0.5-5.0 mol%) and TH‑ 
(1 mL) under dry air atmosphere (β bar) in a closed Schlenk tube (β0 mL) then 
heat at indicated temperature for 16 h.  
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2.2. Scope for the reaction of oxidation of amines to imines 

With our optimized conditions in handμ 5.0 mol% of Mn(CO)5Br, dry air (β bar), TH‑, 100 °C, 

16 h, (Table 4, entry 1), we then explored the substrate scope for this catalytic oxidation of 

amines to imines (Table 6). In general, a large variety of aldimines was prepared via oxidation 

of N-benzylaniline derivatives in high yields. Halogen substituents (‑, Cl, Br and I) were well 

tolerated (2b-2e, isolated yields >75%), although dehalogenation products (ca. 5%) were 

detected in the case of bromo and iodo derivatives 2d and 2e. Steric hindrance has little 

influence on both the the aniline (2f) or benzaldehyde (2g) moieties. The tolerance toward 

various functional groups such as amino, amido, ester, acetyl, or cyano were tested and the 

corresponding imines 2i-2m were obtained in good isolated yields. Likewise, organometallic 

4-methyl-N-(ferrocenylmethylidene)-aniline 2n was generated from the corresponding amine 

1n in lower isolated yield (γκ%).  

Table 6. Scope of oxidation of amines to imines[a] 

 
[a] General conditionsμ amine 1 (0.5 mmol), Mn(CO)5Br (6.λ mg, 5.0 mol%), TH‑ (1.0 mL), dry air 

(β bar), 100 oCν Conversion of the amine was detected by 1H NMR of the crude mixtureν Isolated 
yield, shown in parentheses, was obtained after a bulb to bulb distillation. 

[b] Dry air (50 bar), t-amyl alcohol (1.0 mL)ν  
[c] ca. 5% debromination product was observed in the crude mixtureν 
[d] ca. γ% deiodination product was observed in the crude mixtureν 
[e] Isolated with ca. β% hydrolyzed product (corresponding amine and aldehyde)ν 
[f] ca. 15%, g ca. 10%, h ca. 5% hydrolyzed product (aldehyde) was observed in the crude mixture. 
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Interestingly, N-substituted-aminomethylheterocycles 1o-1q were also oxidized affording 

heteroaromatic imines 2o-2q without significant loss of activity (κ1-κ6% yields). However, a 

strong chelate effect was observed with the amines 1r and 1s which inhibited the reaction. 

Unfortunately, N-alkylaniline like 1t did not lead to the desired product. 

However, the oxidation of α-disubstituted amines such as 4-methyl-N-(1-(β-

naphthalenyl)ethyl)aniline 3a did not afford the corresponding ketimine, but the ketone 4a in 

54% NMR-yield, resulting from the hydrolysis of the desired ketimine product (Table 7). 

Similar results were observed for the other α-disubstituted amines 3b and 3c. 

Table 7. Ketone formation from oxidation of amines then hydrolysis[a] 

HN

SubstrateEntry Product

O

HN

F

O

F

HN

O

O

O

Mn(CO)5Br (5.0 mol%)
R1

H
N R2

Dry air (2 bar), THF (A)
or Dry air (50 bar), tAmylOH (B)

100 oC, 18 h

O R2

Condition

A
B

Yield [%]

21
54

2

25

3

4

3 4

3a

3b

3c

4a

4b

4c

1
2

B

B

 
[a] General conditionsμ amine 3 (0.5 mmol), Mn(CO)5Br 

(6.λ mg, 5.0 mol%), condition Aμ Dry air (β bar), TH‑ 
(1 mL), or condition Bμ Dry air (50 bar), tAmylOH 

(1 mL), then heat at 100 oC for 1κ hν Yield of 4 was 
determined by 1H NMR of the crude mixture. 

The oxidation of primary amines to nitrile compounds is another important target. Therefore, 

the oxidation of benzylamine 5a to form benzonitrile 6a was next investigated (Table κ). 

However, only homo coupling product 7a was detected when the reaction was performed under 

1 bar of nomal air or 50 bar of dry air at 100 °C for 16 h (entries 1-γ). It has shown that the 

employment of additives or ligands containing pyridine derivatives could promote the 

oxidation of benzylamine to benzonitrile.[1κj, β6] Then, pyridine, acridine, β,β'-bipyridine and 

4,7-dimethyl-1,10-phenanthroline were selected as additives for this reaction. Although good 
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conversions of 5a were achieved with those additives (entries 4-6), the formation of 

benzonitrile 6a was not detected in all cases and only the homo coupling product 7a was 

produced. However, a strong chelate effect was observed when adding 10 mol% of 4,7-

dimethyl-1,10-phenanthroline, as it led to only 1λ% conversion of 5a (entry 7). 

Table 8. Optimization of the oxidation of benzylamine 

 

Entry Additives [10 mol%] Dry air [bar] Conv. [%] 
GC-yield [%] 
6a 7a 

1  None nomal air 4β 0 γλ 
β  None 50 >λκ 0 >λκ 
γ  None 50 >λκ[b] 0 >λκ 
4   50 >λκ 0 κλ 

5   50 κ0 0 70 

6   50 65 0 60 

7  
 

50 1λ 0 1λ 
[a] The reaction was set up with 5a (0.5 mmol), Mn(CO)5Br (5.0 mol%) and TH‑ (1 mL) 

under dry air (50 bar) in an autoclave (β0 mL) then heat at 100 oC for 16 hν 
[b] t-amyl alcohol instead of TH‑. 

2.3. Scope for the oxidation of cyclic amines to N-heteroaromatic derivatives 

Aerobic oxidation of tetrahydroquinolines (THQs) is an other important route to prepare 

quinoline derivatives, complementary as a representative example to the rhenium promoted 

synthesis described in chapter V. ‑ollowing the previous results on oxidation of amines, the 

oxidation of N-heterocycles 8 was investigated under similar conditions (Table λ). THQ 8a,  

β-MeTHQ 8b, γ-MeTHQ 8c, κ-MeTHQ 8d and κ-BrTHQ 8e, displayed excellent reaction 

efficiency and gave the quinoline derivatives 9a-9e in up to λ7% isolated yields, although 8b 

and 8c required harsher conditions (50 bar of dry air). Isotetrahydroquinoline 8f was also 

converted into isoquinoline 9f in λβ% yield under 50 bar of dry air in t-amyl alcohol. The 

introduction of β-aryl groups bearing methoxyl (8g), halogen (8h-8k) and trifluoromethyl (8l) 
in the para position did not influence the reactivity and the corresponding quinolines 9g-9l 
were obtained in λ0-λκ% isolated yields. Substrates with substituents at the position β with 

heteroaromatics, such as β-(β-pyridyl)-THQ 8m, β-(β-thiophenyl)-THQ 8n, and β-(β-

benzofuranyl)-THQ 8o were also oxidized in excellent yields (λ0-λ5%) under 50 bar of dry air, 
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even the products could potentially act as bidentate ligands. β,γ-Disubstituted THQs 8p and 8q 

were also good partners in this transformation, as 9p and 9q were prepared in good yield, κ0% 

and κλ%, respectively.  

Table 9. Scope of the oxidation of cyclic amines to N-heteroaromatic derivatives [a] 

 
[a] General conditionsμ N-heterocycle substrate 8 (0.5 mmol), Mn(CO)5Br (6.λ mg, 5.0 mol%), 

condition Aμ Dry air (β bar), TH‑ (1 mL), or condition Bμ Dry air (50 bar), t-amylOH. (1 mL), 
then heat at 100 oC, for the indicated timeν Conversion of the amine substrate was detected by 
1H NMR of the crude mixtureν Isolated yield shown in parentheses obtained by purification using 
bulb to bulb distillation apparatusν 

[b] ca. 5% debromination product was observed in the crude mixtureν 
[c] ca. γ% deiodination product was observed in the crude mixture. 

Additionally, λ,10-dihydroacridine 8r was oxidized into acridine 9r smoothly in λγ% yield. 

Similarly, 1,β,γ,4-tetrahydrobenzo[h]quinoline 8s can be transformed into benzo[h]quinoline 

9s in λγ% yield, while 1,10-phenanthroline 9t was not detected when 1,β,γ,4-tetrahydro-1,10-

phenanthroline 8t was used as the substrate, which contrasts with the case of β-(β-pyridyl)-

quinoline 9m as both are polypyridinyl compound. The developed method was also applied to 

the oxidation of indoline to afford 1H-indole 9u in excellent yield (λ5%). However, piperazine 

8v gave no reaction.  
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2.4. Scope for the oxidative homo-coupling of benzylamines 

We then enlarged the oxidative homo-coupling of benzylamines to the imines. As revealed in 
Table 10, primary benzylic amines 5 were smoothly oxidized into the corresponding 
benzylidenebenzylamines 10 with very high conversions and yields. Beside benzylamine 5a, 
benzylamines bearing methoxyl, para-trifluoromethyl and ortho-bromo groups 5b-5e are all 
tolerated. To our delight, furfurylamine 5f and β-thiophenemethylamine 5g shown also good 
reactivity (Table 10). 

Table 10. Scope of the oxidative homo coupling of benzylamines[a] 

 
[a] General conditionsμ benzylamine derivative (0.5 mmol), Mn(CO)5Br 

(6.λ mg, 5.0 mol%), TH‑ (1.0 mL), dry air (β bar), 100 oCν Conversion 
of the amine substrate was detected by 1H NMR of the crude mixtureν 
Isolated yield shown in parentheses obtained by purification by using 
bulb to bulb distillation apparatusν 

[b] Dry air (50 bar), t-amyl alc. (1.0 mL). 

The cross coupling of amines was also tested (Scheme 1). By reaction with p-methoxylanline 

10a, benzylamine 5a was converted in 66% to the imine 11a (resulting for the cross coupling), 

although γ4% of the homo coupling imine product 7a was also detected. Homo-coupling of  

p-methoxylanline 10a to azo compound 1,β-bis(4-methoxyphenyl)diazene 12a was next 

performed under 50 bar of dry air as shown in Scheme β and 12a was obtained in κ5% yield, 

while β bar of dry air led to 16% conversion of 10a. 
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Scheme 1. Cross coupling of primary amines 

 
Scheme 2. Homo-coupling of p-methoxyaniline to the azo compound 12a. 
Accordingly, a reaction pathway can be proposed in Scheme γ based on published results.[β6] 

The transformation occurs via the formation of benzylamine I-1, which will then react with 

another amine leading to intermediate I-2. The coupled product was formed after releasing of 

NHγ. 

 
Scheme 3. Proposed reaction pathway for the coupling of amines to prepare imines.  

