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RESUME EN FRANÇAIS 
Le cerveau humain est un réseau complexe et les connexions entre les régions cérébrales sont 

cruciales pour le traitement de l'information. Une fonction cognitive efficace est garantie 

lorsque le cerveau reconfigure d’une manière dynamique l'organisation de son réseau durant le 

temps (Bola and Sabel, 2015). Il n’est donc pas surprenant que la science des réseaux ait 

contribué aux domaines des neurosciences et de la neurologie au cours de la dernière décennie 

(Bassett and Sporns, 2017).  

La neuroscience des réseaux (‘Network Neuroscience’) a été développée récemment pour 

mieux comprendre les systèmes neuronaux en adoptant des outils de la théorie des graphes. Ce 

domaine de recherche a fourni aux chercheurs une nouvelle opportunité d'évaluer, de quantifier 

et de caractériser les réseaux cérébraux complexes. Les études ont montré aussi que la plupart 

des troubles cérébraux, y compris les maladies neuro-dégénératives et mentales, sont également 

considérés comme des « maladies de réseau », c’est-à-dire qu’elles se caractérisent par des 

altérations du réseau cérébral structurel et/ou fonctionnel (Fornito et al., 2015; Stam, 2014). Du 

point de vue clinique, il existe donc une forte demande pour des nouvelles méthodes non 

invasives, basées sur les réseaux et faciles à utiliser, permettant d'identifier ces réseaux 

pathologiques dans la perspective de proposer de nouveaux outils de diagnostic et suivi 

thérapeutique. 

Les techniques de neuro-imagerie peuvent être utilisées pour identifier les réseaux cérébraux 

impliqués dans les fonctions cérébrales normales ainsi que dans les troubles neurologiques. 

Dans ce contexte, l'imagerie par résonance magnétique fonctionnelle (IRMf) s'est 

considérablement développée au cours des trois dernières décennies et est maintenant 

couramment utilisée pour caractériser la connectivité cérébrale fonctionnelle (Rogers et al., 

2007). Cependant, plusieurs fonctions cérébrales (normales ou pathologiques) sont très rapides 

et se produisent sur des périodes de temps très courtes (<1 seconde). De tels changements ne 

peuvent pas être suivis avec l’IRMf en raison de sa résolution temporelle intrinsèque faible (de 

l'ordre de 1 seconde). 

L'électroencéphalographie (EEG) est une technique non invasive unique (en plus de la 

magnétoencéphalographie MEG), qui permet de suivre la dynamique de l’activité cérébrale à 
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la milliseconde. Des études antérieures sur les analyses de la connectivité fonctionnelle à partir 

de l’EEG ont été principalement réalisées au niveau des électrodes, c’est-à-dire calculer le 

couplage statistique entre les signaux enregistrés par les capteurs au niveau du scalp. 

Cependant, l'interprétation des réseaux EEG obtenus au niveau scalp (au niveau des électrodes) 

n'est pas simple, car les signaux sont altérés par le « volume de conduction » (Brunner et al., 

2016; Van de Steen et al., 2016). La méthode appelée « connectivité de sources en EEG » est 

une des solutions potentielles qui réduit l’effet de ce problème et permet de suivre la dynamique 

des réseaux cérébraux large échelle tout en conservant l’excellente résolution temporelle de 

l’EEG (Hassan and Wendling, 2018; O'Neill et al., 2018).  

C’est dans ce contexte que s’inscrivent mes travaux de thèse qui prolongent les développements 

méthodologiques et cliniques de notre équipe de recherche sur la connectivité fonctionnelle au 

niveau des sources cérébrales. L’objectif de mes travaux de thèse est double : i) progresser sur 

les aspects méthodologiques de la méthode connectivité de sources en EEG et ii)  utiliser cette 

méthode dans une application clinique en lien avec les troubles de la conscience. Ma thèse se 

divise donc en deux grandes parties, avec deux études réalisées dans chaque partie. Dans la 

première partie (aspects méthodologiques), j’ai abordé, dans une première étude, la capacité de 

la méthode connectivité de sources en EEG à suivre les altérations dynamiques des réseaux 

cérébraux durant une tâche cognitive rapide. Puis dans une seconde étude, j’ai testé l’effet du 

problème de l’étalement spatial des sources sur la reconstruction des réseaux fonctionnels. Dans 

la deuxième partie (applications cliniques), j’ai analysé les altérations dans les réseaux 

cérébraux chez les patients souffrant d’un désordre de la conscience. 

Aspects méthodologiques 

Dans la première étude de la partie méthodologique, j’ai testé la capacité de la méthode 

connectivité de sources en EEG à suivre les modifications de la dynamique cérébrale durant 

une tâche cognitive. Nous avons choisi la tâche bien définie de dénomination d'objets visuels 

(DiCarlo et al., 2012), qui implique des processus cognitifs rapides (quelques centaines de ms, 

du début du stimulus à l’articulation) et j’ai déterminé la différence dans les réseaux 

fonctionnels dynamiques lors de la reconnaissance d'images significatives (‘meaningful’) et 

non significatives (‘meaningless’). De plus, j’ai proposé une nouvelle mesure appelée « 

occurrence » qui présente la probabilité que deux régions cérébrales quelconques tombent dans 

le même module (où les régions fortement interconnectés mais mal connectés à d'autres régions 
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sont groupées ensemble) au fil du temps, afin de suivre les changements modulaires des régions 

cérébrales. 

Dans ce but, des données EEG haute résolution (256 électrodes) ont été collectées de 20 sujets 

sains. J’ai estimé les réseaux cérébraux fonctionnels en utilisant la méthode connectivité de 

sources en EEG. Ensuite, en utilisant des algorithmes de modularité, j’ai suivi la reconfiguration 

de réseaux fonctionnels lors de la reconnaissance d'images significatives (‘meaningful’) et non 

significatives (‘meaningless’). Les résultats ont montré une différence dans les caractéristiques 

des modules concernant les deux conditions en termes d’intégration (interactions entre 

modules) et d’occurrence (la probabilité que deux régions du cerveau soient dans le même 

module durant une tâche). L'intégration et l'occurrence étaient plus importantes pour les images 

non significatives que pour les images significatives. Ces résultats, rapportés dans un article 

publié dans le « Journal of neural engineering » (Rizkallah et al., 2018), ont également révélé 

que l'occurrence dans les régions frontales droites et occipito-temporelle gauche peuvent 

prédire la capacité du cerveau à reconnaître et à nommer rapidement les stimuli visuels. 

Bien que la méthode connectivité de sources en EEG soit une technique prometteuse, elle reste 

perfectible et plusieurs problèmes méthodologiques restent ouverts  (Palva and Palva, 2012; 

Schoffelen and Gross, 2009; Van Diessen et al., 2015) dont l’ « étalement spatial des sources » 

(‘spatial leakage’) qui induit des connexions parasites entre sources proches correspondant à 

des régions adjacentes. Pour traiter ce problème, la plupart des approches existantes reposent 

sur l'hypothèse que  l’ « étalement spatial des sources » génère une connectivité exagérée ce qui 

se traduit par des corrélations à décalage de phase nul. Ainsi, ces méthodes ont résolu ce 

problème en supprimant les connexions à décalage nul (Nolte et al., 2004; Stam et al., 2007) ou 

en adoptant une approche fondée sur l'orthogonalisation (Brookes et al., 2012; Hipp et al., 2012; 

Pascual-Marqui et al., 2017). D’où le deuxième but de cette partie méthodologique, comparer 

plusieurs méthodes permettant de corriger le problème de l’étalement spatial des sources  et 

d’autres qui ne le corrigent pas afin de déterminer l’effet de la correction de fuite sur les réseaux 

reconstruits.  

Dans cette deuxième étude méthodologique, des signaux EEG à haute résolution (256 

électrodes) ont été collectés de 30 sujets sains à l’état de repos. J’ai estimé les réseaux cérébraux 

en utilisant la méthode connectivité de sources en EEG en adoptant plusieurs techniques 

(divisées en 2 familles) pour le calcul de la connectivité. La première famille, qui ne corrige 
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pas le problème de l’étalement spatial, comprend les méthodes appelées « indice de verrouillage 

de phase » (‘Phase Locking Value’ PLV) et « correlation de l’amplitude de l’enveloppe » 

(‘Amplitude Envelope Correlation’ AEC). La deuxième famille qui le corrige en supprimant 

les connexions à décalage nul compris l’ « indice de décalage de phase » (‘Phase Lag 

Index’  PLI) et deux méthodes d’orthogonalisation combinées avec les méthodes PLV et AEC. 

J’ai comparé les réseaux obtenus par chaque méthode de connectivité fonctionnelle avec le 

réseau IRMf obtenu au repos (du Human Connectome Project -HCP-, N = 487). Les résultats 

montrent de faibles corrélations pour tous les réseaux EEG obtenus, cependant les réseaux PLV 

et AEC sont significativement corrélés avec le réseau IRMf (ρ = 0.11, p = 1.93x10-8 et ρ = 0.06, 

p = 0.007, respectivement), alors que les autres méthodes ne le sont pas. Ces résultats, rapportés 

dans un article (en révision) dans « Brain Topography » (Rizkallah et al., 2019a), suggèrent que 

les méthodes qui corrigent le problème d’étalement spatial des sources (en supprimant les 

connexions à décalage nul) estiment des réseaux plus loin de ceux estimés à partir de l’IRMf.   

 Aspects cliniques 

La deuxième partie de ma thèse s’inscrit dans le contexte du projet européen LUMINOUS 

(H2020 FET-Open) dont l'objectif général est d'étudier, de modéliser et de quantifier la 

conscience. Plusieurs études ont associé les désordres de conscience à des altérations des 

réseaux cérébraux fonctionnels et/ou structurels (Amico et al., 2017; Annen et al., 2018). Les 

désordres de conscience englobent une variété d'états de conscience, tels que l’état d’éveil sans 

réponse ou l’état végétatif (EV, le patient est éveillé avec seulement des mouvements réflexes 

(Laureys et al., 2010)), l'état de conscience minimale (ECM, le patient fait des comportements 

reproductibles et intentionnels (Giacino et al., 2002)) et l’émergence de l’état de conscience 

minimale (EECM, caractérisé par une récupération de la communication fonctionnelle et / ou 

de l’utilisation d’objets (Giacino et al., 2002)). Nous manquons à ce jour des méthodes fiables 

pour évaluer objectivement le niveau de conscience chez les patients présentant des troubles de 

la conscience (Laureys et al., 2004). Plusieurs techniques de neuro-imagerie ont récemment 

révélé des résultats importants concernant les perturbations dans les réseaux cérébraux 

correspondant à ces états de perte de conscience, notamment l'IRMf (Demertzi et al., 2015; Di 

Perri et al., 2014; Di Perri et al., 2017), la tomographie par émission de positrons (Stender et 

al., 2014; Thibaut et al., 2012) et EEG obtenus au niveau du scalp (Chennu et al., 2017; Sitt et 

al., 2014). Plusieurs patients considérés comme inconscients ont présenté des signes de suivi 
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des commandes avec des études basées sur l’IRMf (Bardin et al., 2012; Monti et al., 2010b; 

Owen et al., 2006) et des paradigmes actifs (Cruse et al., 2012; Goldfine et al., 2011). 

Dans ce contexte, j’ai étudié l’apport de la connectivité fonctionnelle estimée à partir de l’EEG. 

J’ai analysé les altérations dans les réseaux cérébraux dans les désordres de conscience en 

utilisant la méthode connectivité de sources en EEG. Dans cette partie clinique, je me suis 

concentrées sur deux caractéristiques principales de réseau : l'intégration (traitement global de 

l'information) et la ségrégation (traitement local de l'information). Deux études ont été réalisées 

dans ce contexte: i) une analyse statique, dont l'objectif était de voir s'il existait un (des)équilibre 

entre l'intégration et la ségrégation du réseau chez les patients atteints de désordres de 

conscience et ii) une étude dynamique permettant de suivre les altérations dynamiques dans les 

réseaux cérébraux corticaux en fonction des états de conscience. 

Les données EEG haute résolution ont été collectées à Liège par le « coma science group » de 

82 participants à l'état de repos: 61 patients (EECM (n = 6), ECM (n = 46), et EV (n = 9)) et 21 

sujets sains. J’ai estimé les réseaux cérébraux fonctionnels dans cinq bandes de fréquence 

différentes (delta, thêta, alpha, bêta et gamma) à l'aide de la méthode connectivité de sources 

en EEG. J’ai utilisé des analyses basées sur la théorie des graphes pour évaluer leur relation 

avec les niveaux de conscience ainsi que les différences entre les groupes de volontaires sains 

et les groupes de patients. Les résultats sont rapportés dans un article publié dans « Neuroimage 

Clinical » (Rizkallah et al., 2019b). Ils ont montré que les réseaux de patients souffrant des 

désordres de conscience sont caractérisés par un traitement global de l'information altéré 

(l'intégration des réseaux cérébraux fonctionnels diminuait avec un niveau de conscience 

inférieur). En outre, j’ai pu identifier deux régions cérébrales à intégration réduite impliquées 

entre les groupes: le précuneus gauche (impliqué dans le traitement de soi, la prise de 

conscience et le traitement de l'information consciente) et le cortex orbitofrontal gauche 

(impliqué dans la sélection d'action en fonction de contextes sensoriels et dans la perception de 

la douleur). 

Finalement, j’ai exploré les changements dynamiques des structures modulaires du cerveau 

chez les patients qui ont des désordres de conscience en appliquant une nouvelle méthode 

développée dans l’équipe (Kabbara et al., 2019). Cette méthode consiste à évaluer la similitude 

entre les structures modulaires durant le temps et extraire les structures les plus représentatives 

de chaque group étudié. Les résultats ont montré que dans la bande gamma, les réseaux qui sont 



20  

 

les plus présents chez les sujets sains et ECM sont les réseaux cognitifs et moteurs (régions 

cingulate, préfrontales et centrales). Tandis que chez les sujets à l’état végétatif, j’ai trouvé le 

réseau visuel sensoriel. De même dans la bande beta, j’ai trouvé non  seulement les réseaux 

cognitifs et moteurs, mais aussi le réseau responsable du langage (les régions supramarginales 

associées avec les régions superiortemporales et précentrales à gauche) chez les sujets sains et 

ECM et qui disparaissent pour les sujets EV. Enfin, dans la bande alpha, les résultats montrent 

que les connexions fronto-pariétales (réseau attentionnel) présentes chez les sujets sains et ECM 

disparaissent chez les patients EV.  
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SUMMARY IN ENGLISH 
The human brain is a complex network and the connections between the brain regions are 

crucial for information processing. Cognitive function is guaranteed when the brain 

dynamically reconfigures its network organization over time (Bola and Sabel, 2015). It is then 

unsurprising that, in the last decade, network science has contributed to neuroscience and 

neurology (Bassett and Sporns, 2017). 

Network Neuroscience has recently been developed to better understand neural systems by 

adopting graph theory tools. This area of research has provided researchers with a new 

opportunity to evaluate, quantify and characterize complex brain networks. Studies have also 

showed that most brain disorders, including neurodegenerative and mental diseases, are 

considered as network diseases. They are characterized by changes in the structural and/or 

functional brain networks (Fornito et al., 2015; Stam, 2014). Thus, from a clinical point of view, 

there is a strong demand for new, non-invasive, network-based and easy-to-use methods to 

identify these pathological networks, in order to propose new diagnostic and therapeutic 

monitoring tools. 

Neuroimaging techniques can be used to identify brain networks involved in normal brain 

functions as well as in neurological disorders. In this context, functional magnetic resonance 

imaging (fMRI) has considerably developed during the last three decades and is now commonly 

used to characterize functional brain connectivity (Rogers et al., 2007). However, several brain 

functions (normal or pathological) are very fast and occur over very short time periods (<1 

second). Such changes cannot be tracked with fMRI due to its intrinsic low temporal resolution 

(on the order of 1 second). 

Electroencephalography (EEG) is a unique noninvasive technique (in addition to 

magnetoencephalography MEG), which tracks the dynamics of brain activity at millisecond 

time-scale. Previous studies on EEG functional connectivity have mainly been performed at the 

scalp level by computing the statistical coupling between the signals recorded by the sensors. 

However, the interpretation of the EEG networks obtained at the scalp (sensors) level is not 

simple, since the signals are altered by the volume conduction problem (Brunner et al., 2016; 

Van de Steen et al., 2016). EEG source connectivity is a potential solution which reduces the 
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effect of this problem and enables the tracking of large scale brain networks dynamics while 

maintaining the EEG excellent temporal resolution (Hassan and Wendling, 2018; O'Neill et al., 

2018). 

It is in this context that my thesis was carried out. My work here extends the methodological 

and clinical developments of our research team on functional connectivity at cortical level. The 

aim of my thesis work is twofold: i) to progress on the methodological aspects of the EEG 

source connectivity method and ii) to use this method in a clinical application related to the 

disorders of consciousness. My thesis is divided into two main parts, with two studies realized 

in each part. In the first part (methodological aspects), I approached, in a first study, the capacity 

of the EEG source connectivity method to track the brain network dynamic alterations during 

a fast cognitive task. Then in a second study, I tested the effect of the spatial leakage problem 

on the reconstructed functional brain networks. In the second part (clinical applications), I 

analyzed brain networks alterations in patients with disorders of consciousness, using static 

analysis in the first study and dynamic analysis in the second one. 

Methodological aspects 

In the first study of the methodological part, I tested the ability of the EEG source connectivity 

method to track brain dynamic changes during a cognitive task. We chose the well-defined 

visual object recognition and naming task (DiCarlo et al., 2012) which involves fast cognitive 

processes (a few hundred of ms, from stimulus onset to reaction) and I determined the 

differences in dynamic functional networks when recognizing meaningful and meaningless 

images. In addition, I proposed a new measure called "occurrence" which presents the 

probability of any two brain regions to fall into the same module (where highly interconnected 

regions and poorly connected to other regions are grouped together) over time, in order to track 

the brain regions’ modular changes. 

For this purpose, high resolution EEG data (256 electrodes) were collected from 20 healthy 

subjects. I estimated the functional brain networks using the EEG source connectivity method. 

Then, using modularity algorithms, I followed the reconfiguration of functional brain networks 

during the recognition of meaningful and meaningless images. The results showed a difference 

in the characteristics of the modules concerning the two conditions in terms of integration 

(interactions between modules) and occurrence (the probability of two brain regions to be in 
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the same module during a task). Integration and occurrence values were higher for non-

significant images than for meaningful images. These findings, reported in an article published 

in the “Journal of Neural Engineering” (Rizkallah et al., 2018), have also revealed that right 

frontal and left occipito-temporal regions occurrence can predict the brain's ability to recognize 

and to quickly name visual stimuli. 

Although EEG source connectivity method is a promising technique, it remains immature and 

several methodological questions remain open (Palva and Palva, 2012; Schoffelen and Gross, 

2009; Van Diessen et al., 2015). One of these methodological issues is the spatial leakage which 

induces spurious connections between adjacent brain regions. Most of the existing approaches 

to deal with this problem are based on the hypothesis that source leakage generates inflated 

connectivity manifesting as zero-phase-lag correlations. Thus, these methods solved this 

problem by removing zero-lag connections (Nolte et al., 2004; Stam et al., 2007) or by adopting 

an orthogonalisation-based approach (Brookes et al., 2012; Hipp et al., 2012; Pascual-Marqui 

et al., 2017). Hence, the second purpose of this methodological part is to compare several 

methods that correct the spatial leakage problem and others that don’t in order to test the effect 

of leakage correction on the reconstructed networks. 

In this second methodological study, resting state high-resolution EEG signals (256 electrodes) 

were collected from 30 healthy subjects then I estimated brain networks using EEG source 

connectivity by adopting several functional connectivity techniques (divided into 2 families). 

The first family that does not correct the leakage problem includes the Phase Locking Value 

(PLV) and the Amplitude Envelope Correlation (AEC). The second family that corrects this 

problem by removing zero-lag correlations includes the Phase Lag Index (PLI) and two 

orthogonalisation methods combined with PLV and AEC techniques. I compared the networks 

obtained by each functional connectivity method with resting fMRI network (collected from 

Human Connectome Project -HCP-, N = 487). Results showed weak correlations for all the 

EEG networks obtained. However the PLV and AEC networks were significantly correlated 

with the fMRI network (ρ = 0.11, p = 1.93x10-8 and ρ = 0.06, p = 0.007, respectively), while all 

other methods were not. These results, reported in an article (in revision) in "Brain Topography" 

(Rizkallah et al., 2019a), suggest that methods that correct the spatial leakage problem (by 

removing zero-lag correlations) estimate networks very differently from those estimated from 

fMRI. These results were also validated on MEG data collected in the context of the HCP. 



24  

 

 Clinical aspects 

The second part of my thesis is in the context of the European project LUMINOUS (H2020 

FET-Open) whose general objective is to study, model and quantify consciousness. Several 

studies have associated disorders of consciousness with functional and/or structural brain 

networks alterations (Amico et al., 2017; Annen et al., 2018). Disorders of consciousness 

encompass a variety of consciousness states, such as the unresponsive wakefulness syndrome 

(UWS, the patient is awake with only reflex movements (Laureys et al., 2010)), the minimally 

conscious state (MCS, the patient does reproducible and purposeful behaviors (Giacino et al., 

2002)) and the emergence from the minimally conscious state (EMCS, characterized by a 

recovered functional communication and/or object use (Giacino et al., 2002)). We lack to date 

reliable methods to objectively assess the level of consciousness in patients with disorders of 

consciousness (Laureys et al., 2004). Several neuroimaging techniques have recently revealed 

important results regarding brain network perturbations underlying these states of 

unconsciousness, notably fMRI (Demertzi et al., 2015; Di Perri et al., 2014; Di Perri et al., 

2017), positron emission tomography (Stender et al., 2014; Thibaut et al., 2012) and scalp EEG 

(Chennu et al., 2017; Sitt et al., 2014). Several patients considered unconscious showed signs 

of command-following with fMRI (Bardin et al., 2012; Monti et al., 2010b; Owen et al., 2006) 

and EEG active paradigms (Cruse et al., 2012; Goldfine et al., 2011). 

In this context, I studied the contribution of functional connectivity estimated from EEG 

signals. I analyzed the brain network alterations in patients with disorders of consciousness 

using the EEG source connectivity method. In this clinical part, I focused on two main network 

features: integration (global information processing) and segregation (local information 

processing). Two studies were performed: i) a static analysis, where the objective was to 

investigate if there is a balance between network integration and segregation in patients with 

disorders of consciousness and ii ) a dynamic study to track the dynamic alterations in cortical 

brain networks according to states of consciousness. 

The high-resolution EEG data were collected in Liège by the “coma science group” from 82 

participants at rest: 61 patients (EMCS (n = 6), MCS (n = 46), and UWS (n = 9))) and 21 healthy 

subjects. I estimated functional brain networks in five different frequency bands (delta, theta, 

alpha, beta, and gamma) using the EEG source connectivity method. I used graph theory-based 

analyzes to assess their relationship to the level of consciousness as well as the differences 
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between groups of healthy volunteers and patients. These results are reported in an article 

published in "Neuroimage Clincal" (Rizkallah et al., 2019b). They showed that networks of 

patients with disorders of consciousness were characterized by impaired global information 

processing (the functional brain networks integration decreased with lower level of 

consciousness). Moreover, I was able to identify two common anatomical brain regions with 

decreased integration that were involved between groups: the left precuneus (engaged in self-

related processing, awareness and conscious information processing) and the left orbitofrontal 

cortex (engaged in action selection depending on emotional and sensory contexts and in pain 

perception). 

Finally, I applied a new method developed very recently by our team (Kabbara et al., 2019) to 

explore the brain modular states dynamic changes in healthy subjects and patients with 

disorders of consciousness. This method consists of assessing the similarity between the 

modular states over time and extracting the most representative states for each group. Results 

in the gamma band were mostly seen in the cognitive and motor networks (cingulate, prefrontal 

and central regions) in healthy subjects and MCS patients, whereas in UWS patients, they were 

found mostly in the sensory visual network. As for the beta band, they were not only located in 

the cognitive and motor networks, but also in the language network (the supramarginal regions 

associated with the super-temporal and pre-central regions on the left) in healthy subjects and 

MCS, but not in the UWS patients. Finally, in the alpha band, states were found in the fronto-

parietal regions (attentional network) in healthy subjects and MCS patients but not in UWS 

patients. 
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CHAPTER 1: GENERAL 
INTRODUCTION 

The human brain is a network by nature: connections between neurons are crucial for 

information processing. An efficient cognitive function is guaranteed when the brain 

dynamically reconfigures its network organization at multiple time scales (Bola and Sabel, 

2015; Braun et al., 2015). It is therefore unsurprising that network science has contributed to 

the fields of neuroscience and neurology in the last decade (Bassett and Sporns, 2017). A 

relatively new research field, referred to as network neuroscience has provided researchers 

with an extraordinary opportunity to assess, quantify and understand the multifaceted 

features of complex brain networks, using graph theoretical analysis. On the other hand, 

emergent evidence shows that most brain disorders, including neurodegenerative diseases and 

mental illnesses, are also currently considered as network diseases, i.e. they are characterized 

by alterations in the structural/functional brain network (Fornito et al., 2015; Stam, 2014). Thus, 

the demand is high for non-invasive, network-based and easy-to-use methods to identify these 

pathological networks in the perspective of proposing new diagnostic and therapeutic follow-

up tools.  

