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Diffusion MRI processing for multi-compartment characterization
of brain pathology

Abstract: Diffusion weighted imaging (DWI) is a specific type of MRI acquisition

based on the direction of diffusion of the brain water molecules. It allows, through

several acquisitions, to model the brain microstructure, as white matter, which is

significantly smaller than the voxel-resolution.

To acquire a large number of images in a clinical setting, very-fast acquisition

techniques are required as single-shot imaging. However these acquisitions suffer

locally large distortions. We propose a block-matching registration method based

on the acquisition of images with opposite phase-encoding directions (PED). This

technique specially designed for Echo-Planar Images (EPI) robustly correct images

and provides a deformation field. This field is applicable to an entire DWI series

from only one reversed EPI allowing distortion correction with a minimal acquisition

time cost. This registration algorithm has been validated both on phantom and on

in vivo data and is available in our source medical image processing toolbox Anima.

From these diffusion images, we are able to construct multi-compartments mod-

els (MCM) which can represent complex brain microstructure. Doing registration,

averaging and atlas creation on these MCM images is required to perform studies

and statistic analyses. We propose a general method to interpolate MCM as a sim-

plification problem based on spectral clustering. This technique, which is adaptable

for any MCM, has been validated on both synthetic and real data. Then, from a

registered dataset, we performed a patient to population analysis at a voxel-level

computing statistics on MCM parameters. Specifically designed tractography can

also be used to make analysis, following tracks, based on individual anisotropic com-

partments. All these tools are designed and used on real data and contribute to the

search of biomakers for brain diseases such as multiple sclerosis.

Keyworlds: Diffusion MRI, Registration, Block-Matching, Multi Com-

partment models



Caractérisation de pathologies cérébrales par l’analyse de modèles
multi-compartiment en IRM de diffusion

Abstract: L’imagerie pondérée en diffusion est un type d’acquisition IRM spéci-

fique basé sur la direction de diffusion des molécules d’eau dans le cerveau. Cela per-

met, au moyen de plusieurs acquisitions, de modéliser la microstructure du cerveau,

comme la substance blanche qui a une taille très inférieure à la résolution du voxel.

L’obtention d’un grand nombre d’images nécessite, pour un usage clinique, des

techniques d’acquisition ultra rapides tel que l’imagerie parallèle. Malheureuse-

ment, ces images sont entachées de larges distortions. Nous proposons une méthode

de recalage par blocs basée sur l’acquisition d’images avec des directions de phase

d’encodage opposées. Cette technique spécialement conçue pour des images écho

planaires, mais qui peut être générique, corrige les images de façon robuste tout en

fournissant un champ de déformation. Cette transformation est applicable à une

série entière d’images de diffusion à partir d’une seule image b0 renversée, ce qui

permet de faire de la correction de distortion avec un temps d’acquisition supplé-

mentaire minimal. Cet algorithme de recalage, qui a été validé à la fois sur des

données synthétiques et cliniques, est disponible avec notre logiciel de traitement

d’images Anima.

A partir de ces images de diffusion, nous sommes capables de construire des

modèles de diffusion multi-compartiment qui représentent la microstructure com-

plexe du cerveau. Pour pouvoir produire des analyses statistiques sur ces modèles,

nous devons être capables de faire du recalage, du moyennage, ou encore de créer un

atlas d’images. Nous proposons une méthode générale pour interpoler des modèles

multi-compartiment comme un problème de simplification basé sur le partition-

nement spectral. Cette technique qui est adaptable pour n’importe quel modèle, a

été validée à la fois sur des données synthétiques et réelles. Ensuite à partir d’une

base de données recalée, nous faisons des analyses statistiques en extrayant des

paramètres au niveau du voxel. Une tractographie, spécifiquement conçue pour les

modèles multi-compartiment, est aussi utilisée pour faire des analyses en suivant les

fibres de substance blanche. Ces outils sont conçus et appliqués à des données réelles

pour contribuer à la recherche de biomarqueurs pour les pathologies cérébrales.

Mot clés: IRM de diffusion, Recalage, Block-Matching, Modèles multi-

compartiment
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Chapter 1

Résumé en français

1.1 Contexte général

L’imagerie par résonance magnétique (IRM) est un examen médical qui produit des

images in-vivo des organes internes et des structures du corps. Pendant cet exa-

men, le sujet est installé dans un champ magnétique puissant et homogène qui est

générallement généré à l’intérieur d’un long tube (voir Fig 1.1). L’IRM est basée

sur la résonnance magnétique nucléaire et utilise les propriét́es magnétiques des

noyaux des atomes. L’eau est le composant principal du corps humain, la propor-

tion qui dépend de nombreux facteurs dont l’âge est comprise entre 55% et 80%

[Brozek 1961, Siri 1961, Ellis 2000]. Par conséquent, même si tous les atomes peu-

vent théoriquement être étudiés, pour l’IRM clinique, les atomes d’hydrogènes qui

composent l’eau sont préférés. Un des avantages de l’IRM est que contrairement à

d’autres modalités (comme les rayons X ou la tomodensitométrie), c’est une tech-

nique d’imagerie non-invasive.

Figure 1.1: Illustration d’un appareil IRM. Common license, https: // commons.
wikimedia. org/ wiki/ File: MRI-Philips. JPG

https://commons.wikimedia.org/wiki/File:MRI-Philips.JPG
https://commons.wikimedia.org/wiki/File:MRI-Philips.JPG
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Une grande variété de séquences IRM existent avec des temps d’acquisitions

différents. Générallement, différentes séquences peuvent être acquises durant un

même examen pour obtenir des informations complémentaires sur le patient. Le

temps d’acquisition total d’un examen IRM est important pour plusieurs raisons.

Tout d’abord, le confort du patient est crucial, non seulement pour son bien-être,

mais aussi parce que si des mouvements surviennent pendant une longue sequence,

les images résultantes seront dégradées. En outre, la compléxité d’une machine

IRM fait que les examens sont couteux. Selon le type de séquence et le choix des

paramètres, une IRM produit un type d’imagerie varié ce qui inclut des images

anatomiques, de l’imagerie fonctionnelle ou de l’imagerie quantitative.

En raison de sa faible dangerosité et de sa haute résolution spatiale, l’IRM

est devenu un examen incontournable avec la tomodensitométrie pour l’étude des

organes internes. Son usage clinque s’est répandu dans un grand nombre de do-

maine incluant: les pathologies thoraciques, les pathologies artérielles, les patholo-

gies digestives, les maladies du système nerveux central [Calvo 2001, Gebker 2007,

Sandrasegaran 2005, Polman 2005]...

L’examen IRM est tout d’abord utilisé pour établir un diagnostique: localiser

des tumeurs, étudier les problèmes d’articulations, préparer une intervention chirur-

gicale. Il permet également de surveiller l’évolution d’une maladie au cour d’une

étude longitudinale et de pouvoir adapter un meilleur traitement. Il est aussi es-

sentiel pour la recherche médicale, en particulier en neuroscience. En effet, les con-

naissances scientifiques sur le cerveau, à la fois anatomiques et fonctionnelles, ont

largement progréssées grace aux études IRM. Désormais, les IRM sont des examens

médicaux classiques et essentiels pour un usage clinique ainsi que pour la recherche

scientifique. L’IRM de diffusion est un type particulier d’acquisition IRM, c’est

le sujet principal de cette thèse. Cette technique vise à étudier la direction et la

quantité de diffusion des molécules d’eau dans le cerveau. Cela permet, moyennant

plusieurs acquisitions, de modéliser indirectement la microstructure du cerveau. La

substance blanche en particulier a une taille nettement inférieur (le diamètre d’un

axone est de l’ordre du micromètre) à l’unité de résolution spatiale, le voxel (qui est

de l’ordre du millimètre cube). L’étude de la microstructure du cerveau par l’IRM

de diffusion est un grand défi qui nécessite des méthodes précises et des modèles

adaptés à la fois pour la qualité de l’acquisition et pour la reconstruction de la mi-

crostructure au niveau du voxel. Dans ce manuscript, nous nous focaliserons sur

cette modalité IRM particulière.

L’IRM de diffusion peut apporter un excellent aperçu dans la qualification d’une

maladie et l’adaptation du traitement. Le premier défi de l’IRM de diffusion est la

conception et l’estimation des modèles de diffusion. Cet aspect a été largement

étudié et une revue de la littérature sur le sujet est présentée en Section 1.2. Les

acquisitions utilisées pour l’IRM de diffusion ont des artefacts, la correction de

distortion de ces artefacts est introduite Section 1.3. Enfin, nous présentons des

méthodes de traitements et des outils statistiques pour une classe de modèle de

diffusion complexe appelé modèle multi-compartiment en Section 2.4 et Section 1.5.
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1.2 Etat de l’art

Le manuscrit commence par un état de l’art (Chapitre 3) en proposant une présen-

tation rapide du cerveau humain ainsi qu’une description des principales catégories

de pathologies cérébrales et de l’impact potentiel des techniques d’imagerie médicale

sur ces pathologies.

Des spins des atomes d’hydrogènes à la récupération du signal dans l’espace

de Fourier, l’IRM est une modalité complexe d’imagerie médicale. En outre, les

acquisitions d’IRM de diffusion (DWI) que nous étudions sont basées sur la diffusion

naturelle des molécules d’eau selon différent tissues. Les principes généraux de l’IRM

et la spécificité des acquistions DWI sont introduits dans ce chapitre.

Dans le reste de l’état de l’art, différent modèles de diffusion estimés à partir

d’acquisition DWI sont présentés. Nous soulignons les forces et faiblesses de ces

modèles classés en trois catégories:

• L’imagerie du tenseur de diffusion (DTI) représente la diffusion d’eau au sein

de chaque voxel au moyen d’un tenseur.

• Les modèles basés sur la décomposition du signal dans une base de fonctions

orthogonales.

• Les modèles multi-compartiment (MCM) représentant la diffusion avec plusieurs

compartiments isotropiques et anisotropiques.

1.3 Correction de distortion des images écho planaires

En diminuant la durée d’acquisition des IRM, les techniques d’imagerie parallèle

permettent l’acquisition d’un grand nombre d’images (EPI) dans un court laps de

temps, compatible avec des contraintes cliniques requises pour l’imagerie de diffusion

ou l’imagerie fonctionnelle. Cependant, ces images sont soumises à de larges distor-

tions perturbant leurs correspondance avec l’anatomie sous jacente. La correction

de ces distortions reste un problème ouvert, spécialement dans les zones sévèrement

impactées par de grandes déformations.

Nous proposons au Chapitre 4 une nouvelle technique de block-matching basée

sur l’acquisition de deux EPI avec des directions de phases d’encodages opposées.

Cela s’appuie sur de nouvelles transformations entre les blocs adaptées au mod-

èle de distortion et sur un schéma d’optimisation qui assure une transformation

symétrique. Nous présentons des résultats qualitatifs et quantitatifs de correction

par block-matching en utilisant différentes métriques à la fois sur des données syn-

thétiques et sur des données réelles. Nous montrons la qualité de la correction

block-matching et sa robustesse, y comprit dans des zones fortement affectées par les

déformations. Pour finir nous présentons dans les perspectives un algorithme block-

matching totalement symétrique qui utilise une image structurelle supplémentaire

non distordue comme une image centrale.
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1.4 Interpolation des modèles multi-compartiment

Les modèles multi-compartiment (MCMs) sont de plus en plus utilisés pour char-

actériser la substance blanche du cerveau à partir d’images pondérées en diffusion.

Dans le Chapitre 5, nous posons le problème d’interpolation et de moyennage des

MCMs comme un problème de simplification basé sur le partitionnement spectral.

Ces méthodes génériques sont testées pour les modèles multi-tenseurs et éval-

uées pour un MCM spécifique: le diffusion direction imaging (DDI). Les résultats

calculés à partir d’une large base de données, montrent la supériorité de la méth-

ode analytique, calculé à partir de la partie tenseur interne du DDI, par rapport

à d’autres méthodes plus simples. Nous présentons également un atlas MCM de

sujets sains construit en utilisant les méthodes d’interpolations proposées.

1.5 Statistiques sur les modèles multi-compartiment

Pour finir, nous proposons dans le Chapitre 6 de calculer des statistiques en util-

isant les méthodes d’interpolations proposées précédemment. Nous présentons une

comparaison d’un patient à une population de sujets sains recalée sur un atlas, à la

fois au niveau du voxel et au niveau des fibres. La tractographie est spécialement

conçue pour être bien adapté aux MCM par rapport aux tractographies ordinaire

réalisées sur DTI.

La construction de l’atlas, illustrée dans le Chapitre 5, et les méthodes de re-

calage sont détaillées. Un grand nombre de figures illustrent les deux approches

basées sur les voxels ou sur les fibres. Cela souligne les forces et faiblesses des deux

techniques. La comparaison avec le DTI montre une meilleure interprétabilité des

résultats.
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Introduction

Contents
2.1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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2.3 Distortion correction of echo-planar images . . . . . . . . . . 7
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2.1 General context

Magnetic resonance imaging (MRI) is a medical exam that produces in vivo im-

ages of internal organs and structure of the body. During the exam, the subject is

installed inside a strong, homogeneous, magnetic field that is commonly generated

within an horizontal tube (see Fig 2.1). MRI is based on nuclear magnetic reso-

nance (NMR) using the magnetic properties of atoms nuclei. Water is the main

component of the human body, proportion is of around 55% to 80% depending

on various factors including age [Brozek 1961, Siri 1961, Ellis 2000]. Hence, even

if all atoms can theoretically be studied, the hydrogen atom that composes water

molecules is preferred in clinical MRI. A benefit of MRI is that contrary to other

imaging modalities (as X-ray or computed tomography (CT)), it does not use ioniz-

ing radiation. While the precautionary principle is still required, the food and drug

administration (FDA) declared in 2003, a nonsignificant risk status for MRI clinical

systems generating static fields up to 8 Tesla [Hartwig 2009].

A wide range of MRI sequences exist with different acquisition times. Usually

different sequences can be acquired in the same exam to get complementary infor-

mation on the subject or patient. The total acquisition time of an MRI exam is

important mainly for two reasons. First, the patient comfort is crucial, not even for

his own well-being, but also since motion is more likely to occur during a long scan

and the resulting images may thus be corrupted. Secondly, the complexity of an

MRI scanner makes it an expensive exam. Depending on the sequence type and the

parameters choice, MRI scan produces various types of images including anatomical

images, functional images or quantitative imaging.

Due to its weak dangerosity and its high spatial resolution, MRI takes a growing

place for internal body exams next to CT. It has been increasingly adopted for clinic
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Figure 2.1: Illustration of a MRI scan. Common license, courtesy of Jan Ainali ,
https: // commons. wikimedia. org/ wiki/ File: MRI-Philips. JPG

in all kind of domain such as: thoracic pathology, osteoarthritis pathology, diges-

tive pathology, central nervous system (CNS) disorders [Calvo 2001, Gebker 2007,

Sandrasegaran 2005, Polman 2005]...

MRI exams are primarily used to perform diagnostic: find unhealthy tissue,

locate tumors, bone damage, surgery planning. Moreover, it allows to monitor the

evolution of a disease within a longitudinal study and better adapt a treatment.

It is also essential for research advancement, in particular in neuroscience. Indeed,

the scientific knowledge about the brain, both anatomic and functional, has largely

progressed thanks to MRI studies. Henceforth, MRI scans are classic and essential

medical exams in clinic and to improve the brain comprehension in research.

Diffusion-weighted magnetic resonance imaging (DWI) also named diffusion

MRI (dMRI) is a specific type of magnetic resonance imaging (MRI) acquisition,

the main topic of this thesis, aimed at studying the direction and amount of diffusion

of brain water molecules. It allows, through several acquisitions, to model indirectly

the brain microstructure, especially the brain white matter (WM), which are sig-

nificantly smaller than the voxel-resolution. The study of the brain microstructure

through dMRI is a great challenge which needs accurate methods and well adapted

models, both to the quality of the acquisition and to the expected voxel microstruc-

ture. We will focus on this specific MRI modality in this manuscript.