2.5. Scope for the synthesis of benzimidazoles 

The oxidative cross-couping reaction between benzylamine and o-phenylenediamine as the 

substrates to synthetise β-phenyl-benzoimidazole was already described.[γj] To our delight, 

benzylamine 5a and o-phenylenediamine 13a could also be fully converted to β-phenyl-

benzoimidazole 14a as the main product (λ1% selectivity) with λ % of N-benzyl-1-

phenylmethanimine 7a as a by-product resulting from the homo-coupling of 5a. The generation 

of the benzoimidazole can be rationalize by a one-pot cascade reaction through 

dehydrogenation, cyclization and aromatization (Scheme 4).[1γc]  

 
Scheme 4. Proposed reaction pathway for the oxidative synthesis of benzimidazoles. 

Then different benzylamines and substituted o-phenylenediamine were combined to prepare 

benzimidazole derivatives (Table 11). It is noteworthy that in all reactions, we could detect the 

imine by-products 7 resulting from the homo-coupling reaction. p-Methoxylbenzylamine and 

β,4-dimethoxybenzylamine reacted with o-phenylenediamine giving 14b and 14c in 7β% and 
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λβ% isolated yield, respectively. The combination of p-trifluoromethylbenzylamine and  

o-phenylenediamine gave moderate conversion (14d, 4β%). By contrast, the utilization of 

electro-deficient 4-fluorobenzene-1,β-diamine as partner with p-trifluoromethylbenzylamine 

permitted to reach better conversion (14e, κ0%). Similar trend was observed with  

β-thiophenylmethanamine (14f, 15% conversion vs 14g, κ1% conversion).  

Table 11. One-pot synthesis of benzimidazoles[a] 

 
[a] General conditionsμ benzylamine derivative (0.5 mmol), o-phenylenediamine 13 

(0.5 mmol), Mn(CO)5Br (6.λ mg, 5.0 mol%), TH‑ (1.0 mL), dry air (β bar), 100 oCν ‑ull 
conversion of the benzylamines were reached in all cases after 16 hν Selectivity of 
benzoimidazole (14) are shownν Isolated yield shown in parentheses after purification by 
chromatographic columnν 

By reaction with o-phenylenediamine, furfurylamine was converted into the corresponding 

benzoimidazole 14h in 6κ% yield. 4-‑luorobenzene-1,β-diamine was shown after to be reactive 

in the presence of β-pyridinylmethanamine and p-methoxylbenzylamine substrates and led to 

14i and 14j in κβ and λ5% yield, respectively. 4-Chlorobenzene-1,β-diamine, on one side, and 

cyclohexylmethanamine, on the other side, were also active in such reactions giving 14k and 

14l.  

Although a wide functional group tolerance was achieved for the synthesis of benzoimidazole, 

benzylamine by reaction with β-aminophenol was not capable to generate any benzoxazole 

product as no conversion of benzylamine was detected (Scheme 5). It is likely that the phenol 

group present in o-aminophenol has a negative effect on the oxidation procedure. Anyway, 

further controlled experiments like competitive experiments in the presence of phenol should 

be done in the future to verify this hypothesis. 
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Scheme 5. Non-working o-aminophenol substrate in this protocol.  

3. Mechanistic insights 
To gain some insight into the mechanism, we then carried out the oxidation reactions of the 

following substratesμ i) bibenzyl, ii) benzyl alcohol and 1-phenylethanol, iii) 1,β-

diphenylhydrazine (Scheme 6). ‑or the bibenzyl substrate, no oxidation activity was observed 

under either β bar or 50 bar of dry air (eq. 1), suggesting the direct alkane oxidation pathway is 

unlikely to occur in this system. ‑or the second two substrates, no carbonyl compounds were 

detected (eq. β). However, when 1,β-diphenylhydrazine was subjected to catalytic reaction 

conditions, the fully oxidized product, 1,β-diphenyldiazene 12b, was formed as the sole product 

even under 1 bar of dry air (eq. γ). This result demonstrates that the presence of the nitrogen atom 

in substrates is critical for the success of the catalysis. 

 
Scheme 6. Oxidation reactions in the presence of bibenzyl (‐q. 1), benzyl alcohol and 1-
phenylethanol (‐q. β), and 1,β-diphenylhydrazine (‐q. γ). 

A Kinetic study was also carried out for the oxidation of N-benzylaniline 1a by Mn(CO)5Br 

performed under β bar of dry air at 100 oC in TH‑ (black square) or t-amyl alcohol (red round). In 

fact, we observed that in t-amyl alcohol, the rate of the reaction was slower than in TH‑μ ca. γ0% 

less yield was observed after β h (‑igure 1). 
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Figure 1. Kinetic profiles of the oxidation of N-benzylaniline 1a by Mn(CO)5Br performed 
under β bar of dry air at 100 oC in TH‑ (black square) or t-amyl alcohol (red round). 

When adding 1 equiv. of T‐MPO (β,β,6,6-tetramethylpiperidine-1-oxyl) into the reaction 

mixture, slightly lower yield was observed (Scheme 7, eq. 4) but no intermediate was observed 

via GC-MS, demonstrating that the radical process is unlikely happening in this reaction. 

Importantly, in the mercury test, one drop of Hg decreased the reaction yield to β7% (eq. 5), 

which seems to indicate that the catalytic active species might be a sort of soluble nanoparticles. 

 
Scheme 7. Oxidation reactions in the presence of T‐MPO (‐q. 4) and Hg (‐q. 5). 
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Catalyst recycling tests 
Next, the reusability of the catalyst was evaluated with two different reaction time, 1κ h and 

4κ h. In both cases, excellent yields were obtained in a second run (λ1% and λκ% respectively). 

The isolated yield dropped to κ7% until the fifth run with 4κ h reaction time. However, 7β% 

yield was obtained with 1κ h reaction time in the third run (‑igure β). 

Mn(CO)5Br (5.0 mol%)H
N N

Dry air (2 bar), THF
100 oC

1a 2a  

 
Figure 2. Catalyst recycling tests for the oxidation of N-benzylaniline by Mn(CO)5Br 
performed under β bar of dry air, TH‑, at 100 oC for 1κ h (blue) and 4κ h (red). 

Procedure for catalyst recycling tests: after the first run (after 1κ h or 4κ h), the reactor was 

slowly depressurized and the reaction media was removed carefully by distillation with heat 

gun. The reactor was then reloaded with N-benzylaniline (0.5 mmol), fresh TH‑, and 

pressurized with β bar of dry air. After 1κ h (or 4κ h) at 100 oC, the reaction yields were 

determined by GC-MS analysis. 

4. Conclusion of Chapter VI 
In summary, we demonstrate here the first Mn(I)-catalyzed ligand- and additive-free aerobic 

oxidation of amines to selectively access aldimines, N-heteroaromatics and also 

benzoimidazoles. The catalytic process displayed a high tolerance towards a large variey of 

functional groups. Controlled experiments demonstrated that the presence of the nitrogen atom 

in substrates is critical for the success of the oxidation reactions. The formation of 

nanoparticules is likely to occur, and deeper mechanistic studies, for example Transmission 

‐lectron Microscopy (T‐M) analysis of the reaction mixture to identify the formation of 

nanoparticles, would be needed to fully understand the pathway of this transformation. 

 h

Yi
el
d/
%

Ru

 h  h



386 

 

5. References 
[1] J. P. Adams, J. Chem. Soc., Perkin Trans. 1 2000, 1β5-1γλ. 
[β] a) R. Bloch, Chem. Rev. 1998, 98, 1407-14γκν b) S. Kobayashi, H. Ishitani, Chem. Rev. 1999, 

99, 106λ-10λ4ν c) O. Pàmies, A. H. Éll, J. S. M. Samec, N. Hermanns, J.-‐. Bäckvall, 
Tetrahedron Lett. 2002, 43, 46λλ-470βν d) N. Hermanns, S. Dahmen, C. Bolm, S. Bräse, Angew. 

Chem. Int. Ed. 2002, 41, γ6λβ-γ6λ4ν e) B. Török, G. K. Surya Prakash, Adv. Synth. Catal. 2003, 
345, 165-16κ. 

[γ] a) X.-Q. Gu, W. Chen, D. Morales-Morales, C. M. Jensen, J. Mol. Catal. A: Chem. 2002, 189, 
11λ-1β4ν b) R. Yamaguchi, C. Ikeda, Y. Takahashi, K.-i. ‑ujita, J. Am. Chem. Soc. 2009, 131, 
κ410-κ41βν c) A. Prades, ‐. Peris, M. Albrecht, Organometallics 2011, 30, 116β-1167ν d) D. 
Ainembabazi, N. An, J. C. Manayil, K. Wilson, A. ‑. Lee, A. M. Voutchkova-Kostal, ACS 

Catal. 2019, 9, 1055-1065ν e) Z. Wang, I. Tonks, J. Belli, C. M. Jensen, J. Organomet. Chem. 

2009, 694, βκ54-βκ57ν f) J. Wu, D. Talwar, S. Johnston, M. Yan, J. Xiao, Angew. Chem. Int. 

Ed. 2013, 52, 6λκγ-6λκ7ν g) S. Muthaiah, S. H. Hong, Adv. Synth. Catal. 2012, 354, γ045-γ05γν 
h) S. Chakraborty, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc. 2014, 136, κ564-κ567ν 
i) K.-H. He, ‑.-‑. Tan, C.-Z. Zhou, G.-J. Zhou, X.-L. Yang, Y. Li, Angew. Chem. Int. Ed. 2017, 
56, γ0κ0-γ0κ4ν j) X. Jin, Y. Liu, Q. Lu, D. Yang, J. Sun, S. Qin, J. Zhang, J. Shen, C. Chu, R. 
Liu, Org. Biomol. Chem. 2013, 11, γ776-γ7κ0ν k) S. Wang, H. Huang, C. Bruneau, C. 
‑ischmeister, ChemSusChem 2019, 12, βγ50-βγ54ν l) Q. Wang, H. Chai, Z. Yu, 
Organometallics 2018, 37, 5κ4-5λ1ν m) Á. Vivancos, M. Beller, M. Albrecht, ACS Catal. 2018, 
8, 17-β1ν n) M. Mastalir, M. Glatz, ‐. Pittenauer, G. Allmaier, K. Kirchner, Org. Lett. 2019, 21, 
1116-11β0. 