Neuroimaging techniques can be used to identify brain networks involved in normal brain 

functions (picture naming, learning, etc.) as well as in neurological disorders. In this context, 

functional Magnetic Resonance Imaging (fMRI) has considerably developed during the past 

three decades and is now commonly used to characterize brain connectivity (Rogers et al., 

2007). However, several brain functions (normal or pathological) are very fast and occur over 

very short time periods (< 1second). Such changes cannot be tracked with fMRI due to intrinsic 

low time resolution (in the order of 1 s).  

Magneto/ Electro-encephalography (M/EEG) are unique non-invasive techniques which enable 

the tracking of brain dynamics on a millisecond time-scale. Most previous studies on M/EEG 

functional connectivity analyses were mainly performed at the sensor level, i.e. computing 

correlation between recorded signals from the sensors.  
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However, the interpretation of M/EEG networks obtained at the scalp level is not 

straightforward, since scalp/sensor M/EEG signals are corrupted by the volume conduction due 

to the head electrical conduction properties (Brunner et al., 2016; Van de Steen et al., 2016). 

EEG source-space connectivity is a potential solution which reduces the aforementioned 

volume conduction and enables the tracking of large-scale brain network dynamics on a sub-

second time-scale (Hassan and Wendling, 2018; O'Neill et al., 2018). In our first study, we 

tested the ability of this method to track brain dynamic changes during a cognitive task. 

We chose the well-defined visual object recognition and naming task (DiCarlo et al., 2012) 

which involves fast cognitive processes (a few hundred ms from stimulus onset to 

reaction). Moreover, we proposed a new graph measure called ‘occurrence’ which 

consists of measuring the probability of any two nodes to fall in the same module over 

time, to track the brain regions’ modular changes during time. 

Although EEG source connectivity is a promising technique, it is still immature and 

methodological aspects should be carefully accounted for to avoid pitfalls (Palva and Palva, 

2012; Schoffelen and Gross, 2009; Van Diessen et al., 2015). One of these methodological 

considerations is the spatial leakage problem (i.e. presence of spurious connections between 

adjacent regions). To deal with this problem, most existing approaches are based on the 

hypothesis that leakage generates inflated connectivity between estimated sources, which 

manifests as zero-phase-lag correlations. Thus, these methods dealt with the leakage problem 

by removing the zero lag connections (Nolte et al., 2004; Stam et al., 2007) or adopting 

orthogonalisation-based approach (Brookes et al., 2012; Hipp et al., 2012; Pascual-Marqui et 

al., 2017). In our second analysis, we presented a comparative study to test the effect of 

leakage correction on the reconstructed networks by comparing methods that correct the 

source leakage problem and those that do not.  

On the other hand, emerging evidence associates disorders of consciousness (DoC) with 

alterations in functional and/or structural brain networks (Amico et al., 2017; Annen et al., 

2018). DoC encompass a variety of consciousness states, such as the unresponsive wakefulness 

syndrome (UWS; wakefulness with only reflex movements) (Laureys et al., 2010; Monti et al., 

2010a), the minimally conscious state (MCS; reproducible and purposeful behavior) (Giacino 

et al., 2002), and emergence from the minimally conscious state (EMCS; characterized by 

recovered functional communication and/or object use) (Giacino et al., 2002). To date, we lack 
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reliable methods to objectively assess consciousness level in patients with disorders of 

consciousness (Laureys et al., 2004). 

Significant discoveries regarding the neural correlates underlying these states of 

unconsciousness have recently been made by several neuroimaging techniques including 

functional MRI (fMRI) (Demertzi et al., 2015; Di Perri et al., 2014; Di Perri et al., 2017), 

positron emission tomography (PET) (Stender et al., 2014; Thibaut et al., 2012) and scalp EEG 

(Chennu et al., 2014; Chennu et al., 2017; Sitt et al., 2014). Several patients considered 

unconscious showed signs of command-following with fMRI (Bardin et al., 2012; Monti et al., 

2010b; Owen et al., 2006) and EEG active paradigms (Cruse et al., 2012; Goldfine et al., 2011). 

In our study, we tackled the brain alterations in DOC using EEG source connectivity and 

focused on two network characteristics: integration (global information processing) and 

segregation (local information processing). Two studies were performed: i) A static analysis, 

where the objective was to investigate if a balance between network integration and 

segregation in DOC patients exists and to identify the involved brain regions that 

differentiate between different groups and ii) a dynamic study to track time-varying 

alterations in cortical brain networks as a function of clinical consciousness levels. 

This thesis was part of the Future Emerging Technologies (H2020-FETOPEN-2014-2015-RIA 

under agreement No. 686764, “LUMINOUS”) as part of the European Union’s Horizon 2020 

research and training program 2014–2018 (http://www.luminous-project.eu/). The general 

objective of the LUMINOUS project is to study, model, quantify, and alter observable aspects 

of consciousness. The conceptual framework of the project rests on information theoretic 

developments that link consciousness to the amount of information that a physical system can 

represent and generate as an integrated whole, and from the related idea that consciousness can 

be quantified by metrics reflecting information processing and representation complexity. This 

thesis was also financed by the AZM and SAADE Association, Tripoli, Lebanon. 

This manuscript is organized as follows: In chapter 2, we report the background of the brain 

networks and disorders of consciousness and we state the problems we aim to tackle. In chapter 

3, we describe all the materials and methods. Results are presented in chapter 4, under the form 

of published or under revision articles. For each article, a synthesis presenting the objectives, 

methods and results are provided. Finally, conclusions and perspectives are given in chapter 5.
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CHAPTER 2. 
BACKGROUND AND 

PROBLEM STATEMENT 
In this chapter, we describe the basic notions of the methods and approaches used during the 

thesis such as brain connectivity, graph theoretical approaches and network measures, in 

addition to some neuroimaging techniques and the EEG source connectivity method. From the 

application viewpoint, we introduce the basic notions and the clinical need of the brain disorders 

of consciousness. Finally, the general and specific objectives of this thesis will be described. 

2.1. Brain connectivity and graphs 
At the macroscopic scale, emerging evidence shows that brain functions arise from continuous 

communications between spatially distant brain regions, called brain connectivity (Bullmore 

and Sporns, 2009). Three main types of brain connectivity can be distinguished: structural, 

functional and effective connectivity (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010).  

The structural connectivity (Fig1.A), also known as anatomical connectivity, refers to a pattern 

of anatomical connections summarizing synaptic links between neurons at the micro scale or 

projections between brain regions (measured using diffusion imaging) at the macro scale. This 

physical organized connection pattern is symmetric and stable at short time range (seconds to 

minutes) and is subjected to significant morphological change at longer time scales (hours and 

days) (Dennis et al., 2013). A number of studies examined the structural brain networks at rest 

(Hagmann et al., 2008; Li et al., 2013; Van Den Heuvel and Sporns, 2011). Moreover, it has 

been shown that structural connectivity analysis is sensitive and detects alterations of brain 

networks in neurological diseases (Fornito et al., 2015; Liu et al., 2014; Mallio et al., 2015) and 

during development or learning (Hagmann et al., 2010; Scholz et al., 2009). 

Functional connectivity (FC) (Fig1.B) describes patterns of dynamic interactions, usually 

computed from time series data (recorded from functional neuroimaging techniques such as 

electro-encephalography (EEG), magneto-encephalography (MEG) or functional magnetic 
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resonance imaging (fMRI)) and estimates their statistical couplings. Unlike structural 

connectivity, FC may change over the sub-second scale. It can be estimated by calculating, for 

instance, the correlation, spectral coherence, phase-locking value or amplitude envelope 

correlation of all elements of the brain, regardless if they are directly connected or not (Goñi et 

al., 2014). In this thesis, we are interested in this type of brain connectivity (several FC methods 

will be fully described in section 3.2.2). The FC was widely used to study brain information 

processing at rest (Allen et al., 2014; Baker et al., 2014; Brookes et al., 2014; Kabbara et al., 

2017; Yuan et al., 2012), during task (Bassett et al., 2011; Hassan et al., 2015; O’neill et al., 

2017)  and to detect network disruptions in brain disorders (Chennu et al., 2017; Engels et al., 

2017; Hassan et al., 2016; Hassan et al., 2017; Kabbara et al., 2018). 

Effective connectivity consists of directed causal influences one brain region produces in 

another. It can be measured using methods such as Granger causality (Granger, 1969), transfer 

entropy or methods based on autoregressive models (Friston et al., 2003). Then, it is, like 

functional connectivity, time varying and can change rapidly (sub-second time scale). 

 
Figure 1: Brain connectivity. A) Structural connectivity refers to anatomical connections between neural 
elements such as fiber tracts connecting brain regions. B) Functional connectivity presents statistical 
dependencies between brain regions. C) Effective connectivity consists of directed causal influences one 
brain region produces in another. 

Mapping of brain connectivity is rapidly increasing (Fornito et al., 2016). It consists of 

presenting the network as graph (Bullmore and Sporns, 2009). Such mapping typically starts 

by identifying a set of nodes (or vertices), and then attempts to estimate the set of edges (or 

links) between these nodes. Depending on the nature of edges, graphs can be classified into four 

types: directed/undirected and weighted/binary graphs (Sporns, 2011). Graph can also be 

represented by connectivity matrices known as “adjacency matrices”, where nodes are 

represented by rows or columns, and edges are represented by matrix elements (Fig2). In 

directed graphs, an edge between two nodes represents the connection from a specific node to 

the other and the corresponding adjacency matrices are not symmetrical (Fig2.A and B). 
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However, in undirected graphs, edges do not have any direction and the connectivity matrices 

are symmetric (Fiedler, 1973) (Fig2.C and D). Binary or un-weighted graphs are obtained by 

applying a threshold on the adjacency matrices of the weighted graphs. In weighted networks, 

matrix elements are continuous values often normalized between 0 and 1. In contrast, in binary 

matrices, elements are either 0 (no connection) or 1 (connection exists). 

 
Figure 2: Graphs and adjacency matrices. A) Binary directed network. B) Weighted directed network. C) 
Binary undirected network. D) Weighted undirected network. 

2.2. Graph measures 
Once the brain network is modeled by a graph, several metrics can be extracted to describe the 

network properties at different levels (Rubinov and Sporns, 2010). Here we describe some of 

the most relevant measures in the context of brain network analysis. Some graph measures are 

illustrated in Fig3. 

2.2.1. Segregation (local) 
 Clustering coefficient: 

Clustering coefficient is one of the main measures used to quantify network segregation. It is 

defined as the number of existing connections between the neighbors’ node divided by all the 

possible connections between them (Watts and Strogatz, 1998) 
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 Modularity 

The modularity consists of partitioning a network into a number of clusters or modules, also 

called communities, where nodes in the same module are highly interconnected but poorly 

connected to other groups of nodes (Sporns and Betzel, 2016). Each module can act in parallel 

and nearly independently to achieve its goals, and the success or failure of each module does 

not affect other modules (Fornito et al., 2016). The intra-module degree is one of the features 

that can be extracted from modules to quantify network segregation. 

2.2.2. Integration (global) 
 Path length: 

A path length describes how close on average a node is connected to all the other ones. In a 

binary network, the path length between two nodes is the number of connecting edges. In a 

weighted network, the length of a path represents the sum of the edge weights (Sporns, 2011).  

 Global efficiency: 

Global efficiency is the average inverse shortest path length (Latora and Marchiori, 2001). It 

describes how efficiently the network shares information. A network with high global 

efficiency indicates that, on average, nodes are reached by short communications. 

 Participation coefficient 

The participation coefficient measures the diversity of a node inter-modular connections 

(Guimera and Amaral, 2005). Nodes with high participation coefficients interconnect multiple 

modules together.  

2.2.3. Hubness 
 Degree and strength: 

The degree is the number of connections of a node. The strength is another measure similar to 

the degree, but it considers the node weights and uses them in the weighted graphs. These 

measures provide information about how highly and strongly connected is the node. Generally, 

highly connected nodes are very influential on their neighbors (Bullmore and Sporns, 2009). 
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 Betweenness centrality: 

The betweenness centrality is the percentage of short paths that include the node (the shortest 

path length is the minimum distance or steps between two nodes) (Freeman, 1977). High 

betweenness centrality nodes have a large influence on the information flow through the 

network. It is also used to find hub nodes in a network. 

 Hubs: 

Hubs are nodes that connect communities, usually with a high degree, short average path length 

and high centrality. They play a key role in establishing and maintaining an efficient 

communication in a network. In addition, hubs can be classified into provincial (mostly 

connected to nodes within their own module) and connector hubs (connected to several different 

modules) (van den Heuvel and Sporns, 2013).  
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Figure 3: Illustration of some graph measures: degree, clustering coefficient, path length, modularity, 
participation coefficient and hubs (provincial and connector).  
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2.3. Neuroimaging techniques 
Neuroimaging techniques are used to map the brain activity. They are divided into two parts: 

structural and functional. As we are interested in the functional brain connectivity, we describe 

in these sub-sections the three main techniques used to map the functional brain activity at large 

scale. 

2.3.1. Functional magnetic resonance imaging (fMRI) 
fMRI (Fig4.A) is a non-invasive technique used to record brain activity by measuring the in 

vivo blood flow changes (Huettel et al., 2004). It measures the “blood oxygen level dependent” 

(BOLD) signals, a non-direct measure of the neural activity. Its concept is based on the fact that 

increased activity in a particular part of the brain increases oxygenated blood flow. This 

technique provides excellent spatial resolution (about 1-3 mm) but it is limited in temporal 

resolution since the BOLD response inferred from the hemodynamic changes takes time (1-2 

s) (Logothetis et al., 2001). Thus low temporal resolution (about 1second) is not sufficient to 

tracking the dynamics of brain networks at sub-second time scale, one of the main objectives 

of my thesis. 

2.3.2. Magneto-encephalography (MEG) 
The MEG (Fig4.B) detects the magnetic fields associated with the intracellular current flow 

within neurons. An important advantage of MEG is that magnetic fields are not attenuated or 

distorted when recorded from the sensor level (Gallen et al., 1995). Moreover, this technique 

has an excellent time resolution (below 1 ms). On the other hand, MEG involves greater 

practical difficulties, as it is expensive and its use for long time periods is very complicated as 

is the case in DoC patients for example.    

2.3.3. Electroencephalography (EEG) 
EEG (Fig4.C) records the fluctuations of the electric fields generated when neurons 

communicate, using electrodes placed on the scalp (Buzsaki et al., 2012). EEG consists of a 

wave that varies in time; it contains frequency components that can be analyzed separately. The 

main frequencies (rhythms) of the human EEG waves are delta (0.5 - 4.5 Hz), theta (5 - 8 Hz), 

alpha (8 – 13 Hz), beta (13 – 30 Hz) and gamma (30 – 45 Hz). The main advantage of the EEG 

technique are the excellent time resolution (in order of milliseconds), the non-invasiveness and 
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the ease-of-use at the patient’s bedside, which makes it very practical for patients with impaired 

consciousness for instance (Chennu et al., 2014; Chennu et al., 2017; Harrison and Connolly, 

2013). In this thesis, we used dense-EEG (256 electrodes). 

 

Figure 4: Neuroimaging techniques. A) Functional magnetic resonance imaging (fMRI). B) Magneto-
encephalography (MEG). C) Electro-encephalography (EEG). 

2.4. EEG source connectivity 
Until the last decades, most EEG FC studies were performed at the sensor level by computing 

the statistical couplings between recorded signals. However, the biological interpretation of 

corresponding network alterations is not straightforward, since scalp EEG signals can be 

severely corrupted by the “volume conduction” due to the head electrical conduction properties 

and the “field spread” since single brain source activity can be collected by multiple sensors 

(Brunner et al., 2016; Van de Steen et al., 2016; Van Diessen et al., 2015), see Fig5. Several 

studies have indeed reported the limitations of computing connectivity at the EEG scalp level 

(see for review (Hassan and Wendling, 2018; Schoffelen and Gross, 2009). Moreover, scalp 

analysis does not allow making inferences about interacting brain regions.  

 
Figure 5: Volume conduction problem. A) Ideally, each electrode measures brain activity from the source 
below it. (b) In reality, signals recorded at each electrode are generated from several sources.  
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A potential solution is the emerging technique called “EEG source connectivity” (De Pasquale 

et al., 2010; Hipp et al., 2012; Mehrkanoon et al., 2014), which is supposed to reduce the 

aforementioned problems by directly identifying the brain networks at the cortical level with a 

high time/space resolution (Hassan and Wendling, 2018). This method involves two main steps: 

i) solve the ill-posed EEG inverse problem to reconstruct the dynamics of brain sources and ii) 

compute the statistical couplings between the reconstructed sources, which will be described in 

the next chapter. 

2.5. Thesis objectives 
2.5.1. Methodological development 
The main advantages of the EEG source connectivity method is the possibility to provide high 

time /space resolution brain networks. On one hand, this method was used to track dynamics of 

brain networks during sub-second tasks such as press button task (O’neill et al., 2017), motor 

imagination task of right-hand flexion for instance (Edelman et al., 2015), and finger 

movements cued by visual stimuli (Babiloni et al., 2005). To what extent this method can 

differentiate between two conditions (meaningful vs. meaningless pictures) is less explored. 

Here, we chose the visual object recognition and naming task (DiCarlo et al., 2012) to test the 

ability of this method to track the brain dynamics (to assess how functional brain network 

modules dynamically reconfigure) during the recognition of two object categories 

(meaningful and meaningless pictures). Moreover, we used this technique to see if there is a 

correlation between network modularity and the reaction time of the participants when 

meaningful pictures are presented. During this study, we introduced a new parameter called 

‘the occurrence’ which present the probability of any two nodes to fall in the same module over 

time. Study details and results will be reported in chapter 4 – study 1. 

On the other hand, as this method involves several steps from de-noising the scalp signals to 

reconstructing the source signals, several methodological aspects should be carefully accounted 

for to avoid pitfalls. Some of these parameters were analyzed, such as the head model (Liu et 

al., 2018) and EEG reference choice (Hu et al., 2018; Liu et al., 2015).  “Source leakage” or 

“spatial leakage” is also one of the issue facing the source connectivity method (Hipp et al., 

2012) since the functional connectivity at the source level reduces the effect of the field spread 

but it does not totally suppress its effects (Brookes et al., 2012). Spurious connections can be 
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created between the estimated time-series of adjacent regions. This effect is called “source 

leakage” or “spatial leakage”.  

To deal with the aforementioned “source leakage” problem, few approaches have been 

proposed and they are centered on removing the edges between the very close sources (De 

Pasquale et al., 2010; de Pasquale et al., 2012). More recently, a number of methods were 

developed to remove zero-lag correlation based on the hypothesis that leakage generates 

inflated connectivity between estimated sources, which manifests as zero-phase-lag 

correlations (Brookes et al., 2012; Drakesmith et al., 2015). Un-mixing methods, called 

‘leakage correction’, have been reported to force the reconstructed signals to have zero cross-

correlation at lag zero. Some of the methods remove zero-lag connections when extracting FC 

measures as phase lag index (PLI) (Stam et al., 2007) or the imaginary coherence (ImCoh) 

(Nolte et al., 2004). Others remove the zero-lag connections before performing any connectivity 

analysis by adopting orthogonalisation-based approach (Brookes et al., 2012; Colclough et al., 

2015; Hipp et al., 2012; Pascual-Marqui et al., 2017). However, several studies described the 

presence of these connections and proved their importance since not all zero-lag connections 

are spurious (Gollo et al., 2014; Roelfsema et al., 1997). Accordingly, by removing these 

connections, true near zero-lag connections can still be undetected (Finger et al., 2016; Palva et 

al., 2018; Pascual-Marqui et al., 2017; Wang et al., 2018). 

Here, our objective is to study the effect of removing zero-lag connections on the 

reconstructed networks. Two families of FC methods were tested on rest EEG data: i) the FC 

metrics that do not remove the zero-lag-phase connectivity including the phase locking value 

(PLV) and the amplitude envelope correlation (AEC) and ii) the FC metrics that remove the 

zero-lag connections such as the phase lag index (PLI) and two orthogonalisation approaches 

combined with PLV (PLVCol – PLV combined with the symmetric orthogonalisation technique 

(Colclough et al., 2015) and PLVPas – PLV combined with the innovations orthogonalisation 

technique (Pascual-Marqui et al., 2017)) and AEC (AECCol – AEC combined with the 

symmetric orthogonalisation technique (Colclough et al., 2015) and AECPas –AEC combined 

with the innovations orthogonalisation technique (Pascual-Marqui et al., 2017)). FC matrices 

obtained were compared to fMRI connectivity matrices (used as a ground truth) in order to 

determine which connectivity network is the most similar and correlated to fMRI networks. 

Study details and results will be reported in chapter 4 – study 2.  
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2.5.2. Clinical application 

An emerging evidence in network neuroscience proved that neurological disorders are related 

to alterations in the structural and functional brain connectivity (Fornito and Bullmore, 2015; 

Fornito et al., 2015; Stam, 2014). Many studies were performed to compare between brain 

networks of healthy subjects and those of patients with brain disorders in order to identify 

alterations in networks associated with transition from normal to pathological state (Fornito et 

al., 2016; Monti et al., 2010b; Tijms et al., 2013).  

Network neuroscience has revealed valuable information about the functional networks 

involved in epilepsy (Jmail et al., 2016; Nissen et al., 2017), Alzheimer (Engels et al., 2017; 

Stam et al., 2006), schizophrenia (Alexander-Bloch et al., 2010; Bassett et al., 2008; Damaraju 

et al., 2014), depression (Lu et al., 2013; Zhang et al., 2011) and Parkinson disease (Baggio et 

al., 2015; Hata et al., 2016). The identification of the altered brain regions related to 

neurological diseases allowed better understanding of the neural mechanisms underlying brain 

disorders, and consequently better patients monitoring.  

One of these neurological pathologies is the disorders of consciousness (DOC). Severe brain 

injury can rob us of consciousness, whenever temporarily or forever. This can be caused by 

trauma to the head or by non-traumatic causes, such as hemorrhage or ischemia (Bagnato et al., 

2010). Patients surviving brain injury typically go through a sequence of progressive stages 

towards recovery (Giacino et al., 2014). These patients are mainly characterized by dissociation 

between awareness and arousal (Bernat, 2009; Laureys, 2005).   

Patients in coma show no signs of arousal or awareness. They typically only exhibit reflex 

activities and do not respond to external stimuli, even strong and obnoxious ones (Laureys et 

al., 2015). Patients who recovered from coma, but entered a vegetative state, have wake and 

sleep cycles but show no signs of awareness of the external world (remain unresponsive to any 

external stimulation). This state is known as the unresponsive wakefulness syndrome (UWS) 

(Laureys et al., 2010; Monti et al., 2010a). If the vegetative state persists for more than one 

month, the percentage of recovery becomes very low (only around 20% of UWS patients will 

regain responsiveness within two years (Estraneo et al., 2013)). When patients show minimal, 

non-reflexive, yet reproducible behavioral signs of consciousness, they are considered to be in 

the minimally conscious state (MCS) (Giacino et al., 2002). This group is subcategorized into 
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MCS- and MCS+ based on the level of complexity of the observed behavioral responses. MCS+ 

patients show the ability to understand language and follow simple commands (Bruno et al., 

2011; Bruno et al., 2012). Once patients restore reliable communication and/or functional object 

use, they are considered to emerge from MCS (EMCS) (Giacino et al., 2014; Laureys et al., 

2004). States of consciousness according to the level of awareness and arousal are presented in 

Fig6. 

 
Figure 6: States of consciousness according to the level of awareness and arousal. 

Establishing a proper clinical diagnosis in disorders of consciousness is not straightforward 

(Gantner et al., 2013). Behavioral clinical assessment methods like the Glasgow Coma Scale 

(Jones, 1979), the Coma Recovery Scale (CRS) (Giacino et al., 1991), or the Coma Recovery 

Scale Revised (CRS-R) (Giacino et al., 2004) are based on the observation of motor and oro-

motor behaviors at the bedside and measure patients behavioral responsiveness.  