The dMRI may bring a great insight in disease quantification and treatment

adaptation. The design and estimation of the diffusion model is the first challenge

with dMRI. This aspect, well studied by a large literature, is introduced Section

https://commons.wikimedia.org/wiki/File:MRI-Philips.JPG
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2.2. The acquisitions used to model diffusion suffer from artifacts, the correction of

distortion artifacts is presented Section 2.3. Finally, we present processing tools and

statistical methods for a class of complex diffusion models named MCM in Section

2.4 and Section 2.5.

2.2 State of the art

We start this manuscript by a state-of-the-art (Chapter 3), first proposing a quick

overview of the human brain, followed by a description of the main categories of

brain diseases and the potential impact of medical imaging for those diseases.

From the spin of hydrogen nuclei to the signal recovery in the Fourier space, the

MRI scanner is a complex medical imaging modality. Moreover, the DWI acquisi-

tions are based on the natural diffusion of water molecules within different tissues.

The MRI general principles and the specificity of the DWI acquisition are thus also

introduced in this chapter.

In the rest of the state of the art, different models of water diffusion estimated

from DWI acquisitions are presented. We highlight the strength and weakness of all

these models divided in three categories:

• Diffusion tensor imaging (DTI) representing the water diffusion within each

voxel with a tensor

• Based functions in q-space derived from the decomposition of the signal through

an orthogonal basis of functions.

• Multi-compartment models (MCMs) representing the diffusion with several

isotropic compartments and anisotropic compartments.

2.3 Distortion correction of echo-planar images

By shortening the acquisition time of MRI, echo planar imaging (EPI) enables the

acquisition of a large number of images in a short time, compatible with clinical

constraints as required for dMRI or functional MRI (fMRI). However such images

are subject to large, local distortions disrupting their correspondence with the un-

derlying anatomy. The correction of those distortions is an open problem, especially

in regions where large deformations occur.

We propose in Chapter 4 a new block-matching registration method to perform

EPI distortion correction based on the acquisition of two EPI with opposite phase

encoding direction (PED). It relies on new transformations between blocks adapted

to the EPI distortion model, and on an adapted optimization scheme to ensure an

opposite symmetric transformation. We present qualitative and quantitative results

of the block-matching correction using different metrics on a phantom dataset and on

in vivo data. We show the ability of the block-matching approach to robustly correct

EPI distortion even in strongly affected areas. Finally, we present in perspectives a
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fully symmetric block-matching (BM) algorithm which uses an extra non-distorted

structural image as the center image.

2.4 Interpolation of multi-compartment models

MCMs are increasingly used to characterize the brain white matter microstructure

from dMRI. In chapter 5, we address the problem of interpolation and averaging

of MCM images as a simplification problem based on spectral clustering. As a

core part of the framework, we propose novel solutions for the averaging of MCM

compartments.

This generic framework is tested for multi-tensor model (MTM) and evaluated

for a specific MCM: the diffusion direction imaging (DDI). Results, computed on a

large database, show the ability of the analytic method accounting for the internal

tensor part of the DDI to perform better than simpler ones. We then present an

MCM template of normal controls constructed using the proposed interpolation

framework.

2.5 From multi-compartment model to statistics

We finally present in Chapter 6 to perform statistics using the interpolation frame-

work proposed in Chapter 5. We propose an atlas-based patient to population com-

parison based on MCM data, both voxel-based and tract-based. The tract-based

part relies on the construction of an atlas, MCM tractography and compartment

selection along the tracts to take full advantage of the multiple compartments of the

models.

The construction of the atlas, illustrated in Chapter 5, and the registration

method are detailed. A deterministic tractography algorithm specifically adapted

for MCM is also presented. A large number of figure illustrate the two approaches,

voxel-based and tract-based. They highlight different strengths and weaknesses

of both techniques and compare then to DTI based results, showing better inter-

pretability of the obtained results.
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3.1 General context

3.1.1 General presentation of the human brain

The central nervous system (CNS) is composed by the brain which centralizes the

control of the body, conscious and unconscious thoughts, and the spinal cord. The

peripheric nervous system (PNS) is the rest of the nervous system which connects the

CNS to the rest of the body. According to the Society of Neuroscience, the human

brain is the most complex living structure in the known universe. The human brain

consists of the cerebrum, the cerebellum and the brainstem.
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The cerebrum, the largest part, is divided by several sulci and gyri in 4 lobes:

occipital, parietal, frontal and temporal (see Fig 3.1). Each lobe is related to a

different function and is connected to the other by the white matter:

• The frontal lobe in the front of the cranial cavity is associated to the volun-

tary motor function. It is also involved in judgment, decision-making, language

through the Broca’s area and more.

• The parietal lobe is behind the frontal lobe separated by the central sulcus.

It plays a role in space perception, reading through the oculomotor system

and receives the major part of sensitive information.

• The temporal lobe is under the frontal and parietal lobe separated by the

lateral sulcus. It is involved in auditory processing and visual processing, lan-

guage recognition (through the Wernicke’s area in tandem with the Broca’s

area). The temporal lobe contains the limbic system which handles the treat-

ment of emotion. The hippocampus belongs to the lymbic system and plays

a crucial role in memory and spatial navigation.

• The occipital lobe, located behind the temporal lobe, is the smallest of the

4 lobes. It is mainly the visual processing center of the brain.

Figure 3.1: Schematic representation of the brain with the 4 lobes, the main sulcus

and the cerebellum. Courtesy of Blausen, https: // en. wikipedia. org/ wiki/

Lobes_ of_ the_ brain

Under the occipital and the temporal lobe is the cerebellum. Its major function

is to coordinate motor control. It also plays a role in cognitive functions such as

https://en.wikipedia.org/wiki/Lobes_of_the_brain
https://en.wikipedia.org/wiki/Lobes_of_the_brain
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attention and language. The brainstem connects the cerebrum and the cerebellum

to the rest of the body and regulates the cardiac and respiratory functions. This

description composes a schematic review of the brain at a macroscopic level.

At a microscopic scale, the human brain contains neurons and glial cells which

include all the non-neuronal cells. There are around 100 billion neurons in a human

adult brain and recent studies advance the same quantity of glial cells [Hilgetag 2009,

Pakkenberg 1988]. The cell body of the neuron and some glial cells compose the

grey matter (GM) named in opposition to the WM which designate the axonal fibers

of the neurons. The GM is mainly located at the periphery of the brain around the

cranial cavity and is basically the seat of the consciousness. There is also a deeper

gray matter made of brainstem and nuclei. The WM, which is bright in dissection

because of the myelin, is responsible of the transmission of the information through

the axons between different areas of the brain or between the brain and body.

A typical neuron comports mainly a cell body, an axon and dendrites (see a

complete illustration of a neuron on Fig 3.2). The axon transfers the electric signal

from one neuron to another cell via its terminations called synapses. Each axon

includes thousand of synapses that transmit the signal via a chemical process to the

dendrites of other neurons. The axon has a diameter of around 1µm (from 0.5µm up

to 8µm) and can reach up to 1 meter in length (therefore the total length of axons is

evaluated to be longer than 100.000 km [Schröder 1978, Marner 2003]). Glial cells

comprise the following cells, all helping brain function:

Figure 3.2: Illustration of a neuron. Common license, https: // en. wikipedia.

org/ wiki/ Neuron

https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Neuron
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• Astrocytes cover a large subclass of glial cells with all kind of supporting

tasks in the CNS and PNS. The word astrocyte derived from their star shape,

however their morphologies are extremely diverse [Zhang 2012a]. They com-

pose between 20 and 40 % of all the glial cells and execute their supportive

tasks while maintaining neuronal health. Several forms of astrocytes exist in-

cluding protoplasmic, which mainly support the GM, and fibrous for the WM

[Sofroniew 2010]. During decades, astrocytes were considered as passive in

the brain. Contrariwise, many studies revealed their active role in metabolic

support of neurons, synaptic generation, detoxification, guidance of neuronal

migration, immune function and more [Markiewicz 2006]. Moreover astrocytes

stimulate the neuron-generating process [Svendsen 2002].

• Oligodendrocytes is an other specific type of glial cells which create mem-

branes around one or several axons of the CNS (the Schwann cells play a similar

role in the PNS). These membranes compose the myelin sheath which form

an electrically insulating layer around axons. The myelin is a fat substance

composed by 80% of lipids and 20% of proteins [Laatsch 1962, Gerstl 1967].

Overall the length of the axon myelin sheaths are interrupted by nodes of Ran-

vier (see Fig 3.2). Information is transmitted along the axon through saltatory

conduction, thanks to the myelin, making the signal transmission between neu-

rons much faster. Schematically the action potentials jump from one node to

the following. The myelin sheath is thus essential to protect axons and provide

velocity to the electric signal up to 50 times compared to an unmyelinated fiber

[Koch 2004]. The acquisition of myelin in the vertebrate lineage is important

in the evolution since the velocity of the information propagation is crucial to

survive [Zalc 2006]. The axon and myelin sheath also modify the diffusion of

water molecules within the brain and therefore is an object of study for dMRI

(see Section 3.5.3).

3.1.2 Brain diseases

The proper functioning of the brain through neurons and glial cells can be dis-

turbed by all kinds of diseases. The brain disorders can be classified into four main

categories:

• Traumatic brain injury (TBI) is caused by external action impacting the

brain as impact, object penetration, deceleration, chemicals damage. They

can cause injuries with different degrees of severity: hematomas, contusion,

strokes, ischemia... After an accident, cerebral imaging exams can be per-

formed to detect such TBI.

• Brain cancer is the anarchical propagation of abnormal cells within the brain.

Such diseases still have a high mortality ratio of around 40 % for children to

95 % for elderly people [Legler 1999]. Such tumors are often detected through

unusual symptoms due to the expansion of the tumor perturbing brain func-

tion: nausea, speech difficulties, behavior change, vision problems, hearing
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problems. MRI scanner allows to detect the tumor, analyze its evolution, and

to prepare and follow its treatment (chemotherapy, radiotherapy, surgery).

• Psychiatric disorders are a brain diseases which disorganize personality,

mind or emotion. They include depression, bipolar disorder, anxiety, post-

traumatic stress disorder (PTSD). The cause of such disorders is often un-

clear. However diseases such as depression are frequently related to anatomi-

cal brain anomalies and thus can be studied with cerebral imaging modalities

[Mervaala 2000, Treadway 2011].

• Neurodegenerative diseases cause a progressive deterioration of neurons.

Such disorders include Parkinson’s disease, Alzheimer’s disease, Huntington’s

disease or amyotrophic lateral sclerosis (ALS) and are often incurable [Gandhi 2005,

Pluchino 2003, Lambrechts 2003]. Symptoms can induce memory loss, apathy,

anxiety, motor issues [Paulsen 2001, Jack 2010, Chaudhuri 2006]. The evolu-

tion of such diseases are well-studied with classic MRI modality but also fMRI

or positron emission tomography (PET) scan [Nordberg 2010].

To conclude this quick review of brain diseases, we detail one particular dis-

order: multiple sclerosis (MS). The deficit of myelin in the CNS can cause mas-

sive injury for vision, memory, motricity and more. MS is a serious and common

autoimmune disease which induces chronic demyelination of the CNS. There are

around 100.000 individuals suffering from MS in France. Affected persons, mostly

located in the northern hemisphere, are young adults and the female to male ratio is

about 3:1 [Ascherio 2007, Orton 2006]. There exist genetic risk factors and not-well

defined environmental factors (as sunshine, tobacco or obesity) [Hedström 2012,

Consortium 2011]. MS is rarely directly mortal but induces severe synptoms in-

cluding motor, mental and sometimes psychatric issues [Compston 1998]. MS has a

high variability between individuals and its evolution is hard to predict. Intensive

research has been carried out on this disease, especially using MRI [Barkhof 1997,

Brex 2002, Lublin 1996, Polman 2005].

Leukodystrophies, a class of rare diseases, also cause demyelination of the CNS.

These diseases affect children and their mortality rate is 1/3 [Bonkowsky 2010].

Demyelination can also occur in the PNS due to several diseases [Sumner 1991,

Hartung 2000]. The common point of all these diseases is the possible utilization of

MRI to make an accurate diagnostic and study the evolution of the disorder. This

can lead to the improved understanding of a disease, for a particular patient as well

as in general. It will thus allows, among other, to offer better treatments, to predict

the evolution of the disease or to perform surgery.

3.1.3 Brain imaging

Knowledge about the brain follows a fast and expanding progression while its organi-

zation(functional and structural) is still largely unknown [Kötter 2001, Sporns 2005].

In history, the first anatomical descriptions of the brain where made from dissections.
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Vesalius produced one of the first works about human anatomy during the sixteenth

century in his book De humani corporis fabrica [Vesalius 1543]. Among these de-

scriptions were included some of the first illustrations of the CNS [Van Laere 1992].

At this time, dissections were prohibited by the Christian church and some medical

students stole bodies to increase their brain anatomy performing illegal dissections

[Boorstin 1985].

From an anatomical point of view, knowledge about the brain microstructure

evolved first with the development of light microscope [Wilt 2009]. In the early

twentieth century, electroencephalography (EEG) was developed and provided a

first approach to probe in vivo the brain activity. It was followed from 1950 by

a large number of different in vivo imaging methods including MRI. The history

of MRI starts around 1946 with the discovery of the magnetic resonance effect by

Felix Bloch and Edward Purcell [Bloch 1946, Purcell 1946]. Thirty years later, the

first image of a tumor in a mouse was obtained, highlighting the interest of such a

technic for a medical use [Damadian 1976].

Figure 3.3: Evolution of the number of MRI exams per 1000 habitants along France,

Australia, Germany, Turkey and United States. OECD database, https: // data.
oecd. org/ healthcare/ magnetic-resonance-imaging-mri-exams. htm

Today the use of MRI for clinical exams is constantly growing in the OECD

countries (see Fig 3.3). Although expensive, recent MRI techniques offer a high

image resolution to study the brain anatomy. There are 3 main types of MRI

modalities:

• Conventional MRI techniques provide an anatomical image through one

measure during the spin relaxation. The obtained image, such as T1-weighted

or T2-weighted, depends of the scanner parameters (mainly echo time (TE),

repetition time (TR)).

https://data.oecd.org/healthcare/magnetic-resonance-imaging-mri-exams.htm
https://data.oecd.org/healthcare/magnetic-resonance-imaging-mri-exams.htm
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• functional MRI (fMRI) measures the brain activity through the cerebral

blood oxygenation. It is able to produce a high spatial resolution map with a

reasonable time resolution of the cerebral activity.

• Quantitative MRI directly relates the MRI signals to physical tissue proper-

ties. For example, relaxometry sequences measure the signal at several times to

reconstruct relaxation curves which are specific to each tissue. dMRI measures

the diffusion of the water molecules within the brain to infer microstructure

properties. The Apparent Diffusion Coefficient (ADC) and the anisotropic

structure of the brain provide informations about the brain structure, in par-

ticular the WM. In this thesis, we focus on this specific modality.

3.2 Diffusion MRI

Diffusion MRI (dMRI) or diffusion-weighted magnetic resonance imaging (DWI)

is a specific type of MRI sequence that studies the constrained random diffusion

of water molecules within different tissues. The phenomena of molecular diffusion

within a magnetic field has been known and studied for a long time [Hahn 1950,

Carr 1954, Stejskal 1965]. The first DWI images of the human brain were obtained

more recently in 1985 [Le Bihan 1986]. The interest of the neuroscientific community

for this modality has since largely grown since studies have demonstrated the ability

of dMRI to detect strokes better than MRI traditional sequences [Moseley 1990].

The major clinical applications of dMRI concern neurological disorders, in particular

diseases where the WM is affected. DWI is indeed the unique non-invasive in vivo
modality allowing to model the microstructure of the brain [Le Bihan 2012]. The

general principle of natural water diffusion is presented in Section 3.2.1. The study

of this phenomena though dMRI acquisition is described in Section 3.2.2. We finally

detail in Section 3.2.3 the acquisitions strategies of dMRI and their artefacts.