[4] a) L. Blackburn, R. J. K. Taylor, Org. Lett. 2001, 3, 16γ7-16γλν b) M. S. Kwon, S. Kim, S. 
Park, W. Bosco, R. K. Chidrala, J. Park, J. Org. Chem. 2009, 74, βκ77-βκ7λν c) B. 
Gnanaprakasam, J. Zhang, D. Milstein, Angew. Chem. Int. Ed. 2010, 49, 146κ-1471ν d) S. 
Kegnæs, J. Mielby, U. V. Mentzel, C. H. Christensen, A. Riisager, Green Chem. 2010, 12, 
14γ7-1441ν e) M. A. ‐steruelas, N. Honczek, M. Oliván, ‐. Oñate, M. Valencia, 
Organometallics 2011, 30, β46κ-β471ν f) Q. Kang, Y. Zhang, Green Chem. 2012, 14, 1016-
101λν g) L. Han, P. Xing, B. Jiang, Org. Lett. 2014, 16, γ4βκ-γ4γ1ν h) R. R. Donthiri, R. D. 
Patil, S. Adimurthy, Eur. J. Org. Chem. 2012, 2012, 4457-4460ν i) J. Xu, R. Zhuang, L. Bao, 
G. Tang, Y. Zhao, Green Chem. 2012, 14, βγκ4-βγκ7ν j) R. ‑ertig, T. Irrgang, ‑. ‑reitag, J. 
Zander, R. Kempe, ACS Catal. 2018, 8, κ5β5-κ5γ0ν k) Simone V. Samuelsen, C. Santilli, M. 
S. G. Ahlquist, R. Madsen, Chem. Sci. 2019, 10, 1150-1157ν l) A. Mukherjee, A. Nerush, G. 
Leitus, L. J. W. Shimon, Y. Ben David, N. A. ‐spinosa Jalapa, D. Milstein, J. Am. Chem. Soc. 

2016, 138, 4βλκ-4γ01ν m) M. L. Buil, M. A. ‐steruelas, M. P. Gay, M. Gómez-Gallego, A. I. 
Nicasio, ‐. Oñate, A. Santiago, M. A. Sierra, Organometallics 2018, 37, 60γ-617. 

[5] a) ‐. Zhang, H. Tian, S. Xu, X. Yu, Q. Xu, Org. Lett. 2013, 15, β704-β707ν b) R. D. Patil, S. 
Adimurthy, Adv. Synth. Catal. 2011, 353, 16λ5-1700ν c) B. Chen, L. Wang, S. Gao, ACS Catal. 

2015, 5, 5κ51-5κ76ν d) Z. Hu, ‑. M. Kerton, Org. Biomol. Chem. 2012, 10, 161κ-16β4. 
[6] a) T. Mukaiyama, A. Kawana, Y. ‑ukuda, J.-i. Matsuo, Chem. Lett. 2001, 30, γλ0-γλ1ν b) O. 

R. Luca, T. Wang, S. J. Konezny, V. S. Batista, R. H. Crabtree, New J. Chem. 2011, 35, λλκ-
λλλ. 

[7] a) P. Müller, D. M. Gilabert, Tetrahedron 1988, 44, 7171-7175ν b) ‑. Porta, C. Crotti, S. Cenini, 
G. Palmisano, J. Mol. Catal. 1989, 50, γγγ-γ41. 

[κ] S. Yamazaki, Chem. Lett. 1992, 21, κβγ-κβ6. 
[λ] A. H. Éll, J. S. M. Samec, C. Brasse, J.-‐. Bäckvall, Chem. Commun. 2002, 1144-1145. 
[10] a) S.-I. Murahashi, T. Naota, H. Taki, J. Chem. Soc., Chem. Commun. 1985, 61γ-614ν b) H. 

Choi, M. P. Doyle, Chem. Commun. 2007, 745-747ν c) P. K. Khatri, S. L. Jain, L. N. Sivakumar 
K, B. Sain, Org. Biomol. Chem. 2011, 9, γγ70-γγ74ν d) K. Maruyama, T. Kusukawa, Y. 
Higuchi, A. Nishinaga, Cobalt-Schiff Base Complex Catalyzed Dehydrogenation of Amines 

with T-Butyl Hydroperoxide in Stud. Surf. Sci. Catal., Vol. 66 (‐d.μ L. I. Simándi), ‐lsevier, 
1991, pp. 4κλ-4λ5ν e) D. Ge, G. Qu, X. Li, K. Geng, X. Cao, H. Gu, New J. Chem. 2016, 40, 
55γ1-55γ6. 



387 

 

[11] D. V. Jawale, ‐. Gravel, N. Shah, V. Dauvois, H. Li, I. N. N. Namboothiri, ‐. Doris, Chem. 

Eur. J. 2015, 21, 70γλ-704β. 
[1β] a) ‐. Boring, Y. V. Geletii, C. L. Hill, Catalysts for Selective Aerobic Oxidation under Ambient 

Conditions in Advances in Catalytic Activation of Dioxygen by Metal Complexes, Springer, 
2003, pp. ββ7-β64ν b) T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 2005, 105, βγβλ-
βγ64ν c) D. Wang, A. B. Weinstein, P. B. White, S. S. Stahl, Chem. Rev. 2018, 11κ, β6γ6-β67λν 
d) S. ‐. Allen, R. R. Walvoord, R. Padilla-Salinas, M. C. Kozlowski, Chem. Rev. 2013, 11γ, 
6βγ4-645κ. 

[1γ] a) X. Cui, Y. Li, S. Bachmann, M. Scalone, A.-‐. Surkus, K. Junge, C. Topf, M. Beller, J. Am. 

Chem. Soc. 2015, 137, 1065β-1065κν b) A. Dhakshinamoorthy, M. Alvaro, H. Garcia, 
ChemCatChem 2010, 2, 14γκ-144γν c) J. Yu, Y. Xia, M. Lu, Synth. Commun. 2014, 44, γ01λ-
γ0β6. 

[14] a) A. Nishinaga, S. Yamazaki, T. Matsuura, Tetrahedron Lett. 1988, 29, 4115-411κν b) W. 
Zhou, D. Chen, ‑. a. Sun, J. Qian, M. He, Q. Chen, Tetrahedron Lett. 2018, 59, λ4λ-λ5γν c) P. 
A. Ganeshpure, A. Sudalai, S. Satish, Proc. Indian Acad. Sci. (Chem. Sci.) 1991, 103, 741-745. 

[15] a) M. Shimizu, H. Orita, T. Hayakawa, K. Suzuki, K. Takehira, Heterocycles 1995, 4, 77γ-77λν 
b) M. Satoshi, O. Yasuhito, T. Akihiro, R. Ilhyong, K. Mitsuo, O. Yoshiki, Chem. Lett. 1997, 
26, γ11-γ1βν c) M. Yasunari, N. Takahiro, U. Sakae, Bull. Chem. Soc. Jpn. 2003, 76, βγλλ-
β40γν d) Y. ‑. Wang, J. H. Zeng, X. R. Cui, Org. Commun. 2013, 6, 6κ-77ν e) D. Jung, M. H. 
Kim, J. Kim, Org. Lett. 2016, 18, 6γ00-6γ0γν f) J. Wang, S. Lu, X. Cao, H. Gu, Chem. Commun. 

2014, 50, 56γ7-5640. 
[16] a) B. Zhu, R. J. Angelici, Chem. Commun. 2007, β157-β15λν b) M.-H. So, Y. Liu, C.-M. Ho, 

C.-M. Che, Chem. Asian J. 2009, 4, 1551-1561ν c) L. Aschwanden, B. Panella, P. Rossbach, B. 
Keller, A. Baiker, ChemCatChem 2009, 1, 111-115ν d) A. Grirrane, A. Corma, H. Garcia, J. 

Catal. 2009, 264, 1γκ-144ν e) B. Zhu, M. Lazar, B. G. Trewyn, R. J. Angelici, J. Catal. 2008, 
260, 1-6ν f) P. Sudarsanam, B. Mallesham, A. Rangaswamy, B. G. Rao, S. K. Bhargava, B. M. 
Reddy, J. Mol. Catal. A: Chem. 2016, 412, 47-55ν g) H. Miyamura, M. Morita, T. Inasaki, S. 
Kobayashi, Bull. Chem. Soc. Jpn. 2011, 84, 5κκ-5λλ. 

[17] a) J.-R. Wang, Y. ‑u, B.-B. Zhang, X. Cui, L. Liu, Q.-X. Guo, Tetrahedron Lett. 2006, 47, 
κβλγ-κβλ7ν b) S. ‑urukawa, A. Suga, T. Komatsu, Chem. Commun. 2014, 50, γβ77-γβκ0ν c) Y. 
Wang, C. Li, J. Huang, Asian J. Org. Chem. 2017, 6, 44-46ν d) Y. Wang, C. Li, J. Huang, Asian 

J. Org. Chem. 2017, 6, 44-46. 
[1κ] a) J. S. M. Samec, A. H. Éll, J.-‐. Bäckvall, Chem. Eur. J. 2005, 11, βγβ7-βγγ4ν b) K. 

Yamaguchi, N. Mizuno, Chem. Eur. J. 2003, 9, 4γ5γ-4γ61ν c) K. Yamaguchi, N. Mizuno, 
Angew. Chem. Int. Ed. 2003, 42, 14κ0-14κγν d) A. Taketoshi, T.-a. Koizumi, T. Kanbara, 
Tetrahedron Lett. 2010, 51, 6457-645λν e) S.-I. Murahashi, Y. Okano, H. Sato, T. Nakae, N. 
Komiya, Synlett 2007, 1675-167κν f) S. Chen, Q. Wan, A. K. Badu-Tawiah, Angew. Chem. Int. 

Ed. 2016, 55, λγ45-λγ4λν g) N. Mizuno, K. Yamaguchi, Catal. Today 2008, 132, 1κ-β6ν h) ‑. 
Li, J. Chen, Q. Zhang, Y. Wang, Green Chem. 2008, 10, 55γ-56βν i) Y. Zhang, ‑. Lu, R. Huang, 
H. Zhang, J. Zhao, Catal. Commun. 2016, 81, 10-1γν j) R. Ray, S. Chandra, V. Yadav, P. 
Mondal, D. Maiti, G. K. Lahiri, Chem. Commun. 2017, 53, 4006-400λ. 

[1λ] X. Lang, H. Ji, C. Chen, W. Ma, J. Zhao, Angew. Chem. Int. Ed. 2011, 50, γλγ4-γλγ7. 
[β0] S. Kodama, J. Yoshida, A. Nomoto, Y. Ueta, S. Yano, M. Ueshima, A. Ogawa, Tetrahedron 

Lett. 2010, 51, β450-β45β. 
[β1] a) H. Huang, J. Huang, Y.-M. Liu, H.-Y. He, Y. Cao, K.-N. ‑an, Green Chem. 2012, 14, λγ0-

λγ4ν b) T. Sonobe, K. Oisaki, M. Kanai, Chem. Sci. 2012, 3, γβ4λ-γβ55ν c) ‑. Su, S. C. Mathew, 
L. Möhlmann, M. Antonietti, X. Wang, S. Blechert, Angew. Chem. Int. Ed. 2011, 50, 657-660ν 
d) A. ‐. Wendlandt, S. S. Stahl, J. Am. Chem. Soc. 2014, 136, 11λ10-11λ1γν e) M. K. Sahoo, 
G. Jaiswal, J. Rana, ‐. Balaraman, Chem. Eur. J. 2017, 23, 14167-1417β. 