However, absence of responsiveness does not necessarily correspond to absence of awareness 

(Giacino et al., 2014; Sanders et al., 2012). Some patients might have consciousness but not 

accessible through CRS-R (Gosseries et al., 2014; Schiff and Fins, 2016). Using only the CRS-

R has led to high rates of misdiagnosis of the true level of consciousness in these patients (more 

than 40% of UWS patients have reportedly been misdiagnosed) (Schnakers et al., 2009). A 

range of motor-independent neuroimaging technologies have been developed to avoid 
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diagnostic error intrinsic to behavioral assessment and help the clinical differentiation between 

different groups (Bruno et al., 2010; Di Perri et al., 2016; Sanders et al., 2012). 

Emerging evidence associates DoC with alterations in functional and/or structural brain 

networks, mainly those sustaining arousal and awareness (Amico et al., 2017; Annen et al., 

2016; Annen et al., 2018; Bodien et al., 2017; Boly et al., 2012; Fernández‐Espejo et al., 2012; 

Koch et al., 2016; Owen et al., 2009). Previous EEG network-based studies, in the context of 

DOC, have been performed at the scalp level (Chennu et al., 2014; Chennu et al., 2017; Estraneo 

et al., 2016) with satisfactory accuracies in classifying UWS and MCS patients (Chennu et al., 

2017; Engemann et al., 2018; Sitt et al., 2014). 

Since conscious processing involves synchronization of locally generated oscillations between 

remote groups of neurons (Melloni et al., 2007), high-density EEG functional connectivity at 

the source level is a promising approach to track such synchronizations. Our objectives was 

to i) explore the changes in the network topology (integration and segregation) as a 

function of clinical consciousness levels and ii) track dynamic functional networks 

alterations in the case of DoC patients. To do so, we combined EEG source connectivity with 

graph theory, applied to resting-state high-density-EEG (256 channels) data recorded from DoC 

patients, whose diagnosis has been established based on the Coma Recovery Scale-Revised 

(CRS-R). Two studies have been conducted in this context (static and dynamic). Studies details 

and results will be reported in chapter 4 – study 3 and study 4.  
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CHAPTER 3. MATERIALS 
AND METHODS 

In this chapter we present the materials and methods used in this thesis. First, we present the 

three databases used to achieve the objectives of this thesis: i) track the dynamic brain network 

modularity changes during the recognition of meaningful and meaningless visual images ii) 

study the effect of removing zero-lag connections on networks reconstruction and the effect of 

EEG montages and iii) track functional networks alterations in the case of DoC patients and 

identify brain regions involved between groups in a static and dynamic way. Second, we 

describe the methods used to solve the inverse problem and to obtain the functional connectivity 

matrices. Third, we present the concept of dynamic connectivity and the modularity analysis. 

3.1. Database 
3.1.1. Study 1: BrainGraph database (picture naming) 
Dense-EEG signals (256 channels, EGI, Electrical Geodesic Inc.) were recorded from twenty 

right-handed healthy participants (ten women and ten men; mean age 23 y). Experiments were 

performed in accordance with the relevant guidelines and regulations of the National Ethics 

Committee for the Protection of Persons (CPP), (BrainGraph study, agreement number 2014-

A01461-46, promoter: Rennes University Hospital), which approved all the experimental 

protocol and procedures. All participants in the study provided written informed consents.  

80 meaningful and 40 meaningless pictures (presented in Fig8), taken from the Alario and 

Ferrand database (Alario and Ferrand, 1999), were displayed on a screen as black drawings on 

a white background using E-Prime 2.0 software (Psychology Software Tools, Pittsburgh, PA). 

Subjects were asked to name the meaningful images. They were informed about the presence 

of meaningless pictures in the experiment and were instructed to say nothing when viewing 

them.  The same number of stimuli was used in the further analysis by selecting 40 meaningful 

images (the same for all subjects). 
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Figure 7: The meaningful (left) and meaningless (right) images used in the study. 
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A typical trial started with a fixation cross that lasted 1 s, then a random image was shown 

during 2.5 s and followed by a blank screen for 1 or 2 s (randomly selected) (see Fig9). Order 

of presentation was randomized across participants. The time between the picture onset and the 

beginning of vocalization recorded by the system was considered as naming latencies. The 

analysis was performed from the stimulus onset up to 500 ms following the stimulus in order 

to avoid muscle artifacts (due to articulation since the fastest response over trials and subjects 

was 535 ms). Errors in naming were discarded for the analysis.  

 

Figure 8: Picture naming experimental setup. The cognitive task consisted in naming visual stimuli of two 
categories: meaningful and meaningless pictures. 

Dense EEG system (EGI, Electrical Geodesic Inc., 256 electrodes) was used to record brain 

activity. EEG signals were sampled at 1 KHz and then band-pass filtered between 0.3 and 45 

Hz. For the preprocessing, EEGLAB (Delorme and Makeig, 2004) was used to remove the eye 

blinking effect (using ICA-based algorithm). For some subjects, few electrodes with poor signal 

quality were identified and interpolated using signals recorded by surrounding electrodes. The 

data of two females and 1 male participants were eliminated as EEG signals were very noisy 

due to electrodes impedance issues. 

3.1.2. Study 2: BrainGraph database (resting state) 
Dense-EEG signals (256 channels, EGI, Electrical Geodesic Inc.) were recorded from twenty 

right-handed healthy participants (ten women and ten men; mean age 23 y). Experiments were 

performed in accordance with the relevant guidelines and regulations of the National Ethics 

Committee for the Protection of Persons (CPP), (BrainGraph study, agreement number 2014-

A01461-46, promoter: Rennes University Hospital), which approved all the experimental 

protocol and procedures. All participants in the study provided written informed consents and 

were asked to relax for 10 minutes with their eyes closed during the acquisition without falling 

asleep.  

EEG signals were sampled at 1000 Hz, band-pass filtered within 0.1 - 45 Hz, and segmented 

into non-overlapping 40 s long epochs. Electrodes with poor signal quality (amplitude > 100 
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µV or < -100 µV) have been identified and interpolated using signals recorded by surrounding 

electrodes (spherical spline interpolating method, with a maximal distance between neighbors 

of 5 cm). Segments that have more than 20 electrodes interpolated have been excluded from 

the analysis. Three clean epochs per subject were then used for source estimation. One subject 

was excluded from the study due to noisy data. 

3.1.3. Study 3 and 4: DoC database 
Sixty-one patients (24 females, mean age 40 ± 14.5) and twenty-one healthy subjects (i.e. 

controls; 8 females, mean age 41 years ± 15.4) were included in this study (out of 115 patients’ 

recordings, only 61 were kept since the other recordings were excessively contaminated by 

artefacts (e.g., muscle artefacts)). Etiology was traumatic in 28 patients and non-traumatic in 

33. Time since injury was three years on average and ranged from nine days to 19 years. The 

Ethics Committee of the University Hospital of Liège approved this study. All healthy subjects 

and patients’ legal surrogates gave informed written consent for participation to the study. 

The CRS-R was repeated at least 5 times to minimize clinical misdiagnosis (Wannez et al., 

2017). Patient’s diagnosis was based on the best behaviors/highest item obtained over the 

repeated CRS-R assessments during the week of hospitalization (CRS-R response profile is 

presented in Fig9): patients were diagnosed as EMCS (n=6), MCS+ (n=29), MCS- (n=17) and 

UWS (n=9). The following demographic information (listed in Table 1) was also collected for 

each patient: age, gender, time since injury, traumatic or non-traumatic etiologies and best 

clinical diagnosis based on the CRS-R assessments.  
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Figure 9: CRS-R response profile (Giacino et al., 2004).  
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Table 1: Patients demographic information: age, gender, days since injury, traumatic (T) or non-traumatic 
(NT) etiology and clinical best diagnosis. 

Name Age Gender Days since injury Etiology Best diagnosis 
P1 27 F 1570 NT MCS+ 
P2 27 M 1542 T MCS+ 
P3 35 M 6950 NT UWS 
P4 60 M 9 NT MCS- 
P5 24 M 319 T MCS- 
P6 30 F 2406 NT MCS- 
P7 30 F 563 T MCS- 
P8 30 M 583 T MCS+ 
P9 50 M - T MCS+ 
P10 30 F - T MCS+ 
P11 46 M 528 T MCS+ 
P12 48 F - NT MCS- 
P13 37 M 1869 NT MCS- 
P14 59 F - NT MCS- 
P15 5 F - T MCS+ 
P16 24 M 2681 NT MCS+ 
P17 30 M 33 NT MCS+ 
P18 43 M 3139 T MCS- 
P19 45 F 491 NT UWS 
P20 57 M 390 NT MCS+ 
P21 25 F 308 NT MCS+ 
P22 23 M 421 T MCS+ 
P23 28 M 66 NT MCS- 
P24 53 M 1235 NT MCS- 
P25 24 M - T MCS+ 
P26 36 F - NT UWS 
P27 22 M 2972 T MCS- 
P28 23 M 2035 T MCS+ 
P29 73 M 28 NT MCS- 
P30 30 M 3337 T MCS+ 
P31 47 F - NT MCS- 
P32 65 M 674 T MCS+ 
P33 55 M - NT MCS+ 
P34 19 M 426 T MCS+ 
P35 39 F 1437 T MCS- 
P36 34 F 375 T EMCS 
P37 61 F 858 NT MCS+ 
P38 14 M 185 NT EMCS 
P39 26 F 112 NT UWS 
P40 35 M 4154 NT MCS+ 
P41 60 M 406 NT EMCS 
P42 62 M 672 NT UWS 
P43 67 F 1464 NT MCS+ 
P44 23 M 456 NT UWS 
P45 42 F 220 NT MCS- 
P46 72 M 3062 NT MCS+ 
P47 21 M 257 T UWS 
P48 30 M 402 T MCS- 
P49 28 M 2423 T EMCS 
P50 59 F 709 T MCS+ 
P51 51 F 347 NT UWS 
P52 25 M 1283 T MCS+ 
P53 42 M 1186 T EMCS 
P54 24 F 333 NT MCS- 
P55 43 F 40 T UWS 
P56 55 F 669 T MCS+ 
P57 54 M 387 NT MCS+ 
P58 38 M 541 T MCS+ 
P59 43 F 98 NT MCS+ 
P60 22 M 423 T MCS+ 
P61 33 F 308 NT EMCS 
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Resting state brain activity was recorded using a high-density EEG system (EGI, Electrical 

Geodesic Inc., 256 electrodes applied with a saline solution) with a sampling rate of either 250 

Hz or 500 Hz (which were down-sampled to 250 Hz for consistency). During data collection, 

patients were awake in a silent and dark room and had their eyes open for 20 to 30 min. An 

examiner was present during the whole acquisition to ensure that the patients remained awake. 

Tactile or auditory stimuli were administered if patients were closing their eyes. 

EEG data from 178 channels on the scalp were retained for analysis; neck, forehead and cheeks 

channels were discarded, since they are the most prone to muscular artifacts, as described in 

previous studies (Hassan et al., 2016; Kabbara et al., 2017). EEG signals were filtered between 

0.3 and 45 Hz and then re-referenced using the average reference (Tadel et al., 2011). Data were 

segmented into non-overlapping 40 s long epochs.  

All EEG epochs were visually inspected before Independent Components Analysis (ICA) was 

performed to remove eye blinking artifacts using EEGLAB (Delorme and Makeig, 2004). 

Electrodes with poor signal quality were interpolated in Brainstorm (Tadel et al., 2011), using 

signals recorded by surrounding electrodes (spherical spline interpolating method, with a 

maximal distance between neighbors of 5 cm). Segments that have more than 20 interpolated 

electrodes have been excluded from the analysis. Five clean epochs per subject were then used 

for source estimation. 

3.2. EEG source connectivity 
The EEG source connectivity method involves two main steps: i) solving the ill posed inverse 

problem and ii) choosing a functional connectivity measure among all the available ones 

(Fig10). 
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Figure 10: EEG source connectivity pipeline. EEG recorded at the scalp level are preprocessed before 
solving the inverse problem to obtain the regional time series. Finally, functional connectivity matrices are 
computed. 

3.2.1. Inverse problem 
The inverse problem consists in finding an estimate Ŝ(t) of the brain dipolar time-varying source 

parameters: position, orientation and magnitude given the EEG signals. According to the linear 

discrete equivalent current dipole theory, EEG signals X(t), measured from M electrodes, are 

considered as linear combinations of N dipolar time-varying sources S(t): 

( ) . ( ) ( )X t G S t N t   

Where G is the lead fields matrix of the dipolar sources and N(t) is the additive noise. Structural 

MRI and EEG signals were co-registered through identification of the same anatomical 

landmarks (left and right tragus and nasion) using brainstorm (Tadel et al., 2011). Individual 

structural MRI was recorded and used for study 1, while, MRI template “Colin27” (Holmes et 

al., 1998) was used for all other studies.  To compute the lead field matrix, using a multiple 

layer head model (volume conductor) and the electrodes positions are needed.  
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The head model explains how the electric currents or the magnetic fields generated at the source 

level reach the sensors (scalp level) after traversing the different tissues of the head (brain, skull 

and skin). The most used techniques to compute realistic head models are the Boundary 

Element Model (BEM) (Fuchs et al., 1998; Oostenveld and Oostendorp, 2002) and the Finite 

Element Model (FEM) (Zhang et al., 2006). These methods compute the individual specific 

head model by taking into account detailed features of the head anatomy. In our study, 

openMEEG toolbox (Gramfort et al., 2010) was used to compute a BEM head model.  

While the inverse problem is ill-posed (number of dipolar sources is much higher than the 

number of electrodes), the solution to this problem is not unique. Thus, mathematical and 

physical constraints (amplitude, position and orientation) should be added to obtain a unique 

solution (Becker et al., 2015). Usually, the current dipoles are homogeneously distributed over 

the cortex, and normal to the cortical surface. To determine the source positions, high resolution 

mesh surface (usually 15000 vertices) is used.  

Once the physical constraints are defined, time courses of a set of predefined brain regions 

(known as regions of interests -ROIs-) are estimated. Several anatomical and/or functional brain 

atlases can be used such as Desikan-Killiany composed of 68 ROIs (Desikan et al., 2006) or 

the Destrieux composed of 148 ROIs (Destrieux et al., 2010) for instance. Desikan-Killiany 

atlas (ROIS labels are listed in Table 2) was used for study 1. For the second and third study, a 

new anatomical framework was used, consisting of 221 ROIs identified by means of Desikan-

Killiany using freesurfer (Fischl, 2012).  
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Acronyms Name Acronyms Name 

LING L lingual L sFG L superiorfrontal L 

LING R lingual R sFG R superiorfrontal R 

periCAL L pericalcarine L rMFG L rostralmiddlefrontal L 

periCAL R pericalcarine R rMFG R rostralmiddlefrontal R 

CUN L cuneus L cMFG L caudalmiddlefrontal L 

CUN R cuneus R cMFG R caudalmiddlefrontal R 

LOG L lateraloccipital L pOPER L parsopercularis L 

LOG R lateraloccipital R pOPER R parsopercularis R 

ENT L entorhinal L pTRI L parstriangularis L 

ENT R entorhinal R pTRI R parstriangularis R 

paraH L parahippocampal L pORB L parsorbitalis L 

paraH R parahippocampal R pORB R parsorbitalis R 

TP L temporalpole L LOF L lateralorbitofrontal L 

TP R temporalpole R LOF R lateralorbitofrontal R 

FUS R fusiform R MOF L medialorbitofrontal L 

FUS L fusiform L MOF R medialorbitofrontal R 

STG L superiortemporal L FP L frontalpole L 

STG R superiortemporal R FP R frontalpole R 

ITG L inferiortemporal L preC L precentral L 

ITG R inferiortemporal R preC R precentral R 

MTG L middletemporal L paraC L paracentral L 

MTG R middletemporal R paraC R paracentral R 

TT L transversetemporal L postC L postcentral L 

TT R transversetemporal R postC R postcentral R 

BSTS L bankssts L rACC L rostralanteriorcingulate L 

BSTS R bankssts R rACC R rostralanteriorcingulate R 

SMAR L supramarginal L cACC L cAUDalanteriorcingulate L 

SMAR R supramarginal R cACC R cAUDalanteriorcingulate R 

SPL L superiorparietal L PCC L posteriorcingulate L 

SPL R superiorparietal R PCC R posteriorcingulate R 

IPL L inferiorparietal L iCC L isthmuscingulate L 

IPL R inferiorparietal R iCC R isthmuscingulate R 

PCUN L precuneus L INS L insula L 

PCUN R precuneus R INS R insula R 

Table 2 : Summary of the 68 ROIs derived from the Desikan-Killiany atlas. 
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To solve the mathematical constraint, several methods can be used (see (Becker et al., 2015) 

for review). In this thesis, the weighted minimum norm estimate (wMNE), which aims to 

identify sources with the smallest energy, was used to reconstruct the cortical sources by 

introducing a weighting matrix:  

T 1 T

wMNE X X
G W G I G W XS   ( )ˆ

 

where the diagonal matrix Wx is built from the lead field matrix G with non-zero terms inversely 

proportional to the norm of the lead field vectors. The choice of the regularization parameter λ 

is important: many approaches have been proposed to estimate it although there is no agreement 

on any optimal solution. Here, λ is computed relatively to the signal to noise ratio (λ=0.1 in our 

analysis). Finally, reconstructed regional time series were filtered in six different frequency 

bands: Delta (0.5 Hz - 4 Hz), Theta (4 Hz - 8 Hz), Alpha (8 Hz - 13 Hz), Beta (13 Hz - 30 Hz), 

Gamma (30 Hz - 45 Hz) and broadband (0.5 Hz - 45 Hz) before performing the connectivity 

analysis.  

3.2.2. Functional connectivity (FC) 
Functional connectivity (FC) measures represent the statistical dependencies between brain 

regions. Several methods have been proposed to characterize the brain functional connectivity. 

Some of the most used measures are: Phase Locking Value (PLV), Phase Lag Index (PLI), 

weighted Phase Lag Index (wPLI), Amplitude Envelope Correlation (AEC), Coherence (Coh), 

Imaginary part of the coherence (ImCoh), Partial Coherence (PC), Mutual information (MI), 

etc. 

These connectivity measures are divided into two families: i) FC measures that keep zero lag 

connections such as PLV, AEC, Coh, etc. and ii) FC measures that remove zero lag connections 

such as PLI, wPLI, Imcoh, etc. In this thesis, we tested three FC measures: PLV, PLI and AEC 

in order to study the effect of removing zero lag connections on the reconstructed networks. 

PLV was used for the last two studies.  

 Phase Locking Value (PLV) 

The phase locking value between two signals x and y is defined as (Lachaux et al., 1999):  
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where φy(t) and φx(t) are the phases of the signals x and y at time t extracted using the Hilbert 

transform. δ denotes the size of the window in which PLV is calculated. Here, we used a sliding 

window technique for each epoch to compute the FC matrices in a dynamic way (De Pasquale 

et al., 2016). The smallest window length recommended by (Lachaux et al., 2000) was used, 

equal to 
  

 

number of cycles

central frequency
 where the number of cycles at the given frequency band is equal to 

six. PLV method is normalized so values range from 0 (independent signals) to 1 (fully 

synchronized signals). 

 Phase Lag Index (PLI) 

The PLI was introduced as an alternative measure of PLV and less sensitive to the influence 

field spread and amplitude effects. It is defined as follows (Stam et al., 2007):  

( ) ( )y xPLI sign t t      

Where φy(t) and φx(t) are the phases of the signals x and y at time t and 〈〉 denotes the average 

over the time. PLI method is normalized so values range from 0 (independent signals) to 1 (fully 

synchronized signals). 

 Amplitude Envelope Correlation (AEC) 

The envelopes of the regional time series were estimated using Hilbert transform then Pearson 

correlation between amplitude envelopes can be computed (Brookes et al., 2004).  

FC values estimated between all pairs of ROIs using one of the mentioned connectivity 

measurements leads to connectivity matrix of dimension N x N, where N denotes the number 

of ROIs. For the dynamic analyses, we used PLV with the sliding window approach. The 

regional time series were segmented into non-overlapping time windows of length δ. Then, at 

each time window, a functional matrix was computed. Finally, a dynamic connectivity tensor 

(dimension: NxNxL, L = number of windows) was obtained. 
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3.3. Orthogonalisation approach 
As mentioned previously, some of the connectivity methods seeking to be robust to source 

leakage remove zero lag-connections directly (Nolte et al., 2004; Stam et al., 2007). In other 

hand, some researchers attempt to correct for leakage before performing connectivity methods 

using the orthogonalisation approach (Brookes et al., 2012; Colclough et al., 2015; Hipp et al., 

2012; Pascual-Marqui et al., 2017). Two orthogonalisation techniques were tested in this thesis: 

the “symmetric orthogonalisation” technique developed by (Colclough et al., 2015) and the 

“innovations orthogonalisation” method proposed by (Pascual-Marqui et al., 2017). 

The “symmetric orthogonalisation” approach was used to correct for signal leakage by 

removing any correlations with zero temporal lag between all ROIs. The corrected time-series 

are constructed in two stages, as illustrated in Fig11. First, the closest set of orthonormal time-

courses was found. Second, the normality constraint was taken into consideration and the 

solution was refined by iteratively adjusting the lengths and orientations of the corrected vectors 

until converging to a solution as close as possible to the uncorrected time-courses (Colclough 

et al., 2015). 

The “innovations orthogonalisation” removes the spurious zero-lag interactions, by estimating 

the required orthogonalisation on the residuals of a multivariate autoregressive processes which 

requires the choice of an appropriate model order for the multivariate autoregressive process. 

The model order is estimated using Akaike's information criterion (AIC) (Akaike, 1974). 
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Figure 11: Symmetric orthogonalisation approach. The correlations between ROIs introduced during 
source reconstruction can be removed by mutually orthogonalising the ROI time-series, illustrated here for 
two vectors in two dimensions. An optimal set of corrected time-series is reconstructed by iterating towards 
the closest set of orthogonal vectors to the starting time-series. The process is initialized with the closest 
orthonormal matrix to the uncorrected vectors, then adjusts in turn the vector magnitudes and orientations 
to minimize the Euclidean distance between the corrected and uncorrected time-series, adapted from 
(Colclough et al., 2015).  

3.4. Modularity 
The modularity consists of partitioning a network into a number of clusters or modules (also 

called communities) where nodes are more connected internally with each other than with other 

external parts of the network. The strongly connected nodes in a module share common 

functions when weakly connected nodes in different modules have their functions segregated 

from each other.  

Modularity maximization method was proposed to partition the network into non 

overlapping modules by maximizing the modularity index Q (Blondel et al., 2008) defined as: 
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A partition achieves a greater value closer to unity of the modularity index Q if the communities 

are more internally dense than would be expected by chance (Good et al., 2010). Q measures 

the difference between the observed connectivity within modules and its expected value for a 

random graph with the same degree sequence (in the case of binary graph).  

To track the modularity of the brain dynamically, the functional connectivity matrices were 

split into time-varying modules using a multislice community detection algorithm (Mucha et 

al., 2010). It consists of introducing a coupling parameter that links nodes across slices (each 

node is only connected to itself in the adjacent layers) before performing the modularity 

maximization procedure (Fig12) (Bassett et al., 2011; Bassett et al., 2013; Bassett et al., 2015).  

 
Figure 12: Multislice modularity approach. A coupling parameter that links nodes across time windows is 
introduced before performing the modularity maximization procedure to dynamically track modules 
changes during time. 
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The multislice modularity is defined as: 
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where nodes i and j are assigned to communities Mil and Mjl in layer l respectively. Aijl represents 

the weight of the edge between these two nodes and γl is the structural resolution parameter of 

layer l. Cjlr is the connection strength between node j in layer r and node j in layer l. The 

structural resolution parameter γ and the inter-layer coupling parameter C are usually set to 1. 

kil is the strength of node i in layer l, the δ-function δ(x, y) is 1 if x = y and 0 otherwise, 

1

2
  ij

ij

m A and 
1

2
   jr

jr

k . This yields for every brain region at every time window a 

community assignment reflecting the module allegiance. 

However, slightly different outputs can result after running the same algorithm on the same 

connectivity matrix due to a degeneracy problem in the modularity algorithms (Good et al., 

2010). Hence, the multilayer network modularity was computed 100 times and a 221 by 221 

association matrix was generated (Bassett et al., 2013; Fornito et al., 2016; Lancichinetti and 

Fortunato, 2012). The association matrix elements indicate the number of times each node was 

assigned to the same module with the other nodes across these 100 partitions. The association 

matrix was then compared to a null-model generated from 100 random permutation from the 

originals partitions, and only significant values (p < 0.05) were kept (Bassett et al., 2011). 

Finally, the Louvain algorithm (Blondel et al., 2008) was applied on the association matrix to 

cluster the network, resulting in a partition that is the most representative of network 

modularity. In study 1 and 3, a final consensus matrix was calculated over time for each 

subject. However, in study 4, the dynamic aspect was conserved and the dynamic matrices 

obtained for each subject were used in the analysis. 