3.2.1 Principles of water diffusion

Diffusion characterizes the migration of molecules from the highest to the lowest

concentration within a liquid, solid or gas solution. This phenomenon is natural

and internal to a solution without any external action. For liquid solutions, at a

macroscopic level, the diffusion is well modeled by Fick’s law defined as [Fick 1855]:

J = −D∇n (3.1)

where D is the diffusion coefficient, J is the net diffusion flux and ∇n the concen-

tration gradient. D is determined by the medium through the particle size, the

temperature and the viscosity of the fluid.

At a microscopic level, the molecules have movements induced by thermal en-

ergy. In a medium with uniform concentration, the diffusion flux is null, however

the motion of molecules still persists. During the observation of pollen grains in

a water solution with a microscope, Robert Brown discovered that large particles
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such as pollen are affected by permanent motions [Brown 1828]. The large par-

ticle is in fact hit by small particles, molecules, around 1021 times per second in

a water solution [Chandrasekhar 1943]. This movement is named Brownian mo-

tion and is used to describe diffusion but also thermodynamic or financial flux in

economy [De Meyer 2003]. An illustration of Brownian motion for several diffusion

coefficients is presented Fig 3.4.

Figure 3.4: Illustration of Brownian motion of three particles with different diffusion

coefficients, red: D = 1.10−3 mm2.s−1, green: D = 2.10−3 mm2.s−1, blue: D =

4.10−3 mm2.s−1 for 1000 steps and a time between step ∆ = 0.1s

The net flux of the solution, i.e the mean displacement of a particle, is null.

Therefore the relation with the diffusion coefficient does not come directly. In 1905,

in his famous annus mirabilis [Stachel 2005], Albert Einstein found in the Brownian

motion the proof of existence of atoms he was seeking. Moreover, he proposed a

probabilistic model of the mean-square displacement of a particle as [Einstein 1905]:

〈x2〉 = 2dD∆ (3.2)

where 〈x2〉 is the mean-squared displacement of a particle during a diffusion time

∆, d is the dimensionality of the problem and D is the diffusion coefficient.

Water molecules compose around 75% of the brain depending on the evaluation

techniques [Kreis 1993, Lentner 1981]. Hence, knowledge about diffusion of water

within the brain provides powerful information about tissues and structures. For

example the diffusion coefficient increases within a tumor compared to normal brain

tissue [Maier 2010, Padhani 2009]. Moreover, the anisotropy of water diffusion is

used as a marker to identify the brain microstructure. Indeed, water diffusion is

constrained by the orientation of the axons within the WM. We will see in the
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following how the diffusion framework using a magnetic field is used to estimate

water diffusion within the brain.

3.2.2 Diffusion within a magnetic field

3.2.2.1 MRI

An MRI scanner generates a strong static magnetic field B0, typically from 1 to 7

Tesla for human, which is up to 100.000 times more than the earth 60µT magnetic

field [Gómez Paccard 2006]. Hydrogen nuclei have a magnetic dipole named spins.

They align themselves with the magnetic field B0 in a proportion related to the

strength field. This is called the longitudinal magnetization. When the spins are

aligned, a radiofrequency (RF) pulse is applied to excite the system at a frequency

named Larmor frequency:

ω = −γB (3.3)

where ω is the Larmor frequency, B the magnetic field strength and γ the gyromag-

netic ratio which depends on the mass of the nuclei. The gyromagnetic ratio makes

the Larmor frequency unique for each nucleus [Cohen 2010]. Once excited, spins

enter a resonance regime, for a sufficient RF pulse, the spins end up oriented in the

normal plane to the static magnetic field axis. It creates a transverse magnetiza-

tion. After this brief RF pulse, spins return to their previous orientations aligned

with the B0 axis. An illustration of the process from the excitation until the end of

relaxation is presented Fig 3.5.

During this step named relaxation, in conventional MRI, the signal is recorded

by the coils at one particular moment named TE. Then the process is repeated after

a TR that allows or not a complete return of the nuclei spins to their state before

the RF pulse. On a 3T scanner, the order of magnitude of these times is around

50ms for the TE and 1s for the TR.

Each tissue has its own transversal relaxation time T2 and longitudinal relax-

ation time T1. From these intrinsic properties, it is possible to reconstruct an

image for the signal highlighting different tissues with different contrasts by choos-

ing appropriately TE and TR. Interestingly, the T2 relaxation time is longer for

the grey matter than the white matter and it is the opposite for the T1 relaxation

time [Mlynárik 2001]. T1-weighted images and T2-weighed images are two classi-

cal types of conventional sequences for MRI scanner. A short TE and a short TR

give a T1-weighted image i.e an image where intensities vary mainly depending on

the tissues T1 relaxation time. Contrariwise, a long TE and a long TR give a T2-

weighted image. Thereby, these two measures have different properties that confer

them different advantages and disadvantages.

As we have seen in Eq 3.3, the Larmor frequency depends on the magnetic field

strength. With the constant magnetic field B0 of the scanner, all hydrogen nuclei are

simultaneously excited. It is impossible to reconstruct from the signal received by

the coils a map with correct spatial precision of the origin of the signal. Therefore an
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Illustration of spin behavior. (a) spin in phase with the magnetic field,

(b) application of the RF pulse, (c-d) transversal relaxation, (e) longitudinal relax-

ation, (f) end of relaxation: spins are back aligned with the magnetic field. Courtesy
from pipe [Johansen-Berg 2009]

other linear magnetic field, called gradient, is applied to select a specific area which

is the only one excited by a given RF. The global magnetic field of the scanner is

then expressed as:

B(t) = G0 + xGx(t) + yGy(t) + zGz(t) (3.4)

where Gx(t), Gy(t), Gz(t) are the linear gradients, x, y, z the spatial coordinate and

B(t) the global magnetic field which evolves along the acquisition. Applying a Gz(t)

magnetic field selects an entire slice excited for one RF , its Larmor frequency, which

is different from that of the other slices. Then the two other gradients Gx(t) and

Gy(t) are applied to the excited slice not simultaneously which leads to a phase

difference θx,y and gives to the receiver coil the following signal:

s(t) =

∫

f(x, y)e2iπθx,y (3.5)

where s(t) is the signal received in the Fourier space, also named k-space. From this

signal it is possible to recover images with contrasts between tissues depending on

acquisition parameters (mainly TE and TR). In the following, we will see how the

magnetic gradient field can be used to report the diffusion within the tissues.

3.2.2.2 Pulse gradient spin echo

The magnetic field gradient used to perform slice selection and phase encoding is

too small to measure the aforementioned diffusion effect. A much stronger gradient
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is applied in DWI sequences, named pulse gradient spin echo (PGSE), to highlight

water diffusion. After the RF pulse, the slice excited is subject to a strong linear

gradient during a very short time δ. The spins have thus a positive or negative

extra-phase according to their position. Then, after a diffusion time ∆− δ ≫ δ, the

opposite gradient is applied to bring back spins to their original phase.

Figure 3.6: After RF application spins are in phase (A). Then a strong gradient adds

a positive or negative phase to the spins according to their position (B). During the

diffusion time (C), spins do not move (yellow) or lose coherence (blue) depending on

the diffusion coefficient of the tissue. After the application of the opposite gradient

(D), spins get back in phase and conserve an important net flux (E yellow), or stay

incoherent with a low net flux (E blue). Courtesy from pipe [Johansen-Berg 2009]

In the illustration of this phenomenon in Fig 3.6, the yellow area is in a low

diffusion area. The assumption ∆− δ ≫ δ makes the diffusion during the gradient

application negligible. During the diffusion time, spins do not move too much and

get back in phase after the opposite gradient application. Thus the lesion has a

strong brightness in the recovered image. On the contrary, the ventricles in the

blue area, are composed of free water with a high diffusion coefficient. During the

diffusion time, spins lose phase coherence and stay incoherent after the opposite

gradient application. Then the net flux is low and the recovered signal is very low.

From a signal without any gradient S0, which produces an image called b0 and
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one signal Sg,b acquired with a unit gradient g ∈ S2 and a corresponding b-value b,

we define the signal attenuation as:

Ag,b =
Sg,b

S0
(3.6)

Ag,b = e−bD (3.7)

where D is a ADC in direction g and b is a quantity called b-value defined as:

b = γ2G2δ2(∆− δ

3
) (3.8)

where G is the gradient amplitude, δ is the gradient application time and ∆ is the

sum of gradient and the diffusion time as illustrated in Fig 3.6. The ADC can be

recovered directly using Eq 3.7:

D =
− log(Ag,b)

b
(3.9)

This relation gives the diffusion in the gradient direction. However, this is not

sufficient to estimate the ADC in a 3D space. From 3 gradient directions, it is pos-

sible to estimate a global ADC independent of the gradient direction, also called

mean diffusivity (MD). Since the brain is an organ with highly orientated structures,

several images acquired with different gradient directions are required to correctly

model the 3D diffusion. The description of the complete water diffusion probabil-

ity density function (PDF) in the entire space, name ensemble average propaga-

tor (EAP), is theoretically possible through a Fourier transform [Ning 2015]:

p(x) =

∫

q∈R3

Ag,be
−2iπ<q.x> dq (3.10)

where q belong to the space defined by the gradient direction, called q-space.

The most famous model named DTI estimates, in each voxel, a tensor diffusion

which is a 3D Gaussian distribution with 6 parameters. The DTI is described in

details in Section 3.3. For now, let us note that at least 6 acquisitions with different

gradient directions and one b0 image are required to estimate this model. If seven

acquisitions is the theoretical minimum, it is generally 30, 90 or more images with

several b-values which are acquired to reduce noise influence or to estimate complex

models such as diffusion spectrum imaging (DSI) described in Section 3.4.2.1 or

MCM described in Section 3.5.

3.2.3 Acquisition strategies

A classic MRI sequence to produce a T2-weighted image is made line by line. The

corresponding acquisition time is proportional to the TR and ranges typically around

5 minutes [Serrai 2005]. With this type of sequences, 30 acquisitions would take 150

minutes which is impossible in a clinical use. MRI sequences used for diffusion

therefore need an accelerated sequence. The most used one, named EPI, allows to
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acquire 30 gradient directions in 3 or 4 minutes. With this short acquisition time

come artifacts on the recovered image. The acquisition strategy and the diffusion

modeling are then two separate problems, then latter will be discussed in Sections

3.3, 3.4, 3.5.

3.2.3.1 Single-shot acquisition sequences

During an MRI sequence, the signal is acquired in the Fourier domain named k-

space. At the end of the acquisition, the signal is reconstructed applying a 2D or

3D inverse Fourier transform depending on the acquisition. In a conventional pulse

gradient sequence, the signal in the k-space is acquired line by line. To improve

the acquisition time, single-shot methods which acquire the entire image slice by

slice have been developed (see Fig 3.7 for illustration). With the growing interest

of the medical community for diffusion MRI, several single-shot methods has been

proposed [Ahn 1986, Hennig 1986, Meyer 1992, Liu 1996]. The most commonly used

in clinical practice, the echo planar imaging (EPI), allows to acquire an entire image

in seconds rather than minutes [Stehling 1991].

Figure 3.7: Illustration of the signal recovery in the k-space on pulse gradient se-

quences. On the left: conventional sequence acquired line by line. On the right:

EPI which acquires an entire slice in a single-shot. Courtesy from Tuch [Tuch 2003]

Unfortunately, single-shot acquisition sequences also deteriorate the quality of

the acquisition. Indeed, despite the regular improvements of scanners and acquisi-

tion techniques, several artifacts specific to single-shot sequences still affect images.

3.2.3.2 Artifacts

The rapid switch of strong gradients induces Eddy currents (also named Foucault

currents) in the electrically conductive structure of the scanner [Jezzard 1998, Reese 2003].

In conventional MRI the gradients are applied with a weak intensity for a short time,

resulting in a self compensation of the induced Eddy currents [Johansen-Berg 2013].

On the contrary, in dMRI, the applied gradient can be different than the prescribed

one owing to high Eddy current. Furthermore, Eddy currents are time varying and

thus do not affect the entire image in the same way. The resulting diffusion mod-
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els estimated from the DWI sequence therefore have misregistration artifacts with

respect to conventional MRI sequences.

A map of the off-resonance frequency at each voxel, named a field map [Funai 2008],

can be used to describe Eddy currents effects and correct them [Jezzard 1998]. An-

other method models the spatial and temporal evolution of Eddy currents [Rohde 2004].

A different approach proposes the acquisition of an image with an opposite PED

and uses the characteristic of the gradient with reversed polarity to correct the Eddy

current distortions [Bodammer 2004].

A different distortion artifact induced by the magnetic field inhomogeneity affects

EPI images. This artifact leads to locally deformed images, their intensities being

modified depending on this deformation. We describe this artifact and how to correct

for it in Chapter 4.

An other artifact specific to dMRI named Johnson noise or noise floor occurs

depending on the b-value [Jones 2004]. High b-value means a low signal that is

thus strongly affected by the background noise. The signal is corrupted by a

Rician noise distribution that affects principally the low diffusion region. This

causes underestimation of the tensor and anisotropy. A method exists to cor-

rect the MD and the anisotropy based on dyadic tensor (specific tensor product)

[Basser 2000]. Alternative approaches propose to apply an anisotropic smoothing

kernel [McGraw 2004, Tabelow 2008].

3.3 Diffusion Tensor Imaging

3.3.1 Model description

As we saw in Section 3.2, from 2 acquisitions, one with the application of a gradient

and one without, it is possible to estimate the ADC in the direction of the gradi-

ent. This measure is useful in areas where isotropic diffusion occurs. However, in

anisotropic diffusion areas, the ADC in a unique direction does not represent the

complexity of the tissue. To do so, the diffusion tensor imaging (DTI) model repre-

sents, in each voxel, the diffusion PDF as a 3D Gaussian distribution parameterized

by a symmetric matrix:

D =





dxx dxy dxz
dxy dyy dyz
dxz dyz dzz



 (3.11)

This 3D model, one of the the simplest to represent anisotropic diffusion, is also

the most used in clinic. The advantage of such a description is that it makes easy

to visualize it using its isosurface of probability (as ellipsoid) (see Fig 3.8). It also

provides straightforward parameters of the tissue microstructure (see below). The

DTI, as there are 6 unknown parameters in the Gaussian covariance matrix, is

estimated from at least 6 DWI. More generally, we consider n DWI. For each DWI,

the b-values and gradients are now represented by a 3D vector B:
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(a) (b) (c)

Figure 3.8: Illustration of an isotropic tensor (a) and two anisotropic tensors (b-c)

B =
√

b0g (3.12)

The signal is represented by a 3D Gaussian distribution and Eq 3.7 becomes:

Ag,b = e−B⊤DB (3.13)

The diffusion tensor D can thus be recovered as the solution of an inverse prob-

lem. From at least seven DWI, various solutions exist to recover D [Basser 1994,

Landman 2007, Wang 2004, Chang 2005]. The estimation of the diffusion model is

beyond our subject, a simple method to perform the DTI estimation is to see the

problem as a linear least square on the logarithm of Ag,b [Koay 2006]. This estima-

tion of the diffusion tensor offers an analytic expression and hence allows a fast and

simple computation.

3.3.2 DTI scalar microstructure properties

A diffusion tensor is characterized by its eigenvalues and eigenvectors and can be

expressed as:

D = R⊤PR (3.14)

where R ∈ SO(3) is a rotation matrix of the special orthogonal group grouping the

eigenvectors and P is a diagonal matrix of the eigenvalues. The largest eigenvalue of

P , λ1, also called the axial diffusivity (AD) and denoted d‖, characterizes the ADC

in the principal direction of diffusion. The radial diffusivity (RD) is computed as

the mean of the two lowest eigenvalues λ2 and λ3. From these 3 eigenvalues, several

scalar measures are derived to characterize the diffusion.