[ββ] ‑or the discussion of activated MnOβ seeμ httpμ//reag.paperplane.io/000017λγ.htm#1γ. 
[βγ] a) M. Hirano, S. Yakabe, H. Chikamori, J. H. Clark, T. Morimoto, J. Chem. Res., Synop. 1998, 

770-771ν b) Y. Hamada, M. Shibata, T. Sugiura, S. Kato, T. Shioiri, J. Org. Chem. 1987, 52, 
1β5β-1β55ν c) J. Matsubara, K. Nakao, Y. Hamada, T. Shioiri, Tetrahedron Lett. 1992, 33, 
41κ7-41λ0ν d) N. Irako, Y. Hamada, T. Shioiri, Tetrahedron 1992, 48, 7β51-7β64ν e) A. J. 



388 

 

‑atiadi, Synthesis 1976, 1976, 65-104ν f) T. Aoyama, N. Sonoda, M. Yamauchi, K. Toriyama, 
M. Anzai, A. Ando, T. Shioiri, Synlett 1998, γ5-γ6ν g) A. J. ‑atiadi, Synthesis 1976, 65-104ν h) 
M. Z. Barakat, M. ‑. Abdel-Wahab, M. M. ‐l-Sadr, J. Chem. Soc. 1956, 46κ5-46κ7ν i) Y. H. 
Kim, S. k. Hwang, Y. S. Lee, J. W. Kim, Appl. Chem. Eng. 2014, 25, β15-ββ1. 

[β4] X. Yu, C. Liu, L. Jiang, Q. Xu, Org. Lett. 2011, 13, 61κ4-61κ7. 
[β5] a) C. Wang, J. Yang, X. Meng, Y. Sun, X. Man, J. Li, ‑. Sun, Dalton Trans. 2019, 48, 4474-

447κν b) M. ‑. Pinto, M. Olivares, Á. Vivancos, G. Guisado-Barrios, M. Albrecht, B. Royo, 
Catal. Sci. Technol. 2019, 9, β4β1-β4β5. 

[β6] J. Wang, S. Lu, X. Cao, H. Gu, Chem. Commun. 2014, 50, 56γ7-5640. 

  



389 

 

6. Experimental data 
6.1. General information 

Table S1. Commercial sources of manganese and rhenium precursors 

Mn precursors Commercial sources 
Mn(CO)5Br Strem Chemicals 
CpMn(CO)γ Sigma-Aldrich 
Mnβ(CO)10 Strem Chemicals 
Mn‑β Strem Chemicals 
Mn(acac)γ Sigma-Aldrich 
Mn(OTf)β Sigma-Aldrich 
MnOβ Sigma-Aldrich 
MnOβ (activated) ‑luka 
KMnO4 Sigma-Aldrich 
MnO Sigma-Aldrich 
Re(CO)5Br Strem Chemicals 
Reβ(CO)10 Strem Chemicals 

Magnetic stirred Parr autoclaves (ββ mL) were used for the oxidation。 

6.2. General procedure A for the oxidation of amines. 

A β0 mL Schlenk tube was charged with amine (0.5 mmol), Mn(CO)5Br (6.λ mg, 5.0 mol%), 
and TH‑ (1.0 mL), dry air (β bar). The reaction mixture was stirred at 100 oC for indicated 
time. After cooling to r.t., the reactor was slowly depressurized and the reaction mixture was 
dried and the desired imine was isolated by bulb-to-bulb distillation. Benzimidazole products 
were purified by column chromatography (SiOβ, mixture of petroleum ether/ethyl acetate as 
eluent). 

6.3. General procedure B for the oxidation of amines. 

A ββ mL autoclave was charged with amine (0.5 mmol), Mn(CO)5Br (6.λ mg, 5.0 mol%), and 
t-amyl alcohol (1.0 mL), dry air (50 bar). The reaction mixture was stirred at 100 oC for 
indicated time. After cooling to room temperature, the reactor was slowly depressurized and 
the reaction mixture was dried and the desired imine was isolated by bulb-to-bulb distillation. 
Benzimidazole products were purified by column chromatography (SiOβ, mixture of petroleum 
ether/ethyl acetate as eluent). 

6.4. Characterization data for products 

 
The compound 2a was prepared as described in the general procedure A (κβ.5 mg) in λ1% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.4κ (s, 1H), 7.λ4 (dd, J = 6.6, γ.1 Hz, βH), 7.51 – 7.4λ 
(m, γH), 7.4γ (t, J = 7.κ Hz, βH), 7.βκ – 7.β4 (m, γH). 13C NMR (101 MHz, CDClγ) δ 160.5, 
15β.β, 1γ6.4, 1γ1.5, 1βλ.γ, 1βκ.λ, 1βκ.λ, 1β6.0, 1β1.0. 

 
The compound 2b was prepared as described in the general procedure A (λ7.6 mg) in λκ% 
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yield. 1H NMR (400 MHz, CDClγ) δ κ.45 (s, 1H), 7.λ0 – 7.κλ (m, βH), 7.4λ – 7.46 (m, γH), 
7.β1 (dd, J = κ.6, 5.0 Hz, βH), 7.0κ (t, J = κ.5 Hz, βH). 13C NMR (101 MHz, CDClγ) δ 161.4 
(d, J = β44.6 Hz), 160.γ, 160.γ, 14κ.β, 1γ6.β, 1γ1.6, 1βκ.λ (d, J = γ.0 Hz), 1ββ.4 (d, J = κ.γ 
Hz), 116.0 (d, J = ββ.5 Hz). 19F NMR (γ76 MHz, CDClγ) δ -117.γ. 

 

The compound 2c was prepared as described in the general procedure A (10γ.4 mg) in λ0% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.4γ (s, 1H), 7.κ5 – 7.κβ (m, βH), 7.46 – 7.4γ (m, βH), 
7.β1 (d, J = κ.1 Hz, βH), 7.15 – 7.1β (m, βH), β.γκ (s, γH). 13C NMR (75 MHz, CDClγ) δ 15κ.1, 
14λ.β, 1γ7.γ, 1γ6.γ, 1γ5.0, 1γ0.0, 1γ0.0, 1βλ.β, 1β0.λ, β1.β. 

 
The compound 2d was prepared as described in the general procedure A (λ7.5 mg) in 75% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.41 (s, 1H), 7.κ0 – 7.76 (m, βH), 7.6γ – 7.60 (m, βH), 
7.4γ – 7.γκ (m, βH), 7.βκ – 7.β5 (m, 1H), 7.β4 – 7.β0 (m, βH). 13C NMR (101 MHz, CDClγ) 
δ 15λ.0, 151.κ, 1γ5.γ, 1γβ.β, 1γ0.γ, 1βλ.γ, 1β6.4, 1β6.0, 1β1.0. 

 
The compound 2e was prepared as described in the general procedure A (101.4 mg) in 66% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.4β (s, 1H), 7.λβ – 7.κκ (m, βH), 7.7β – 7.6λ (m, βH), 
7.5γ – 7.45 (m, γH), 6.λλ – 6.λ5 (m, βH). 13C NMR (75 MHz, CDClγ) δ 160.λ, 151.κ, 1γκ.γ, 
1γ6.1, 1γ1.κ, 1βλ.0, 1βλ.0, 1βγ.1, λ0.4. 

 
The compound 2f was prepared as described in the general procedure A (λ0.κ mg) in λγ% yield. 
1H NMR (γ00 MHz, CDClγ) δ κ.γλ (s, 1H), 7.λ6 – 7.λβ (m, βH), 7.51 – 7.4λ (m, γH), 7.β6 – 
7.β0 (m, βH), 7.17 – 7.1β (m, 1H), 6.λ5 (d, J = κ.0 Hz, 1H), β.γλ (s, γH). 13C NMR (101 MHz, 
CDClγ) δ 15λ.5, 151.γ, 1γ6.6, 1γβ.0, 1γ1.γ, 1γ0.4, 1βκ.λ, 1β6.κ, 1β5.κ, 117.κ, 1κ.0. 

 
The compound 2g was prepared as described in the general procedure A (λ5.7 mg) in λκ% 
yield. 1H NMR (γ00 MHz, CDClγ) δ κ.76 (s, 1H), κ.0κ (dd, J = 7.4, 1.1 Hz, 1H), 7.4γ – 7.γ1 
(m, 4H), 7.βλ – 7.1λ (m, 4H), β.60 (s, γH). 13C NMR (75 MHz, CDClγ) δ 15λ.γ, 15β.λ, 1γκ.7, 
1γ4.γ, 1γ1.β, 1γ1.1, 1βλ.γ, 1βκ.0, 1β6.5, 1β5.λ, 1β1.0, 1λ.5. 

 
The compound 2h was prepared as described in the general procedure A (11κ.4 mg) in κγ% 

yield. H NMR (400 MHz, CDClγ) δ κ.γ6 (s, 1H), 7.1λ (d, J = κ.1 Hz, βH), 7.15 – 7.1β (m, 
4H), γ.λ4 (s, 6H), γ.λβ (s, γH), β.γ7 (s, γH). 13C NMR (101 MHz, CDClγ) δ 15λ.1, 15γ.6, 
14λ.5, 141.0, 1γ5.κ, 1γβ.0, 1βλ.λ, 1β0.λ, 105.κ, 61.1, 56.4, β1.1. 
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The compound 2i was prepared as described in the general procedure A (λ4.1 mg) in 7λ% yield. 
1H NMR (400 MHz, CDClγ) δ κ.γ4 (s, 1H), 7.κ0 – 7.76 (m, βH), 7.1λ – 7.17 (m, βH), 7.14 – 
7.11 (m, βH), 6.74 (d, J = λ.0 Hz, βH), γ.05 (s, 6H), β.γ7 (s, γH). 13C NMR (101 MHz, CDClγ) 
δ 15λ.7, 15β.5, 150.5, 1γ4.κ, 1γ0.4, 1βλ.κ, 1β4.7, 1β0.λ, 111.7, 40.γ, β1.1. 

 
The compound 2j was prepared as described in the general procedure A (104.6 mg) in 7κ% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.4β (s, 1H), 7.κ4 (d, J = κ.5 Hz, βH), 7.6β (d, J = κ.β Hz, 
βH), 7.47 (s, 1H), 7.β4 – 7.β0 (m, βH), 6.λ4 – 6.λ0 (m, βH), γ.κγ (s, γH), β.β0 (s, γH).  
13C NMR (75 MHz, CDClγ) δ 16κ.5, 15κ.γ, 157.7, 145.1, 140.5, 1γβ.6, 1βλ.7, 1ββ.γ, 11λ.6, 
114.5, 55.6, β4.λ. 

 
The compound 2k was prepared as described in the general procedure A (75.4 mg) in 6γ% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.5β (s, 1H), κ.15 – κ.1γ (m, βH), 7.λλ – 7.λ7 (m, βH), 
7.4γ – 7.γλ (m, βH), 7.βλ – 7.βγ (m, γH), γ.λ6 (s, γH). 13C NMR (75 MHz, CDClγ) δ 166.7, 
15λ.β, 151.7, 140.β, 1γβ.5, 1γ0.1, 1βλ.4, 1βκ.κ, 1β6.6, 1β1.0, 5β.5. 