3.5. Modular states algorithm 
The categorical version of the modular states algorithm developed by (Kabbara et al., 2019) 

was used in this study in order to find the main modular structures over time. It consists of 

decomposing each temporal brain network into a modular structure using modularity methods, 

then assessing the similarity between the resultant temporal modular structures. This yields to 
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a T*T similarity matrix where T is the number of time windows.  Then, the algorithm clusters 

the similarity matrix into “categorical” modular states (MS) using the consensus modularity 

method which combines similar temporal modular structures in the same community (Fig13). 

 
Figure 13: Modular states algorithm pipeline. (A) Computing the modules for the dynamic networks using 
multislice modularity method then (B) computing the similarity between the dynamic modular structures 
and clustering the similarity matrix into “categorical modules (adapted from by (Kabbara et al., 2019)).  
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CHAPTER 4. RESULTS 
In this chapter, a brief summary of each study is presented, followed by the full-text of the 

corresponding published or submitted article. 

Study 1: Dynamic reshaping of functional 
brain networks during visual object 
recognition 
J. Rizkallah, P. Benquet, A. Kabbara, O. Dufor, F. Wendling, M. Hassan  

Published in: Journal of neural engineering (2018) 

Objectives: recent studies showed that the brain’s modular organization allows for better and 

efficient cognitive performance which occur in a sub-second time scale, such as the visual 

object recognition. Two questions were raised in this study: i) does the dynamic brain network 

modularity change during meaningful and meaningless pictures recognition? And (ii) is there a 

correlation between network modularity and the participants’ reaction time? 

Methods: Dense-electroencephalography (EEG, 256 channels) data were collected from 20 

healthy participants performing a cognitive task consisting of naming meaningful (tools, 

animals…) and meaningless (scrambled) images. EEG source connectivity method was used to 

estimate the functional brain networks in both categories. Finally, multislice modularity 

algorithm was used to track the dynamic reconfiguration of functional networks during the 

recognition of both meaningful and meaningless images. 

Results: A difference in the modules’ characteristics of both conditions in term of integration 

and occurrence was found. They were greater for meaningless than for meaningful images. 

Results revealed also that the occurrence within the right frontal regions and the left occipito-

temporal can help to predict the ability of the brain to rapidly recognize and name visual stimuli. 

We speculate that these observations are applicable not only to other fast cognitive functions 

but also to detect fast disconnections that can occur in some brain disorders. 

Key words: brain networks, dense EEG, object recognition  
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Introduction

Information is continuously processed and integrated in the 
human brain. To ensure efficient cognitive function, complex 
brain networks are characterized by two key features. On the 
one hand, recent studies show that their modularity facilitates 

information processing as compared to non-modular organi-
zation (Sporns and Betzel 2016). Typically, in a large study 
of 77 cognitive tasks, Bertolero et al showed that the presence 
of network modules (defined as a set of brain regions strongly 
connected to each other and weakly connected to the rest of 
the network) is correlated with different cognitive functions 
such as memory, visual processing and motor programming 
(Bertolero et al 2015).
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Abstract
Objective. Emerging evidence shows that the modular organization of the human brain allows 
for better and efficient cognitive performance. Many of these cognitive functions are very fast 
and occur in a sub-second time scale such as the visual object recognition. Approach. Here, we 
investigate brain network modularity while controlling stimuli meaningfulness and measuring a 
participant’s reaction time. We particularly raised two questions: i) does the dynamic brain network 
modularity change during the recognition of meaningful and meaningless visual images? And (ii) 
is there a correlation between network modularity and the reaction time of the participants?

To tackle these issues, we collected dense-electroencephalography (EEG, 256 channels) data 
from 20 healthy human subjects performing a cognitive task consisting of naming meaningful 
(tools, animals…) and meaningless (scrambled) images. Functional brain networks in both 
categories were estimated at the sub-second time scale using the EEG source connectivity 
method. By using multislice modularity algorithms, we tracked the reconfiguration of 
functional networks during the recognition of both meaningful and meaningless images. Main 
results. Results showed a difference in the module’s characteristics of both conditions in 
term of integration (interactions between modules) and occurrence (probability on average of 
any two brain regions to fall in the same module during the task). Integration and occurrence 
were greater for meaningless than for meaningful images. Our findings revealed also that the 
occurrence within the right frontal regions and the left occipito-temporal can help to predict the 
ability of the brain to rapidly recognize and name visual stimuli. Significance. We speculate that 
these observations are applicable not only to other fast cognitive functions but also to detect fast 
disconnections that can occur in some brain disorders.

Keywords: brain networks, dense EEG, object recognition
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On the other hand, emerging evidence shows that the 
dynamic behavior of brain networks is fundamental to under-
stand cognition (Bassett et  al 2015). Typically, during a 
learning task, Basset et al showed that the flexibility (defined 
as how often a given node changes its modular affiliation over 
time) of the networks facilitates the prediction of individual 
future performances in next learning sessions (Bassett et  al 
2011). Both flexibility and integration (defined as the interac-
tions between modules) in the frontal lobe during a 2-back 
working memory task were shown to be correlated with the 
performance accuracy (Braun et al 2015).

All the above-mentioned studies were performed using 
fMRI, the spatial resolution of which allows for appropriate 
identification of brain areas involved in considered cognitive 
processing. However, most of cognitive processes occur on a 
very short duration and are likely to involve modular dynamic 
changes occurring at sub-second time scale. Unfortunately, 
such changes cannot be tracked with fMRI due to intrinsic 
time resolution (on the order of 1 s). Therefore, our knowledge 
about the dynamic modifications of the modular organization 
of brain networks at a sub-second time-scale during cognitive 
activity remains elusive.

To tackle this issue, i.e. to assess how functional brain net-
work modules dynamically reconfigure to ensure information 
processing and integration, we chose the well-defined visual 
object recognition and naming task (DiCarlo et  al 2012) 
which involves fast cognitive processes (a few hundred of ms 
from stimulus onset to reaction). In order to guarantee suf-
ficiently fast tracking of functional brain networks, we col-
lected dense-electroencephalography (EEG, 256 channels) 
data from 20 healthy human subjects performing a cognitive 
task consist of naming meaningful (tools, animals…) and 
meaningless (scrambled) visual stimuli. Functional brain net-
works in both categories were estimated using ‘dense-EEG 
source connectivity’ method (Hassan and Wendling 2018). 
By applying multislice modularity algorithms to neocortical 
networks, we tracked the reconfiguration of brain modules 
at sub-second time scale during the recognition of these two 
object categories. Results showed that two relevant param
eters, namely the integration and occurrence (defined as the 
probability on average of any two brain regions to fall in the 
same module during the task) parameters, exhibited stronger 
values for meaningless as compared with meaningful images. 
Our findings also revealed that the occurrence within the right 
frontal regions and the left occipito-temporal can help to pre-
dict the ability of the brain to rapidly recognize and name 
meaningful visual stimuli.

Materials and methods

Participants

Twenty healthy volunteers (ten women and ten men; mean 
age 23 y) with no neurological diseases participated in this 
study (the data of two females and 1 male participants were 
eliminated as EEG signals were very noisy due to elec-
trodes impedance issues). 80 meaningful and 40 meaningless 

pictures (figure S1 (stacks.iop.org/JNE/15/056022/mmedia)), 
taken from the Alario and Ferrand database (Alario and 
Ferrand 1999), were displayed on a screen as black draw-
ings on a white background and the participants were asked 
to name the presented images. The same number of stimuli 
was used in the further analysis by selecting 40 meaningful 
images (the same for all subjects). E-Prime 2.0 software 
(Psychology Software Tools, Pittsburgh, PA) was used to dis-
play the pictures.

A typical trial started with a fixation cross that lasted 
1 s, then the image was shown during 2.5 s and followed by 
a blank screen for 1 or 2 s (randomly selected) (figure 1(A), 
see also table S1 for more details about the images used in 
the study). The time between the picture onset and the begin-
ning of vocalization recorded by the system was considered as 
naming latencies. The voice onset times were then analyzed 
using Praat software (Boersma and Weenink 2018). The fastest 
response over trials and subjects was 535 ms. Therefore, the 
analysis was performed from the stimulus onset up to 500 ms 
following the stimulus in order to avoid muscle artifacts (due 
to articulation). Errors in naming were discarded for the fol-
lowing analysis. Subjects were informed about meaningless 
objects presence in the experiment and were instructed to 
say nothing when viewing them. All participants provided a 
written informed consent to participate in this study which 
was approved by the National Ethics Committee for the 
Protection of Persons (CPP), Braingraph study, agreement 
number (2014-A01461-46), and promoter: Rennes University 
Hospital.

Data recording and preprocessing

A dense EEG system (EGI, Electrical Geodesic Inc., 256 elec-
trodes) was used to record brain activity. EEG signals were 
sampled at 1 KHz and then band-pass filtered between 0.3 
and 45 Hz. For the preprocessing, EEGLAB (Delorme and 
Makeig 2004) was used to reject and exclude the epochs con-
taminated by eye blinking (using ICA-based algorithm) and 
any other noise source. For some subjects, few electrodes with 
poor signal quality were identified. For these electrodes, the 
EEG signal was interpolated using signals recorded by sur-
rounding electrodes.

In addition to dense EEGs, individual structural MRI was 
also available for each participant. A realistic head model was 
built by segmenting the anatomical MRI using Freesurfer 
(Fischl 2012). The individual MRI anatomy and EEGs were 
co-registered through identification of the same anatomical 
landmarks (left and right tragus and nasion). The lead field 
matrix was then computed for a cortical mesh of 15 000 ver-
tices using Brainstorm (Tadel et  al 2011) and OpenMEEG 
(Gramfort et  al 2010). An atlas-based approach was used 
to project EEG signals onto a subject-specific anatomical 
framework consisting of 68 cortical regions (summarized in 
table  S2 and visualized in figure  1(B)) identified by means 
of the Desikan-Killiany, (Desikan et  al 2006). Time series 
belonging to the same ROI were averaged after flipping the 
sign of sources with opposite directions.

J. Neural Eng. 15 (2018) 056022
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Construction of the functional networks

Functional networks were constructed using the dense-EEG 
source connectivity method (Hassan et al 2014, 2015a). This 
method includes two main steps: (i) reconstruction of the tem-
poral dynamics of the cortical regions from the scalp EEG 
signals and (ii) measurement of the functional connectivity 
between reconstructed regional time series. The weighted 
minimum norm estimate (wMNE) was used to reconstruct 
the cortical sources. A phase locking value (PLV) (Lachaux 
et al 1999) algorithm was then used to estimate the functional 
connectivity. Two versions of PLV were proposed by Lachaux 
et al (1999). The first method consists of looking at the ‘inter-
trial’ phase synchrony, which provides pair-wise connectivity 
values at each time point. This version works only in the case 
of task-related paradigms and in the presence of a high number 
of trials. The second version consists of choosing a sliding 
window, adapted to the analyzed frequency band. In the case 
of gamma band: 30–45 Hz, the duration of the smallest time 
window that contains a sufficient number of cycles (N  =  5) 
for PLV computation is ~0.133 s. As shown by Lachaux et al 

(1999), both versions provide very similar results. In this 
study, we used the first version.

This choice of wMNE/PLV was supported by two com-
parative analyses performed in Hassan et al (2014, 2017) that 
reported the superiority of wMNE/PLV over other combina-
tions of five inverse algorithms and five connectivity measures. 
Briefly, in Hassan et al (2017), the network identified by each 
of the inverse/connectivity combination used to identify cor-
tical brain networks from scalp EEG was compared to a simu-
lated network (ground truth). The combination that showed 
the highest similarity between scalp-EEG-based network and 
reference network (using a network similarity algorithm) was 
considered as the optimal combination. This was the case for 
the wMNE/PLV. The dense-EEG source connectivity method 
benefits from the intrinsically-excellent time resolution of the 
EEG. This lead to time-varying functional networks which 
spatio-temporal dynamics directly characterize the cognitive 
processes involved in considered task. Regarding technical 
details, readers can refer to Kabbara et  al (2017, 2018) for 
detailed methodological description of the dense EEG source 

Figure 1.  Experimental setup. (A) The cognitive task consisted in naming visual stimuli of two categories of: meaningful and meaningless 
pictures. (B) 68 cortical regions defined from the Desikan-Killiany atlas (Desikan et al 2006) were used. (C) Functional connectivity was 
computed between these 68 regional time series for a period of 500 ms using the dense EEG source connectivity method in the gamma 
frequency band (30–45 Hz). (D) A dynamic module detection algorithm (Bassett et al 2011, 2013, 2015) was used to identify network 
modules in each time window and to follow their evolution over time. Briefly, this algorithm constructs a modular allegiance matrix 
over the 100 runs at each window in which each element is 1 if two nodes are in the same module and is equal to zero otherwise. (E) All 
matrices are then summed for each condition to obtain the global modular allegiance matrix, whose elements indicate the fraction of time 
windows in which nodes have been assigned to the same module. Then a community detection algorithm is applied to obtain a ‘consensus 
partition’ as described in Braun et al (2015), which represents the common modular structure across all time windows.

J. Neural Eng. 15 (2018) 056022
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connectivity method as computed in this paper. The inverse 
solutions were computed using Brainstorm (Tadel et al 2011).

The wMNE/PLV combination was computed in the gamma 
band (30–45 Hz). For each subject, this procedure yielded a 
set of weighted adjacency matrices describing the functional 
connectivity in each time window (figure 1(C)).

Finally, not all elements of the connectivity matrix reflect 
significant functional relationships and that a threshold should 
be applied to retain only the ‘true’ functional connections. 
Here, we adopted the approach proposed in Bassett et  al 
(2011). Briefly, for each connectivity matrix Ai,j, a p-value 
matrix Pi,j was computed, based on the t-statistic. The com-
puted p-values were corrected for multiple comparisons using 
the false discovery rate (FDR) approach of p  <  0.05. All Ai,j 
whose p-values Pi,j passed the statistical FDR threshold were 
retained (their values remained unchanged). Otherwise, the 
values were set to zero (Bassett et al 2011) to build a thresh-
olded weighted connectivity matrix.

Multislice network modularity

The resultant matrices were split into time-varying modules 
using a multislice community detection algorithm described 
in Mucha et al (2010). This algorithm consists of introducing 
a coupling parameter that links nodes across slices (time win-
dows) before performing the modularity maximization pro-
cedure (figure 1(D)). This algorithm was recently applied on 
functional brain networks (Bassett et  al 2011, 2013, 2015). 
The multislice modularity is defined as:

Qml =
1

2µ

∑
ijlr

ßÅ
Aijl − γl

kilkjl

2ml

ã
δlr + δijCjlr

™
δ (Mil, Mjr)

where nodes i and j are assigned to communities Mil and Mjl 
in layer l, respectively. Aijl represents the weight of the edge 
between these two nodes and γl  is the structural resolution 
parameter of layer l. Cjlr is the connection strength between 
node j in layer r and node j in layer l. The structural reso-
lution parameter γ and the inter-layer coupling parameter C 
are usually set to 1. kil is the strength of node i in layer l, the 
δ-function δ(x, y) is 1 if x  =  y and 0 otherwise, m = 1

2
∑

ij Aij 
and µ = 1

2
∑

jr kjr. This produces for every brain region at 
every time window a modular assignment reflecting the 
module allegiance.

The multilayer network modularity was computed 100 
times as Q may vary from run to run, due to heuristics in the 
algorithm: each run can produce slightly different partitions 
of nodes into modules (Good et al 2010). To deal with this 
problem, we computed a consensus matrix, also called ‘co-
classification matrix’ (Bassett et al 2013, Fornito et al 2016) 
whose elements indicate the ratio of each node to be in the 
same module with the other nodes among these 100 parti-
tions (figure 1(E)). Only elements in the consensus matrix 
higher than an appropriate random null model were taken 
into account, as described in Bassett et al (2011). Finally, by 
applying the Louvain algorithm (Blondel et al 2008) on the 
consensus matrix, we obtained a partition that is most repre-
sentative of the network segregation. Brain regions repeatedly 

classified in the same module (over the runs) will have a 
high weight in the consensus matrix and will more likely be 
assigned to the same module after applying the modularity 
maximization algorithm. To investigate the consistency of the 
modules over time, we computed a final consensus matrix 
(same procedure as described above) by calculating the ratio 
of each node to be with the other nodes in the same module, 
among the time windows.

Integration and occurrence metrics

To quantitatively analyze the contribution of each module 
during the task, first we used the integration metric as described 
in Bassett et  al (2011) and Braun et  al (2015). Integration 
values reflect how modules are interacting with each other. 
It is computed as the average number of links each node in a 
given module has with the nodes in the other modules.

We calculated also a new metric called occurrence (%). In 
our case, the occurrence defined as the probability on average 
of any two nodes to fall in the same module over time, from 0 
to 500 ms. This metric reflects the importance of the strong (or 
weak) temporal interactions between any two brain regions 
during the cognitive task.

Software

The connectivity measures, network measures and network 
visualization were performed using BCT (Rubinov and Sporns 
2010), EEGNET (Hassan et al 2015b) and BrainNet viewer 
(Xia et  al 2013), respectively. The Network Community 
Toolbox (http://commdetect.weebly.com/) was used to com-
pute the consensus matrices as well as the values provided by 
the integration and flexibility metrics.

Statistical test

A Wilcoxon rank sum test was used to assess the statistical 
difference between the functional brain networks respectively 
associated to meaningful and meaningless objects. The differ-
ence between the two conditions was considered as significant 
when the p-value was less than 0.05. The Bonferroni method 
was used to correct for multiple comparisons.

Results

Meaningful versus meaningless networks

For each participant, the network modularity was computed 
over time for both categories (meaningful and meaningless). 
A global consensus matrix was computed over all participants 
for each category, as described in the methods section. As 
depicted in figure  2(A), the qualitative visual inspection of 
the obtained matrices, indicated that both conditions have a 
different modular configuration in term of network integra-
tion (connections outside the square red lines) and occurrence 
(weights of the matrix values).

The resulting modules were projected on a 3D cor-
tical surface, as illustrated in figure  2(B). Modules having 
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spatially-neighbor regions in both conditions are visualized 
by the same color and the region’s names for each module are 
reported in table 1. To assess an average quantitative differ-
ence between the two categories, integration (figure 2(C)) and 
occurrence (figure 2(D)) values were computed from the final 
consensus matrix for each module. For both meaningful and 
meaningless objects, M4

F and M5
L modules located in the frontal 

and the temporo-frontal lobes respectively have the highest 
integration values. The temporo-central module M5

F was inter-
acting with other modules only for meaningful objects (figure 
2(C) left) while the occipital and occipito-temporal modules 
(M3

L and M4
L) were integrated only for meaningless objects 

(figure 2(C) right). Concerning the occurrence values, which 
represent the probability of any two brain regions to fall in 
the same module during the task, results showed fewer dif-
ferences in both conditions (figure 2(D)). Globally, the M1

F, 
M4

F and M6
F modules (located mainly in the frontal cortex) 

showed higher occurrence values for meaningful than mean-
ingless frontal modules (M2

L, M5
L and M6

L).
We then computed the statistical difference between the two 

conditions in term of integration and occurrence at the level 

of each brain region. Significant differences were obtained 
at three brain regions: the left isthmus cingulate (iCC.L), 
the right lingual (LING.R) and the right fusiform (FUS.R) 
as illustrated in figure  3(A) (p  <  0.01, uncorrected for  
multiple comparisons). Significant differences in the occur-
rence values were also obtained at four edges connecting the 
right caudal anterior cingulate (cACC.R) with the right pars 
opercularis (pOPER.R), the right cuneus (CUN.R) with the 
right pars opercularis (pOPER.R), the left lateral occipital 
(LOG.L) with the right pars opercularis (pOPER.R) and the 
right parahippocampal (paraH.R) with the right pars obitalis 
(pORB.R), as illustrated in figure 3(B) (p  <  0.01, uncorrected 
for multiple comparisons). Interestingly, these occipito-frontal 
and temporo-frontal connections were mainly located in the 
right hemisphere.

Correlation between dynamic modularity and reaction time

Here, we explored the correlation that may exist between the 
network modularity and the participant’s reaction time, avail-
able only for 12 participants and defined as the time interval 
between the stimulus onset and the instant when participants 

Figure 2.  (A) The modular allegiance matrices for meaningful (left) and meaningless (right) conditions. (B) A mapping of the different 
modules identified for both conditions (6 and 7 modules for the meaningful and meaningless categories). (C) The values of integration for 
each module in both conditions. (D) The values of occurrence for each module in both conditions. Note that modules having similar regions 
in both conditions are visualized by the same color. (MF and ML stand for meaningful and meaningless, respectively.)
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Table 1.  Modules obtained for both categories (meaningful and meaningless) in the consensus matrices.

Meaningful Meaningless

M1
F

caudalanteriorcingulate.R (cACC.R), lateralorbitofrontal.R 
(LOF.R), medialorbitofrontal.L/R (MOF.L/R), 
postcentral.R (postC.R), rostralanteriorcingulate.L/R 
(rACC.L/R), superiorfrontal.L/R (sFG.L/R)

M2
L

caudalanteriorcingulate.L/R (cACC.L/R), frontalpole.L (FP.L), 
frontalpole.R (FP.R), medialorbitofrontal.L/R (MOF.L/R), 
precentral.R (preC.R), rostralanteriorcingulate.L/R (rACC.L/R), 
rostralmiddlefrontal (rMFG.R), superiorfrontal.L/R (sFG.L/R),

M2
F

cuneus.L/R (CUN.L/R), fusiform.R (FUS.R), 
inferiortemporal.R (ITG.R), isthmuscingulate.L (iCC.L), 
lateraloccipital.R (LOG.R), lingual.L/R (LING.L/R), 
parahippocampal.R (paraH.R), pericalcarine.L/R 
(periCAL.L/R), precuneus.L/R (PCUN.L/R)

M3
L

cuneus.L/R (CUN.L/R), fusiform.R (FUS.R), inferiortemporal.R 
(ITG.R), isthmuscingulate.L (iCC.L), lateraloccipital.L/R 
(LOG.L/R), lingual.L/R (LING.L/R), parahippocampal.R 
(paraH.R), pericalcarine.L/R (periCAL.L/R), precuneus.L/R 
(PCUN.L/R), superiorparietal.R (SPL.R)

M3
F

entorhinal.L (ENT.L), fusiform.L (FUS.L), 
inferiortemporal.L (ITG.L), isthmuscingulate.R (iCC.R), 
lateraloccipital.L (LOG.L), parahippocampal.L (paraH.L)

M4
L

entorhinal.L (ENT.L), fusiform.L (FUS.L), inferiortemporal.L 
(ITG.L), isthmuscingulate.R (iCC.R), parahippocampal.L 
(paraH.L)

M4
F

Insula.R (INS.R), parsopercularis.R (pOPER.R), 
parsorbitalis.R (pORB.R), parstriangularis.R (pTRI.R), 
rostralmiddlefrontal.R (rMFG.R)

M5
L

Insula.R (INS.R), lateralorbitofrontal.R (LOF.R), 
parsopercularis.R (pOPER.R), parsorbitalis.R (pORB.R), 
parstriangularis.R (pTRI.R), superiortemporal.R (STG.R), 
temporalpole.R (TP.R), transversetemporal.R (TT.R)

M5
F

middletemporal.R (MTG.R), precentral.R (preC.R), 
transversetemporal.R (TT.R)

M1
L

paracentral.L (paraC.L), posteriorcingulate.L/R (PCC.L/R)

M6
F

parsorbitalis.L (pORB.L), parstriangularis.L (pTRI.L), 
postcentral.L (postC.L)

M6
L

lateralorbitofrontal.L (LOF.L), parsopercularis.L (pOPER.L), 
parsorbitalis.L (pORB.L), parstriangularis.L (pTRI.L), 
temporalpole.L (TP.L)

M7
L

bankssts.L (BSTS.L), caudalmiddlefrontal.L (cMFG.L), 
supramarginal.L (SMAR.L), transversetemporal.L (TT.L)

Figure 3.  (A) Brain regions showing significant differences (meaningless  >  meaningful) in term of integration (p  <  0.01, uncorrected for 
multiple comparisons). (B) Brain connections showing significant difference (meaningless  >  meaningful) in term of occurrence (p  <  0.01, 
uncorrected for multiple comparisons). See table S2 for the full name of the reported regions.
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start to name the displayed picture. We computed the values of 
the integration and the occurrence metrics for each region and 
edge, respectively. This part was realized only on the mean-
ingful pictures as for meaningless pictures participants were 
asked to say nothing. Results (not shown here) revealed no 
significant correlation between the module’s integration and 
the reaction times. However, the occurrence computed for each 
link showed positive and negative correlations at a set of con-
nections. Figure 4(A) shows the connections where significant 
correlations (p  <  0.01, uncorrected for multiple comparisons) 
between the occurrence and the reaction time were observed. 
The positive correlations (green lines) were mainly located at 
the occipito-temporal regions while the negative correlations 
(red lines) were mainly located at the frontal cortex. By aver-
aging the values of those edges (their occurrence), figure 4(B) 
shows the strong correlations in both negative (ρ  =  −0.9, 
p  <  0.001) and positive (ρ  =  −0.83, p  =  0.001) cases.