The mean diffusivity (MD) (or mean ADC) λ̂ is the average of the diffusion in

all directions:

λ̂ =
λ1 + λ2 + λ3

3
(3.15)

The MD is useful to quantify in a global scalar index of diffusion in the brain without

direction consideration. It is generally the first biomarker observed and is similar

for gray and white matter in adult brain [Johansen-Berg 2009]. MD is used in clinic

to detect edema, ischemic strokes [Lythgoe 1997] or discern necrosed glioblastomas

and cystic metastatic tumors for example [Toh 2011]. However, the MD does not



24 Chapter 3. State of the art

quantify the anisotropy of diffusion, which is crucial to highlight the structure of the

brain, particularly inside the WM. The fractional anisotropy (FA) is thus defined

to characterize the anisotropy as:

FA =

√

3((λ1 − λ̂)2 + (λ2 − λ̂)2 + (λ3 − λ̂)2)

2(λ2
1 + λ2

2 + λ2
3)

(3.16)

This measure ranges between 0 and 1 where 0 represents an isotropic tensor

and 1 a complete anisotropic tensor which is degenerated. WM injury through

demyelination in the brain can be evaluated by measuring as FA, AD, RD. This

loss of WM integrity plays a role in disorder as major depressive disorder (MDD),

obsessive-compulsive disorder (OCD), autism, MS, epilepticus [Lucchinetti 2000,

Kutzelnigg 2005, White 2008, Song 2002, Budde 2009, Soares 2013, Wieshmann 1997].

3.3.3 DTI limitations

As we see, the DTI is easy to estimate and it is still very used in clinic for many

diseases. However the simplicity of the DTI also holds limitations. A voxel size is

typically around 8mm3, this cube in a normal brain can include white matter (WM),

grey matter (GM), glial cells, cerebrospinal fluid (CSF) ... The diameter of an axon

is between 1 and 10 µm, the scale difference between the signal observed and the

structure we want to describe is huge. Thus the diffusion in complex areas, as in WM

crossing fibers, cannot be represented by a tensor. This phenomenon is illustrated

in Fig 3.9. Tensors correctly represent the structure when all fibers have the same

orientation but in the crossing areas the tensor is represented as isotropic in the

plane of the crossing fibers. Thus, it is not possible to distinguish a crossing fiber

or a free diffusion area with the DTI.

Moreover, the parameters as FA, MD are entangled. A change in the microstruc-

ture is characterized but not well described. This can be explained as an increment

of the water proportion or a diminution of myelin that can provide similar effects

on these biomarkers. Hence they do not correctly describe what is really happening

within the brain microstructure.

Figure 3.9: Crossing fibers and the corresponding tensors. In (a) the principal

orientation of the tensor is correct, in (b) the tensor is isotropic in the crossing plan,

thus it is not possible in the crossing area to know if the DTI represents a free water

diffusion or a crossing fiber. Courtesy of Park [Park 2005]
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More complex models have been developed to address these issues that will

be presented in Section 3.4, 3.5. First we present a state of the art on tensor

interpolation.

3.3.4 Tensor interpolation

To perform statistics on DTI, either to compare two populations or a patient to

a group in a voxel-wise manner, a registration step is required. Indeed for all the

acquisitions, even within the same study, patients are not at the same exact position

and geometric acquisition parameters are different. Moreover the variability of the

brain between individuals implies that there is no way to compare to images without

a registration step apart from time consuming regional ROI selection and evaluation.

Independently of the algorithm used to perform registration, the original images

need to be interpolated. In the case of DTI images, we want to average Gaussian

PDFs and to do so several methods have been proposed.

A Gaussian PDF is defined by its covariance matrix that belongs to S+
3 {R}, the

space of positive-define matrices which is an open subset convex cone of S3{R} the

set of symmetric matrices.

3.3.4.1 Euclidean average

The simplest way to average tensors is to use the Euclidean distance between the

covariance matrices as:

dEucl(T1, T2) = ||T1 − T2||F (3.17)

where ||.||F is the Frobenius norm, and T1, T2 are the two Gaussian covariance

matrices. Thus the weighted sum of n tensors {Ti}i=1,..,n is the one which minimizes

the weighted distance using the Frechet mean:

T̂ = argmin
T

n∑

i=1

wi dEucl(Ti, T ) (3.18)

where wi are their corresponding weights. In this case, the weighted sum is directly

expressed as:

T̂ =
n∑

i=1

wiTi (3.19)

Unfortunately, that method is not well adapted to the space of positive-define

matrices because the average of tensors can present a swelling effect [Batchelor 2005,

Pasternak 2010]. To avoid these issues, several methods have been proposed based

on Riemannian frameworks. We first review some mathematical notions to introduce

these tensor interpolation methods.
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3.3.4.2 Riemannian manifold

A Riemannian manifold M is a smooth space equipped with a Riemannian met-

ric which generalizes the notion of curve and distances defined in the classic Eu-

clidean geometry. The Riemannian manifolds have been largely studied since the

19th century, many books being dedicated to describe their properties [Wolf 1967,

Boothby 1986, Lee 2006, Chavel 2006]. For each point x of M , an inner product

equips the corresponding tangent space TxM . The neighborhood around the origin

of the tangent space is called an exponential map. The smoothness of the variation

of the tangent spaces allows to associate to each smooth curve γ(t) : [0, 1] → M a

length derived from the tangent vector of the curve as:

Lγ(a, b) =

∫ b

a
(< γ′(t), γ′(t) >Tγ(t)M )

1
2dt (3.20)

where L is the length between two points a and b, γ′ is the derivative of the curve

in the tangent space (see an illustration Fig 3.10) and < ., . >TxM the inner product

of the tangent space. A geodesic in a space thus defines the shortest way between

two points as:

Figure 3.10: Illustration of a curved Riemannian space with a tangent space TxM

defined for a point x (common license https://en.wikipedia.org/wiki/Tangent_

space).

d(a, b) = inf
γ∈F([0,1]:→R)

∫ b

a
(< γ′(t), γ′(t) >Tγ(t)M )

1
2dt (3.21)

where inf is the infimum of all the curves γ on the manifold. Any Riemannian

manifold can be associated with different metrics. Between two points at least one

geodesic exists even if, contrarily to the classic Euclidean metric, no uniqueness is

guaranteed.

3.3.4.3 Matrix operations

To use a Riemannian framework for DTI, we first need to express some operations

on matrix spaces Mn(R). The exponential of a matrix is defined as the infinite sum:

https://en.wikipedia.org/wiki/Tangent_space
https://en.wikipedia.org/wiki/Tangent_space
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eX =

∞∑

k=0

Xk

k!
(3.22)

This series converges for any X ∈Mn(R), thus eX is well-defined for all X ∈Mn(R)

[Hall 2015]. The logarithm of a matrix, which is the inverse of the exponential:

log(exp(M)) = M , is not always defined in the general case. However a tensor is

characterized by its covariance matrix that belongs to S+
3 {R} (the space of positive-

definite matrices). In that space, the matrix logarithm always exists and is uniquely

defined [Culver 1966]. In particular, let X ∈ S+
3 {R}, there is an eigen decomposition

in a orthonormal basis as:

X = R⊤DR (3.23)

where R is an orthogonal matrix containing the eigenvectors of X and D is a diagonal

matrix containing the eigenvalues of X. Then, for any k ∈ [0,∞[

Xk = (R⊤DR) ...(R⊤DR)...
︸ ︷︷ ︸

k times

(R⊤DR) (3.24)

given that R⊤R = I3 the identity matrix, we obtain:

Xk = R⊤DkR (3.25)

The exponential of X is thus expressed as:

eX =

∞∑

k=0

R⊤DkR

k!
= R⊤

( ∞∑

k=0

Dk

k!

)

R (3.26)

eX = R⊤eDR (3.27)

where eD is the exponential of D which corresponds to the exponential of the diag-

onal elements of D. With this expression, the logarithm is uniquely defined as:

log(X) = R⊤ log(D)R (3.28)

with log(D) containing the logarithm of the diagonal elements of D which is well

defined since all eigenvalues are positive.

3.3.4.4 Affine-Invariant Riemannian metric

A Riemannian metric for tensors has been proposed based on a geodesic in the

matrix log-space [Pennec 2006]. Interestingly, the method of information geometry

[Amari 2007] derived on Gaussian probability density function (PDF) resulted in the

same mathematical framework [Lenglet 2006]. This metric is defined to be invariant

to any affine action on the tensor space, i.e:
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< X,Y >P=< A ∗X,B ∗ Y >A∗P= Tr(P
−1
2 XP−1Y P

−1
2 ) (3.29)

where Tr is the trace operator, X and Y are two tangent vectors to the manifold P

and A is a left operator defined as:

A ∗X = AXAT (3.30)

This represents a solid theoretical mathematical framework which is affine invariant

and conserves the determinant of the tensor. With this invariant metric, the ex-

ponential map associated at each point of the manifold is defined using the matrix

exponential:

expP (X) = P
1
2 exp

(

P
−1
2 WP

−1
2

)

P
1
2 (3.31)

This expression also determines the inverse mapping with a one to one correspon-

dence, so it is easy to come back to the matrix space. The mean T of a set of

tensors X1, ..., Xn is unique because the manifold has a-non positive curvature

[Kendall 1990] and is the one that minimizes the sum of the squared distances

(Frechet mean). It can be recovered following a gradient scheme:

Tm+1 = T
1
2
m exp

(

1

n

n∑

i=1

log(T
−1
2

m XiT
−1
2

m )

)

T
1
2
m (3.32)

At each iteration, the mean is computed as the exponential map corresponding to

the point of the previous step and is reprojected to the main manifold. As there is no

analytic expression, finding a minimum takes time, even if this algorithm converges

quickly [Fletcher 2004]. In this mathematical framework, the determinant, i.e the

eigenvalues product, is conserved. Thus the average tensor does not suffer from a

swelling effect as the Euclidean mean.

3.3.4.5 Geodesic-loxodromes

Another algorithm based on geodesic-loxodromes has been proposed later [Kindlmann 2007].

A loxodrome, very useful in navigation, is a road that crosses all meridians with a

constant angle (see Fig 3.11), the famous Mercator projection is the first representa-

tion that draws every loxodrome as a straight line [Floater 2005]. In mathematical

terms, the constraints on the curve are expressed as:

∀t ∈ [0, 1], |γ(t)′| = 1, γ′(t).n(γ(t)) = α (3.33)

with α constant and n(γ(t)) a normalized vector pointing a constant direction. This

method offers interesting properties: it conserves MD and FA instead the tensor

determinant. Despite these trumps, as for the affine-invariant Riemannian method,

a gradient descent is necessary to estimate the weighted average of tensors. For a

classic image with more than 1 million voxels, the computation time can be really

expensive.
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Figure 3.11: Illustration of a loxodrome around a sphere. Common license, https:
// en. wikipedia. org/ wiki/ Rhumb_ line

3.3.4.6 Log-Euclidean

Therefore we next focus on a fast method proposed by Arsigny et al. based on

log-Euclidean metrics [Arsigny 2006]. S+
3 {R} is a Lie group whose tangent space is

a vector space structure equipped with a logarithm multiplication ⊙ and a scalar

logarithm multiplication ⊛:

T1 ⊙ T2 = exp(log(T1) + log(T2)) (3.34)

λ⊛ T = exp(λ log(T )) (3.35)

where λ is a scalar, T , T1 and T2 belong to S+
3 {R}. We can notice that I3 is the

neutral element of the logarithm multiplication. S+
3 {R} has a Lie group structure

with the logarithm multiplication. From these properties, the distance between two

tensors is given by:

d(Log−Eucl)(T1, T2) = || log(T1)− log(T2)||F (3.36)

From this distance, the mean T of a set of tensors T1, ..., Tn with their corresponding

weights w1, ..., wn is directly given by:

T = exp

(
n∑

i=1

wi log(Ti)

)

(3.37)

Compared to the affine-invariant framework and the geodesic-loxodrome, this expres-

sion is very simple and thus the corresponding computation time is much shorter.

This framework does not have the affine-invariance property but the determinant of

the tensor is conserved. Moreover, several successive computations can be all done

in the log-Euclidean space without coming back to the matrix space between each.

The Euclidean, the affine-invariant, and the log-Euclidean interpolation results

are compared on the weighted interpolation of two tensors in Fig 3.12. The Euclidean

tensor average suffers from an important swelling effect at the middle of the average.

The affine-invariant and log-Euclidean averages conserve the determinant, the log-

Euclidean average shows a more anisotropic structure than the affine-invariant. For

https://en.wikipedia.org/wiki/Rhumb_line
https://en.wikipedia.org/wiki/Rhumb_line
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both methods, the product of eigenvalues is conserved, however the ratio between

the first and the second eigenvalues is different. This results in a fattening effect

that deforms the shape of the average tensor.

Figure 3.12: Illustration of the interpolation of two tensors. Average tensors in the

middle are the results of a weighted average of the two original tensor on the left

and on the right. Top line: Euclidean, Middle line: Affine-Invariant, Bottom line:

Log-Euclidean. Image courtesy from Arsigny [Arsigny 2006]

3.3.4.7 Shape invariant methods

To avoid the fattening effect, some recent studies propose shape-invariant methods

[Wang 2014]. The eigen decomposition of a covariance matrix X = R⊤DR is a

product of matrices that belong to SO3(R), the orthogonal group and D3(R) ∼=
(R+

∗ )
3, the group of diagonal matrices with positive eigenvalues. A geodesic can be

created as the product of two geodesics in each space SO3(R) and D3(R). The shape

of a tensor is entirely described by the eigenvalues of D. Therefore, the shape of an

average tensor is determined by the geodesic on the shape of the original tensors,

which is independent of their orientation. Unfortunately, this method is not related

to a Frechet mean and thus is less well defined for multiple tensors interpolation

[Feragen 2016].

3.4 Models based on orthogonal basis

Now, we present an other type of models based on the decomposition of the signal in

an orthogonal basis. These type of methods are classic to perform image processing.

Indeed, representation of a signal in a set of orthogonal functions allows to capture,

with few coefficients, the main part of the signal. For large bases, in addition to a

low storage cost, the application of a simple operation of thresholding could denoise

the signal. The popularity of representations produced a lot of bases as the Fourier

space [Bracewell 1986], wavelets [Mallat 1989], the curvelet [Starck 2002] and more



3.4. Models based on orthogonal basis 31

others. In the following we present how a set of orthogonal functions can be used

to build a diffusion model.

3.4.1 Modified spherical harmonics functions

Orientation distribution functions (ODFs) are used to describe the principal dif-

fusion directions, which can be done using a modified spherical harmonics (SH)

orthonormal basis [Descoteaux 2007]. These functions represent main orientations

of the signal in the q-space. The gradient applied to each DWI on the 2-sphere S2

can be expressed with 2 orientation parameters g = (θ, ϕ). The modified SH basis

is described by a set of functions:

Yj(θ, ϕ) =







√
2
2 ((−1)mY −m

l (θ, ϕ) + Y m
l (θ, φ)), if m < 0

Y 0
l , if m = 0

i
√
2
2 ((−1)mY −m

l (θ, ϕ)− Y m
l (θ, φ)), if m > 0

(3.38)

where l is the order of the SH basis, m = −l, ..., l is an index, i.e, j := j(l,m) =

l2+ l+1+m. Yj is the j-th element of the modified SH basis and Y m
i is the complex

SH value. This basis is designed to be antipodally symmetric, real and orthonormal.

Thus the signal from each DWI can be decomposed as:

Si =
r∑

j=i

cjY
j
l (θ, ϕ) (3.39)

where cj are the decomposition coefficients in the basis and r is the order of the

basis. The maximum degree of the basis, l, controls the dimension and therefore

the number of modified SH functions r = (l+1)(l+2)
2 . The degree of the basis defined

the number of orientation of the modified SH functions. An illustration of these

functions is presented Fig 3.13. For the mathematical background on SH please

refer to [Hobson 1931, Müller 2006, Atkinson 2012].

Figure 3.13: The first modified SH functions corresponding to degree l = 0, 2, 4

(from top to bottom).