 
The compound 2m was prepared as described in the general procedure A (10γ.5 mg) in λ4% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.51 (s, 1H), κ.01 – 7.λλ (m, βH), 7.76 – 7.74 (m, βH), 
7.β4 – 7.ββ (m, βH), 7.1λ – 7.16 (m, βH), β.γλ (s, γH). 13C NMR (75 MHz, CDClγ) δ 157.0, 
14κ.5, 140.γ, 1γ7.β, 1γβ.6, 1γ0.1, 1βλ.1, 1β1.1, 11κ.6, 114.γ, β1.β. 

 
The compound 2n was prepared as described in the general A procedure (57.6 mg) in γκ% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.γγ (s, 1H), 7.1λ – 7.06 (m, 4H), 4.κ0 (s, βH), 4.4κ (s, 
βH), 4.β4 (s, 5H), β.γ6 (s, γH). 13C NMR (75 MHz, CDClγ) δ 160.7, 150.5, 1γ5.0, 1βλ.κ, 1β0.6, 
κ0.κ, 71.γ, 6λ.4, 6λ.1, β1.1. 

 
The compound 2o was prepared as described in the general procedure A (10β.λ mg) in κ1% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.1κ (s, 1H), 7.β6 – 7.β1 (m, βH), 6.λβ – 6.κκ (m, βH), 
6.77 (d, J = γ.γ Hz, 1H), 6.14 (dd, J = γ.γ, 0.λ Hz, 1H), γ.κ0 (s, γH), β.41 (s, γH). 13C NMR 
(101 MHz, CDClγ) δ 15κ.γ, 156.5, 151.0, 145.λ, 144.κ, 1ββ.γ, 11κ.1, 114.4, 10κ.κ, 55.6, 14.1. 
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The compound 2p was prepared as described in the general procedure A (λβ.1 mg) in κ6% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.γβ (s, 1H), 7.17 – 7.1γ (m, βH), 6.λ4 – 6.λ0 (m, βH), 
6.7λ (t, J = β.1 Hz, 1H), 6.66 (dd, J = γ.λ, 1.κ Hz, 1H), 6.β1 (dd, J = γ.κ, β.6 Hz, 1H), 4.06 (s, 
γH), γ.κγ (s, γH). 13C NMR (75 MHz, CDClγ) δ 157.7, 14λ.6, 146.1, 1γ0.6, 1βκ.κ, 1β1.λ, 11κ.1, 
114.5, 10κ.κ, 55.6, γ6.λ. 

 
The compound 2q was prepared as described in the general procedure A (74.γ mg) in 70% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.6κ (ddd, J = 4.κ, 1.κ, 1.0 Hz, 1H), κ.6β (s, 1H), κ.17 
(dt, J = 7.λ, 1.1 Hz, 1H), 7.7κ (td, J = 7.6, 1.γ Hz, 1H), 7.γ4 – 7.γ1 (m, γH), 6.λ6 – 6.λβ (m, 
βH), γ.κβ (s, γH). 13C NMR (101 MHz, CDClγ) δ 15λ.1, 15κ.γ, 155.0, 14λ.7, 14γ.κ, 1γ6.7, 
1β4.λ, 1ββ.κ, 1β1.7, 114.6, 55.6. 

 
The compound 9a was prepared as described in the general procedure A (51.0 mg) in 7λ% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.λ0 (dd, J = 4.γ, 1.7 Hz, 1H), κ.1γ – κ.0λ (m, βH), 7.7λ 
(dd, J = κ.β, 1.4 Hz, 1H), 7.70 (ddd, J = κ.5, 6.κ, 1.5 Hz, 1H), 7.5β (ddd, J = κ.1, 6.κ, 1.β Hz, 
1H), 7.γ6 (dd, J = κ.γ, 4.β Hz, 1H). 13C NMR (101 MHz, CDClγ) δ 150.5, 14κ.4, 1γ6.1, 1βλ.6, 
1βλ.5, 1βκ.4, 1β7.λ, 1β6.6, 1β1.1. 

 
The compound 9b was prepared as described in the general procedure B (6λ.4 mg) in λ7% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.0β (dd, J = κ.γ, γ.7 Hz, βH), 7.76 (dd, J = κ.1, 1.4 Hz, 
1H), 7.67 (ddd, J = κ.5, 6.λ, 1.5 Hz, 1H), 7.47 (ddd, J = κ.1, 6.λ, 1.β Hz, 1H), 7.β7 (d, J = κ.4 
Hz, 1H), β.74 (s, γH). 13C NMR (101 MHz, CDClγ) δ 15λ.1, 14κ.0, 1γ6.γ, 1βλ.5, 1βκ.κ, 1β7.6, 
1β6.6, 1β5.κ, 1ββ.1, β5.5. 

 
The compound 9c was prepared as described in the general procedure B (67.γ mg) in λ4% yield. 
1H NMR (400 MHz, CDClγ) δ κ.76 (d, J = β.β Hz, 1H), κ.06 (d, J = κ.4 Hz, 1H), 7.κλ – 7.κκ 
(m, 1H), 7.7β (dd, J = κ.1, 1.5 Hz, 1H), 7.6γ (ddd, J = κ.4, 6.κ, 1.5 Hz, 1H), 7.4λ (ddd, J = κ.1, 
6.κ, 1.β Hz, 1H), β.50 (s, γH). 13C NMR (101 MHz, CDClγ) δ 15β.5, 146.7, 1γ4.κ, 1γ0.6, 1βλ.γ, 
1βκ.5, 1βκ.β, 1β7.β, 1β6.6, 1κ.κ. 

 
The compound 9d was prepared as described in the general procedure A (64.4 mg) in λ0% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.λ5 (dd, J = 4.β, 1.κ Hz, 1H), κ.1β (dd, J = κ.β, 1.κ Hz, 
1H), 7.66 (d, J = κ.β Hz, 1H), 7.56 (d, J = 6.λ Hz, 1H), 7.45 – 7.41 (m, 1H), 7.γλ (dd, J = κ.β, 
4.β Hz, 1H), β.κγ (s, γH). 13C NMR (101 MHz, CDClγ) δ 14λ.4, 147.5, 1γ7.β, 1γ6.4, 1βλ.7, 
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1βκ.4, 1β6.4, 1β6.0, 1β1.0, 1κ.γ. 

 
The compound 9e was prepared as described in the general procedure A (λ0.5 mg) in κ7% 
yield. 1H NMR (400 MHz, CDClγ) δ λ.05 (d, J = β.λ Hz, 1H), κ.16 (d, J = κ.0 Hz, 1H), κ.05 
(d, J = 7.4 Hz, 1H), 7.7κ (d, J = κ.1 Hz, 1H), 7.46 (dd, J = κ.β, 4.β Hz, 1H), 7.γλ (t, J = 7.κ Hz, 
1H). 13C NMR (101 MHz, CDClγ) δ 151.4, 145.4, 1γ6.κ, 1γγ.γ, 1βλ.7, 1β7.λ, 1β7.1, 1β4.λ, 
1ββ.0. 

 
The compound 9f was prepared as described in the general procedure B (5λ.4 mg) in λβ% yield. 
1H NMR (400 MHz, CDClγ) δ λ.β6 (s, 1H), κ.5γ (d, J = 5.7 Hz, 1H), 7.λ6 (d, J = κ.β Hz, 1H), 
7.κβ (d, J = κ.β Hz, 1H), 7.71 – 7.67 (m, 1H), 7.64 (d, J = 5.7 Hz, 1H), 7.60 (ddd, J = κ.β, 6.κ, 
1.β Hz, 1H). 13C NMR (101 MHz, CDClγ) δ 15β.7, 14γ.β, 1γ5.λ, 1γ0.4, 1βκ.κ, 1β7.7, 1β7.γ, 
1β6.6, 1β0.6. 

 
The compound 9g was prepared as described in the general procedure B (10κ.β mg) in λβ% 
yield. 1H NMR (γ00 MHz, CDClγ) δ κ.β0 – κ.1β (m, 4H), 7.κ5 – 7.7λ (m, βH), 7.71 (ddd, J = 

κ.5, 6.λ, 1.5 Hz, 1H), 7.50 (ddd, J = κ.1, 6.λ, 1.1 Hz, 1H), 7.0κ – 7.0γ (m, βH), γ.κλ (s, γH). 
13C NMR (75 MHz, CDClγ) δ 161.0, 157.0, 14κ.4, 1γ6.κ, 1γβ.γ, 1βλ.κ, 1βλ.6, 1βλ.1, 1β7.6, 
1β7.1, 1β6.1, 11κ.7, 114.4, 55.6. 

 
The compound 9h was prepared as described in the general procedure B (10γ.κ mg) in λγ% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.β0 – κ.14 (m, 4H), 7.κγ – 7.κ0 (m, βH), 7.7γ (ddd, J = 

κ.4, 6.κ, 1.5 Hz, 1H), 7.5γ (ddd, J = κ.1, 6.λ, 1.β Hz, 1H), 7.β4 – 7.1κ (m, βH). 13C NMR 
(101 MHz, CDClγ) δ 16γ.λ (d, J = β4λ.0 Hz), 156.γ, 14κ.γ, 1γ7.0, 1γ5.λ (d, J = γ.β Hz), 1βλ.λ, 
1βλ.7, 1βλ.5 (d, J = κ.4 Hz), 1β7.6, 1β7.β, 1β6.5, 11κ.7, 115.λ (d, J = β1.6 Hz).  
19F NMR (γ76 MHz, CDClγ) δ -11β.41. 

 
The compound 9i was prepared as described in the general procedure B (117.4 mg) in λκ% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.β0 – κ.16 (m, βH), κ.1γ – κ.10 (m, βH), 7.κβ – 7.7λ (m, 
βH), 7.76 – 7.71 (m, 1H), 7.55 – 7.4κ (m, γH). 13C NMR (101 MHz, CDClγ) δ 156.1, 14κ.γ, 
1γκ.1, 1γ7.0, 1γ5.6, 1βλ.λ, 1βλ.κ, 1βλ.1, 1βκ.λ, 1β7.6, 1β7.γ, 1β6.6, 11κ.6. 

 
The compound 9j was prepared as described in the general procedure B (1βλ.γ mg) in λ1% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.1λ – κ.16 (m, βH), κ.07 – κ.0γ (m, βH), 7.κβ – 7.71 (m, 
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γH), 7.67 – 7.6γ (m, βH), 7.56 – 7.51 (m, 1H). 13C NMR (101 MHz, CDClγ) δ 156.0, 14κ.γ, 
1γκ.6, 1γ7.0, 1γβ.0, 1βλ.λ, 1βλ.κ, 1βλ.β, 1β7.6, 1β7.γ, 1β6.6, 1β4.0, 11κ.5.  