Discussion

Emerging evidence shows that the human brain network is 
essentially organized into modules allowing the required 
adaptability to external drivers without necessarily modifying 

underlying structures (Braun et al 2015). In a previous prelim-
inary work (performed in a ‘static’ way), we showed that the 
network modularity could be a powerful tool to explore the 
overall reconfiguration of brain networks during visual object 
identification (Rizkallah et al 2016, Mheich et al 2017). Yet, 
this modular architecture is dynamic and may rapidly reshape 
according to external stimuli. Here, we showed that the 
functional connectivity during object recognition is dynami-
cally organized into adapting modules and that this adapting 
modular architecture could be related to the ‘meaning’ of the 
visual stimuli. By quantifying these dynamic modules, we 
showed that network modularity (in term of occurrence) can 
predict the speed of object recognition and naming. Results 
are further discussed hereafter.

Brain network modularity and cognitive functions

The modular architecture of the human brain networks was 
reported using various neuroimaging techniques and at dif-
ferent scales (Sporns and Betzel 2016). It was firstly revealed 
on large scale structure network by Hagmann et  al (2008). 
Regarding the functional role of brain network modules, 
numerous studies revealed that the brain is organized into a set 

Figure 4.  (A) Brain regions of 12 participants that showed significant correlation between their occurrence values and the participant’s 
reaction time. (B) Correlation between the average occurrence over these connections and the minimal reaction time for each participant. 
(Note that this part was realized only on the meaningful pictures as for meaningless pictures participants were asked to say nothing and for 
only 12 participants as the reaction time was only available for them.)
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of modules of functionally interconnected regions (Meunier 
et al 2009b, Power et al 2011). The modular architecture of the 
human brain was shown to be related to individual cognitive 
state (Andric and Hasson 2015), development (Meunier et al 
2009a) and brain diseases (Fornito et  al 2015). In addition, 
it was revealed that network modular architecture provides 
more flexible learning and promotes functional specialization 
(Bassett et al 2015, Sporns and Betzel 2016).

Here, we investigated the possible functional role of brain 
network modularity during recognition (and naming) of 
meaningful and meaningless images. We showed that the two 
conditions have different modular organization mainly in the 
module’s node integration and module’s edge occurrence.

Our findings showed higher integration and occurrence 
values for meaningless compared to meaningful images. 
Higher integration for meaningless images was observed at 
right lingual and right fusiform regions. Interestingly, these 
region are known for their essential role in visual processing 
(Cai et al 2015). For instance, in a PET study aimed at iden-
tifying brain structures involved in animal picture identifica-
tion by comparison to meaningless shapes, results showed 
a primary activation of the lingual gyrus and the fusiform 
gyrus (Perani et al 1999). Our results also suggest that the left 
isthmus also shows significantly different integration between 
the two conditions (meaningless  >  meaningful). A possible 
explanation relates to the role of this region in the regulation 
of the focus of attention (Leech and Sharp 2014).

The increase in module integration for meaningless 
objects can be interpreted as an enhancement of communi-
cation between nodes, due to multiple attempts to match the 
detected image characteristics present in the visual stimuli 
with object representations already encoded in the memory 
involving the ventral visual pathway. Indeed, the complex 
shape information of scrambled images cannot be instantly 
linked to a recognized object in the brain database. Thus, 
searching for coherent signal (corresponding image) through 
visual pathway would increase module communication from 
the low/intermediate (image reconstruction) to high level of 
visual processing (image identification).

In term of occurrence, the occipito-frontal connections 
were found to be higher for meaningless than meaningful 
objects. As the occurrence is defined as the probability of 
two brain regions to stay in the same module during the task, 
thus it also provides a measure of the duration of communica-
tion between these two regions. A possible interpretation of 
higher occurrence values is that the coherent communication 
in networks involved in object identification (visual pathway) 
and decision making in case of unclear choice (prefrontal 
cortex) is not immediate for meaningless images. Indeed, the 
difficulty to identify and the unsuccessful multiple trials to 
match the image might increase the number of times the brain 
regions inter-communicate, and thus the occurrence values. 
Interestingly, denser scalp-EEG networks for meaningless 
images compared to meaningful images were also reported in 
Gruber and Müller (2005). The lateralization of the connec-
tions during object recognition was also reported previously 
and several clinical studies linked the right hemisphere with 
object recognition. For instance, studies showed that patients 

with right-hemisphere disease (RHD) performed significantly 
worse than subjects with left-hemisphere disease (LHD) when 
asked to discriminate between faces, to discriminate between 
emotional faces, and to name emotional scenes (DeKosky 
et al 1980).

Methodological issues

First, we computed the functional networks at the EEG 
gamma band (30–45 Hz). This choice was supported by pre-
vious studies in the field of object recognition and naming. 
These studies reported that gamma is the most involved fre-
quency band in the information processing during this cogni-
tive task (Liljeström et al 2015, Hassan et al 2015a, Rodriguez 
et al 1999). Nevertheless, other frequency bands (and some 
frequency-frequency couplings), can be indeed involved in 
other aspects of this task such as the memory process. This 
issue is however beyond the scope of this study.

Second, the muscle artifact in the gamma band is a serious 
methodological issue. Here, we have reduced the effect of the 
muscle artifacts by (i) asking the participants to not moving 
as much as possible (ii) limiting our network-based dynamic 
analysis between the onset (presentation of the visual stimuli) 
to the moment before the fastest responses, in order to avoid 
the muscle artifacts due to articulation (naming) and iii) 
selecting the low gamma band (<45 Hz) which is less con-
taminated by muscle artifacts comparing to high gamma (>50 
Hz).

Third, although significant results were obtained for 
region-wise analysis (integration) or edges-wise analysis 
(occurrence), these results did not resist the correction for the 
multiple comparisons. Thus, results should be interpreted with 
caution. Nevertheless, the results showed very strong correla-
tions (>0.8) values between the network metrics (mainly the 
occurrence) and the reaction time.

Fourth, a variety of thresholding methods are available, but 
none is free of bias. For example, one could apply a threshold 
that ensures only the top 10% of connections across a sample 
of individuals are retained. In this case, it is recommended 
to repeat analyses across a range of threshold (values and 
approaches) to ensure that any results obtained are robust to 
this methodological parameter. Here we adopted the automatic 
threshold method used in Bassett et al (2011), where authors 
dealt also with the dynamics of functional brain networks. The 
main advantage of this method is that it is based on statistical 
tests and not an arbitrary choice of the threshold value.

Fifth, it is important to keep in mind that measuring the 
functional connectivity is generally corrupted by the volume 
conduction problem, a known problem regarding functional 
couplings at the scalp level (Schoffelen and Gross 2009, 
Brookes et al 2014). Therefore, connectivity analysis at source 
level was shown to reduce the effect of volume conduction as 
connectivity methods are applied to ‘local’ time-series (analo-
gous to local field potentials) generated by cortical neuronal 
assemblies modelled as current dipole sources. Nevertheless, 
these so-called ‘mixing effects’ can also occur in the source 
space but can be reduced by an appropriate choice of con-
nectivity measures. Indeed, false functional couplings can 
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be generated by some connectivity methods when applied to 
mixed signals such as estimated brain sources. To address this 
issue, a number of methods were developed based on the rejec-
tion of zero-lag correlation. In particular, ‘unmixing’ methods, 
called ‘leakage correction’ (including the orthogonalization 
approach), have been reported which force the reconstructed 
signals to have zero cross-correlation at lag zero (Colclough 
et  al 2015). Although handling this problem -theoretically- 
helps interpretation, a very recent study showed that the 
current correction methods also produce erroneous human 
connectomes under very broad conditions (Pascual-Marqui 
et al 2017). In addition, several experimental studies reported 
the presence of zero-lag corrections in the human brain. We 
believe that there is no ideal solution yet for this issue and that 
further methodological efforts are needed to completely solve 
the spatial leakage problem.

Behavioral significance of network modularity

Several functional network modularity-based metrics have 
previously been linked to many behavioral modifications in 
brain network dynamics in response to cognitive difficul-
ties by predicting individual differences in learning (Bassett 
et  al 2011), working memory (Braun et  al 2015) and other 
cognitive tasks (Cole et al 2013, Mattar et al 2016). Here we 
showed that the network occurrence, essentially for prefrontal 
brain regions, was negatively correlated with the reaction time 
(defined as the time from the stimulus onset to the instant 
when participant starts the naming process). On the other 
side, a positive correlation between the occurrence values of 
occipito-temporal connections was observed with the reaction 
time.

The occurrence values, that reflect the duration of com-
munication between brain regions, increased in the occipito-
temporal ventral visual pathway (including lingual cortex, 
lateral occipital cortex, enthorinal cortex, fusiform gyrus and 
parahippocampal cortex) which is known to be involved in the 
categorization and identification of the visual stimuli (Clarke 
and Tyler 2015), along with the reaction time. This result sug-
gests that the longer it takes to identify the object, the longer 
is the occurrence in the occipito-temporal pathway and the 
longer is the reaction time.

Conversely, an immediate recognition and identification of 
a visual stimuli is associated with a decrease of occurrence 
values between brain regions involved in task-conflict (ante-
rior cingulate (Shenhav et al 2014)) and decisions associated 
to image identification such as the frontal cortex (namely the 
superior frontal cortex, rostral middle frontal cortex, medial 
orbitofrontal cortex and precentral cortex) (Gilbert and Li 
2013). This result suggests a decreased processing time 
of cognitive information as soon as the image is identified; 
the participant is ready to name the proper object and con-
sequently a shorter reaction time. It is noteworthy that these 
results and interpretations should be taken with some cautions 
as the number of subjects is relatively small (N  =  12).

Finally, this prediction of the visual object recognition time 
can be easily extended not only to other cognitive tasks using 

other modalities (auditory, motor) but also to understand the 
possible modifications of network dynamics in patients with 
brain disorders, an issue that was recently discussed using 
other network modularity metrics (Mattar et al 2016, Zhang 
et al 2016).
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Figure S1: The meaningful (left) and meaningless/scrambled (right) images used in the study 

(Alario and Ferrand, 1999).   



 N-A Im-A Fam Im-C Im-V A-o-A Freq 

 % M SD M SD M SD M SD M SD  

M 96,86 3,65 0,86 2,67 0,81 3,2 0,64 2,90 0,92 2,21 0,81 55,7 

Min 86 1,23 0,34 1,07 0,18 1 0 2,03 0,32 1,12 0,33 0 

Max 100 4,87 1,31 4,97 1,32 5 1,04 4,5 1,32 3,65 1,16 892,0 

Table S1: mean (M), min and max scores for the list of our items from the 400 pictures database 

standardize for French of Alario & Ferrand 1999. N-A: Naming Agreement, Im-A: Image 

agreement, Fam: Familiarity, Im-C: Image Complexity, Im-V: Image variability, A-o-A: Age 

of Acquisition, Freq: Frequency. Details about what is measured can be found in (Alario and 

Ferrand, 1999) and {http://www.lexique.org} 

  



 Acronyms Name  Acronyms Name 
O

cc
ip

it
a
l 

LING L lingual L 

F
ro

n
ta

l 

sFG L superiorfrontal L 

LING R lingual R sFG R superiorfrontal R 

periCAL L pericalcarine L rMFG L rostralmiddlefrontal L 

periCAL R pericalcarine R rMFG R rostralmiddlefrontal R 

CUN L cuneus L cMFG L caudalmiddlefrontal L 

CUN R cuneus R cMFG R caudalmiddlefrontal R 

LOG L lateraloccipital L pOPER L parsopercularis L 

LOG R lateraloccipital R pOPER R parsopercularis R 

T
em

p
o
ra

l 

ENT L entorhinal L pTRI L parstriangularis L 

ENT R entorhinal R pTRI R parstriangularis R 

paraH L parahippocampal L pORB L parsorbitalis L 

paraH R parahippocampal R pORB R parsorbitalis R 

TP L temporalpole L LOF L lateralorbitofrontal L 

TP R temporalpole R LOF R lateralorbitofrontal R 

FUS R fusiform R MOF L medialorbitofrontal L 

FUS L fusiform L MOF R medialorbitofrontal R 

STG L superiortemporal L FP L frontalpole L 

STG R superiortemporal R FP R frontalpole R 

ITG L inferiortemporal L 

C
en

tr
a
l 

preC L precentral L 

ITG R inferiortemporal R preC R precentral R 

MTG L middletemporal L paraC L paracentral L 

MTG R middletemporal R paraC R paracentral R 

TT L transversetemporal L postC L postcentral L 

TT R transversetemporal R postC R postcentral R 

BSTS L bankssts L 

C
in

g
u

la
te

 

rACC L rostralanteriorcingulate L 

BSTS R bankssts R rACC R rostralanteriorcingulate R 

P
a
ri

et
a
l 

SMAR L supramarginal L cACC L cAUDalanteriorcingulate L 

SMAR R supramarginal R cACC R cAUDalanteriorcingulate R 

SPL L superiorparietal L PCC L posteriorcingulate L 

SPL R superiorparietal R PCC R posteriorcingulate R 

IPL L inferiorparietal L iCC L isthmuscingulate L 

IPL R inferiorparietal R iCC R isthmuscingulate R 

PCUN L precuneus L INS L insula L 

PCUN R precuneus R INS R insula R 

Table S2. A summary of the 68 ROIs used in our study as derived from the Desikan-Killiany 

atlas (Desikan et al., 2006). 
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Study 2: The effect of removing zero-lag 
functional connections on EEG-source 
space networks at rest 
J. Rizkallah, H. Amoud, M. Fraschini, F. Wendling, M. Hassan  

Under revision in: Brain Topography 

Objectives: Magneto/Electro-encephalography (M/EEG) source connectivity is an emerging 

approach to estimate brain networks with high time/space resolution. However, this method is 

still immature and several pitfalls can affect its accuracy in reconstructing brain networks at the 

source level, such as the source leakage problem. 

Methods: Here, our aim was to evaluate the functional connectivity (FC) methods’ effect on 

M/EEG-source space networks at rest. Two main families of FC methods were tested: i) FC 

methods that do not remove zero-lag connectivity including Phase Locking Value (PLV) and 

Amplitude Envelope Correlation (AEC) and ii) FC methods that remove zero-lag connections 

such as Phase Lag Index (PLI) and orthogonalisation approaches combined with PLV (PLVCol 

and PLVPas) and AEC (AECCol and AECPas). Methods were evaluated on resting state dense-

EEG signals recorded from 27 healthy participants and MEG data collected from 44 participants 

(from the Human Connectome Project). Networks obtained by each FC method were compared 

with fMRI networks (from the Human Connectome Project, N=487).  

Results: Results showed that PLV and AEC networks were significantly correlated with fMRI, 

while other methods were not. These observations are consistent for all EEG frequency bands 

and for different FC matrices threshold. Our main message is to be careful when selecting FC 

methods, mainly those that remove zero-lag connections, as they can affect the network 

characteristics. More comparative studies (based on simulation and real data) are needed to 

make EEG source connectivity a mature technique that can address questions in cognitive and 

clinical neuroscience. 

Key words: electroencephalography, magnetoencephalography, functional brain networks, 

connectivity measures, electrodes density   
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Abstract 
Electro/magneto-encephalography (EEG/MEG) source connectivity is an emerging approach to estimate brain 

networks with high time/space resolution. Here, we aim to evaluate the functional connectivity (FC) methods 

effect on M/EEG-source space networks at rest. Two main FC  families are tested: i) FC methods that do not 

remove zero-lag connectivity including Phase Locking Value (PLV) and Amplitude Envelope Correlation (AEC) 

and ii) FC methods that remove zero-lag connections such as Phase Lag Index (PLI) and two orthogonalisation 

approaches combined with PLV (PLVCol, PLVPas) and AEC (AECCol, AECPas). Methods are evaluated on resting 

state high density EEG signals recorded from 27 healthy participants and MEG data collected from 44 

participants (from the Human Connectome Project). Networks obtained by each FC method are compared with 

fMRI networks (from the Human Connectome Project, N=487). Results show low correlations for all FC 

methods, however PLV and AEC networks are significantly correlated with fMRI networks, while other methods 

are not. These observations are consistent for all EEG frequency bands and for different FC matrices threshold. 

Our main message is to be careful when selecting FC methods, mainly those that remove zero-lag connections as 

they can affect the network characteristics. More comparative studies (based on simulation and real data) are 

needed to make M/EEG source connectivity a mature technique that can address questions in cognitive and 

clinical neuroscience. 

Keywords:  
electroencephalography, magnetoencephalography, functional brain networks, connectivity measures 
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Introduction 
Electro/magneto-encephalography (EEG/MEG) source-space connectivity is a unique non-invasive technique, 

which enables the tracking of large-scale brain network dynamics on a sub-second time-scale (Schoffelen and 

Gross 2009, Hassan and Wendling 2018, O'Neill, Tewarie et al. 2018). Benefiting from the excellent time 

resolution of the M/EEG (sub-millisecond), the method consists of identifying brain networks in the cortical 

space through sensor-level signals. However, several methodological choices should be carefully accounted for 

to avoid pitfalls.  

In this regard, the spatial leakage (presence of spurious connections) was considered as one of the main 

challenges that affects the accuracy of the M/EEG source-space networks. This leakage effect was shown to lead 

to false positive observations: artificial interactions caused directly by signal mixing regardless of whether true 

connections are present and spurious interactions, also known as ghost interactions, arising indirectly from the 

spread of signals from true interacting sources to nearby false loci (Palva, Wang et al. 2018, Wang, Lobier et al. 

2018). Source signals are spread by mixing to produce artificial synchronization and the true interactions are 

mirrored in several spurious interactions (Palva and Palva 2012). To deal with this problem, most existing 

approaches are based on the hypothesis that leakage generates inflated connectivity between estimated sources, 

which manifests as zero-phase-lag correlations. Thus, these methods dealt with the leakage problem by removing 

the zero lag connections (Nolte, Bai et al. 2004, Stam, Nolte et al. 2007) or adopting orthogonalisation-based 

approach (Brookes, Woolrich et al. 2012, Hipp, Hawellek et al. 2012, Pascual-Marqui, Biscay et al. 2017).  

Several studies have been conducted to explore the reliability of M/EEG resting-state functional connectivity 

(FC) methods (De Vico Fallani, Richiardi et al. 2014, Bastos and Schoffelen 2016) (Liuzzi, Gascoyne et al. 

2017) (Maldjian, Davenport et al. 2014) (Colclough, Woolrich et al. 2016). Globally, the MEG-based studies 

showed good consistency between FC methods to produce the population's connectivity pattern and intra/inter 

subjects variability. Concerning the EEG-based analyses, methods were first compared at the sensor-space 

(Hardmeier, Hatz et al. 2014) or comparing functional and effectives metrics at the source-space (Mahjoory, 

Nikulin et al. 2017). 

Here we compare two families of functional connectivity (FC) methods: i) the FC methods that do not remove 

the zero-lag-phase connectivity including the Phase Locking Value (PLV) and the Amplitude Envelope 

Correlation (AEC) and ii) the FC methods that remove the zero-lag connections such as the Phase Lag Index 

(PLI) and two orthogonalisation approaches developed by (Colclough, Brookes et al. 2015) and (Pascual-
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Marqui, Biscay et al. 2017) were combined with PLV (PLVCol, PLVPas) and AEC (AECCol, AECPas). Networks 

obtained by each method were compared with the networks obtained using fMRI (HCP database, N=487) chosen 

as a reference.  

Materials and Methods 

Participants 
High density EEG recordings (256 channels, EGI, Electrical Geodesic Inc.) were collected from thirty healthy 

participants (16 women and 14 men; mean age, 38 y). Experiments were performed in accordance with the 

relevant guidelines and regulations of the National Ethics Committee for the Protection of Persons (CPP), 

(BrainGraph study, agreement number 2014-A01461-46, promoter: Rennes University Hospital), which 

approved all the experimental protocol and procedures. All participants in the study provided written informed 

consents. Participants were asked to relax for 10 minutes with their eyes closed during the acquisition without 

falling asleep.  

Data acquisition and preprocessing 
EEG signals were sampled at 1000 Hz, band-pass filtered within 0.1–45 Hz, and segmented into non-overlapping 

40 s long epochs (Chu, Kramer et al. 2012, Fraschini, Demuru et al. 2016). Electrodes with poor signal quality 

(amplitude > 100 µV or < -100 µV) have been identified and interpolated using signals recorded by surrounding 

electrodes. Segments that have more than 20 electrodes interpolated have been excluded from the analysis. Three 

clean epochs per subject were then used for source estimation. Three subject was excluded from the study due to 

noisy data. 
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Fig.1 Study pipeline. EEG recordings were preprocessed and clean EEG epochs were used to solve the 
inverse problem using wMNE. Statistical couplings were then computed between the reconstructed 
sources using different methods (PLV, AEC, PLI, PLVCol, AECCol, PLVPas and AECPas). Then, the identified 
matrices were compared with the fMRI functional connectivity matrix obtained from HCP. 
Abbreviations: EEG: electroencephalogram; wMNE: weighted Minimum Norm Estimate; PLV: phase 
locking value; AEC: amplitude envelope correlation; PLI: phase lag index; fMRI: functional magnetic 
resonance imaging; HCP: human connectome project 

Estimation of regional time series 
First, the MRI template “Colin27” (Holmes, Hoge et al. 1998) and EEG channel locations were co-registered 

using Brainstorm (Tadel, Baillet et al. 2011). The lead field matrix was then computed for a cortical mesh of 

15000 vertices using OpenMEEG (Gramfort, Olivi et al. 2010). The noise covariance matrix was calculated 

using a long segment of EEG data at rest, as recommended in (Tadel, Baillet et al. 2011). An atlas-based 

approach was used to project EEG signals onto an anatomical framework consisting of 68 cortical regions 

identified by means of the Desikan-Killiany atlas (Desikan, Ségonne et al. 2006). To reconstruct the regional 

time series, we used the weighted Minimum Norm Estimate (wMNE), widely used in the context of EEG source 

localization (Hauk 2004, Gramfort, Kowalski et al. 2012, Hassan, Benquet et al. 2015, Kabbara, Falou et al. 

2017, Rizkallah, Benquet et al. 2018) and showed higher performance than other algorithms in several 

comparative studies (Hassan, Dufor et al. 2014, Hassan, Merlet et al. 2016). Each regional time-series 

correspond to the average of number of vertices after flipping the sign of sources with opposite directions. The 

regional time series were then band-passed filtered using zero-phase forward and reverse digital IIR filtering in 
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the different EEG frequency bands: Delta [0.5-4 Hz], Theta [4-8 Hz], alpha [8-13 Hz], beta [13-30 Hz] and 

gamma [30-45 Hz]. Results are presented in beta band, in which previous studies have reported its importance in 

driving large-scale spontaneous neuronal interactions (Brookes, Woolrich et al. 2011, de Pasquale, Della Penna 

et al. 2012), results for other frequency bands are presented in the supplementary materials. Finally, functional 

networks were computed using EEG source connectivity method (Schoffelen and Gross 2009, Sakkalis 2011, 

Hassan, Dufor et al. 2014, Hassan, Benquet et al. 2015, Rizkallah, Benquet et al. 2018) by measuring the 

functional connectivity between the reconstructed regional time series (Fig.1). 

Connectivity measures 
The functional connectivity analysis was performed by computing pair-wise statistical interdependence between 

regional time series using: 

1) Phase locking value (PLV) 

The phase locking value between two signals x and y is defined as (Lachaux, Rodriguez et al. 1999):  
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where φy(t) and φx(t) are the phases of the signals x and y at time t extracted using the Hilbert transform. δ 

denotes the size of the window in which PLV is calculated. Here, we used a sliding window technique for each 

epoch to compute the FC matrices. The smallest window length recommended by (Lachaux, Rodriguez et al. 

2000) was used, equal to 
  

 

number of cycles

central frequency
 where the number of cycles at the given frequency band is 

equal to six. Finally, FC were averaged over the 40s epoch. 

2) Phase lag index (PLI) 

The PLI was introduced as an alternative measure of PLV and less sensitive to the influence field spread and 

amplitude effects. It is defined as follows (Stam, Nolte et al. 2007):  

( ) ( )y xPLI sign t t      

Where φy(t) and φx(t) are the phases of the signals x and y at time t and 〈〉 denotes the average over the time. 

3) Amplitude envelope correlation (AEC) 
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The envelopes of the regional time series were estimated using Hilbert transform then Pearson correlation 

between amplitude envelopes was computed (Brookes, Gibson et al. 2004).  