The spherical harmonic functions basis, with a variable number of degrees, can

represent any number of diffusion directions (generally 1, 2 or 3) and thus, contrary

to DTI, allows to model crossing fibers. On the other hand, this basis only rep-

resents the diffusion directions. Therefore we lose microstructure information such

as diffusivity. A tractography, which only considers directions, is thus a perfect

application for such a representation [Descoteaux 2009].
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Moreover, an orthogonal basis offers good mathematical properties. As for ten-

sors, a Riemannian framework performing gradient descent has been developed to

interpolate orientation distribution functions (ODF) [Goh 2011b]. An other ana-

lytic methods for ODF reorientation reduces the computational complexity of the

interpolation[Geng 2009b]. These bases can also be used to perform group compar-

ison for a clinical study. Principal component analysis (PCA) analysis techniques

offers a voxelwise comparison [Commowick 2015]. Finally, this method proposed a

diffeomorphic registration algorithm used for fiber tractography [Raffelt 2011].

3.4.2 3D bases for ensemble average propagator reconstruction

ODFs only consider the direction of the water diffusion. To estimate the probability

of the water displacement in the entire R
3 space, we need to consider other models.

In the following, we quickly present several models that allow the reconstruction of

the EAP and thus are able to better describe the brain microstructure.

3.4.2.1 Diffusion spectrum imaging

The simplest way to consider an orthogonal basis from DWI acquisitions is to con-

sider the entire q-space. A classic DWI is composed of several pulse sequences

measured on the q-space. The acquisition is acquired from a homogeneous repar-

tition of gradients applied to one or several shells for a total between 30 and 100

images. On the other hand, a diffusion spectrum imaging (DSI) acquisition covers

the entire q-space with a 3D grid[Tuch 2002]. This results in a huge number of

gradients applied (around 500) with different b-values for almost all of them. Here,

the function basis is the q-space and the PDF can directly be estimated from it with

a 3D discrete Fourier transform [Wedeen 2005].

p(x) = (S0)
−1F−1(Sg) (3.40)

where F−1 is the inverse Fourier transform and p is the PDF of water diffusion.

Figure 3.14: Illustration in the q-space of: (A) a DSI grid acquisition, (B) a HARDI

acquisition. Courtesy of Tuch [Tuch 2003]

Such DSI sequences offer a high angular reconstruction with an acquisition time

still too expensive for a clinical use. However, several acquisition schemes based
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on compressed sensing reduce the acquisition time offering new possibilities for this

type of sequences [Menzel 2011, Bilgic 2012].

3.4.2.2 Q-space based functions

Other methods are based on the reconstruction on the signal from the entire q-space

[Assemlal 2009]. The multiple q-shell diffusion propagator imaging (mq-DPI) pro-

poses, as the ODFs, the use of modified SH functions [Descoteaux 2011]. An exten-

sion of this work using spherical polar Fourier (SPF) basis, a subset of the modified

SH basis, provides better continuity and regularization properties [Caruyer 2012].

It is able to reconstruct information about radial diffusion and need less acquisi-

tions than the DSI . From a multiple shell acquisition, the EAP can be analytically

reconstruct using the Laplace equation [Spiegel 1991]. From the EAP expression, it

is possible to obtain the ODFs as previously. Moreover, the return-to-origin (RTO)

probability has an analytic expression:

RTO = b2max

(

c0 +
2d0bmax

3

)√
π (3.41)

where bmax is the gradient strength, c0 and d0 are functions of coefficients of the

signal in the modified SH basis. This measure is a propagator feature that includes

both radial and axial diffusion informations into a scalar map.

3.5 Multi-Compartment models

3.5.1 General description

We have seen several models based on a decomposition on a orthogonal basis. Now

we consider multi-compartment model (MCM), an other class of models that de-

composes the water diffusion PDF as a weighted sum of compartments. These

models do not have orthogonal properties and are designed to finely describe the

microstructure of the brain. In return, they have complex PDF expressions, and

thus, the corresponding mathematical framework from estimation to interpolation

becomes harder. A MCM PDF is decomposed as:

p(x) =
n∑

i=1

wi pi(x) +
m∑

j=1

wj
isop

j
iso(x) (3.42)

where pi are the PDFs of anisotropic compartments, pjiso the PDFs of isotropic

compartments and wi, wj
iso are the compartment weights with the constraint:

n∑

i=1

wi +

m∑

j=1

wj
iso = 1 (3.43)

Before considering the isotropic and anisotropic compartments, we can note that

the expression of MCMs has an intrinsic compatibility advantage with the signal
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from the Fourier space. Indeed, the characteristic function φ for p(x) is written as

the weighted sum of individual characteristic functions:

φ(t) =

n∑

i=1

wiφi(t) +

m∑

j=1

wj
isoφ

j
iso(t) (3.44)

where φi(t) and φj
iso are the characteristic functions of their corresponding PDFs.

According to q-space equations, signal is formed from the PDFs as [Stamm 2013]:

Ag,b = |φ(
√
2bg)| (3.45)

The main purpose of MCMs is to model, through several compartments, the

microstructure of the brain. Each compartment represents specific diffusion within

liquid as CSF but also small structures as axons, glial cells...

An isotropic compartment represents isotropic water diffusion inside the brain.

We present the different types of isotropic compartments, what they represent, and

their corresponding models in Section 3.5.2.

An anisotropic compartment models a fascicle, i.e a bundle of axons with a simi-

lar general direction. A good review of anisotropic compartment has been proposed

recently [Panagiotaki 2012]. We introduce several anisotropic compartments mod-

els as the multi-tensor model (MTM), diffusion direction imaging (DDI), neurite

orientation dispersion and density imaging (NODDI) in Section 3.5.3.

3.5.2 Isotropic compartments

The isotropic compartments represent isotropic water diffusion within a voxel. Thus

the diffusion follows a 3D Gaussian distribution:

p(x) =
1√
2πd

exp

(

−x⊤x
2d

)

(3.46)

where d is the diffusivity. Isotropic compartments have several possible d values

corresponding to different cell types or structures:

Free water. It represents the unconstrained water such as CSF in the ventricles

and around the brain parenchyma. The diffusivity of free water, which depends on

the temperature, is equal to dfree = 3.10−3 mm2s−1 at 37◦ C [Pasternak 2009,

Clark 2000, Harris 1980].

Isotropic restricted water. This type of isotropic compartment models the

water inside impermeable spherical glial cells. Water molecules indeed rebound

infinitely inside the spherical boundary of the glial cell. This trapped water has

a corresponding diffusivity equal to drestricted = 1.10−3 mm2.s−1 [Stanisz 1997,

Panagiotaki 2012].

Fixed water. Some authors also described water particles stationary inside the

walls of the glial cells or stuck into cellular membranes in fixed tissues [Stanisz 1997,

Alexander 2010]. In brain anatomy, these molecules probably exist, however our

experience of MCMs estimations made on the Human Connectome Project (HCP)
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give us a high percentage of stationary water which does not seem realistic. This

may reflect a modeling problem or noise type and this behavior is subject to caution.

3.5.3 Anisotropic compartments

Anisotropic compartments represent the water diffusion within and around axons.

We call fascicle a group of axons along the same global direction, the axial direction.

The set of all axons in a fascicle is named intra-axonal space, the rest of the space

is named extra-axonal (see Fig 3.15 for illustration). The extra-axonal space is a

complex environment composed by astrocytes, glial cells and extra-cellular molecules

[Assaf 2004]. Some MCMs divide the signal attenuation between intra-axonal space

Ag,I and extra-axonal spaces Ag,E. Three solutions exist to model a fascicle:

• One PDF models the entire anisotropic compartment.

• The independant sum of two random variables: one for intra-axonal and one

for extra-axonal spaces. The final PDF is thus expressed as a convolution.

• A weighted sum of two PDFs: one for intra-axonal and one for extra-axonal

spaces, therefore the PDF becomes :

pi(x) = wi
Ip

i
I(x) + wi

Ep
i
E(x) (3.47)

where piI is the PDF of the intra-axonal space, piE is the PDF of the extra-axonal

space and wi
I , w

i
E their respective weights: wi

I + wi
E = 1.

Figure 3.15: Schematic illustration of a fascicle containing a set of axons in the

same global direction. The fascicle is divided between the intra-axonal space and

the extra-axonal space.

In the intra-axonal space, the water within the axon rebounds against the mem-

brane, thus the global diffusion is more important along the axon than in the perpen-

dicular plane. The ratio between the axial and radial diffusion depends on several

parameters:

• The axon diameter [Ford 1998]. The water molecules hit statically more

quickly the membranes within a very thin axon. Thus the axial diffusion is

inversely correlated with the diameter of the axon.
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• The diffusion time. Along the same idea, when the diffusion time is high,

water molecules hit more frequently the membranes. Hence, the FA is higher

with a high diffusion time. It is interesting to notice that the b-value is related

to the diffusion time and thus impacts the anisotropy of the diffusion model.

These general assumptions do not reflect the complexity of the water molecules

behavior. The permeability of the membrane, the presence and the width of a myelin

sheath also plays a role, but difficult to quantify in diffusion [Beaulieu 2002].

The water behavior within the extra-axonal space is even more complicated

to model and understand. Water within the myelin has a short T2 relaxation

time, hence the corresponding ADC is very low and the diffusion is negligible

[Brunberg 1995]. However, the rest of the water molecules surrounded by axons

will more likely hit the myelin sheath and thus diffuse along the axial direction.

The rest of the extra-axonal space is composed of glial cells and astrocytes and the

collision of water molecules with such cells is, at least, not obvious to describe.

Therefore, contrarily to the free water diffusion which is well defined and overall

accepted in the community, a lot of different models have been proposed to model

anisotropic compartments. In the following, we present some of these models, obvi-

ously we do not pretend to be exhaustive. Another MCM named diffusion direction

imaging (DDI), has been proposed and will be discussed into more details in Section

5.4.2 [Stamm 2013].

3.5.3.1 Tensor model

As we saw in Section 3.3 the anisotropic compartment can be described as a 3D

Gaussian distribution. The characterize of which is used to define the acquired

signal:

Ag,b = e−B⊤DB (3.48)

This solution allows to represent several fascicles within one voxel and is a straight

forward extension of the DTI model, the most used diffusion model. Two simplified

versions of the tensor compartment exist:

• A stick compartment represents an anisotropic compartment as a degener-

ated tensor with one principal orientation with corresponding diffusivity. The

two lowest eigenvalues are set to 0 [Behrens 2003].

• A zeppelin compartment represents a tensor with equal second and third

eigenvalues.

The estimation of MCMs is a hard non linear optimization problem. Indeed, in

general PDFs do not have an analytic expression. Thus, these particular tensors are

frequently used as a proto-compartment to estimate a more complex MCM. One

common way to estimate MCM is to fix some parameters in a first time and release

them one by one [Stamm 2016]:
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• Optimize stick models from randomly picked initial sticks.

• Use it to estimate a zeppelin releasing one eigenvalue.

• Finally, use the ball and zeppelin to compute the MCMs.

The MTM is a combination of isotropic compartments and several tensor compart-

ments. It is estimated step by step with an expensive computation time. Further-

more, the MTM needs at least 2 different b-values to be estimated (as majority of

MCM), a single shell leading to an infinite space of solutions [Scherrer 2010]. Hence,

its common use in clinic is not realistic yet.

3.5.3.2 NODDI

An other famous MCM developed recently is named NODDI [Zhang 2012a]. This

model is made for HARDI acquisitions with at least 2 shells. In NODDI, the

anisotropic compartment is separated between the intra-axonal space and the extra-

axonal space as in Eq 3.47.

The intra-axonal space is modeled as a set of sticks considering the low radial

diffusion inside an axon [Behrens 2003, Sotiropoulos 2012]. Depending on the brain

area, the sticks have a low angular dispersion as in the corpus callosum or a large

one as in centrum semiovale [Zhang 2012a]. The characteristic function of such a

distribution on the sphere is expressed as follows:

φi
I(
√
2bg) =

∫

S2

f(n)e−bd‖<g,n>2
dn (3.49)

where x belongs to the unit sphere S2, d‖ is the axial diffusivity, g the gradient

direction and f the distribution around the sphere, modeled as a Watson distribution

[Mardia 2009]:

f(x) = M

(
1

2
,
3

2
, κ

)−1

eκ<µ,x>2
(3.50)

where M denotes the confluent hypergeometric function of Kummer [Lewin 1991],

µ is the mean direction and κ a concentration parameter around µ. The Watson

distribution offers a good representation for both high and low dispersion.

The extra-cellular space is also represented by a model of orientation-dispersed

cylinders as:

log
(

φi
E

(√
2bg
))

= −bg⊤
(∫

S2

f(n)D(n)dn

)

g (3.51)

where D(n) is a cylindric symmetric tensor with n as principal orientation and f a

Watson distribution.

NODDI is a simplification of a previous model which required a more com-

plex protocol and estimation time [Zhang 2011]. As proposed in the original paper

[Zhang 2012a], the global MCM NODDI comports one isotropic compartment and
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only one such anisotropic compartment with separate intra-axonal and extra-axonal

spaces. It demonstrates a good ability to represent the dispersion orientation among

a fascicle. However, with one anisotropic compartment, it is not optimal to model

crossing fibers, although it is possible to add other anisotropic compartments to do

so.

3.5.3.3 CHARMED

A last popular anisotropic compartment model named Composite Hindered And Re-

stricted Model of Diffusion (CHARMED) has been proposed [Assaf 2004, Assaf 2005].

As NODDI, it separates the anisotropic compartment between intra-axonal and

extra-axonal spaces.

In the intra-axonal space, the diffusion in the axial direction is considered as

free and is thus represented by a classic 1D Gaussian distribution, a stick. Contrary

to other models, CHARMED does not assume that the gradient application time

δ is small enough to not affect the diffusion and hence attempts to model it. This

results in a more complex cylindrically restricted distribution for the radial diffusion

in intra-axonal space [Neuman 1974, Assaf 2004].

For the extra-axonal compartment, the model assumes a 3D Gaussian distribu-

tion, i.e a tensor. CHARMED is adaptable as it allows several anisotropic com-

partments with intra and extra-axonal spaces. In addition to that, it previously

corrects the Johnson noise using [Pierpaoli 1996]. Few years later, the same authors

extended this work with AxCaliber, another anisotropic compartment model, that

considers the axon diameters as a free parameter to estimate [Assaf 2008].
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4.1 Introduction

In recent years, single-shot echo planar imaging (EPI) has been increasingly used

as it is substantially faster than most other acquisition sequences. The high speed

of this acquisition comes from the fact that images are acquired within a single-

shot instead of multiple shots (single or multiple echoes) in other classical sequences

(Gradient Echo, Spin Echo...). With respect to the required relaxation time be-

tween each shot, the single-shot method saves a considerable acquisition time. By

shortening the acquisition time of every single time frame, EPI enables the ac-

quisition of a larger number of images than other methods while respecting the

same clinical constraint. This is particularly useful for diffusion-weighted mag-

netic resonance imaging (DWI) wherein the acquisition of several scalar images



40 Chapter 4. Distortion correction of echo planar images

is required to represent the underlying microstructure of the brain (white matter

mainly) [Ferizi 2014b, Zhang 2012b, Stamm 2012a, Taquet 2014]. For this reason,

EPI is the most common sequence used for DWI [Johansen-Berg 2009]. For similar

speed reasons, EPI is also used for functional imaging [Huettel 2004], which requires

the fast acquisition of many brain images while a task is executed by the subject.

The high velocity of EPI acquisitions comes at the cost of a high sensitivity to

magnetic field inhomogeneities. Affected areas, often located at the tissue interfaces

with different magnetic susceptibilities such as bone or air, are either contracted or

dilated along the PED [Jezzard 1995] (moreover, measured tissue intensities in these

regions change due to the local transformation). Therefore the brain anatomy in EPI

does not match with structural images that are much less sensitive to distortions.

Such a correspondence is however critical as a joint analysis is often performed

for these modalities: 1- for diffusion imaging, structural images are used to define

regions of interest for fiber tracking or to extract lesions that are to be linked to brain

microstructure properties ; 2- for fMRI, activations are computed on low resolution

EPI to speed up acquisition time and need to be aligned with a high resolution

T1w image at least for interpretation and visualization of activated regions in the

brain. In both cases, it is therefore necessary to perform EPI distortion correction

as non linear anatomy mismatch between the modalities will lead to biased results.