 
The compound 9k was prepared as described in the general procedure B (14λ.0 mg) in λ0% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.ββ (d, J = κ.6 Hz, 1H), κ.16 (d, J = κ.5 Hz, 1H), 7.λ4 – 
7.λ1 (m, βH), 7.κκ – 7.κβ (m, 4H), 7.74 (ddd, J = κ.4, 6.λ, 1.5 Hz, 1H), 7.54 (ddd, J = κ.1, 6.λ, 
1.β Hz, 1H). 13C NMR (101 MHz, CDClγ) δ 156.γ, 14κ.4, 1γλ.β, 1γκ.1, 1γ7.1, 1γ0.0, 1βλ.λ, 
1βλ.4, 1β7.6, 1β7.4, 1β6.7, 11κ.6, λ6.0. 

 
The compound 9l was prepared as described in the general procedure B (1β5.7 mg) in λβ% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.γ1 – κ.1κ (m, 4H), 7.λ0 – 7.74 (m, 5H), 7.60 – 7.55 (m, 
1H). 13C NMR (101 MHz, CDClγ) δ 155.κ, 14κ.4, 14γ.1, 1γ7.γ, 1γ1.β (q, J = γβ.4 Hz), 1γ0.1, 
1γ0.0, 1βκ.0, 1β7.7, 1β7.6, 1β7.0, 1β5.λ (q, J = γ.κ Hz), 1β4.4 (q, J = β7β.1 Hz), 11κ.λ.  
19F NMR (γ76 MHz, CDClγ) δ -6β.56. 

 
The compound 9m was prepared as described in the general procedure B (λκ.0 mg) in λ5% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.74 (d, J = 4.γ Hz, 1H), κ.66 (d, J = κ.0 Hz, 1H), κ.57 
(d, J = κ.6 Hz, 1H), κ.β7 (d, J = κ.6 Hz, 1H), κ.1λ (d, J = κ.5 Hz, 1H), 7.κκ – 7.κγ (m, βH), 
7.7γ (ddd, J = κ.4, 6.κ, 1.5 Hz, 1H), 7.54 (ddd, J = κ.0, 6.κ, 1.1 Hz, 1H), 7.γ4 (ddd, J = 7.5, 4.κ, 
1.β Hz, 1H). 13C NMR (101 MHz, CDClγ) δ 156.5, 156.γ, 14λ.γ, 14κ.0, 1γ7.0, 1γ6.λ, 1βλ.λ, 
1βλ.7, 1βκ.4, 1β7.7, 1β6.λ, 1β4.1, 1β1.λ, 11λ.1. 

N
S  

The compound 9n was prepared as described in the general procedure B (λ7.β mg) in λβ% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.1β (d, J = κ.5 Hz, 1H), κ.0λ (d, J = κ.7 Hz, 1H), 7.77 – 
7.7β(m, 4H), 7.50 – 7.46 (m, βH), 7.16 (dd, J = 5.1, γ.7 Hz, 1H). 13C NMR (101 MHz, CDClγ) 
δ 15β.5, 14κ.γ, 145.6, 1γ6.7, 1γ0.0, 1βλ.4, 1βκ.7, 1βκ.β, 1β7.6, 1β7.γ, 1β6.β, 1β6.0, 117.κ. 

N
O

 
The compound 9o was prepared as described in the general procedure B (110.4 mg) in λ0% 
yield. 1H NMR (γ00 MHz, CDClγ) δ κ.ββ (dd, J = κ.5, 5.6 Hz, βH), κ.0β (d, J = κ.6 Hz, 1H), 
7.κ1 (d, J = κ.1 Hz, 1H), 7.74 (ddd, J = κ.5, 6.λ, 1.5 Hz, 1H), 7.70 – 7.61 (m, γH), 7.54 (ddd, J 

= κ.1, 6.κ, 1.β Hz, 1H), 7.γκ (ddd, J = κ.β, 7.β, 1.4 Hz, 1H), 7.βλ (td, J = 7.6, 0.λ Hz, 1H).  
13C NMR (75 MHz, CDClγ) δ 155.7, 155.γ, 14λ.β, 14κ.4, 1γ6.λ, 1γ0.β, 1βλ.7, 1βκ.λ, 1β7.7, 
1β7.7, 1β6.κ, 1β5.7, 1βγ.4, 1β1.λ, 11κ.γ, 11β.0, 106.4. 
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The compound 9p was prepared as described in the general procedure B (7γ.γ mg) in κ0% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.01 (d, J = κ.5 Hz, 1H), 7.κβ (s, 1H), 7.70 (d, J = 7.κ Hz, 
1H), 7.61 (ddd, J = κ.5, 6.κ, 1.5 Hz, 1H), 7.4γ (ddd, J = κ.1, 6.κ, 1.1 Hz, 1H), γ.15 (t, J = 6.5 
Hz, βH), β.λ7 (t, J = 6.γ Hz, βH), β.0β – 1.λ5 (m, βH), 1.λγ – 1.κ6 (m, βH). 13C NMR (101 MHz, 
CDClγ) δ 15λ.4, 146.γ, 1γ5.5, 1γ1.β, 1βκ.κ, 1βκ.1, 1β7.γ, 1β7.0, 1β5.κ, γγ.4, βλ.γ, βγ.γ, βγ.0. 

 
The compound 9q was prepared as described in the general procedure B (10β.λ mg) in κλ% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.6β (dd, J = 7.κ, 1.0 Hz, 1H), κ.17 (d, J = κ.4 Hz, 1H), 
7.λ0 (s, 1H), 7.74 (d, J = κ.1 Hz, 1H), 7.67 (ddd, J = κ.4, 6.λ, 1.5 Hz, 1H), 7.50 – 7.4γ (m, βH), 
7.γλ (td, J = 7.4, 1.5 Hz, 1H), 7.βλ (d, J = 7.4 Hz, 1H), γ.14 – γ.0κ (m, βH), γ.04 – β.λλ (m, 
βH). 13C NMR (101 MHz, CDClγ) δ 15γ.5, 147.7, 1γλ.5, 1γ4.κ, 1γγ.κ, 1γ0.7, 1βλ.κ, 1βλ.5, 
1βκ.7, 1βκ.0, 1βκ.0, 1β7.4, 1β7.0, 1β6.β, 1β6.1, βκ.λ, βκ.5. 

 
The compound 9r was prepared as described in the general procedure A (κκ.γ mg) in λγ% yield. 
1H NMR (400 MHz, CDClγ) δ κ.7β (s, 1H), κ.β4 (dd, J = κ.κ, 0.4 Hz, βH), 7.λ7 (d, J = κ.5 Hz, 
βH), 7.77 (ddd, J = κ.7, 6.6, 1.4 Hz, βH), 7.51 (ddd, J = κ.β, 6.6, 1.1 Hz, βH). 13C NMR 
(101 MHz, CDClγ) δ 14λ.β, 1γ6.1, 1γ0.4, 1βλ.5, 1βκ.γ, 1β6.7, 1β5.κ.  

 
The compound 9s was prepared as described in the general procedure B (κγ.γ mg) in λγ% yield. 
1H NMR (400 MHz, CDClγ) δ λ.γ1 (d, J = κ.0 Hz, 1H), λ.01 (dd, J = 4.4, 1.κ Hz, 1H), κ.1λ – 
κ.15 (m, 1H), 7.λβ (d, J = 7.6 Hz, 1H), 7.κβ (dd, J = κ.κ, β.0 Hz, 1H), 7.7κ – 7.66 (m, γH), 7.54 
– 7.50 (m, 1H). 13C NMR (101 MHz, CDClγ) δ 14λ.0, 146.7, 1γ5.λ, 1γγ.7, 1γ1.6, 1βκ.γ, 1β7.λ, 
1β7.λ, 1β7.β, 1β6.5, 1β5.5, 1β4.5, 1β1.λ. 

 
The compound 9u was prepared as described in the general procedure A (55.6 mg) in λ5% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.05 (br, 1H), 7.71 (dd, J = 7.λ, γ.0 Hz, 1H), 7.41 (d, J = 

κ.1 Hz, 1H), 7.βκ – 7.βγ (m, 1H), 7.β1 – 7.16 (m, βH), 6.61 – 6.60 (m, 1H). 13C NMR 
(101 MHz, CDClγ) δ 1γ5.λ, 1βκ.0, 1β4.γ, 1ββ.1, 1β0.λ, 11λ.λ, 111.β, 10β.7. 

 
The compound 7a was prepared as described in the general procedure A (λγ.7 mg) in λ6% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.41 (s, 1H), 7.κ1 – 7.7κ (m, βH), 7.46 – 7.41 (m, γH), 
7.γκ – 7.γ4 (m, 4H), 7.γ0 – 7.β5 (m, 1H), 4.κ4 (d, J = 1.λ Hz, βH). 13C NMR (101 MHz, CDClγ) 
δ 16β.1, 1γλ.4, 1γ6.γ, 1γ0.λ, 1βκ.7, 1βκ.6, 1βκ.4, 1βκ.1, 1β7.1, 65.β. 

 
The compound 7b was prepared as described in the general procedure A (114.λ mg) in λ0% 
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yield. 1H NMR (γ00 MHz, CDClγ) δ κ.γ0 (s, 1H), 7.74 – 7.70 (m, βH), 7.βκ – 7.βγ (m, βH), 
6.λ5 – 6.κ6 (m, 4H), 4.7γ (s, βH), γ.κ4 (s, γH), γ.κ0 (s, γH). 13C NMR (1β6 MHz, CDClγ)  
δ 161.κ, 161.0, 15κ.κ, 1γ1.κ, 1βλ.λ, 1βλ.γ, 1βλ.γ, 114.1, 114.0, 64.5, 55.5, 55.4. 

 
The compound 7c was prepared as described in the general procedure A (1βλ.γ mg) in κβ% 
yield. 1H NMR (γ00 MHz, CDClγ) δ κ.71 (s, 1H), 7.λ6 (d, J = κ.6 Hz, 1H), 7.1κ (d, J = κ.λ Hz, 
1H), 6.51 (dd, J = κ.6, β.4 Hz, 1H), 6.50 – 6.4γ (m, γH), 4.7β (s, βH), γ.κ4 (s, γH), γ.κγ (s, γH), 
γ.κ1 (s, γH), γ.7λ (s, γH). 13C NMR (1β6 MHz, CDClγ) δ 16γ.0, 160.β, 160.0, 15κ.γ, 157.5, 
1βλ.λ, 1βκ.κ, 1β1.0, 11κ.4, 105.4, 104.β, λκ.6, λκ.β, 5λ.γ, 55.7, 55.5, 55.5, 55.5. 