4) Orthogonalisation approach 

Two different orthogonalisation approaches were used to remove all shared signal at zero lag between regional 

time series in the time domain: the symmetric orthogonalisation technique developed by (Colclough, Brookes et 

al. 2015) and the innovations orthogonalisation developed by (Pascual-Marqui, Biscay et al. 2017). Here, we 

applied these approaches after extracting and filtering the time series before computing PLV and AEC. 

fMRI networks 
Here, we used data from 487 participants at rest collected from the human connectome project (HCP) (Van 

Essen, Smith et al. 2013). In brief, functional connectivity between each of the 68 cortical regions using 

Desikan-Killiany atlas (Desikan, Ségonne et al. 2006) was assessed by means of analysis of the resting-state 

fMRI data of the HCP (Q3 release, voxel-size 2 mm isotropic, TR/TE 720/33.1 ms, 1200 volumes, 14:33 

minutes). Images were realigned, co-registered with the T1 image, filtered (0.03 - 0.12 Hz), corrected for global 

effects of motion (realignment parameters), global signal mean, ventricle and white matter signal by means of 

linear regression and ‘motion-scrubbed’ for potential movement artifacts. Regional time-series were computed 

by averaging the time-series of the voxels in each of the cortical regions, and functional connectivity between all 

region pairs was derived by means of correlation analysis. A  group-averaged  weighted  functional  connectivity 

(FC) matrix was formed by averaging the individual matrices, see (van den Heuvel, Scholtens et al. 2016) for 

more detailed information.  

MEG networks 
Here, we used preprocessed resting state MEG data from 44 participants (26 women and 18 men; mean age 

between 28 and 32 years old) collected at the human connectome project (HCP) (Van Essen, Smith et al. 2013). 

We chose only the participants for whom both MEG and fMRI recordings are available. Same steps as for EEG 

were performed to estimate the MEG regional time series and estimate the functional networks.  

Statistical comparisons  
To statistically assess the difference between the connectivity methods, we thresholded the matrices (EEG and 

fMRI) by keeping the highest 10% connections (Garrison, Scheinost et al. 2015, Kabbara, Falou et al. 2017), 

results for other threshold values are presented in the supplementary materials. Spearman correlation values with 

the averaged fMRI were computed for each EEG FC method. In order to test differences between correlations of 

FC methods that keep zero lag connections and FC methods that remove zero lag connections, we used a 
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percentile bootstrap approach for non-overlapping correlations (Wilcox 2016), using 500 repetitions. The code is 

available at https://github.com/GRousselet/blog/tree/master/comp2dcorr. Spearman correlation values between 

EEG connectivity matrices and the averaged fMRI connectivity matrix were calculated for each participant. 

Mann-Whitney U Test was used to assess the statistical difference between FC methods (p < 0.01/7).   

Results 

Effect of connectivity measures 
The EEG FC matrices (averaged over subjects) obtained by each of the FC methods (in beta band) are illustrated 

in Fig.2. These matrices were reordered according to brain lobes. The red module represents the occipital lobe, 

the green one represents the temporal brain regions, the blue section represents the parietal lobe, the purple 

module represents the frontal regions, the orange section represents the central lobe and the last module in grey 

represents the cingulate regions (details are presented in supplementary materials Table1). The fMRI FC matrix 

averaged over all participants is also illustrated in Fig.2. The visual investigation of these results revealed that 

matrices obtained from PLV and AEC connectivity methods were more consistent with the fMRI matrix 

compared to the other methods after removing zero lag connections. The latter FC methods connections between 

brain regions were sparser. 
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Fig.2 Functional connectivity matrices obtained in beta band from averaged fMRI and EEG networks. 
Matrices were ordered according to brain lobes (red: Occipital lobe - O, green: Temporal lobe - T, blue: 
Parietal lobe - P, purple: Frontal lobe - F, orange: Central lobe - C and grey: Cingulate - Cing). PLV: 
Phase Locking Value, AEC: Amplitude Envelope Correlation, PLI: Phase Lag Index, PLVCol: Phase 
locking Value after applying symmetric orthogonalisation technique (Colclough, Brookes et al. 2015), 
AECCol: Amplitude Envelope Correlation after applying symmetric orthogonalisation technique 
(Colclough, Brookes et al. 2015), PLVPas: Phase locking Value after applying the innovations 
orthogonalisation (Pascual-Marqui, Biscay et al. 2017) and AECPas: Amplitude Envelope Correlation after 
applying the innovations orthogonalisation (Pascual-Marqui, Biscay et al. 2017). 
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We then explored the Spearman correlations between the EEG networks (averaged over subjects) obtained from 

the seven FC methods and the fMRI network at the level of each network connection (edge’s weight) (results are 

presented in Fig.3). EEG results showed low correlations for all the FC methods, however PLV and AEC 

networks were significantly correlated with fMRI networks (ρ = 0.11, p = 10-7 and ρ = 0.06, p = 0.007, 

respectively). However, the networks obtained after using methods with leakage correction (PLI, PLVCol, AECCol, 

PLVPas and AECPas) were not significantly correlated with fMRI networks (ρ = 0.02, p = 0.25; ρ = -0.01, p = 

0.59; ρ = 0.04, p = 0.05; ρ = -0.006, p = 0.7 and ρ = 0.05, p = 0.03 respectively). Percentile bootstrap results, 

presented in Table 1, showed that PLV network was significantly more correlated with fMRI network compared 

to all the other methods and AEC networks were significantly more correlated than PLVCol and PLVPas. 

FC method 1 FC method 2 Difference Confidence interval P value 

PLV (ρ = 0.11) 

AEC (ρ = 0.06) 0.05 [0.015 0.092] 0 

PLI (ρ = 0.02) 0.09 [0.035 0.139] 0 

PLVCol (ρ = -0.01) 0.12 [0.064 0.179] 0 

AECCol (ρ = 0.04) 0.07 [0.007 0.125] 0.024 

PLVPas (ρ = -0.006) 0.116 [0.062 0.17] 0 

AECPas (ρ = 0.05) 0.06 [0.004 0.119] 0.048 

AEC (ρ = 0.06) 
PLVCol (ρ = -0.01) 0.07 [0.007 0.125] 0.028 

PLVPas (ρ = -0.006) 0.066 [0.004 0.122] 0.044 

Table 1. EEG percentile bootstrap results. ρ difference between FC method 1 and FC method 2, 95% 
percentile bootstrap confidence interval and the p value obtained are reported. 
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Fig.3 Spearman correlation between different averaged EEG connectivity methods and average fMRI 
edges weights 
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To quantitatively assess the difference between EEG FC methods, Spearman correlation coefficients between FC 

matrices for each participant and the averaged fMRI connectivity matrix were calculated and presented in Fig.4. 

Results showed significantly higher correlation with fMRI using the PLV and AEC as compared to the other 

three methods. PLV correlation values were significantly higher than PLI (p = 310-10), PLVCol (p = 4.710-10), 

AECCol (p = 2.510-7), PLVPas (p = 4.210-10) and AECPas (p = 4.210-8). AEC correlation values were also higher 

than PLI (p = 1.610-6), PLVCol (p = 7.410-6), AECCol (p = 0.001), PLVPas (p = 1.810-5) and AECPas (p = 0.001). 

These results were consistent in the delta, theta, alpha and gamma frequency bands (see figures S1 to S4 in 

supplementary materials) and after using different thresholds (5%, 20%, 30%, 50% and 80%), see figures S5 to 

S9 in supplementary materials. 

 

Fig.4 Spearman correlation values between averaged fMRI network and EEG networks in beta band. 
Individual participant correlations are shown in the scatter plot next to the box plot. ** represents 
significant differences obtained between methods using Bonferroni correction (p < 0.01/7). 

MEG results 
In this section, we evaluate the effect of FC methods on MEG data by computing the correlation values between 

MEG and fMRI networks from the same 44 subjects collected from HCP. The MEG FC matrices (averaged over 

subjects) obtained by each of the FC methods (in beta band) are illustrated in Fig.5. Same as EEG, MEG 

matrices were reordered according to brain lobes. The fMRI FC matrix averaged over the 44 participants is also 

illustrated in Fig.4. The visual investigation of these results revealed that matrices obtained from PLV and AEC 

connectivity methods were more similar with the fMRI matrix compared to the other methods showing sparser 

connections. 



12 
 

 
Fig.5 Functional connectivity matrices obtained in beta band from averaged fMRI and MEG networks 
over 44 participants from the HCP. Matrices were ordered according to brain lobes (red: Occipital lobe - 
O, green: Temporal lobe - T, blue: Parietal lobe - P, purple: Frontal lobe - F, orange: Central lobe - C and 
grey: Cingulate - Cing). PLV: Phase Locking Value, AEC: Amplitude Envelope Correlation, PLI: Phase 
Lag Index, PLVCol: Phase locking Value after applying symmetric orthogonalisation technique 
(Colclough, Brookes et al. 2015), AECCol: Amplitude Envelope Correlation after applying symmetric 
orthogonalisation technique (Colclough, Brookes et al. 2015), PLVPas: Phase locking Value after applying 
the innovations orthogonalisation (Pascual-Marqui, Biscay et al. 2017) and AECPas: Amplitude Envelope 
Correlation after applying the innovations orthogonalisation (Pascual-Marqui, Biscay et al. 2017). 
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We then explored the Spearman correlations between the MEG networks (averaged over subjects) obtained from 

the seven FC methods and the fMRI network at the level of each network connection (edge’s weight), Fig.6. 

Results showed that only PLV networks were significantly (but with very low correlation value) correlated with 

fMRI networks (ρ = 0.07, p = 0.001). However, all the networks (AEC, PLI, PLVCol, AECCol, PLVPas and AECPas) 

were not significantly correlated with fMRI networks (ρ = 0.003, p = 0.86; ρ = 0.01, p = 0.56; ρ = -0.01, p = 

0.37; ρ = 0.01, p = 0.58; ρ = -0.001, p = 0.95 and ρ = 0.002, p = 0.9 respectively). Percentile bootstrap results, 

presented in Table 2, showed that only the PLV network was more correlated with fMRI network compared to all 

the other methods except PLI. 

FC method 1 FC method 2 Difference Confidence interval P value 

PLV (ρ = 0.07) 

AEC (ρ = 0.003) 0.067 [0.027 0.101] 0 

PLVCol (ρ = -0.01) 0.08 [0.022 0.143] 0.012 

AECCol (ρ = 0.01) 0.06 [0.005 0.109] 0.028 

PLVPas (ρ = -0.001) 0.071 [0.007 0.123] 0.024 

AECPas (ρ = 0.002) 0.068 [0.011 0.118] 0.004 

Table 2. MEG percentile bootstrap results. ρ difference between FC method 1 and FC method 2, 95% 
percentile bootstrap confidence interval and the p value obtained are reported. 
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Fig.6 Spearman correlation between different averaged MEG connectivity methods and average fMRI 
edges weights 
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Finally, to quantitatively assess the difference between FC methods, Spearman correlation coefficients between 

FC matrices for each participant and its corresponding fMRI connectivity matrix were calculated and presented 

in Fig.7. PLV correlation values were significantly higher than PLI (p = 1.610-8), PLVCol (p = 7.710-11) and 

PLVPas (p = 3.510-11). AEC correlation values were higher than PLI (p = 7.510-9), PLVCol (p = 8.210-11), 

PLVPas (p = 8.210-11) and AECPas (p = 0.0003). Moreover, correlation values of networks obtained after 

applying AEC method combined with symmetric orthogonalisation techniques (AECCol) were significantly higher 

than correlation values of networks obtained after applying PLV method combined with orthogonalisation 

techniques (PLVCol (p = 4.710-6) and PLVPas (p = 6.910-6) respectively). Also, correlation values of networks 

obtained after applying AEC method combined with symmetric orthogonalisation techniques (AECPas) were 

significantly higher than correlation values of networks obtained after applying PLV method combined with 

orthogonalisation techniques (PLVCol (p = 6.910-6) and PLVPas (p = 3.310-5) respectively). No statistical 

difference was found between other methods. 

 

Fig.7 Spearman correlation values between the corresponding fMRI network and MEG network in beta 
band for each participant. Individual participant correlations are shown in the scatter plot next to the box 
plot. ** represents significant differences obtained between methods using Bonferroni correction (p < 
0.01/7). 
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Discussion 

Connectivity measures 
While a large number of FC methods are available, their reliability and consistency are still under exploration. 

Also, the effect of leakage correction on M/EEG source-space networks by removing zero lag connections is not 

sufficiently studied. This paper (and some other recent papers (Colclough, Woolrich et al. 2016)) is a step toward 

this exploration in which we decided to compare the M/EEG FC matrices to those obtained using fMRI (HCP 

databases). Our results showed mainly low correlations for all the FC methods. Slightly higher correlation values 

between EEG and fMRI resting state networks were found in other study (Liu, Ganzetti et al. 2018). Despite the 

low correlations, our results showed that EEG FC matrices estimated using methods that keep the zero-lag 

correlations (PLV and AEC) were significantly correlated with the averaged fMRI functional connectivity matrix 

as compared to the other methods.  

The non-significance between PLI, PLVCol, AECCol, PLVPas and AECPas with fMRI network can be explained by 

the fact that not all zero-lag connections are spurious. Several previous study described the presence and 

potential mechanisms for zero-lag connectivity (Roelfsema, Engel et al. 1997, Gollo, Mirasso et al. 2014). 

Recent study showed that removing zero lag connections may indeed reveal false and significantly different 

estimated connectivity from the true connectivity (Palva, Wang et al. 2018). Another study reported that PLV 

showed the best matching between simulations and empirical data and that zero-lag correlation are very crucial 

to assess the structural/functional relationships (Finger, Bonstrup et al. 2016). 

Same study was conducted using MEG and fMRI recordings from the same subjects (44 participants). Similar 

results were obtained as EEG study, PLV averaged matrix was significantly more correlated with fMRI averaged 

matrix than all the other connectivity methods. However, no significant differences were found between PLV, 

AEC, AECCol and AECPas at the individual level.  

Methodological considerations  
First, in this study the fMRI connectivity matrices were used as a ’reference’ in order to evaluate the results of 

each of the FC connectivity measures applied to EEG regional time series. However, the EEG and fMRI data 

were not collected from the same participants. To that end, we used an averaged matrix over a large number of 

healthy participants (N=487). We were aware about this limitation and that the ideal situation was to have EEG 

and fMRI recordings for the same subjects. To that end, we conducted the same study on MEG data collected 

from HCP to obtain MEG and fMRI recordings for the same subjects. Of course, the fMRI matrices cannot be 

considered as an absolute ‘ground truth’ as preprocessing and analysis choices can produce different results 
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(Carp 2012). However, the spatial resolution of the fMRI networks (not affected by the leakage issue) and the 

consistency of these networks (we have tested another fMRI-based dataset over 10 healthy subjects and the two 

networks were highly correlated: correlation is equal to 0.8) can indeed justify its use as performance criteria for 

analyzing the EEG source-space networks.  

Second, the connectivity matrices were thresholded by keeping only the highest 10% connectivity values. It was 

used to standardize the comparison between the two connectivity methods and fMRI matrices, as network 

measures are stable across proportional thresholds, as opposed to absolute thresholds (Garrison, Scheinost et al. 

2015). We are aware about the effect of this threshold and we have tested other thresholds and the results are 

very consistent over different threshold values (see figures S5 to S9 in supplementary materials).  

Third, it was shown that fMRI and M/EEG connectivity decreases with anatomical distance. This makes difficult 

the interpretation of our results without considering the effects of anatomical distance. In this regard, we added a 

correlation analysis between the fMRI, EEG and MEG matrices (for the different method) with the distance. The 

results (presented in supplementary materials, figure S12 and S13) showed that some of the methods were 

negatively correlated with the distance while other were not. This indicate the need for more investigation of the 

effect of the anatomical distance when dealing with the functional connectivity methods. 

Conclusion 
M/EEG source connectivity is a unique tool to identify high resolution functional brain networks in time and 

space. However, results are dependent on the choice of processing methods. In this paper, we analyzed the 

impact of the method used to measure the functional connectivity. Our results showed that among the different 

connectivity measures tested, PLV and AEC provided closer results to fMRI network compared to the three other 

methods that removes the zero-lag connections. We believe that more comparative studies (based on simulation 

and real data) should be done to make M/EEG source connectivity a mature technique to address questions in 

cognitive and clinical neuroscience.  
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 Acronyms Name  Acronyms Name 
O

cc
ip

it
al

 
LING L lingual L 

F
ro

n
ta

l 

sFG L superiorfrontal L 
LING R lingual R sFG R superiorfrontal R 
periCAL L pericalcarine L rMFG L rostralmiddlefrontal L 
periCAL R pericalcarine R rMFG R rostralmiddlefrontal R 
CUN L cuneus L cMFG L caudalmiddlefrontal L 
CUN R cuneus R cMFG R caudalmiddlefrontal R 
LOG L lateraloccipital L pOPER L parsopercularis L 
LOG R lateraloccipital R pOPER R parsopercularis R 

T
em

p
or

al
 

ENT L entorhinal L pTRI L parstriangularis L 
ENT R entorhinal R pTRI R parstriangularis R 
paraH L parahippocampal L pORB L parsorbitalis L 
paraH R parahippocampal R pORB R parsorbitalis R 
TP L temporalpole L LOF L lateralorbitofrontal L 
TP R temporalpole R LOF R lateralorbitofrontal R 
FUS R fusiform R MOF L medialorbitofrontal L 
FUS L fusiform L MOF R medialorbitofrontal R 
STG L superiortemporal L FP L frontalpole L 
STG R superiortemporal R FP R frontalpole R 
ITG L inferiortemporal L 

C
en

tr
al

 

preC L precentral L 
ITG R inferiortemporal R preC R precentral R 
MTG L middletemporal L paraC L paracentral L 
MTG R middletemporal R paraC R paracentral R 
TT L transversetemporal L postC L postcentral L 
TT R transversetemporal R postC R postcentral R 
BSTS L bankssts L 

C
in

gu
la

te
 

rACC L rostralanteriorcingulate L 
BSTS R bankssts R rACC R rostralanteriorcingulate R 

P
ar

ie
ta

l 

SMAR L supramarginal L cACC L cAUDalanteriorcingulate L 
SMAR R supramarginal R cACC R cAUDalanteriorcingulate R 
SPL L superiorparietal L PCC L posteriorcingulate L 
SPL R superiorparietal R PCC R posteriorcingulate R 
IPL L inferiorparietal L iCC L isthmuscingulate L 
IPL R inferiorparietal R iCC R isthmuscingulate R 
PCUN L precuneus L INS L insula L 
PCUN R precuneus R INS R insula R 

Table1. A summary of the 68 ROIs used in our study as derived from the Desikan-Killiany atlas (Desikan 

et al., 2006). 

  



 

 

Fig S1: Correlation values between fMRI network and EEG networks in delta band. Individual participant 

correlations are shown in the scatter plot next to the box plot.  

 

Fig S2: Correlation values between fMRI network and EEG networks in theta band. Individual participant 

correlations are shown in the scatter plot next to the box plot.  



 

Fig S3: Correlation values between fMRI network and EEG networks in alpha band. Individual participant 

correlations are shown in the scatter plot next to the box plot.  

 

Fig S4: Correlation values between fMRI network and EEG networks in gamma band. Individual 

participant correlations are shown in the scatter plot next to the box plot.  



 

Fig S5: Correlation values between fMRI network and EEG networks in beta band using threshold equal 

to 5%. Individual participant correlations are shown in the scatter plot next to the box plot.  

 

Fig S6: Correlation values between fMRI network and EEG networks in beta band using threshold equal 

to 20%. Individual participant correlations are shown in the scatter plot next to the box plot. 

  



 

Fig S7: Correlation values between fMRI network and EEG networks in beta band using threshold equal 

to 30%. Individual participant correlations are shown in the scatter plot next to the box plot. 

 

Fig S8: Correlation values between fMRI network and EEG networks in beta band using threshold equal 

to 50%. Individual participant correlations are shown in the scatter plot next to the box plot. 

  



 

Fig S9: Correlation values between fMRI network and EEG networks in beta band using threshold equal 

to 80%. Individual participant correlations are shown in the scatter plot next to the box plot. 



 
Fig S10: Spearman correlation between the beta relative power spectral density (PSD) and the EEG 

networks strengths.  



 
Fig S11: Spearman correlation between the beta relative power spectral density (PSD) and the MEG 

networks strengths.  



 
Fig S12: Spearman correlation between the normalized Euclidean distance of the 68 ROIs and the averaged 

fMRI and EEG networks weights in beta band.  



 
Fig S13: Spearman correlation between the normalized Euclidean distance of the 68 ROIs and the averaged 

fMRI and MEG networks weights in beta band.  
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Objectives: Increasing evidence showed that disorders of consciousness (DoC) are linked with 

disruptions in functional connectivity between distant brain areas. However, to which extent 

the balance of brain network segregation and integration is modified in DoC patients remains 

unclear. Our objectives were to track alterations in functional connectivity measures reflecting 

cortical brain networks as a function of clinical consciousness levels and to identify the brain 

regions that were involved between groups. 

Methods: Resting state high-density-electroencephalography (EEG) data were collected and 

analyzed from 82 participants: 61 DoC patients recovering from coma with various levels of 

consciousness (EMCS (n=6), MCS+ (n=29), MCS- (n=17) and UWS (n=9)), and 21 healthy 

subjects. Functional brain networks in five different EEG frequency bands and the broadband 

signal were estimated using EEG source connectivity method. Graph theory-based analyses 

were used to evaluate their relationship with decreasing levels of consciousness as well as group 

differences between healthy volunteers and DoC patient groups. 

Results: Networks in DoC patients were characterized by impaired global information 

processing (network integration) and increased local information processing (network 

segregation) as compared to controls. The large-scale functional brain networks had integration 

decreasing with lower level of consciousness. Two common anatomical regions were identified 

with decreased integration when comparing the control group with any of the patient groups: 

the left precuneus and the left orbitofrontal cortex. 

Key words: disorders of consciousness, high-density electroencephalography, functional brain 

networks, unresponsive wakefulness syndrome, minimally conscious state   
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A R T I C L E I N F O

Keywords:
Disorders of consciousness
High-density electroencephalography
Functional brain networks
Unresponsive wakefulness syndrome
Minimally conscious state

A B S T R A C T

Increasing evidence links disorders of consciousness (DOC) with disruptions in functional connectivity between
distant brain areas. However, to which extent the balance of brain network segregation and integration is
modified in DOC patients remains unclear. Using high-density electroencephalography (EEG), the objective of
our study was to characterize the local and global topological changes of DOC patients' functional brain net-
works.

Resting state high-density-EEG data were collected and analyzed from 82 participants: 61 DOC patients re-
covering from coma with various levels of consciousness (EMCS (n=6), MCS+ (n=29), MCS- (n=17) and
UWS (n=9)), and 21 healthy subjects (i.e., controls). Functional brain networks in five different EEG frequency
bands and the broadband signal were estimated using an EEG connectivity approach at the source level. Graph
theory-based analyses were used to evaluate their relationship with decreasing levels of consciousness as well as
group differences between healthy volunteers and DOC patient groups.

Results showed that networks in DOC patients are characterized by impaired global information processing
(network integration) and increased local information processing (network segregation) as compared to controls.
The large-scale functional brain networks had integration decreasing with lower level of consciousness.

1. Introduction

Severe brain damages may lead to various disorders of conscious-
ness (DOC; (Giacino et al., 2014)). Emerging evidence associates DOC
with alterations in functional and/or structural brain networks, mainly
those sustaining arousal and awareness (Amico et al., 2017; Annen
et al., 2016; Annen et al., 2018; Bodien et al., 2017; Boly et al., 2012;
Fernández-Espejo et al., 2012; Owen et al., 2009). Therefore, network-
based EEG methods enabling the identification of these pathological
alterations in brain networks are valuable. More specifically, new
‘neuromarkers’ able to identify network characteristics associated with
DOC could improve diagnosis and optimize patient-specific clinical
follow-up. This is important, since DOC encompass a variety of con-
sciousness states, such as the unresponsive wakefulness syndrome

(UWS; wakefulness with only reflex movements) (Laureys et al., 2010;
Monti et al., 2010), the minimally conscious state (MCS, reproducible
and purposeful behavior; divided in MCS- and MCS+, the latter char-
acterized by the presence of response to command, intentional com-
munication and/or intelligible verbalization) (Giacino et al., 2002), and
emergence from the minimally conscious state (EMCS, characterized by
recovered functional communication and/or object use) (Giacino et al.,
2002).