Computing such a distortion correction is still an open problem, especially in regions

where large deformations occur.

As the distortion in EPI acquisitions comes from the B0 field inhomogeneities,

the first technique for distortion correction relies on the acquisition of a B0 field

map [Jezzard 1995, Reber 1998]. This map is in turn used to infer the local con-

tractions and dilations, and correct EPI intensities. This field map however needs

to be smoothed to avoid noise corruption and may therefore be unable to provide

sufficient correction in severely distorted areas [Holland 2010, Wu 2008].

Other techniques have considered new sequences using point spread functions

(PSF) to obtain acquisitions with no distortion. This category includes works by

Robson et al. [Robson 1997], Chung et al. [Chung 2011] and Zaitsev et al. [Zaitsev 2004].

Unfortunately such sequences are not currently available on all scanners.

A third class of methods considers the acquisition of two EPI sequences with op-

posite phase encoding directions – one anterior-posterior and one posterior-anterior

for example – to correct for distortion. This class of techniques, initially proposed

by Chang and Fitzpatrick [Chang 1992] and Bowtell et al. [Bowtell 1994], relies on

the computation of a distortion field from the two images to correct the EPI. Sev-

eral methods use this technique: Andersson et al. [Andersson 2003] used a pair of

reversed EPI in conjunction with a discrete model of image formation for spin-echo

EPI. An implementation called TOPUP is available in the FSL package1. Voss

et al. [Voss 2006] introduced an algorithm to estimate, from the two images, the

correction displacement field based on cumulative intensity distributions along each

line in the PED. This simple method strongly reduces the distortion, however it is

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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sensitive to noise and the computed transformation needs to be smoothed, leading

to a trade-off between regularity and precision. Other methods in this category in-

clude Morgan et al. approach [Morgan 2004], using continuously alternating phase

encoding, Weiskopf et al. method [Weiskopf 2005] using a modified multi-echo EPI

acquisition with reversed phases, or Holland et al. algorithm [Holland 2010] which

performs an intensity-based registration (each line being considered independently).

As for Voss et al. algorithm, the obtained displacement field is sensitive to noise,

especially when large displacements are present. More recently a new method has

been proposed to combine EPI with opposite PED with PSF [In 2015] however

costing additional acquisition time. Finally a registration-based method has been

proposed by Irfanoglu et al. [Irfanoglu 2015] requiring a non distorted image such

as a T2 image (in addition to the reversed PED image) which is used as the central

point where the two images with reversed PEDs are transformed. It minimizes a

cost function to compute a transformation which has no a priori restriction with

respect to EPI image formation. The transformation is instead projected after each

step of the minimization to follow a distortion model (with distortions appearing

uniquely along the PED).

This last category of techniques has the advantage of requiring only a short addi-

tional acquisition time to correct for distortion: if we assume no patient movement

occurred during the acquisition and that the magnetic field inhomogeneity stays

constant during the acquisition [Vovk 2007], only one supplemental EPI image with

reversed PED is necessary to correct the entire EPI series (e.g. fMRI or DWI ac-

quisition). This chapter therefore presents a new algorithm for distortion correction

falling in the same category. Block-matching (BM) based registration has been suc-

cessfully proposed for registration in medical imaging both for rigid [Ourselin 2000]

and non-linear registration [Commowick 2012a]. As a registration framework, BM

has the advantage of being very generic and easily adaptable to different transfor-

mation priors, both to match blocks in the floating image [Commowick 2012b] and

for the global transformation (linear or non-linear). Moreover, it is also robust to

outliers in the local matches. Our approach towards distortion correction of EPI is

thus based on BM. It is designed to register two images acquired with opposite PED

without requiring an additional structural image. To do so, we introduce a symmet-

ric BM registration algorithm, optimizing local affine transformations constrained

a priori in the PED to match the expected distortions in EPI. In addition, the

transformation is computed as opposite symmetric to match the distortion model in

EPI [Jezzard 1995]. The implementation of our algorithm is available in our open

source medical image processing toolbox Anima2.

We evaluate this algorithm qualitatively and quantitatively on two datasets in

Section 4.4. First, we present results on EPI acquisitions of a phantom, where the

geometry of the image is known. We also perform evaluation on in vivo diffusion-

weighted EPI of five subjects for which images with four different PED (anterior-

posterior (AP), posterior-anterior (PA), left-right (LR), right-left (RL)) were ac-

2https://github.com/Inria-Visages/Anima-Public

https://github.com/Inria-Visages/Anima-Public
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quired. We present our results in contrast to two state-of-the-art methods using

the same inputs: TOPUP from Andersson et al. [Andersson 2003] and Voss et al.

method [Voss 2006].

4.2 Methods

4.2.1 Distortion Model

We assume that two images have been acquired: IF is the EPI forward image ac-

quired with a classical PED (AP for example), and IB is the EPI backward image

acquired with a reversed PED (PA in this case). The goal of EPI distortion correc-

tion is to estimate a distortion transformation field from these two images. Then,

from this field, it is possible to recover a corrected image C from these two im-

ages, but also an entire serie of EPI acquired with AP or PA PED. Jezzard et al.

[Jezzard 1995] have demonstrated that deformations due to B0 field inhomogeneities

appear mainly along the PED and are negligible in other directions. More precisely,

we follow the distortion model as expressed previously in [Voss 2006, Morgan 2004]

which assumes that IF and IB are generated from the theoretical corrected image

C using a displacement field parallel to the PED:

{

C(x) = JT+(x)IF (T+(x))

C(x) = JT−(x)IB (T−(x))
(4.1)

where T+(x) = x+ U(x) and T−(x) = x− U(x). JT+ and JT− denote the Jacobian

determinants of the local deformations which account for intensity changes in the

distorted areas. It will lead to an increased intensity in the contracted areas and a

decreased intensity in the dilated areas. U corresponds to the distortion displace-

ment field which is parallel to the PED, e.g. if the PED is along the y-axis then

U(x) = [0 Uy(x) 0]T . It is assumed in this model that T+ and T− are opposite

symmetric, i.e. that they share the same U up to a minus sign along the PED.

4.2.2 Block-matching for distortion correction

Different approaches may be considered to match the two images. In the distor-

tion model, the corrected image C is generally unknown. It could be replaced (as

suggested in [Irfanoglu 2015]) by a non distorted similar acquisition (such as a T2

weighted acquisition). However, this is not always available in clinical acquisitions.

We therefore consider the case where C can be at best estimated and choose a

registration approach that does not rely on it. A registration method has been in-

troduced by Avants et al. [Avants 2008] allowing to estimate the corrected image C

without having it directly appear in the algorithm. The idea, instead of looking for

the transformation T between two images, is to seek the half-transformation T 1/2

so that the two images registered from IF and IB match as much as possible:

IF ◦ T 1/2 ≈ IB ◦ T−1/2 ≈ C (4.2)
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We adapt this approach to a BM algorithm [Ourselin 2000, Commowick 2012a] by

constraining the transformation to be aligned with the PED as assumed in the dis-

tortion model. The BM algorithm enables a simple and effective incorporation of

this constraint on the deformation field. First we present the global scheme of the

BM algorithm, then we detail each part separately. We consider an initial transfor-

mation U0 which can be null or coming from another coarse correction algorithm.

We use a classic multi-resolution pyramidal scheme [Burt 1983] to process images

from coarse to fine resolution. At each level of the pyramid, from the transforma-

tion at the previous pyramid level, we proceed as described in Algorithm 1 and

illustrated as a diagram in Fig. 4.1.

Algorithm 1 Block-matching algorithm for EPI distortion correction

1: for p = 1...P , iteration on pyramid levels, do

2: for l = 1...L, iterations, do

3: Resample images to get IF,l−1 and IB,l−1

4: Estimate local transformations for each block on IB,l−1: A+ ←
block-matching(IB,l−1, IF,l−1)

5: Estimate local transformations for each block on IF,l−1: A− ←
block-matching(IF,l−1, IB,l−1)

6: Extrapolate asymmetric dense SVF updates from A+ and A−:

δS+ ← extrapolate(A+),

δS− ← extrapolate(A−)
7: Compute a symmetric SVF update: δS, and compose it with current trans-

formations

8: Ensure T+,l and T−,l are opposite symmetric

9: Regularize (elastic-like) T+,l and T−,l

At each step, we first resample the original images with the current transforma-

tion. Then we estimate pairings between the images in the forward and backward

directions (A+ = {Â+,1, .., Â+,N} and A− = {Â−,1, .., Â−,N}) using a BM algorithm.

We utilize A+ and A− to extrapolate two asymmetric stationary velocity field (SVF)

δS+ and δS− which are combined into a symmetric SVF update δS (Section 4.2.3).

We then compose this update with T+,l−1 and T−,l−1, and ensure that T+ and T−
still share the same displacement field U . Finally, the current displacement field

is regularized using a convolution with a Gaussian kernel (standard deviation σE).

The following sections detail the BM, extrapolation and composition steps of this

algorithm and their specificities for distortion correction of EPI.

4.2.2.1 Block-matching of distorted EPI

At each iteration, we define blocks B+,i, which are patches centered at xi with size

(2N + 1)3, regularly placed on image IB,l−1 (every V voxels in each direction). We

also define blocks B−,i with the same characteristics on IF,l−1. For each of those

blocks, we look for an adapted transformation best matching them respectively to
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At the L-th iteration

Original

IF

Current

forward transform

T+,l−1

Current

backward transform

T−,l−1
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Resample

IF,l−1

Resample
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δS+ δS−

Block-matching in

the log-Euclidean space

Symmetrize the transform

Go back to the regular space

δS = 1
4(δS+ − δS−)

δT+, δT−

Exponential

T+,l = T+,l−1 ◦ δT+

T−,l = T−,l−1 ◦ δT−

Figure 4.1: Graphical illustration of one iteration of the block-matching algorithm.

IF,l−1 and IB,l−1. Let L be the set of allowed transformations for matching blocks.

Frequently, in other applications, the transformation sought between blocks is a

simple 3-dimensional translation. In the case of EPI distortion, the set L can be

further adapted to match a priori the expected features of the distortion at the

block level and thus obtain a more robust transformation estimation. First the

model assumes that distortions appear uniquely along the PED: a one-dimensional

translation along the PED (modeled by one parameter t.,i) is therefore sufficient.

At the scale of the block, a single translation is however not enough to account for

local contractions and dilations due to the distortion at different points of the block.

We account for this by adding three parameters to the transformation. The first

one accounts for the change of scale due to the global contraction or dilation inside

the block (s.,i). This scale parameter solves the problem of global scaling inside the

block, however different lines along the PED will have different distortions generating

skewness at the block level. To consider this, we define two skew components (k.,i
and m.,i) for the two directions complementary to the PED. Assuming the PED is

the y-axis, A.,i is expressed as a 4× 4 matrix:

A.,i =







1 0 0 0

k.,i s.,i m.,i t.,i
0 0 1 0

0 0 0 1







(4.3)

Note that having the PED on an other axis will result in the line of parameters being

displaced on the first or third line of the matrix. A few interesting properties are

associated to this transformation. The Jacobian determinant of the transformation

is simply computed as the scaling parameter s.,i, and this parameter is therefore
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utilized directly for modeling the intensity changes due to distortion at the block

level. To speed up the global SVF extrapolation process (see Section 4.2.3), the

transformation is estimated directly in the log-space. As the log-Euclidean frame-

work presented in Section 3.3.4 for the positive-definite matrix space, the equivalent

for the affine transformation has been developed [Alexa 2002, Arsigny 2009]. Let’s

assume that the logarithm of the transformation A, is encoded, with simplified

notation, as follow:

Ã =







0 0 0 0

k̃ s̃ m̃ t̃

0 0 0 0

0 0 0 0







(4.4)

where Ã is the corresponding log-transformation and k̃, s̃, m̃, t̃ their corresponding

parameters, this expression is equivalent as long as the scaling factor s > 0. The

exponential of this matrix is defined as:

eÃ =
∞∑

k=0

Ãk

k!
=

( ∞∑

k=1

s̃k

k!

)








0 0 0 0
k̃
s̃ 1 m̃

s̃
t̃
s̃

0 0 0 0

0 0 0 0








for any s 6= 0, which lead to the analytic expression:

eÃ = I4 +








1 0 0 0
k̃
s̃ (e

s̃ − 1) es̃ m̃
s̃ (e

s̃ − 1) t̃
s̃(e

s̃ − 1)

0 0 1 0

0 0 0 1








(4.5)

where I4 is the identity matrix. In the case s = 0, the exponential is smiplified to:

eÃ =







1 0 0 0

k̃ 1 m̃ t̃

0 0 1 0

0 0 0 1







(4.6)

From these expressions, the logarithm of A the original transformation which is the

opposite of the exponential is recovered as:

log(A) =







0 0 0 0
k

s−1 log(s) log(s) m
s−1 log(s)

t
s−1 log(s)

0 0 0 0

0 0 0 0







(4.7)

which is correct as long as s > 0 and s 6= 0. If s = 0, the logarithm is simplified to:
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log(A) =







0 0 0 0

k 0 m t

0 0 0 0

0 0 0 0







(4.8)

We have a corresponding one to one mapping between the affine transformation and

the log-space. Therefore to speed up the algorithm, the BM search, as the entire

pipeline, except the similarity measure, is done in the log-space. The BM step then

amounts to estimate the four log-parameters of each block transformation in L to

compute the set of optimal transformations Â+,i and Â−,i (respectively for blocks

B+,i and B−,i) optimizing a similarity measure S between IF,l−1 and IB,l−1:

Â+,i = argmax
Ã+,i

S
(

Jexp(Ã+,i)
IF,l−1 ◦ exp(Ã+,i), IB,l−1

)

(4.9)

Â−,i = argmax
Ã−,i

S
(

IF,l−1, Jexp(Ã−,i)IB,l−1
◦ exp(Ã−,i)

)

(4.10)

This optimization is performed using the BOBYQA algorithm for gradient free

optimization with parameters within predefined bounds [Powell 2009]. It proceeds

by successively computing quadratic approximations to the cost function to find its

local maximum.

4.2.2.2 Confidence weights

We have computed for each block B.,i the local transformation Â.,i that optimizes

the similarity measure S. We then assign to this transformation a weight w.,i to

estimate the confidence in the block match. To do so, we use a combination of two

different terms. The first one is the similarity itself Ŝ.,i assuming it belongs to the

range [0, 1], 1 being the best result (if not, a function of Ŝ.,i can be used). The second

one, wd (B.,i) gives an index of the local structure of the reference block along the

PED. If the block structure is parallel to the PED, all tested transformations A.,i for

that block may get the same similarity score, thereby introducing uncertainty in the

matches. Actually, the algorithm will always find a solution due to small variations

of intensities or computing precision. However the quality of such solutions will be

random. We therefore want to avoid as much as possible such random solutions

which can propagate important errors. Only considering the optimal similarity is

therefore not enough and we introduce the index wd to give a low weight to these

uncertain blocks and their corresponding local transformations. wd is defined as a

function of the structure tensor inside the reference block B.,i:

wd (B.,i) = cl
(
DB.,i

)
< v̂DB.,i

, g > (4.11)

• DB.,i
is the average structure tensor of block B.,i
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• cl(DB.,i
) is a linear coefficient which quantifies the anisotropy of the tensor

[Westin 2002]

– cl(DB.,i
) =

λ1 − λ2

λ1
, with λ1 > λ2 > λ3 the eigenvalues of DB(.,i)

– cl(DB.,i
) is close to 0 if DB.,i

has a planar or circular structure and close

to 1 if it has a very anisotropic one

• v̂DB.,i
is the principal eigenvector of DB.,i

• g is the unit vector along the PED

wd will be 0 if the structure tensor is perpendicular to the PED (image structure

parallel to g) or planar/spherical (cl = 0) giving a structure based confidence to the

matches. Finally, the weight for the match of block B.,i is defined as the geometric

mean of the similarity index and the structural index:

w.,i =

√

wd (B.,i) Ŝ.,i (4.12)

4.2.3 Transformation extrapolation and composition

From the BM algorithm, two sets of block pairings have been constituted: one for

IF , Â+ = (Â+,1, . . . , Â+,m), and one for IB, Â− = (Â−,1, . . . , Â−,n). Each pairing

is defined by the center of its corresponding block B.,i, a transformation Â.,i, and a

weight w.,i. We then extrapolate two update SVFs from the sparse weighted trans-

formation logarithms: δS+ = extrapolate(Â+) and δS− = extrapolate(Â−). This

extrapolation aims at computing a dense field of transformation logarithms R̂.,i

(i = 1, ...,M representing each voxel) from the sparse Â.,j . This is performed utiliz-

ing an M-smoothing algorithm in the log-Euclidean space on affine transformations

[Arsigny 2009] as proposed in [Commowick 2012a]:

(R̂.,1, . . . , R̂.,M ) = argmin
R.,1,...,R.,M

M∑

i=1

∑

j∈Ni

wB.,j
ρ
(

||R.,i − log Â.,j ||2
)

d
(
|xi − xj |2

)

(4.13)

where log denotes the matrix logarithm which is naturally obtained in our frame-

work, xj is the spatial position of pairing, Ni is the neighbourhood of xi, ρ is

a robust error norm to account for outliers in the set of sparse transformations

Â. (here the Welsh function), d is a function of the Euclidean distance - here

d(b2) = exp(−b2/2θ2) - giving more importance to spatially close reference pair-

ings. This cost function is optimized through an iterative scheme, more detailed in

[Commowick 2012a]. The obtained transformation logarithms R̂.,i are then applied

to their respective positions xi to compute the SVFs δS+ and δS−: δS.(xi) = R̂.,ixi.