 
The compound 7d was prepared as described in the general procedure A (14λ.1 mg) in λ0% 
yield. 1H NMR (γ00 MHz, CDClγ) δ κ.47 (s, 1H), 7.λ1 (d, J = κ.1 Hz, βH), 7.6λ (d, J = κ.β Hz, 
βH), 7.6β (d, J = κ.1 Hz, βH), 7.47 (d, J = κ.1 Hz, βH), 4.λ0 (s, βH). 13C NMR (101 MHz, 
CDClγ) δ 161.β, 14γ.1, 1γλ.1, 1γβ.7 (q, J = γβ.4 Hz), 1βλ.6 (q, J = γβ.4 Hz), 1βκ.7, 1βκ.γ, 
1β5.κ (q, J = γ.κ Hz), 1β5.6 (q, J = γ.κ Hz), 1β4.0γ (q, J = β7β.4 Hz), 1β4.γ6 (q, J = β71.λ Hz), 
64.6. 19F NMR (γ76 MHz, CDClγ) δ -6β.45, -6β.κγ. 

 
The compound 7e was prepared as described in the general procedure A (15γ.6 mg) in κ7% 
yield. 1H NMR (γ00 MHz, CDClγ) δ κ.κ1 (s, 1H), κ.1β (dd, J = 7.7, β.0 Hz, 1H), 7.5λ (dd, J = 

7.κ, 0.κ Hz, βH), 7.4γ (dd, J = 7.6, 1.κ Hz, 1H), 7.γκ – 7.β6 (m, γH), 7.15 (td, J = 7.7, 1.κ Hz, 
1H), 4.λ4 (s, βH). 13C NMR (1β6 MHz, CDClγ) δ 16β.1, 1γκ.6, 1γ4.7, 1γγ.β, 1γβ.κ, 1γβ.1, 
1βλ.λ, 1βλ.1, 1βκ.7, 1β7.κ, 1β7.7, 1β5.4, 1βγ.κ, 64.5. 

 
The compound 7g was prepared as described in the general procedure (λβ.γ mg) A in κλ% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.4β (s, 1H), 7.4β (d, J = 5.0 Hz, 1H), 7.γγ (d, J = γ.4 Hz, 
1H), 7.β4 (dd, J = 4.λ, 1.4 Hz, 1H), 7.0κ (dd, J = 5.1, γ.6 Hz, 1H), 7.00 – 6.λ6 (m, βH), 4.λ5 (s, 
βH). 13C NMR (1β6 MHz, CDClγ) δ 155.6, 14β.γ, 141.7, 1γ1.1, 1βλ.5, 1β7.5, 1β7.0, 1β5.5, 
1β5.0, 5κ.7. 

 
The compound 11a was prepared as described in the general procedure A (6λ.7 mg) in 66% 
yield. 1H NMR (400 MHz, CDClγ) δ κ.51 (s, 1H), 7.λ4 – 7.λ1 (m, βH), 7.50 – 7.4κ (m, γH), 
7.γ0 – 7.β6 (m, βH), 6.λλ – 6.λ5 (m, βH), γ.κ6 (s, γH). 13C NMR (101 MHz, CDClγ) δ 15κ.5, 
15κ.4, 145.0, 1γ6.6, 1γ1.1, 1βκ.κ, 1βκ.7, 1ββ.γ, 114.5, 55.6. 

 
The compound 12a was prepared as described in the general procedure B (107.κ mg) in κλ% 
yield. 1H NMR (500 MHz, CDClγ) δ 7.λ0 – 7.κ7 (m, 4H), 7.0β – 6.λλ (m, 4H), γ.κλ (s, 6H). 
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13C NMR (1β6 MHz, CDClγ) δ 161.7, 147.β, 1β4.5, 114.γ, 55.7. 

 
The compound 12b was prepared as described in the general procedure A with 1 bar of dry air 
(κ5.6 mg) in λ4% yield. 1H NMR (400 MHz, CDClγ) δ 7.λ7 – 7.λ4 (m, 4H), 7.56 – 7.47 (m, 
6H). 13C NMR (101 MHz, CDClγ) δ 15β.κ, 1γ1.1, 1βλ.β, 1βγ.0. 

 
The compound 14a was prepared as described in the general procedure A (κ6.4 mg) in κλ% 
yield. 1H NMR (500 MHz, d6-DMSO) δ 1β.λ4 (br, 1H), κ.1λ – κ.17 (m, βH), 7.61 (br, βH), 
7.56 – 7.5γ (m, βH), 7.51 – 7.47 (m, 1H), 7.βγ – 7.1λ (m, βH). 13C NMR (1β6 MHz, d6-DMSO) 
δ 151.4, 1γ0.β, 1γ0.0, 1βλ.1, 1β6.6.  

 
The compound 14b was prepared as described in the general procedure A (κ0.7 mg) in 7β% 
yield. 1H NMR (400 MHz, d6-DMSO) δ κ.14 – κ.11 (m, βH), 7.5κ – 7.54 (m, βH), 7.1λ – 7.15 
(m, βH), 7.1γ – 7.0λ (m, βH), γ.κ4 (s, γH). 13C NMR (101 MHz, d6-DMSO) δ 160.6, 151.γ, 
1βκ.0, 1ββ.7, 1β1.κ, 114.4, 55.γ. 

 
The compound 14c was prepared as described in the general procedure A (117.0 mg) in λβ% 
yield. 1H NMR (400 MHz, d6-DMSO) δ 11.λ6 (br, 1H), κ.β7 (d, J = κ.6 Hz, 1H), 7.61 – 7.57 
(m, βH), 7.1κ – 7.1γ (m, βH), 6.76 (d, J = β.γ Hz, 1H), 6.7β (dd, J = κ.7, β.4 Hz, 1H), 4.0β (s, 
γH), γ.κ5 (s, γH). 13C NMR (101 MHz, d6-DMSO) δ 16β.0, 15κ.1, 14λ.β, 1γ0.λ, 1β1.4, 111.0, 
106.β, λκ.6, 55.κ, 55.5. 

 
The compound 14e was prepared as described in the general procedure A (10λ.γ mg) in 7κ% 
yield. 1H NMR (400 MHz, d6-DMSO) δ 1γ.βλ (br, 1H), κ.γ6 (d, J = κ.1 Hz, βH), 7.λβ (d, J = 

κ.β Hz, βH), 7.64 (s, 1H), 7.4γ (s, 1H), 7.1γ – 7.0κ (m, 1H). 13C NMR (101 MHz, d6-DMSO) 
δ 1γγ.7, 1γ0.γ, 1βλ.λ, 1βλ.6, 1βλ.γ, 1βκ.β, 1βκ.1, 1β7.λ, 1β7.1, 1β6.0 (q, J = γ.κ Hz), 1β5.4, 
1ββ.7, 1β0.0. 19F NMR (γ76 MHz, d6-DMSO) δ -61.γ. 

 
The compound 14g was prepared as described in the general procedure A (κ1.κ mg) in 75% 
yield. 1H NMR (400 MHz, d6-DMSO) δ 1γ.07 (br, 1H), 7.κγ (dd, J = γ.7, 1.β Hz, 1H), 7.7γ 
(dd, J = 5.1, 1.β Hz, 1H), 7.56 – 7.5γ (m, 1H), 7.γ6 (d, J = λ.4 Hz, 1H), 7.βγ (dd, J = 5.0, γ.6 
Hz, 1H), 7.05 (td, J = 10.0, β.5 Hz, 1H). 13C NMR (101 MHz, d6-DMSO) δ 15λ.λ, 157.5, 14κ.4, 
1γγ.γ, 1βλ.0, 1βκ.γ, 1β6.λ, 110.γ, 110.1. 19F NMR (γ76 MHz, d6-DMSO) δ -11λ.5, -1β1.β. 
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The compound 14h was prepared as described in the general procedure A (6β.6 mg) in 6κ% 
yield. 1H NMR (γ00 MHz, d6-DMSO) δ 1β.λ1 (br, 1H), 7.λ4 (d, J = 1.γ Hz, 1H), 7.57 – 7.54 
(m, βH), 7.ββ – 7.17 (m, γH), 6.7γ (dd, J = γ.5, 1.κ Hz, 1H). 13C NMR (75 MHz, d6-DMSO) 
δ 145.5, 144.6, 14γ.6, 1ββ.β, 11β.γ, 110.4. 

 
The compound 14i was prepared as described in the general procedure A (κ7.4 mg) in κβ% 
yield. 1H NMR (400 MHz, d6-DMSO-5%T‑A) δ κ.κκ – κ.κ6 (m, 1H), κ.γλ (d, J = 7.λ Hz, 1H), 
κ.1κ (td, J = 7.κ, 1.7 Hz, 1H), 7.κγ (dd, J = λ.0, 4.6 Hz, 1H), 7.74 – 7.70 (m, 1H), 7.6β (dd, J 

= κ.6, β.4 Hz, 1H), 7.γλ (td, J = λ.4, β.5 Hz, 1H). 13C NMR (101 MHz, d6-DMSO-5%T‑A) δ 
161.5, 15λ.β, 15λ.1, 15κ.κ, 15κ.5, 15κ.1, 150.4, 14λ.6, 14λ.6, 14γ.β, 1γκ.6, 1γ4.1, 1γ4.0, 1γ0.4, 
1β7.γ, 1βγ.β, 11λ.7, 116.κ, 116.4, 116.γ, 114.6, 114.γ, 11γ.λ, 111.0, 101.γ, 101.0.  
19F NMR (γ76 MHz, d6-DMSO-5%T‑A) δ -75.4. 

 
The compound 14j was prepared as described in the general procedure A (115.1 mg) in λ5% 
yield. 1H NMR (γ00 MHz, d6-DMSO) δ 1β.κ6 (br, 1H), κ.10 (d, J = κ.7 Hz, βH), 7.54 (dd, J = 

κ.7, 4.λ Hz, 1H), 7.γ5 (dd, J = λ.5, β.5 Hz, 1H), 7.11 (d, J = κ.κ Hz, βH), 7.06 – 6.λλ (m, 1H), 
γ.κ4 (s, γH). 13C NMR (75 MHz, d6-DMSO) δ 160.7, 160.0, 156.λ, 15β.κ, 1βκ.0, 1ββ.4, 114.4, 
10λ.κ, 10λ.5, 55.γ. 19F NMR (γ76 MHz, d6-DMSO) δ -1β1.1. 

 
The compound 14k was prepared as described in the general procedure A (κλ.γ mg) in 6λ% 
yield. 1H NMR (500 MHz, CDClγ) δ 10.54 (br, 1H), κ.06 (d, J = κ.6 Hz, βH), 7.47 – 7.47 (m, 
1H), 7.4β (d, J = κ.6 Hz, 1H), 7.16 (dd, J = κ.6, 1.λ Hz, 1H), 6.κ7 (d, J = κ.κ Hz, βH), γ.7κ (s, 
γH). 13C NMR (1β6 MHz, CDClγ) δ 161.6, 15γ.κ, 1γλ.λ, 1γκ.1, 1βκ.6, 1βκ.γ, 1βγ.γ, 1ββ.0, 
115.κ, 114.κ, 55.5. 