These different clinical diagnoses are defined by functional bound-
aries as measured with behavior, preferably using the Coma Recovery
Scale-Revised (CRS-R; (Giacino et al., 2004)). However, there is a
transition zone between the different states that marks the recovery
from UWS to MCS or higher awareness levels (Giacino et al., 2009;
Schiff and Fins, 2016), emphasizing that DOC are not a static
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phenomenon but could be conceptualized as a continuum, with patients
sometimes moving from UWS to MCS and back in a short time span.
Indeed, diagnosis is most reliable in chronic patients after at least 5
behavioral assessments, accounting for arousal and awareness fluctua-
tions (Wannez et al., 2017). Clinical diagnosis based on behavior is
furthermore limited by misdiagnosis due to, for example, physical
limitations such as spasticity, language impairments, and medical
complications. UWS patients in which the neuroimaging shows results
in line with the ability to sustain consciousness are not rare and may
represent about 30% of the DOC population (Stender et al., 2014). This
category of patients are termed non-behavioral MCS (MCS*, (Gosseries
et al., 2014) or Cognitive Motor Dissociation (CMD, (Schiff, 2015). Even
though clinical diagnosis based on these functional boundaries is im-
portant for prognosis and treatment (e.g., (Thibaut et al., 2014)),
overlapping cognitive function as measured with neuroimaging/neu-
rophysiology between diagnostic entities is expected to some extent.

Electroencephalography (EEG) records cortical electrical activity
from scalp electrodes, and has major assets due to its non-invasiveness,
easiness-of-use and clinical accessibility. Previous EEG network-based
studies in the context of DOC have been performed at the scalp level
(Chennu et al., 2014; Chennu et al., 2017) with satisfactory accuracies
in classifying UWS and MCS patients (Chennu et al., 2017; Engemann
et al., 2018; Sitt et al., 2014). However, the biological interpretation of
corresponding network alterations is not straightforward, since scalp
EEG signals are corrupted by the volume conduction due to the head
electrical conduction properties (Brunner et al., 2016; Van de Steen
et al., 2016). Several studies have indeed reported the limitations of
computing connectivity at the EEG scalp level (see for review (Hassan
and Wendling, 2018; Schoffelen and Gross, 2009) even if this can be
compensated by methods removing zero-lag components, (Chennu
et al., 2017; Vinck et al., 2011). More essentially, scalp analysis does
not allow making inferences about interacting brain regions. A poten-
tial solution is an emerging technique called “MEG/EEG source con-
nectivity” (De Pasquale et al., 2010; Hassan et al., 2015; Hipp et al.,
2012; Kabbara et al., 2017; Kabbara et al., 2018; Mehrkanoon et al.,
2014; Mheich et al., 2017; Rizkallah et al., 2018), which reduces the
aforementioned volume conduction. It is also conceptually attractive
since networks can be directly identified at the cortical level with a high
time/space resolution (for more details, see (Hassan and Wendling,
2018). Since conscious processing involves synchronization of locally
generated oscillations between remote groups of neurons (Melloni
et al., 2007), high-density EEG functional connectivity at the source
level is a promising approach to track such synchronizations. In con-
trast, the time resolution of most fMRI techniques does not enable the
detection of fast neural oscillations (e.g., 30–80 Hz range), which are
involved in conscious perception and information transfer between
regions (Fries, 2015), limiting the possibilities to study synchroniza-
tion-based communication with fMRI.

Over the past decade, graph theory has become a well-established
approach in the field of network neuroscience (Fornito et al., 2016). It
provides complementary information to source connectivity methods
by quantifying functional and/or statistical aspects of identified brain
networks. Among the few studies using graph theory in DOC, a common
finding is the identification of disturbances in overall network in-
tegration, usually computed by modularity-based approaches (Chennu
et al., 2017; Crone et al., 2014; Demertzi et al., 2015). However, to
what extent the balance between EEG frequency-dependent network
segregation (local information processing) and integration (global in-
formation processing) is altered in DOC remains elusive, which is the
main objective of this paper. More specifically, large-scale commu-
nication (integration) between brain regions appears to involve rather
low-frequency oscillations such as the theta rhythm, while local in-
formation processing rather involves high-frequency oscillations such
as the gamma rhythm (Lisman and Jensen, 2013) for a detailed review).
Here, we tackle the issue of the integration/segregation balance and its
relationship with low/high frequency neuronal oscillations in patients

with DOC. In this study, we combined EEG source connectivity with
graph theory, applied to resting-state high-density-EEG (256 channels)
data recorded from patients with DOC whose diagnosis has been es-
tablished based on the Coma Recovery Scale-Revised (CRS-R; (Giacino
et al., 2004)).

Our specific objectives were to i) track alterations in objective
functional connectivity measures reflecting cortical brain networks as a
function of clinical consciousness levels (ranging from patients diag-
nosed as unresponsive, through those who have emerged from mini-
mally conscious and healthy control subjects) and ii) identify the brain
regions that were differentially involved between groups by means of
direct group comparisons.

2. Materials and methods

2.1. Participants

Sixty-one patients (24 females, mean age 40 ± 14.5) and twenty-
one healthy subjects (i.e. controls; 8 females, mean age 41 years±
15.4) were included in this study. Patients were diagnosed as EMCS
(n=6), MCS+ (n=29), MCS- (n=17) and UWS (n=9). Etiology
was traumatic in 28 patients and non-traumatic in 33 patients. Time
since injury was on average three years and ranged from nine days to
19 years. The Ethics Committee of the University Hospital of Liège
approved this study. All healthy subjects and patients' legal surrogates
gave informed written consent for participation to the study.

Patients' level of consciousness was assessed using the CRS-R
(Giacino et al., 2004) repeated at least 5 times to minimize clinical
misdiagnosis (Wannez et al., 2017). Patient's diagnosis was based on
the best behaviors/highest item obtained over the repeated CRS-R as-
sessments during the week of hospitalization. The following demo-
graphic information (listed in Supplementary Table T1) was also col-
lected for each patient: age, gender, traumatic or non-traumatic
etiologies and best clinical diagnosis based on the CRS-R assessments.

2.2. Data acquisition and preprocessing

The full pipeline of the analysis is described in Fig. 1. A high-density
EEG system (EGI, Electrical Geodesic Inc., 256 electrodes applied with a
saline solution) was used to record resting state brain activity with a
sampling rate of either 250 Hz or 500 Hz (which were down-sampled to
250 Hz for consistency). During data collection, patients were awake
and had their eyes open (an examiner was present during the whole
acquisition to ensure that the patients remained awake and eyes open in
a silent and dark room, tactile or auditory stimuli were administered if
patients were closing their eyes).

EEG data from 178 channels on the scalp were retained for analysis;
neck, forehead and cheeks channels were discarded, since they are the
most prone to muscular artifacts, as previously described (Hassan et al.,
2016; Kabbara et al., 2017). EEG signals were filtered between 0.3 and
45 Hz and then re-referenced using the average reference (Tadel et al.,
2011). Overall, out of 115 patients' recordings, we retained 61 datasets
for further processing and analysis. The other recordings were excluded
due to excessive contamination by artifacts (e.g., muscle artifacts).

All EEG epochs were visually inspected before Independent
Components Analysis (ICA) was performed to remove eye blinking ar-
tifacts using EEGLAB (Delorme and Makeig, 2004). Electrodes with
poor signal quality were interpolated in Brainstorm using signals re-
corded by surrounding electrodes (spherical spline interpolating
method, with a maximal distance between neighbors of 5 cm). Seg-
ments that have> 20 electrodes interpolated have been excluded from
the analysis. The MRI template “Colin27” (Holmes et al., 1998) and
EEG signals were co-registered through identification of the same
anatomical landmarks (left and right tragus and nasion) using Brain-
storm (without digitalizing the electrodes). The lead field matrix was
then computed for a cortical mesh of 15,000 vertices using openMEEG
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(Gramfort et al., 2010). The noise covariance matrix was calculated
using a long segment of noisy EEG data at rest, as recommended in
(Tadel et al., 2011). An atlas-based segmentation approach was used to
project EEGs onto an anatomical framework consisting of 221 cortical
regions identified by means of re-segmenting the Desikan-Killiany
(Desikan et al., 2006) atlas using Freesurfer (Fischl, 2012). Time series
within one region of interest were averaged after flipping the sign of
sources with negative potentials.

2.3. Brain networks construction

Functional brain networks were constructed using the “high-den-
sity-EEG source connectivity” method (Hassan et al., 2014) which
quantifies the functional connectivity between regional time series at

the source level. The EEG source connectivity method aims to bridge
functional network at the level of cortical sources and the recorded
scalp EEG signals, which involves solving an inverse problem (from the
EEG to the sources). This is an ill-posed problem since we have a
number of electrodes that is greatly inferior to the number of possible
sources. Therefore, several physical (position and orientation of the
sources) mathematical (amplitude) constraints have to be formulated to
solve the inverse problem. Here, regarding the position of the sources,
we used a segmented MRI image (template brain available in Brain-
storm package), with the position of each source being a vertex on the
brain mesh. Regarding the orientation of the sources, it was set as
normal to the cortical surface for each vertex, which is plausible since
the origin of EEG signals occurs from post-synaptic currents at the level
of pyramidal cells, and that pyramidal cells are aligned “en palissade”
and are normal to the cortical surface. In terms of mathematical con-
straints, we used the weighted minimum norm estimate (wMNE), which
aims to identify sources with the smallest energy. For further details,
see (Hassan and Wendling, 2018).

The EEG source connectivity method includes two main steps: i)
reconstruction of the cortical regions (brain sources) temporal dy-
namics from the scalp EEG signals and ii) measurement of the func-
tional connectivity between reconstructed regional time series. wMNE
was used to reconstruct the cortical sources by introducing a weighting
matrix:

= +S I(G W G λ ) G W XwMNE
T

X
‐1 T

X

where the diagonal matrix Wx is built from the lead field matrix G with
non-zero terms inversely proportional to the norm of the lead field
vectors. The regularization parameter λ is computed relatively to the
signal to noise ratio (λ=0.1 in our analysis). Reconstructed regional
time series were filtered in six different frequency bands: Delta
(1–3 Hz), Theta (3–7 Hz), Alpha (7–13 Hz), Beta (14–25 Hz), Gamma
(30–45 Hz) and broadband (1–45 Hz). Then, we computed the func-
tional connectivity between the reconstructed regional time series in
each frequency band, using the phase locking value (PLV) (Lachaux
et al., 1999) defined as:

∫=
−

+ −e dτPLV(t) 1
δ

j
t δ/2

t δ/2 (φ (t) φ (t))y x

where φy(t) and φx(t) are the phases of the signals x and y at time t
extracted using the Hilbert transform. δ denotes the size of the window
in which PLV is calculated. PLV values range between 0 (no phase
locking) and 1 (full synchrony). Detailed methodological description
and technical details of the high-density EEG source connectivity
method as computed in this paper can be found in (Hassan et al., 2015).

We used a sliding window technique for each epoch to compute the
dynamic functional connectivity matrices. The smallest window length
recommended by (Lachaux et al., 2000) was used, equal to number of cycles

central frequency
where the number of cycles at the given frequency band is equal to six.
Finally, we adopted a 10% (of the highest PLV values) threshold to
retain only the ‘true’ functional connections, and remaining PLV values
were set to zero.

2.4. Multi-slice networks modularity

Thresholded weighted connectivity matrices were split into time-
varying modules using multi-slice networks modularity (Bassett et al.,
2013; Mucha et al., 2010). This algorithm consists of linking nodes
across network slices (time windows) via a coupling parameter before
applying the modularity maximization method (Bassett et al., 2011;
Bassett et al., 2015): each node is only connected to itself in the ad-
jacent layers. This produces, for every brain region at every time
window, a modular assignment reflecting the module allegiance.

Due to a degeneracy problem in the modularity algorithms (Good
et al., 2010), i.e. running the same algorithm on the same connectivity

Fig. 1. Data processing pipeline. (A) Database: Patients were diagnosed ac-
cording to repeated assessments with the CRS-R into EMCS, MCS+, MCS- and
UWS. The demographic details are listed in Supplementary Table T1. (B) EEG
acquisition and preprocessing: High-density-EEGs were recorded using 256
electrodes during resting-state (eyes open, in the dark) for 20 to 30min. Signals
were then filtered between 0.3 and 45 Hz and segmented into 40 s epochs.
Independent Component Analysis (ICA) was applied and bad channels were
interpolated. Finally, the first five clean epochs were kept for analysis. (C)
Source reconstruction: EEG cortical sources were estimated using the weighted
norm estimation method (wMNE). This step was followed by a projection of the
source signals on an atlas based on Desikan-killiany and Hagmann atlases, using
a template brain. Reconstructed regional time series were filtered in six dif-
ferent frequency bands: Delta (1–3 Hz), Theta (3–7 Hz), Alpha (7–13 Hz), Beta
(14–25 Hz), Gamma (30–45 Hz) and Broadband (1–45 Hz). (D) Dynamic func-
tional networks: Functional connectivity matrices were computed using the
phase locking value (PLV) calculated using a sliding window technique.
Networks were then characterized by their clustering coefficient (segregation)
and participation coefficient (integration).
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matrix can result in slightly different outputs, the multilayer network
modularity was computed 100 times and a 221 by 221 association
matrix was generated (Bassett et al., 2013; Fornito et al., 2016;
Lancichinetti and Fortunato, 2012). The association matrix elements
indicate the number of times each node was assigned to the same
module with the other nodes across these 100 partitions. The associa-
tion matrix was then compared to a null-model generated from 100
random permutation from the originals partitions, and only significant
values (p < .05) were kept (Bassett et al., 2011). Finally, the Louvain
algorithm (Blondel et al., 2008) was applied on the association matrix
to cluster the network, resulting in a partition that is the most re-
presentative of network modularity.

2.5. Network measures

Our main intent was to explore two important properties related to

information processing in the human brain network:

- Network segregation, which reflects local information processing. For
this reason, the clustering coefficient ‘C' was computed and con-
sidered as a direct measure of network segregation (Bullmore and
Sporns, 2009). In brief, C represents how close a node's neighbors
tend to cluster together (Watts and Strogatz, 1998).

=
− ′

C t
k k

2
( 1)i

i

i i

where ti denotes the number of triangles around the node i and ki re-
presents the number of edges connected to the node i. This coefficient is
the proportion of connections among a node's neighbors, divided by the
number of connections that could possibly exist between them, which is
0 if no connections exist and 1 if all neighbors are connected. The
average clustering coefficient of a network was calculated for each
epoch by averaging the clustering coefficient values over all the 221

Fig. 2. Brain segregation and integration in control
subjects and patients with decreasing levels of con-
sciousness due to severe brain injury. A. The clus-
tering (segregation) and B. participation (integra-
tion) coefficients are presented for all groups in delta
(1–3 Hz), theta (3–7 Hz), alpha (7–13 Hz), beta
(14–25 Hz), gamma (30–45 Hz) and broad band
(3–45 Hz). Values were averaged over all brain re-
gions. Individual patient metrics are shown in the
scatter plot next to the box plot. Increase of clus-
tering coefficient values and decrease of participa-
tion coefficient values with decreased consciousness
level was found within all frequency bands. A
Wilcoxon test was applied between groups. * denotes
p < .05 without correction and ** with correction.
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regions.

- Network integration, which reflects global information processing.
The participation coefficient was computed to measure the diversity
of a node inter-modular connections (Guimera and Amaral, 2005).

∑ ⎜ ⎟= − ⎛
⎝

⎞
⎠=

P k
k

1i
s

is

i1

N 2m

where Nm is the number of modules, kis is the number of edges between
node i and other nodes in module s, and ki is the total degree of node i.
The participation coefficient of a node is close to 1 if its links are uni-
formly distributed among all the modules and 0 if all of its links are
within its own module. Nodes with high participation coefficients in-
terconnect multiple modules together, and hence can be seen con-
nectivity hubs. The average participation coefficient of a network is
calculated for each epoch by averaging the participation coefficient
values over all 221 regions.

2.6. Statistical analysis

The Jonckheere-Terpstra (JT) test (Jonckheere, 1954; Terpstra,
1952), a non-parametric and rank-based trend test, was used to test the
trends of network metrics as a function of the continuum of clinical
levels of consciousness. Regional-level differences were analyzed be-
tween the groups, with the exception of the EMCS group due to its very
small sample size (N=6).

To statistically assess whether group differences between brain in-
tegration and segregation and clinical levels of consciousness exist
(healthy volunteers versus all patient groups and between patient
groups) we used the Mann-Whitney U Test. In order to address the fa-
mily-wise error rate, statistical tests were corrected for multiple com-
parisons using the Bonferroni method. In the global-wise analysis,
pbonf = 0.05/Ng, where Ng=5 denotes the number of groups. In the
region-wise analysis, pbonf = 0.05/Nr, where Nr= 221 denotes the
number of regions of interest.

Data availability. The data used in the present study is available
upon reasonable request.

3. Results

There were no differences between patients and controls in terms of
gender (p= .6) or age (p= .2) and between patient groups for time
since injury (p= .12).

3.1. Network segregation/integration as a function of clinical levels of
consciousness

The results in Fig. 2A illustrate a trend towards increased clustering
coefficient values with decreased consciousness level in the delta (JT
trend statistic= 4.2, p < .0001), theta (JT trend statistic= 3.67,
p= .0001), beta (JT trend statistic= 2.24, p= .01) and gamma (JT
trend statistic= 1.66, p= .04) bands. In the delta band, controls had
lower clustering coefficients than patients in MCS+ (p= .0007,
U=133, r= 0.47, corrected), MCS- (p < .0001, U=43, r= 0.62,
corrected) and UWS (p= .01, U=39, r= 0.485 corrected). In the theta
band, the clustering coefficient was also lower in controls as compared
to MCS+ (p= .001, U= 146, r= 0.43, corrected), MCS- (p= .0001,
U=47, r= 0.62, corrected) and UWS (p= .01, U= 38, r= 0.46, cor-
rected).

The results in Fig. 2B illustrate decreased participation coefficient
values with decreased consciousness level in the delta (JT trend sta-
tistic= 4.5, p < .0001), theta (JT trend statistic= 4.9, p < .0001),
beta (JT trend statistic= 2.2, p= .01), gamma (JT trend sta-
tistic= 3.9, p < .0001) and broad bands (JT trend statistic= 2.7,
p= .0034). In the delta band, the participation coefficient was higher

in controls as compared to MCS+ (p= .0005, U=480, r= 0.48, cor-
rected), MCS- (p= .0007, U= 294, r= 0.54, corrected) and UWS
(p= .005, U=156, r= 0.5 corrected).

In the theta band, the participation coefficient was higher in con-
trols as compared to MCS+ (p= .003, U= 457, r= 0.42, corrected),
MCS- (p < .0001, U= 317, r= 0.65, corrected), and UWS (p= .003,
U= 159, r= 0.52, corrected). The participation coefficient in the theta
band was also higher in EMCS as compared to MCS- (p= .007, U= 90,
r= 0.56, corrected).

In the alpha band, the participation coefficient showed lower values
in controls than in EMCS (p= .009, U= 18, r= 0.49, corrected).
However, in the gamma band, the participation coefficient showed a
decrease in MCS+ patients (p= .0002, U=492, r= 0.52, corrected),
MCS- patients (p= .002, U=282, r= 0.49, corrected), and UWS pa-
tients (p= .01, U= 150, r= 0.45, corrected) as compared to controls.
Additionally, we performed the JT tests excluding the controls to con-
firm that our results were not solely driven by this group, and all trends
remained significant in theta, delta and gamma bands.

3.2. Regional-wise differences between groups

We present below results for the participation coefficient in the
theta (Fig. 3) and gamma (Fig. 4) bands.

All patient groups had brain regions with significantly (Bonferroni-
corrected) decreased integration as compared to the control group and
no regions with higher integration values were identified. As expected,
a wider network was involved in the decreased integration in MCS-
patients than in MCS+ patients, as compared to the controls. However,
the differences between the control group and the UWS group were
much less pronounced than between the control group and the MCS-
group, which might originate from the small sample size of the UWS
group (N=9). Regions that resisted the Bonferroni correction were
mainly located in the left precuneus and left/right orbitofrontal area for
the comparison of controls>UWS (p < .0002). A large number of
brain regions had decreased integration in the MCS- group as compared
to the control group (exhaustive list in Supplementary Material), in-
cluding the right orbitofrontal (p < .0002), left inferior temporal
(p < .0002) and left superior parietal (p < .0002). The left precuneus,
left/right orbitofrontal, left/right fusiform, left superior temporal, right
precentral (p < .0002) showed a higher participation coefficient in the
theta band for controls than MCS+ patients.

The results regarding the participation coefficient for the re-
constructed functional networks in the gamma band are presented in
Fig. 4. No significant differences were observed between patient groups.
The comparison between control and MCS- groups revealed a decrease
in participation coefficient in MCS- patients mainly in the left fusiform,
left postcentral and right dorso-lateral frontal cortex (p < .0002). A
much wider network of regions had a decreased participation coeffi-
cient between control and MCS+ groups, mainly located in the left/
right lateral frontal cortex and right central cortex (p < .0002). Again,
as in the case of the theta band, the UWS group had a lower number of
regions with decreased integration than MCS groups, as compared to
the control group. The exact labels of the regions with a significant
difference in the participation coefficient (in theta and gamma bands),
along with Bonferroni corrections, are available in the Supplementary
Materials Tables T2 and T3.

4. Discussion

Emerging evidence supports that DOC are characterized by disrup-
tions of brain networks that sustain arousal and awareness, as reviewed
by (Bodien et al., 2017). Therefore, identifying alterations in whole-
brain functional networks from non-invasive techniques, along with
their relationships with varying consciousness levels, is a crucial and
challenging issue. In this study, based on scalp high-density EEG re-
cordings, we identified alterations in resting-state functional networks
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associated with DOC. Interestingly, a gradual reconfiguration of func-
tional brain networks was observed in line with the consciousness level.
Our findings also pointed at a decrease in brain network integration
(communication between distant brain modules) and an increase in
brain network segregation (communication within the same brain
module) in DOC patients as compared to healthy controls. A decrease in
brain integration with decreasing consciousness is especially relevant
from a fundamental point of view. Indeed, one of the most prevalent
theories, namely the Integrated Information Theory (IIT), describes the
generation of conscious experiences as a result of a sufficiently complex
integration of information between brain regions (Tononi, 2004;
Tononi et al., 2016).

Although using EEG to identify markers in DOC is not novel in itself.
The originality of the present work is that, as opposed to most previous
studies, functional brain networks were estimated at the cortical level
using high-density EEG data, which enabled making inferences about
interacting regions. For example, we explored alterations of functional
brain networks in two key aspects of human brain information pro-
cessing: segregation and integration. These findings indicate that
functional connectivity between distant areas (network integration)
decreases with decreased level of consciousness.

4.1. Low network integration in DOC patients

The main finding of the present study is a decreasing trend in the
integration of resting-state functional brain networks with the con-
sciousness level. This finding is consistent with the conclusions from
several studies (Chennu et al., 2017; Crone et al., 2014), including those
investigating transcranial magnetic stimulation (TMS)-evoked EEG re-
sponses in patients with DOC (Casali et al., 2013; Casarotto et al.,
2016). An important contribution of the present study is that, as op-
posed to complexity-based indexes computing using TMS-evoked re-
sponses, the computation of integration is based only on resting-state
functional networks. It does not require any brain stimulation hard-
ware, which could have a potential clinical and practical value, even if
in this study we were not able to identify a difference between MCS and
UWS groups.

Two common anatomical regions were identified with decreased
integration when comparing the control group with any of the patient
groups. The first is the left precuneus, a key hub structure from the
default mode network (DMN). The precuneus is engaged in self-related
processing (Zhang and Chiang-shan, 2012), episodic memory (Ren
et al., 2018), awareness and conscious information processing (Kjaer
et al., 2001; Long et al., 2016; Vogt and Laureys, 2005). Also, it has

Fig. 3. Between-group comparison of regional decreases in theta band integration. Brain regions that have significantly lower integration in UWS, MCS- and MCS+
as compared to the control group and in MCS- patients compared to MCS+ patients are presented. Brain regions having a p-value lower than 0.05/221= 0.0002
(Bonferroni-corrected) are presented in the red color, regions with 0.0002 < p < .0004 are presented in dark orange, if 0.0004 < p < .0008 the light orange color
was used, for 0.0008 < p < .01 the yellow color was used and if p > .01 the regions are presented in white.
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been shown that patients with UWS having residual functional con-
nectivity of DMN and external awareness networks might be mis-
diagnosed, since such functional connectivity is an indicator of covert
consciousness (Naro et al., 2017). Second a part of the left orbitofrontal
cortex is affected, this region is believed to encode predicted values of
potential rewards (Gottfried et al., 2003). It is also thought to play a
major role in the evaluation of specific behavioral outcomes to influ-
ence action selection, depending on emotional and sensory contexts
(Rudebeck and Murray, 2014) and in pain perception (Naro et al.,
2015). As mentioned previously, the network of regions with decreased
integration in the theta band is wider in MCS- patients than in MCS+
patients, which is consistent with their respective clinical CRS-R diag-
nosis. It remains unclear why the UWS group had fewer involved brain
regions with decreased integration when compared to controls than the
MCS+ and MCS- groups.