Extrapolating update SVFs using this M-smoothing algorithm, we incorporate an

outlier rejection framework, mainly coming from the ρ function in Eq. (4.13), that

removes from the resulting SVF erroneous block transformation logarithms due for
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example to artifacts or other effects in IF,l−1 and IB,l−1. In addition, the extrapo-

lated fields are SVFs and therefore encode diffeomorphic and invertible transforma-

tions.

A symmetric δS is then computed, following [Vercauteren 2008], as a quarter of

the subtraction of asymmetric incremental updates δS+ and δS−:

δS =
1

4
(δS+ − δS−) (4.14)

While the half difference of the two asymmetric incremental updates is sufficient to

compute a symmetrized field, δS is computed as a quarter of the difference as we

are seeking the transformation bringing the two input images towards an unknown

middle image C. As such only the half symmetric SVF is needed.

The final step of each iteration then amounts to composing the updates with the

current transformations and ensure that the resulting T+,l and T−,l transformations

still share the same displacement field U at the l-th iteration Ul. To do so, δT+ and

δT− are first obtained by exponentiating δS: δT+ = exp(δS) and δT− = exp(−δS)
[Arsigny 2009], and composed with the current transformations: T+,l = T+,l−1 ◦δT+

and T−,l = T−,l−1◦δT−. As the composition and inverse operations do not ensure the

opposite symmetry condition, we finally compute the shared displacement field Ul as

Ul(x) =
1
2 (T+,l(x)− T−,l(x)) such that T+,l(x) = x+Ul(x) and T−,l(x) = x−Ul(x).

4.3 Experimental design

4.3.1 Image acquisitions

Imaging was performed on a Siemens Verio 3T scanner. The approach was evaluated

on in-vitro and in vivo data:

• In vitro: A grid phantom with known geometry developed by the UNIRS

group from the commissariat a l’energie atomique (CEA) Neurospin for the

CATI Consortium for image acquisition and processing3 was imaged : b0 im-

ages (AP, PA, LR and RL) were acquired with a 12 channels coil, a 128×128×60

matrix size and a 2×2×2mm3 voxel size.

• In vivo: 5 healthy volunteers were imaged after approval from the local insti-

tutional review board. For each volunteer, two pairs of b0 EPI images with op-

posite PEDs (AP/PA and LR/RL), 128×128×60 matrix size and 2×2×2mm3

voxel size were acquired with a 32 channels head coil. The EPI images were

acquired using the parallel imaging method GRAPPA with an acceleration

factor of 2 (TE = 82ms and an echo space 0.69ms). Regular clinical DWI

were also acquired (30 gradient directions, b = 1000s.mm−2) with identical

geometry and AP PED.

3http://cati-neuroimaging.com

http://cati-neuroimaging.com


4.3. Experimental design 49

4.3.2 Experimental methods

4.3.2.1 Evaluation strategy

In order to estimate the quality of the distortion correction we follow the process

illustrated in Fig. 4.2. We first estimate a corrected image CAP/PA from one pair

of reversed b0 EPI (AP/PA). Then, independently, we estimate a corrected image

CLR/RL from the other pair of reversed b0 EPI (LR/RL). Each pair of reversed EPI

has a PED following the same orientation but with an opposite direction. However

the two pairs have a PED following a different orientation. This means that dis-

tortions will affect different areas of the brain in a different way depending on the

orientation of the PED. We thus consider the quality of the match between CAP/PA

and CLR/RL as an index to estimate the general quality of the distortion correction

(see Fig. 4.2). If the two pairs of images are perfectly corrected, they will match

after correction. In the following, we compare three different distortion correction

methods with different metrics.

CAP/PA

Correction from AP-PA images

AP

PA

CLR/RL

Correction from LR-RL images

LR

RL

Similarity measure

Figure 4.2: Illustration of the evaluation process for two pairs of EPI images with

different reversed PEDs. On the left side, the AP (Top) and the PA (Bottom)

images corrected by BM (Middle). On the right side, the LR (Top) and the RL

(Bottom) images corrected by BM (Middle). A similarity measure between the 2

corrected images is performed to estimate the quality of the corrections.

4.3.2.2 Method 1: Voss

The first evaluated method was proposed by Voss et al [Voss 2006]. Their approach

amounts, for each line in the PED, for both images, to do:
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• Compute normalized cumulated intensities

Ni(y) =
1

αi

∫ y

0
Li(x)dx for i = 1, 2 (4.15)

• L1 and L2 are line intensities of images IF and IB, α1 and α2 are normalization

constants:

αi =

∫ ∞

0
Li(x)dx for i = 1, 2 (4.16)

• For a large number n of values xn between 0 and 1, find by cubic interpolation

[Schoenberg 1973] y1,n and y2,n such that N1(y1,n) = N2(y2,n) = xn

• At each position yn = (y1,n + y2,n)/2, the transformation map is computed as

U(yn) = y1,n − yn = yn − y2,n (4.17)

This algorithm has the advantage of being very fast and simple. However, it is

highly sensitive to noise and line registrations are purely independent which may

lead to unrealistic transitions between consecutive lines. Therefore, a 3D Gaussian

smoothing with a standard deviation σ is performed on the obtained transformation

T , which leads to a trade-off between transformation precision (small Gaussian σ)

and transformation regularity (large Gaussian σ). In our experimentations, we have

set σ to one pixel.

4.3.2.3 Method 2: TOPUP

In addition to Voss et al. method, we also evaluated the distortion correction ob-

tained from the TOPUP algorithm, available within the FSL package4. This correc-

tion method is based on the work from Andersson et al. [Andersson 2003]. It uses

a model of EPI image formation and, together with the two images with opposite

PEDs, reconstructs a deformation field to obtain a corrected EPI. More details are

provided in Andersson et al. publication or on the FSL documentation page. We

utilized the default parameters of this method for all of our experiments.

4.3.2.4 Method 3: Proposed block-matching technique

Distortion correction involves finding very large and local displacements between

the images, displacements that may be extremely difficult to recover for registration

approaches. We tackle this problem using a coarse-to-fine approach to recover EPI

distortion and using Voss et al. method with a large σ smoothing value as an initial

transformation, which is then further improved with our BM strategy.

Aside from transformation initialization, the BM implementation has different

parameters, that are set as follows. First, we use three levels on the multi-resolution

pyramid and 10 iterations at each level. The size of each block is 3×3×3 (i.e. N = 1).

4http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TOPUP

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TOPUP
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These blocks are placed regularly every two voxels in each direction (V = 2). The

initial search radius for BOBYQA is set to 2 voxels, the initial skew radius is set

to 0.1, and the initial scale radius to 0.1. We use a squared correlation coefficient

as the similarity measure between blocks. At the end of each iteration, the elastic

regularization is made with a σE value of 2 voxels. These parameters were set to

the same values for each distortion correction experiment.

4.3.3 Evaluation Metrics

4.3.3.1 Phantom Evaluation: point-based metric

Contrary to brain images, the phantom acquisition has a known grid structure on

which landmarks are easily identifiable. For each uncorrected image (AP, PA, LR

and RL), 20 landmarks were carefully and manually selected at voxels represent-

ing crossing points. To evaluate quantitatively distortion correction, we have then

applied the following steps for each evaluated method. First, images AP and PA,

respectively LR and RL, were used to correct their distortion and estimate two de-

formation fields (one for AP/PA and one for LR/RL). For this specific evaluation,

they were applied independently to the spatial landmark positions in AP, PA, LR

and RL giving 4 corrected images. If the distortion correction is perfect, the trans-

formed points should then match after transformation. We evaluate this match by

computing an average of the one to one Euclidean distances between the landmarks:

di =
1

6

4∑

j=1

4∑

k>j

||pi,j − pi,k|| (4.18)

where pi,j denotes the transformed i-th landmark on image j (one of the four images

with different PEDs, AP, PA, LR and RL). di is a distance in millimeters char-

acterizing at which point the four images are distorted after correction around the

specific locations of the pi,j : the closer di is to 0, the closer the four input images

are around the i-th landmark.

4.3.3.2 Brain images evaluation: intensity-based metrics

To compare images from the brain database after correction, we define a similarity

measure computed between the two corrected images (CAP/PA and CLR/RL).

This evaluation similarity measure (Sim) is defined as a sum of local correlation

coefficients normalized between two images. To compute this metric only on relevant

areas, masks are computed on four images, the two corrected by TOPUP and the

two corrected by BM using the brain extraction tool of the FSL package5. Then

the union of these four masks is used to obtain the global mask M and therefore

compute the similarity measure:

5http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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Sim(I, J,M) =
1

Card(M)

∑

p∈M
C(INp , JNp) (4.19)

where INp and JNp are neighborhoods of p in I and J , defined as a cube centered

on p of size (2q + 1)3, in the result part q = 3. C is the local correlation between

INp and JNp . Card(M) denotes the cardinal of the set to ensure that Sim belongs

to the range [0,1].

Sim characterizes well if the images match after correction and is defined be-

tween 0 and 1 which is useful to keep the same stable index between several subjects.

4.4 Results

4.4.1 Results on the Phantom

(a) AP (b) PA (c) Voss (d) TOPUP (e) BM

(f) LR (g) RL (h) Voss (i) TOPUP (j) BM

Figure 4.3: Distortion correction results on a phantom. Illustration of EPI

distortion corrections with the evaluated methods on images acquired with opposite

PEDs along the anterior-posterior axis (first line) and the left-right axis (second

line). (a-b, f-g): uncorrected b0 images, (c,h): correction with Voss et al. method,

(d,i): correction with TOPUP, (e,j): correction with BM algorithm (proposed tech-

nique).

We first compare the different distortion correction algorithms on the phantom

acquisition. We present in Fig. 4.3 a visual example of the phantom images before

and after correction. The BM corrected images are really close and appear visually

as being well corrected for distortion. TOPUP images are also properly corrected.

Phantom images however do not represent a realistic anatomy and the distortion

correction quality may vary depending on the methods. For example, Voss method

is not adapted for this kind of bicolor images and gives visually poorer results.
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Figure 4.4: Landmark position errors on the phantom. Errors (in mm) box-

plot before and after distortion correction with the Voss correction method, TOPUP

and the proposed technique. Error differences are all significant (paired t-test see

text for more details).

In addition to visual inspection, we computed landmark position errors based on

the distance presented in Section 4.3.3.1, Eq. (4.18). These results are illustrated

in Fig. 4.4, showing the box-plots of di distances over all i. Voss performs slightly

and significantly better than uncorrected images (paired t-test, p = 3 × 10−3, av-

erage error of 2.09 mm compared to 3.46 mm untouched), illustrating its modest

performance on this specific dataset. TOPUP also significantly reduces the dis-

tance errors, to an average of 1.54 mm, with respect to both uncorrected images

(paired t-test, p = 3 × 10−4) and to Voss algorithm (paired t-test, p = 1 × 10−3).

Finally, BM outperforms all other methods obtaining an average error of 1.38 mm,

significantly different from uncorrected images (paired t-test, p = 2 × 10−4), Voss

algorithm (paired t-test, p = 4 × 10−4) and TOPUP (paired t-test, p = 0.028), al-

though both algorithms obtain close precision results, below the voxel size, and are

therefore comparable. Overall, these results confirm the visual results, showing that

both BM and TOPUP achieve the best results with BM having the lowest distance

error and less variance.

4.4.2 Results on in vivo Data

4.4.2.1 Qualitative Results

We present in Fig. 4.5 results of our distortion correction method by visualizing

pairs of b0 EPI with opposite PED, corresponding images corrected by BM and

structural T1 reference images. The two lines correspond to a different phase en-
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(a) Left-Right (b) Right-Left (c) Block-Matching (d) T1

(e) Anterior-Posterior (f) Posterior-Anterior (g) Block-Matching (h) T1

Figure 4.5: Illustration of BM EPI distortion corrections on b0 images

acquired with opposite PEDs on one subject. (a-b, d-e) pair of EPI with

opposite PEDs along the left-right axis for the first row, along the anterior-posterior

axis for the second row; (c,f) corresponding BM corrected images for each pair of

EPI; (d,g) structural T1 reference.

coding orientation to show distortion in different orientations. It can clearly be

seen on Fig. 4.5 that left-right and right-left PED images suffer from large spatial

displacement around the falx cerebri (see arrows on Fig. 4.5.a,b). On the contrary,

our distortion correction method allows for a good matching of the structures in the

T1 image and on the b0 corrected image (see arrows on Fig. 4.5.c,d). On the sec-

ond line, anterior-posterior and posterior-anterior PED images suffer deformations,

which include massive contractions and dilatations in addition to spatial displace-

ments, around the frontal lobe (see arrow 4.5.e,f). Again the BM correction restores

an image with a structure in phase with the T1 anatomical reference (see arrow

4.5.g,h).

Generally, in a clinical use, it is reasonable to acquire an entire DWI serie in

one PED and a single b0 with reversed PED. To correct b0 EPI, a deformation field

is estimated from the pair of reversed PED b0. Then, considering no motion, this

deformation field is used to correct the entire DWI serie. We present color fractional

anisotropy (CFA), estimated from the original and the corrected DWI series, and

their corresponding T1 (not distorted) images. The color in CFA map depends on
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the principal direction of the tensor (red is Left/Right, green Anterior/Posterior and

blue Foot/Head) and the intensity of the color is proportional to the FA value. The

colors and intensities of original and corrected CFA are similar. However the position

of the left-right corrected CFA offers a better matching with the structural T1

around the falx cerebri (see arrows 4.6.a,b,c) and for the anterior-posterior corrected

CFA around the brainstem (see arrows 4.6.d,e,f). Such a good correction will then

allow, for example, for a better definition of regions of interest from the T1 image

to seed fiber tracts on the diffusion image, or to study diffusion model properties in

specific anatomical regions.

(a) left-right CFA (b) block-matching CFA (c) T1

(d) anterior-posterior CFA (e) block-matching CFA (f) T1

Figure 4.6: Colored FA visualization of distortion correction results. The

distortion field is computed from the two b0 images and applied to an entire DWI

volume with a left-right PED for the first line and a anterior-posterior PED for the

second one. The FA is then estimated from the original and the corrected DWI.

(a,d): uncorrected FA, (b,c): block-matching corrected FA, (c, f): structural T1

reference.