 
The compound 14l was prepared as described in the general procedure A (λ0.1 mg) in λ0% 
yield. 1H NMR (400 MHz, CDClγ) δ 7.5κ – 7.5γ (m, βH), 7.βγ – 7.1λ (m, βH), β.λ7 – β.κλ (m, 
1H), β.1λ – β.14 (m, βH), 1.λ0 – 1.6β (m, 5H), 1.47 – 1.β4 (m, γH). 13C NMR (1β6 MHz, d6-
DMSO) δ 15κ.κ, 1γ4.λ, 1β5.6, 1β1.1, γ7.6, γ1.β, β5.5, β5.5.
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General Conclusion 

In summary, the research results presented in this thesis aimed at developing advanced eco-

friendly methodologies in the area of iron, manganese and rhenium-catalyzed 

(de)hydrogenation and hydroelementation reactions. To achieve such goals, innocent as well 

as non-innocent redox-active (tri- or bi-dentate cooperative) ligands have been shown 

impressive and promising results. NHC, cyclopentadienyl and organophosphorus based 

complexes have also reveals outstanding activities and selectivities. Notably, in-depth 

mechanistic studies will be crucial to elucidate reaction pathways, important steps in the 

elaboration of well-defined as well as in situ generated catalysts able to reach the best activity 

and selectivity. 

Initially, we reported the first examples of highly selective catalytic direct C-H borylation of 

a) styrene derivatives and b) terminal alkynes with pinacolborane (1.0 equiv.), using ‑e(PMeγ)4 

and ‑e(OTf)β/DABCO as catalyst systems, respectively. Both aryl and alkyl substituted 

alkynes were applied in the C-H borylation reactions. Noticeably, the mechanism study 

(involving D‑T calculations) of the dehydrogenative borylation of styrene shows that 

dehydroborylation is kinetically more favorable than hydroboration.  

 
Afterwords, N-heterocyclic carbene (NHC) based iron complexes ‑e(CO)4(IMes) and 

[Cp‑e(CO)β(IMes)][I] have been efficiently employed in the catalytic reductive amination 

reactions with hydrosilanes to access cyclic amines, including reductive amination of c) keto 

acids (particularly levulinic acid derivatives) with amines, d) β-formylbenzoic acid with 

amines, e) carbonyl derivatives with ω-amino fatty acids and f) dicarboxylic acids in the 

presence of amines. Broad substrate scopes have been achieved with a remarkable functional 

group tolerance as reducible groups such as carboxylic ester, amide, cyano and even acetyl, 

were well tolerated. The notable features of this protocol include the use of an ‐arth-abundant, 

nontoxic metal iron complex bearing N-heterocyclic carbene (NHC) ligand as the catalyst 

(5.0 mol%) in the presence of phenylsilane (β-6 equiv.) as the reducing agent at 100 oC and 

visible-light activation of the catalyst. 
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Manganese, the third most abundant transition metals after iron and titanium, could also be 

efficiently used in hydrosilylation reactions. Interestingly, with the commercially available 

Mnβ(CO)10 (5.0 mol%) or its group 7 congener Reβ(CO)10 (0.5 mol%) as catalysts and ‐tγSiH 

as an inexpensive silane source, three substratesμ g) carboxylic esters, h) carboxylic acids and 

i) carboxamides can be chemospecifically reduced leading directly to the corresponding 

protected aldehydes, namely acetals, and amines, in moderate to good yields by reaction at 

room temperature, under UV-L‐D irradiation (λ = γλ5-400 nm). ‑unctional groups, such as 

halides, amino, furyl, thienyl, pyridyl and internal C=C double bond, can be well tolerated. 

 
Besides hydrosilylation, we also explored the application of a series of well-defined manganese 

pre-catalysts featuring readily available bidendate pyridinyl-phosphine and β-picolylamine 

ligands in hydrogenation type reactions, namely j) hydrogenation of carbonyl derivatives,  

k) reductive amination of aldehydes with molecular hydrogen and l) transfer hydrogenation of 

aldimines in the presence of iPrOH. Those bidendate Mn complexes exhibited good catalytic 

performances under mild conditions with low catalyst loading and good functional group 

tolerance. Those procotols enlarged the scope of reactions catalyzed by manganese, 
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highlighting the rising potential of this non noble and ‐arth abundant transition metal in 

homogeneous catalysis. 
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In line with our interest in developing group 7 metals based catalysts, we have demonstrated 

that a series of new well-defined rhenium catalysts coordinated to amino-bisphosphino ligands 

can efficiently promote the m) hydrogenation of carbonyl derivatives, n) mono N-methylation 

of anilines with methanol, and o) synthesis of quinoline derivatives through acceptorless 

dehydrogenative coupling reaction with low catalyst loading and general substrate scope. 

 
On the other hand, efforts were also devoted to develop the Mn-catalyzed ligand- and additive-

free aerobic oxidation of amines to prepare aldimines, N-heteroaromatics and benzoimidazole 

derivatives. The catalytic process displayed a high tolerance towards a large variey of 

functional groups. 
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To conclude, catalysts based on inexpensive and abundant transition metals such as iron and 

manganese, as well as its related Group 7 rhenium can be efficiently applied in 

(de)hydrogenation and hydroelementation reactions, includingμ 

1) dehydrogenative borylation of styrenes and terminal alkynesν 

2) reductive amination reactions with hydrosilanes, hydrosilylation of carboxylic acids, esters 

and amidesν 

3) hydrogenation of carbonyl derivatives, transfer hydrogenation of aldimines, reductive 

amination of aldehydes with Hβν 

4) synthesis of mono N-methylated anilines with methanol via hydrogen borrowing reactions, 

and substituted quinolines, as well as  

5) aerobic oxidation of amines to prepare aldimines, N-heteroaromatics under ligand- and 

additive-free conditions. 

‑rom a sustainable development point of view, the results summarized in this thesis clearly 

reveal that an accurate design of the catalytic system is crucial to perform highly 

chemoselective and efficient transformations. The initial achievements should stimulate the 

utilization of these methodologies in large-scale synthesis and fine chemistry. 

In terms of catalytic reactions, several challenging transformations still have to be developed 

in years to comeμ i) the use of carbon dioxide as a C1 building block for catalytic methylation 

reactions and the efficient formation of formic acid, methanol and methane ii) the development 

of highly efficient and general asymmetric reduction of C=C and C=O moieties.  
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Résumé : L’objectif de ce travail doctoral a été de 
développer de nouvelles méthodes éco-compatibles 
pour réaliser efficacement des réactions de 
(dé)hydrogénation et d’hydroélémentation catalysées 
par des catalyseurs bien définis de fer, de 
manganèse et également de rhénium.  
La première partie de ce travail porte sur le 
développement des premiers exemples de réaction 
de borylation de dérivés styrènes et acétyléniques 
terminaux avec le pinacolborane via une réaction 
d’activation de liaison C-H catalysée par des 
systèmes à base de Fe(PMe3)4 ou de Fe(OTf)2/ 
DABCO.  
Dans une seconde partie, des complexes de fer à 
base de ligands carbènes N-hétérocycliques (NHC) 
tels que Fe(CO)4(IMes) et [CpFe(CO)2(IMes)][I] ont 
été efficacement utilisés pour la synthèse d’une 
grande variété d’amines cycliques (pyrrolidines, 
pipéridines et azépanes) via une réaction d’amination 
réductrice catalytique en présence d’hydrosilanes. De 
façon très intéressante, les catalyseurs commerciaux 
Mn2(CO)10 et Re2(CO)10 en présence de triéthylsilane, 
ont permis de réduire sélectivement les esters, acides 
carboxyliques et amides en acétals, alcools et amines 

correspondants. 

En complément de l’hydrosilylation, l’hydrogénation 
d’aldéhydes, cétones et aldimines a pu être 
efficacement menée grâce à l’utilisation de nouveaux 
précatalyseurs bien définis de manganèse à base de 
ligands bidentes facilement acccessibles tels que la 
pyridinyl-phosphine et la 2-picolylamine. 

Dans la continuité de notre intérêt pour le 
développement de nouveaux catalyseurs à base de 
métaux du groupe 7, une série de complexes de 
rhénium coordinés à des ligands amino-
bisphosphino a montré une excellente aptitude à 
promouvoir l’hydrogénation de composés carbonylés 
(aldéhydes, cétones), la mono-méthylation sélective 
d’amines avec le méthanol comme agent de 
méthylant durable et la synthèse quinolines 
substituées.  

La dernière partie de ce travail décrit le 
développement  d’oxydations aérobies d’amines 
pour préparer des aldimines, des composés N-
hétéroaromatiques et des dérivés de type 
benzoimidazole via une catalyse au manganèse en 
l’abscence de ligands ou d’additifs.  
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Keywords : Catalysis; Iron; Manganese; Rhenium; (De)Hydrogenation; Hydroelementation 
Abstract : This research work is aimed at developing 
advanced eco-friendly methodologies in the area of 
iron, manganese and rhenium-catalyzed 
(de)hydrogenation and hydroelementation reactions. 
Initially, we reported the first examples of highly 
selective catalytic direct C-H borylation of styrene 
derivatives and terminal alkynes with pinacolborane 
using Fe(PMe3)4 and Fe(OTf)2/DABCO as catalyst 
systems, respectively.  
Afterwards, N-heterocyclic carbene (NHC) based iron 
complexes Fe(CO)4(IMes) and [CpFe(CO)2(IMes)][I] 
were efficiently employed in the catalytic reductive 
amination reactions with hydrosilanes to access a 
large variety of cyclic amines (pyrrolidines, piperidines 
and azepanes). Interestingly, with the commercially 
available Mn2(CO)10 or Re2(CO)10 as catalyst and 
Et3SiH as an inexpensive hydrosilane source, 
carboxylic esters, acids and amides can be 
chemospecifically   reduced    to    the   corresponding

acetals, alcohols and amines. 
Besides hydrosilylation, we also explored the 
application of a series of well-defined manganese 
pre-catalysts featuring readily available bidendate 
pyridinyl-phosphine and 2-picolylamine ligands in 
hydrogenation reactions of aldehydes, ketones and 
aldimines. 
In line with our interest in developing group 7 metals 
based catalysts, we have also demonstrated that a 
series of amino-bisphosphino ligands coordinated 
rhenium catalysts can efficiently promote the 
hydrogenation of carbonyl derivatives, the mono N-
methylation of anilines with methanol and the 
dehydrogenative synthesis of substituted quinolines. 
Lastly we also developed the Mn-catalysed ligand- 
and additive-free aerobic oxidation of amines to 
prepare aldimines, N-heteroaromatics and 
benzoimidazole derivatives. 
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