Two main factors may explain the absence of group differences
between UWS and MCS patients. First, the limited sample size (N=9)
of the UWS group, which decreases statistical power for the group
comparison, especially given the high heterogeneity in DOC patients'
structural and functional brain lesions. Second, clinical diagnoses might
represent overlapping brain functioning (Schiff and Fins, 2016). In line
with this notion, previous studies identifying functional and structural
differences between patient groups have sometimes failed to identify
group differences between UWS and MCS, but found a difference be-
tween DOC and healthy controls' groups (e.g., (Demertzi et al., 2014; Di
Perri et al., 2016)). The identification of group differences still remains
a key objective for clinical applications and should be addressed in
larger multicenter studies.

Regarding the increased network segregation, results were less
pronounced between groups as compared to network integration. This
could explain discrepancies between previous studies, some referring to
an increase in network segregation (using the clustering coefficient for
instance) (Chennu et al., 2014), while others reported the opposite
(Chennu et al., 2017). It is worth mentioning that, in our study and the

one conducted by (Chennu et al., 2017), segregation results have op-
posite trends. A possible explanation is that the study by (Chennu et al.,
2017) performed functional connectivity in the electrode space, while
the present study functional connectivity was computed in the source
space. The relationship between scalp versus source space functional
connectivity using EEG is indeed still an open question in the EEG
community. A recent study that compared scalp- and source- re-
constructed networks concluded that, not only the magnitude of net-
work measures may change from scalp to source (EEG) analysis, but
even the direction of the effect may be the opposite (still depending on
the functional connectivity metric) between both methods (Lai et al.,
2018). Therefore, even if further efforts need to be made in the com-
parison between source- and scalp- EEG-based networks, such dis-
crepancies can be explained by the method of network reconstruction.

4.2. Methodological considerations and limitations

In this study, a proportional threshold of 10% was used to eliminate
spurious connections from connectivity matrices. We chose using a
proportional threshold instead of an absolute threshold to warrant
equal density between groups, as recommended by (van den Heuvel
et al., 2017). Moreover, Garisson et al. (Garrison et al., 2015) reported
that network measures are stable across proportional thresholds, as
opposed to absolute thresholds. A variety of thresholding methods are
available, but no method is free of bias, it is therefore recommended to
perform studies across different values of thresholds to ensure that
findings are robust against this methodological factor. Therefore, we
tested several threshold values, which did not have any impact on the
main conclusions of the study, as illustrated in Supplementary Figs. S1
and S2.

Second, the muscle artifact in the gamma band is a serious metho-
dological issue. Here, we have reduced the effect of the muscle artifacts
by selecting only 178 channels for analysis (neck, forehead and cheeks
channels were discarded, since they are the most prone to muscular

Fig. 4. Between-group comparison of regional de-
creases in gamma band integration. Brain regions
that have significantly lower integration in UWS,
MCS- and MCS+ as compared to the control group
are presented. Brain regions having a p-value lower
than 0.05/221=0.0002 (Bonferroni-corrected) are
presented in the red color, regions with
0.0002 < p < .0004 are presented in dark orange,
if 0.0004 < p < .0008 the light orange color was
used, for 0.0008 < p < .01 the yellow color was
used and if p > .01 the regions are presented in
white. (For interpretation of the references to color
in this figure legend, the reader is referred to the web
version of this article.)
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artifacts). Data with excessive movement artifact were removed by in-
terpolating abnormally noisy channels and removing epochs with>20
interpolated electrodes.

Third, the choice of wMNE/PLV was supported by two comparative
analyses performed in (Hassan et al., 2014; Hassan et al., 2016) that
reported the superiority of wMNE/PLV over other combinations of five
inverse algorithms and five connectivity measures. Briefly, in (Hassan
et al., 2016), the network identified by each inverse/connectivity
combination used to identify cortical brain networks from scalp EEG
was compared to a simulated network (ground truth). The combination
that showed the highest similarity between the scalp-EEG-based net-
work and reference network (using a network similarity algorithm) was
considered as the optimal combination, which was found to be wMNE/
PLV.

A persistent problem in the field of MEG/EEG source functional
connectivity is the volume conduction effect (Brookes et al., 2012).
Source level connectivity analysis has been shown to diminish the vo-
lume conduction problem, since connectivity metrics are estimated
between ‘local’ regional time-series. However, these ‘mixing effects’ can
also arise in the cortical source space, and ghost couplings can be
produced by some connectivity methods when applied to mixed signals.
To tackle this issue, a number of methods were developed mainly
centered on the zero-lag correlation rejection. Un-mixing methods,
called ‘leakage correction’, have been reported to force the re-
constructed signals to have zero cross-correlation at lag zero (Colclough
et al., 2015). Although handling this problem -theoretically- improves
interpretation, a recent study showed that the estimated connectivity
can be false and significantly different from the true connectivity (Palva
et al., 2018; Pascual-Marqui et al., 2017).

In the present study, a template source space was used, instead of a
subject-specific one. This might be problematic in severely brain-in-
jured patients, since different brain regions are injured between pa-
tients. In the case of healthy subjects, (Douw et al., 2018) found that co-
registration with a template brain yielded largely consistent con-
nectivity and network estimates as compared to native MRI. However,
in the case of severe brain damage, it remains unknown how a template
instead of a native MRI co-registration affects results and their inter-
pretability.

Although the significant trends in network integration decrease with
the level of consciousness, the current approach failed to identify a
significant difference, at the group level, between MCS and UWS
groups. This absence of difference represents, at this stage, a limitation
in terms of potential clinical translation. That being said, this represents
a challenge and an opportunity to develop further EEG network-based
markers of the consciousness level based solely on resting-state re-
cordings, to improve the diagnosis of DOC patients using a limited and
accessible hardware.
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Name Age Gender Days since injury Etiology Best diagnosis 

P1 27 F 1570 NT MCS+ 

P2 27 M 1542 T MCS+ 

P3 35 M 6950 NT UWS 

P4 60 M 9 NT MCS- 

P5 24 M 319 T MCS- 

P6 30 F 2406 NT MCS- 

P7 30 F 563 T MCS- 

P8 30 M 583 T MCS+ 

P9 50 M - T MCS+ 

P10 30 F - T MCS+ 

P11 46 M 528 T MCS+ 

P12 48 F - NT MCS- 

P13 37 M 1869 NT MCS- 

P14 59 F - NT MCS- 

P15 5 F - T MCS+ 

P16 24 M 2681 NT MCS+ 

P17 30 M 33 NT MCS+ 

P18 43 M 3139 T MCS- 

P19 45 F 491 NT UWS 

P20 57 M 390 NT MCS+ 

P21 25 F 308 NT MCS+ 

P22 23 M 421 T MCS+ 

P23 28 M 66 NT MCS- 

P24 53 M 1235 NT MCS- 

P25 24 M - T MCS+ 

P26 36 F - NT UWS 

P27 22 M 2972 T MCS- 

P28 23 M 2035 T MCS+ 

P29 73 M 28 NT MCS- 

P30 30 M 3337 T MCS+ 

P31 47 F - NT MCS- 

P32 65 M 674 T MCS+ 

P33 55 M - NT MCS+ 

P34 19 M 426 T MCS+ 

P35 39 F 1437 T MCS- 

P36 34 F 375 T EMCS 

P37 61 F 858 NT MCS+ 

P38 14 M 185 NT EMCS 

P39 26 F 112 NT UWS 

P40 35 M 4154 NT MCS+ 

P41 60 M 406 NT EMCS 

P42 62 M 672 NT UWS 

P43 67 F 1464 NT MCS+ 

P44 23 M 456 NT UWS 

P45 42 F 220 NT MCS- 

P46 72 M 3062 NT MCS+ 

P47 21 M 257 T UWS 

P48 30 M 402 T MCS- 

P49 28 M 2423 T EMCS 



Table T1: Patients demographic information: age, gender, days since injury, traumatic 

(T) or non-traumatic (NT) etiology and clinical best diagnosis.  

 

 

 

 

 

  

P50 59 F 709 T MCS+ 

P51 51 F 347 NT UWS 

P52 25 M 1283 T MCS+ 

P53 42 M 1186 T EMCS 

P54 24 F 333 NT MCS- 

P55 43 F 40 T UWS 

P56 55 F 669 T MCS+ 

P57 54 M 387 NT MCS+ 

P58 38 M 541 T MCS+ 

P59 43 F 98 NT MCS+ 

P60 22 M 423 T MCS+ 

P61 33 F 308 NT EMCS 



CTRL>UWS CTRL>MCS- CTRL>MCS+ MCS+>MCS- 

Lateralorbitofrontal R 

Lateralorbitofrontal L 

Precuneus L 

Lateralorbitofrontal R 

Lateralorbitofrontal L 

Postcentral R 

Inferiortemporal R 

Parahippocampal R 

Fusiform R 

Superiortemporal R 

Superiortemporal L 

Precentral R 

Lateraloccipital R 

Lateraloccipital L 

Parsobitalis R 

Rostralmiddlefrontal R 

Rostralmiddlefrontal L 

Inferiorparietal R 

Bankssts R 

Superiorparietal R 

Middletemporal R 

Middletemporal L 

Supramarginal R 

Temporalpole R 

Parsopercularis R 

Parsopercularis L 

Pericalcarine R 

Entorhinal R 

Postriangularis R 

Caudalmiddlefrontal L 

Transvertemporal L 

Fusiform R 

Fusiform L 

Lateralorbitofrontal 

R 

Lateralorbitofrontal 

L 

Precentral R 

Precuneus L 

Insula L 

Superiortemporal L 

 

Table T2: Brain regions that have significantly lower integration in theta band in UWS, 

MCS- and MCS+ as compared to the control group and in MCS- patients compared to 

MCS+ patients with p-value lower than 0.05/221=0.0002 (Bonferroni-corrected)  



CTRL>UWS CTRL>MCS- CTRL>MCS+ 

 Parsopercularis R 

Fusiform L 

Parahippocampal L 

Lingual L 

Postcentral L 

Parsopercularis R 

Rostralmiddlefrontal R 

Rostralmiddlefrontal L 

Parstriangularis R 

Parstriangularis L 

Lateralorbitofrontal R 

Lateralorbitofrontal L 

Parsopercularis R 

Postcentral R 

Postcentral L 

Parsobitalis R 

Superiortemporal R 

Lingual R 

Lingual L 

Inferiortemporal R 

Precentral R 

Precentral L 

Pericalcarine 

Superiorfrontal R 

Superiorfrontal L 

Supramarginal R 

Parahippocampal R 

Parahippocampal L 

Fusiform L 

Caudalmiddlefrontal L 

Precuneus L 

Middletemporal L 

Parsopercularis L 

Inferiorparietal L 

Table T3: Brain regions that have significantly lower integration in gamma band in 

UWS, MCS- and MCS+ as compared to the control group and in MCS- patients 

compared to MCS+ patients with p-value lower than 0.05/221=0.0002 (Bonferroni-

corrected) 



 

Figure S1: Clustering coefficient values for different thresholds (10%, 20% and 30%) in 

the theta and gamma bands. Significant differences are presented by * if p<0.05 without 

correction and ** if corrected (Bonferroni correction p<0.05/5). 

 

  



 

Figure S2: Participation coefficient values for different thresholds (10%, 20% and 30%) 

in the theta and gamma bands. Significant differences are presented by * if p<0.05 

without correction and ** if corrected (Bonferroni correction p<0.05/5) 
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CHAPTER 5. DISCUSSION 
AND FUTURE WORK 

There is an emerging consensus that the human brain is a dynamic complex network of 

structurally and functionally interconnected regions (Sporns et al., 2004; Stam and Reijneveld, 

2007), that reconfigure during resting state (Damaraju et al., 2014; De Pasquale et al., 2016; 

Vink et al., 2019) and task (Medaglia et al., 2018; O’neill et al., 2017; Wang et al., 2019). The 

progress in the network neuroscience field showed the importance of studying brain network 

alterations in the case of brain disorders as they are related to large-scale network disruptions 

(Fornito et al., 2015; Monti et al., 2010b; Stam, 2014). Hence, there is an urgent need for easy-

to-use, non-invasive techniques, to characterize the pathological networks. 

The main contributions provided by this thesis can be summarized as follows: 

- Track the fast brain network dynamics during the recognition of different category of 

visual object, meaningful and meaningless. We proposed a new metric, called 

“occurrence”, which presents the probability of any two nodes to fall in the same module 

over time and reflects the importance of strong or weak temporal interactions between 

any two brain regions during time. Our results showed i) greater integration and 

occurrence values for meaningless compared to meaningful images and ii) the 

occurrence within the right frontal and the left occipito-temporal regions can predict the 

ability of the brain to rapidly recognize and name visual stimuli.  

- Evaluate the effect of the FC methods’ choice on EEG-source space networks at rest by 

testing two main families of FC methods: FC methods that do not remove zero-lag 

connectivity and FC methods that remove zero-lag connections. Networks obtained by 

each FC method were compared with fMRI networks (from the Human Connectome 

Project). Results show low correlations for all the FC methods. However, PLV and AEC 

networks are significantly correlated with fMRI networks (ρ = 0.12, p = 1.9310-8 and 

ρ = 0.06, p = 0.007, respectively), while other methods are not.  

- Reveal alterations in functional connectivity networks in DoC as a function of clinical 

consciousness levels. Results showed that networks in DoC patients were characterized 

by impaired global information processing (network integration) as compared to 
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controls. Furthermore, we were able to identify the brain regions with decreased 

integration that were involved between groups: the left precuneus (engaged in self-

related processing, awareness and conscious information processing) and the left 

orbitofrontal cortex (engaged in action selection depending on emotional and sensory 

contexts and in pain perception). 

- Track the dynamic modular states changes between healthy control and DoC groups and 

between MCS and UWS patients. Results showed that no emotions, cognitive, motor or 

language networks were extracted in the case of UWS patients. However, these 

networks were found in healthy participants and MCS patients. Moreover, the fronto-

parietal connections were also only found in the MCS and healthy participants. 

5.1. Dynamic functional networks at rest 
and task   
Following the brain network dynamics has a great interest in network neuroscience since it 

helps to understand how the human brain reconfigures during cognitive tasks and to define the 

altered networks in neurological diseases. Brain network reshaping includes slow changes 

across the lifetime (due to long-term processes like learning or aging) which can be studied in 

a longitudinal way. Brain network changes include, as well, evoked and fast fluctuations during 

tasks or in response to external stimuli. Tracking these fast fluctuations is a key challenge in 

cognitive and clinical neuroscience (Allen et al., 2014; Hutchison et al., 2013).  

In this thesis, we used EEG recordings, known for their high temporal resolution, and adopted 

a sliding window technique to compute the FC matrices at short time windows in two studies: 

the cognitive task in healthy with meaningful vs. meaningless object recognition, and the 

clinical study performed during resting state. In addition, we combined the sliding window 

technique with the categorical version of the modular states algorithm developed in our team 

(Kabbara et al., 2019) in order to reveal the modular structures over time for different groups 

of DOC patients. 

For the cognitive task, higher integration and occurrence values were found for meaningless 

compared to meaningful images. We were also able to define the most involved brain regions: 

the right lingual and right fusiform regions known for their essential role in visual processing 

(Cai et al., 2015; Perani et al., 1999) and the left isthmus known for its role in the regulation of 
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the focus of attention (Leech and Sharp, 2013) had higher integration values, while the occipito-

frontal connections, known for their role in  object identification and decision making in case 

of unclear choice, had higher occurrence values, which provided a measure of the 

communication duration between these two regions.  

As for the clinical study, results revealed a decrease in brain network integration 

(communications between distant brain modules) in DOC patients as compared to healthy 

controls, which is consistent with the findings of several previous studies (Chennu et al., 2017; 

Tononi et al., 2016). Networks obtained in healthy participants and MCS patients, which were 

not present in UWS, were mainly located in the cingulate, frontal and central cortex,  known to 

play a key role in emotions, cognitive, memory and motor processes (Berger and Davelaar, 

2018; Bush et al., 2000; Klimesch, 1999; Lustenberger et al., 2015). Moreover, fronto-parietal 

connections have been previously demonstrated to be a neural marker of behaviorally evidenced 

consciousness, not only in patients with disorders of consciousness (Chennu et al., 2014; 

Stender et al., 2014), but also during propofol sedation to normal subjects (Chennu et al., 2016). 

Despite the good results we obtained, sliding window technique faces several difficulties such 

as the length of the window, since short windows may underlie errors in the generated networks 

and large windows may fail to capture the fast network changes and alterations in the brain. 

Moreover, it also requires a huge memory to save the reconstructed matrices and a large amount 

of time to compute the multislice modularity technique. Therefore, dimensionality reduction 

algorithms may be used to reduce the size of the matrices and the computing time. Other 

approaches proposed to track fast network transitions can also be tested, such as Hidden Markov 

model approaches (Baker et al., 2014; Vidaurre et al., 2018), K-means clustering (Allen et al., 

2018; Mheich et al., 2015), principal components analysis (Leonardi et al., 2013), independent 

components analysis (Kiviniemi et al., 2011; O’neill et al., 2017) or tensor-based approach 

(Ozdemir et al., 2017). 

5.2. EEG source connectivity 
As stated before, the accurate identification of brain networks, from scalp EEG, is a major 

challenge due to volume conduction problem. In this scope, EEG source connectivity method 

has considerably developed over the past decades and offers the advantage to track the network 

dynamics with high space/time resolution (Hassan et al., 2015; Schoffelen and Gross, 2009). 
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However, the EEG source connectivity is still an immature method (Palva and Palva, 2012; 

Schoffelen and Gross, 2009; Song et al., 2015; Van Diessen et al., 2015) with the need to study 

the effect of the leakage correction (removing spurious connections between adjacent regions 

by removing zero-lag connections) on the reconstructed networks. 

Hence, we compared M/EEG FC matrices (obtained from different FC methods – PLV, AEC, 

PLI, PLVCol, AECCol, PLVPas and AECPas – and different EEG montages) to those obtained 

using fMRI (collected from HCP databases) to explore the effect of the above-mentioned 

methodological considerations. FC matrices estimated using PLV and AEC (methods that keep 

the zero-lag correlations) correlated significantly with fMRI network (considered as ground 

truth) as compared to the other methods (methods that remove zero-lag connections) that did 

not. This can be explained by the fact that not all zero-lag connections are spurious (Gollo et 

al., 2014; Roelfsema et al., 1997) and by removing zero lag connections, false and significantly 

different estimated connectivity from the true connectivity can be revealed (Palva et al., 2018).  

5.3. Methodological considerations 
5.3.1. Ill-posed inverse problem solution 
Different methods have been proposed to resolve the inverse problem. The most popular 

algorithms include low resolution brain electromagnetic tomography (LORETA) (Pascual-

Marqui et al., 1994), standardized low resolution brain electromagnetic tomography 

(sLORETA)  (Pascual-Marqui, 2002), beamforming (Brookes et al., 2004), Minimum Norm 

Estimate (MNE) (Hämäläinen and Ilmoniemi, 1994) and weight Minimum Norm Estimate 

(wMNE) (Lin et al., 2004).  

It is likely that the selection of a source imaging method to solve the inverse problem has a 

remarkable effect on the accuracy of the reconstructed source signals, and ultimately on the 

brain networks obtained (a detailed comparison between different methods was reported by 

(Becker et al., 2015)). In this thesis, we used the weighted minimum norm estimate (wMNE) 

as an inverse solution since it implies relatively few hypotheses and presents acceptable 

distance of localization error and CPU runtime (Becker et al., 2015) which can be explained by 

the brain low energy cost during information processing.  Moreover, the choice of wMNE was 

supported by two comparative analyses (Hassan et al., 2014; Hassan et al., 2016) that reported 
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the superiority of wMNE/PLV over other combinations of five inverse algorithms and five 

connectivity measures.  

5.3.2. Template brain 
In studies 2, 3 and 4, a template source space was used, instead of a subject-specific one as was 

done in study 1. In the case of healthy subjects, co-registration with a template brain yielded 

largely consistent connectivity and network estimates as compared to native MRI (Douw et al., 

2018). This strategy was widely used in several studies (Lai et al., 2018; López et al., 2014; 

Mullen et al., 2013). However, in the case of severe brain damage, it remains unknown how a 

template instead of a native MRI co-registration affects results and their interpretability. Hence, 

we believe that comparing results of DOC study using subject-specific can positively affect the 

results and help differentiate between MCS and UWS patients. 

5.3.3. Number of Regions of interests 
In this thesis we used Desikan-Killiany atlas to parcellate the brain into regions of interest 

(ROIs). However, EEG source connectivity method can be used with other cortical parcellations 

such as Destrieux atlas composed of 148 ROIs (Destrieux et al., 2010) or Automated 

Anatomical Labelling (AAL) atlas composed of 90 ROIs (Tzourio-Mazoyer et al., 2002), 

provided that the number of regions is sufficiently low, and that regions are well separated to 

ensure that the windowed data matrices are of full rank which is a requirement of the 

orthogonalisation procedure (Colclough et al., 2015). We can then study the effect of brain 

parcellations on the efficiency of the reconstructed functional networks. 

5.3.4. Sliding window length 
To reconstruct dynamic functional connectivity matrices, we adopted in this thesis the sliding 

window technique. The ideal window length depends on which frequency band is used to 

process the signals since it should guarantee a sufficient number of data points over which the 

connectivity is calculated.  

Here, we adopted the smallest window length recommendation by (Lachaux et al., 1999):  

  

 

number of cycles
W

central frequency
 where the number of cycles is equal to 6. However, future studies may 

need to address how to dynamically regulate the sliding window length instead of predefining 

it. Other approaches, such as the use of graph signal processing (GSP) or the very recently 
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approach to estimate instantaneous phase difference of instantaneous amplitude correlation 

(Tewarie et al., 2019), can also be used to estimate dynamic networks without using the sliding 

window approach. 

5.3.5. Connectivity matrix threshold 
Usually, a threshold is applied on the obtained connectivity matrix to remove the spurious 

connections (very low connections weight). There is no consensus on the best thresholding 

technique (Fornito et al., 2016; Sporns, 2011). Many types of thresholds can be used such as 

empirical, proportional or statistical thresholds. The simplest approach is to apply a global 

threshold, which consist on setting a value for the connectivity matrix. The connections that are 

higher than this value are used and the lower connections removed and set to zero. However, 

absolute thresholds may remove significant connections in low-average connectivity networks, 

or keep weak connections in connectivity networks with high-average (Van Wijk et al., 2010). 

Proportional thresholds keep a percentage of the strongest connections of the connectivity 

matrix. Statistical thresholds are based on controlling the false discovery rate (FDR) used in 

many recent brain network studies (Bassett et al., 2011; Bassett et al., 2013). It requires 

converting the connectivity matrix to a p-value map and retaining only the connectivity values 

whose p-values passed the statistical FDR threshold (Achard et al., 2006; Genovese et al., 

2002). Such thresholds are beneficial as they perform multiple testing to adjust thresholds by 

controlling false-positive rate. 

However, choosing the right threshold is an open issue and depends on the analysis assessed. It 

is recommended to choose a proportional threshold when comparing connectivity between 

groups (van den Heuvel et al., 2017), and to choose a statistical threshold in other cases 

(Genovese et al., 2002). Network measures are shown to be stable across statistical and 

proportional thresholds contrary to absolute thresholds (Garrison et al., 2015).  

5.4. Future directions 
In this thesis, we investigated the capability of “EEG source connectivity” to track the fast 

dynamic changes of brain networks at very short time scale during a visual object recognition 

task and to identify the pathological alterations in disorders of consciousness as a clinical 

application. This investigation was performed by extracting dynamic characteristics and 

topologies of networks using graph theory. We also tested the effect of removing zero-lag 
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connections as a solution to the source leakage problem on the reconstructed networks using 

wMNE as a solution to the ill-posed inverse problem and several functional connectivity 

methods.  

In a future work, other methods used to resolve the inverse problem such as beamforming 

combined with other functional and effective connectivity methods should be also studied. The 

number of regions of interest and the effect of the number of channels using EEG and fMRI 

recordings for the same subjects should also be considered.  

In the case of DOC, using subject specific source space will be indeed of interest to explore 

how the brain lesions can affect and perhaps improve the obtained results. Results also showed 

significant differences between DOC groups at specific frequency bands (mainly theta and 

gamma). The cross coupling between these two frequency bands could also be an interesting 

direction to explore.  

Finally, most existing approaches have focused on analyzing structural and functional brain 

graphs separately. However, graph signal processing (GSP) is an emerging area of research, 

where signals recorded at the nodes of the graph are studied atop the underlying graph structure, 

allowing to analyze the signals from a new viewpoint. GSP allows the decomposition of a graph 

signal into pieces that represent different levels of variability: low graph frequency components, 

which represent alignment with structural connectivity (brain regions that are physically wired 

and activate together), and high graph frequency components, which describe liberality (brain 

regions that exhibit high signal variability with respect to the underlying graph structure).  This 

decomposition can indeed be important for the analysis of neurological disease and behavior 

(Garrett et al., 2012; Heisz et al., 2012) as in the case of DOC patients.  
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