We then illustrate on Fig. 4.7 distortion correction results of the different evalu-

ated methods on a pair of EPI with opposite PED (anterior-posterior and posterior-

anterior). On this strongly affected area, we compared the three different distortion

correction methods with respect to a structural image (T1 image). We first noticed

that the three corrected images are more similar to the structural image than the
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original ones, suggesting that each method is able to strongly reduce the distortions.

However the image corrected using Voss et al. method (Fig 4.7.d) still presents a

mismatch around the lateral ventricles (see arrow on Fig 4.7.b). TOPUP and BM

both obtain a corrected image very close to the structural T1 image.

(a) AP b0 (b) Voss b0 (c) TOPUP b0 (d) BM b0 (e) T1

(f) AP CFA (g) Voss CFA (h) TOPUP CFA (i) BM CFA (j) T1

Figure 4.7: Registration results on a subject according different distortion

correction methods. First row : (a) b0 acquired with anterior-posterior PED;

Mean of opposed PEDs corrected images : (b) by Voss; (c) by TOPUP; (d) by BM;

(e) T1 structural reference. Second row (f) to (i) : zoom on the lateral ventricles of

the corresponding colored FA; (j) T1 zoomed.

4.4.2.2 Quantitative Results

We performed experiments on an Intel Xeon 2.5 Ghz computer on 20 cores. The

mean time per subject is very short (about 5s) for the Voss algorithm, 170s for the

BM and 500s for TOPUP. Unlike TOPUP, BM is multi-threaded, allowing a faster

computation time which may be useful in the clinic.

To obtain a quantitative evaluation of the quality of the corrected images, the

similarity metric (Sim) introduced in Section 4.3.3.2 was computed on the dataset of

5 subjects after correction by the different methods. The Sim metric results between

the two corrected images CAP/PA and CLR/RL are presented in Table 4.1. These

results are consistent with visual inspection and highlight that BM performs better

than Voss et al. on all subjects, showing a significant improvement of the correction

compared to the initialization (Wilcoxon signed-rank test, p = 0.03). Between BM

and TOPUP, the best score depends on the subject, the average similarity for the

5 subjects is better for BM than TOPUP however it is not statistically significant

(Wilcoxon signed-rank test, p = 0.69).
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Sim Untouched Voss BM TOPUP

Subject 1 0.842 0.901 0.916 0.927

Subject 2 0.818 0.904 0.918 0.937

Subject 3 0.812 0.875 0.894 0.859

Subject 4 0.886 0.923 0.939 0.954

Subject 5 0.872 0.913 0.921 0.898

Mean 0.852 0.903 0.918 0.915

Table 4.1: Correlation results (Sim measure) between AP/PA and LR/RL images.

Columns from left to right: no correction, Voss, BM and TOPUP.

4.5 Discussion and Conclusion

This chapter presented a new block-matching based algorithm for EPI distortion cor-

rection using an additional EPI with reversed PED. To this end, we have developed

specific linear transformations constrained to fit a priori with the distortion model

at the block level. This transformation definition, integrated into a symmetric BM

algorithm, ensures a robust computation of an opposite symmetric transformation.

We have tested our distortion correction and two state-of-the-art methods on a

phantom with a known ground truth shape. Our results perform significantly better

than Voss et al. correction, which is not adapted for images with uniform intensity

regions. Moreover BM performs significantly better than TOPUP algorithm but

at a sub-voxel level (though one should not over interpret this difference). Then,

we have evaluated the BM registration on 5 subjects with 2 pairs of b0 EPI. A

similarity measure based on local correlation between the 2 corrected images CAP/PA

and CLR/RL show a significant improvement between the Voss initialization and

the BM correction. TOPUP algorithm and BM obtain similar levels of similarity.

These results demonstrate the ability of our BM approach to compute a robust EPI

distortion correction. Our algorithm is implemented in a multi-threaded fashion

using ITK allowing for faster computation time than TOPUP.

A common problem with reversed PED methods is motion since the a priori
distortion model is not true any more in that case. The best way to avoid motion

problems is to perform an acquisition with continuously alternating PEDs and to

correct all pairs independently. For clinical use it is also possible to acquire only one

PA and a series of AP and then correct the entire series from the deformation field

estimated. This is more subject to the motion issue but also reduces the acquisition

time, which is crucial.

The intensity of distortion in EPI is related to susceptibility-induced fields and

eddy current-induced fields. The general trend to increase the scanner field strength

increases distortions [Wang 2005]. Thus it is essential to have efficient tools to cor-

rect these distortions. With that goal, we proposed a new simple and robust method,

computationally efficient, ready for a clinical use. We studied its application for dif-

fusion MRI, however it can be used for other modalities based on EPI acquisitions
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Figure 4.8: Illustration of multiple correlation BM with n b0 forward images, m b0
backward images and a non-distorted structural T2-weighted image in the middle.

such as fMRI.

4.6 Perspectives

4.6.1 Motivations

To increase the quality of the distortion correction, we want to extend the BM

correction method adding an extra image as reference. Indeed for almost all pro-

tocols including EPI, at least one non-distorted structural image, as T1-weighted,

T2-weighted, FLAIR, is acquired. Thus, there is a possibility to use this free extra-

information to enhance the distortion correction. To do so, we developed a new BM

algorithm with a structural image in the middle using a specific metric: the multi-

ple correlation. To our knowledge, the concept of block-matching with more than

2 images has never been proposed before. We present this part in the perspective

section as the results are not yet improving distortion correction and this subject

requires more future research work.

4.6.2 New Block-Matching general framework

Now we consider that instead of a pair of b0 with opposite PED, we have one set

of n forward b0 images, one set of m backward b0 images for a total of p = n +m

EPI and one structural image as a T2-weighted image, see Fig 4.8. We want to

use the non-distorted structural image to recover through correlation measures a

transformation applicable to the DWI images. The underlying assumption made is

that non-distorted b0 images should have the same structure than a T2-weighted

image. In the following, we present a metric, well adapted to our framework, named

multiple correlation.

4.6.2.1 Multiple correlation

The multiple correlation is a metric taking one target variable y and several inde-

pendent variables {xi}i=1,..,p. The multiple correlation coefficient is expressed as:

R =

√

c⊤R−1
x,xc (4.20)
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where c = (ry,x1 , .., ry,xp)
⊤ is a vector of correlation coefficients with ry,xi

being the

correlation between the target variable y and the independent variable xi. Rx,x is

the covariance matrix of the independent variables:

Rx,x =






rx1,x1 · · · rx1,xn

...
. . .

...

rxn,x1 · · · rxn,xn




 (4.21)

where rxi,xj
is the correlation between xi and xj . The multiple correlation coefficient

R belongs to the range [0, 1] and denotes a correlation between y and a linear

combination of xi [Huberty 2003]. In the following, we describe how this measure

is well adapted to our case and propose a algorithm for BM with several image.

4.6.2.2 Multiple correlation BM algorithm

Block-matching algorithm typically considers only two images to register. However,

adding a structural image in the middle as a reference requires a new BM framework

presented here. Now the structural image is represented by the target variable

y and all the b0 forward and backward registered images are represented by the

independent variables xi. Instead of classic BM, we look for the best parameters

associated with both forward and backward log-transformations as:

AF =







1 0 0 0

k s m t

0 0 1 0

0 0 0 1







and AB =







1 0 0 0

−k −s −m −t
0 0 1 0

0 0 0 1







(4.22)

where AF is the forward log-transformation associated to the forward b0 images

and AB is the backward log-transformation associated to the backward b0 images

(see Fig 4.8). For each block, the multiple correlation BM algorithm maximizes

the multiple correlation between the target variable (the structural image) and the

independent variables, forward and backward images registered by their respective

transformations.

4.6.2.3 Results and discussions

We presented a mathematical framework of a new multiple correlation BM algo-

rithm. In practice, the problem resides in getting of a non-distorted structural

image enough similar to a b0 EPI. In our experiments, we tried to use T2-weighted

images. The forward b0 images {xi}i=1,..,n and the backward b0 images {xi}i=n+1,..,p

are respectively averaged in one forward image xF and one backward image xB.

Fig 4.9 presents distortion correction results using, classic BM correction, multi-

ple correlation BM correction, and the structural T2-weighted image used as target

variable. The first line shows these results on an axial slice where the T2-weighted
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(a) Anterior-Posterior (b) Classic BM (c) Multiple correlation (d) T2-weighted

(e) Anterior-Posterior (f) Classic BM (g) Multiple correlation (h) T2-weighted

Figure 4.9: Illustration of the multiple correlation BM. From left to right: AP b0
PED, classic BM from two b0 (AP and PA), multiple correlation BM estimated from

two b0 as independent variables and one T2-weighted image as the target variable,

the T2-weighted image. Line one: The multiple correlation BM offers a sharper

reconstruction of the strongly distorted areas than the classical BM. Line two:

The multiple correlation BM is not able to recover the eyes and more importantly

presents issues around the brainstem.

image seem highly similar of how we expect a non distorted b0 image. The remark-

able result obtained on strong warped area by the multiple correlation shows the

potential of this registration method. However, the second line shows results on a

different slice where the T2-weighted images shows more details than the b0 image

does. The multiple correlation BM is not able to recover properly the eyes and also

encounters issues around the brainstem whose boundaries get corrupted.

This new multiple correlation BM registration method presents promising re-

sults. Unfortunately for now, we are not able to obtain a good correction for the

entire brain. The acquisition of a non-distorted image very similar to the b0 should

be a solution. A recent new sequence named readout-segmented EPI could provide

such an image [Porter 2009].
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5.1 Introduction

Diffusion-weighted magnetic resonance imaging (DWI) is a unique MRI acquisition

strategy, which can provide invaluable insights into the white matter architecture

in vivo and non-invasively. A number of diffusion models have been devised, with

the aim to characterize the underlying tissue microstructure. The most widespread

model is known as diffusion tensor imaging (DTI) [Basser 1996] which, under the

assumption of homogeneous diffusion in each voxel, describes the random motion of

water as a single Gaussian process with a diffusion tensor. However, many regions

of crossing fibers exist in low-resolution clinical DWI and the DTI model fails at

correctly representing them. multi-compartment model (MCM) have been exten-

sively proposed and studied as alternative diffusion models to cope with the intrinsic

voxelwise diffusion heterogeneity [Ferizi 2014a]. The key principle of MCM is to ex-

plicitly model the diffusion in a number of pre-specified compartments akin to groups

of cells inducing similar diffusion properties. MCMs may have a great impact on
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patient diagnosis or care, as they allow for a better characterization of brain tissue

microstructure, which enables the identification of more specific biomarkers such as

proportion of free water (edema), proportion of water in axons (partial disruption

or complete loss of axons, axonal injury), etc.

A critical step to identify relevant biomarkers on a large database is the cre-

ation of an atlas from individual estimated MCM images. This is achieved using

registration and interpolation of MCMs. To date, only few approaches have ad-

dressed this issue. Among them, Barmpoutis et al. [Barmpoutis 2007] or Geng et

al. [Geng 2009a] introduced registration methods specifically tuned for orientation

distribution functions (ODF) on the sphere. Goh et al. [Goh 2011a] introduced an

interpolation method for ODFs in a spherical harmonics basis as a Riemannian av-

erage. However, this approach does not apply to MCMs as they are not expressed in

the same basis. Taquet et al. [Taquet 2012] proposed an interpolation approach seen

as a simplification problem of all weighted compartments from a set of voxels into

a smaller set of compartments. However, they assume that a single compartment

belongs to the exponential family which is not the case for all MCMs.

We introduce in this chapter a new interpolation and averaging method for

MCM images also seen as a simplification problem. It relies on the fuzzy spectral

clustering [Ng 2002] of input compartments, from MCMs provided e.g. from trilinear

interpolation, into a predefined number of output compartments. Then, each cluster

is used to compute an interpolated compartment, providing an output MCM. This

method is very generic as it relies only on the definition of a similarity measure

between compartments and of a weighted averaging scheme for compartments. It

can therefore be applied to any MCM as long as those two components may be

defined.

The MCM interpolation / averaging simplification problem is presented in Sec-

tion 5.2. We present in Section 5.4.2 the averaging schemes and distances for tensors,

diffusion direction imaging (DDI) model and free water models. Then, we define

4 possible compartment averaging methods for the DDI model [Stamm 2012b] in

Section 5.4.2 and similarity measures related to each of those averaging schemes.

We demonstrate qualitatively and quantitatively the interest of both the averaging

schemes and interpolation framework on simulated and in vivo data. We finally ap-

ply this framework to compute an atlas of DDI (Section 5.5) which clearly highlights

a better averaging fiber crossing regions.

5.2 Model interpolation as a simplification problem

5.2.1 Global interpolation scheme

The interpolation and the atlas creation of MCM are two different problems which

can be treated following almost the same framework. For the atlas creation, at a

given voxel, we have m MCM, each coming from an individual image, each contain-

ing anisotropic compartments of constrained water diffusion and isotropic compart-

ments describing unconstrained or restricted water diffusion. The natural average
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of these m MCM is the superposition of the compartments with their corresponding

weight multiply by the weights of their respective images α1, ..., αm. For the creation

of an atlas, all the MCMs have the same weights which is the invert of the number

of inputs:

∀i = 1, ..,m αi =
1

m
(5.1)

However, the high number of compartments composing that average MCM does

not make it realistic according to the brain model and moreover causes algorithmic

issues due to its important size. In this chapter, we describe how to simplify a MCM

into a smaller one, i.e with less anisotropic and isotropic compartments.

For the interpolation scheme, we want to apply a transformation to a MCM.

In the case of a trilinear interpolation, for each voxel in the interpolated MCM, we

need to mix 8 neighboring voxels with weights αi corresponding to the output voxel

position. This problem is similar to the averaging of several MCM: the simplification

of a large number of compartments into a smaller one. Here weights of the MCM

αi are defined by the spatial position of the trilinear interpolation.

We consider m MCM M i(i = 1, ...,m) each containing c(i) compartments of

anisotropic water diffusion and g compartments of isotropic water diffusion. This

means that the input MCM do not necessarily have the same number of anisotropic

compartments, however they are assumed to have the same number of isotropic

compartment g (one free water and one restricted diffusion water for example).

We note F i
j the j-th anisotropic compartment of M i and F i

iso, l its l-th isotropic

compartments, their respective weights being wi
j and wi

iso, l which sum up to 1. Each

of these M i has an associated weight αi. We formulate the interpolation problem

as merging the M i into one MCM with a predetermined number of anisotropic

compartments q and g isotropic compartments. There are therefore two different

averaging parts: anisotropic compartments and isotropic compartments.

The averaging of all anisotropic compartments coming from M i into q anisotropic

compartments is performed using spectral clustering [Ng 2002]. Having defined

a similarity matrix S between anisotropic compartments, spectral vectors are ex-

tracted from S. These spectral vectors are then clustered using fuzzy C-Means.

Hence, we obtain q sets of n weights (n being the total number of anisotropic com-

partments) βi
j,k that are probabilities for the j-th anisotropic compartment of M i

to belong to the k-th cluster k ∈ {1, .., q}. We define θij,k the weight of the j-th

anisotropic compartment of M i in the k-th cluster and θiiso,l the weight of the l-th

isotropic compartment of M i:

θij,k = αiwi
jβ

i
j,k (5.2)

θiiso,l = αiwi
iso,l (5.3)

From θij,k and θiiso,l, we compute weights φk and φiso,l of the output compart-

ments.
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∀k = 1, ..., q φk =

m∑

i=1

c(i)
∑

j=1

θij,k (5.4)

∀l = 1, ..., g φiso,l =

m∑

i=1

θiiso,l (5.5)

We also define θ̂ij,k and θ̂iiso,l different sets of normalized weights from θij,k and

θiiso,l as:

∀k = 1, ..., q

m∑

i=1

c(i)
∑

j=1

θ̂ij,k = 1 (5.6)

∀l = 1, ..., g

m∑

i=1

θ̂iiso,l = 1 (5.7)

From these sets of weights, we are able to simplify the input MCM into a single

one C containing q anisotropic compartments {Ck}k=1,...,q and g isotropic compart-

ments {Ciso,l}l=1,...,g :

∀k = 1, ..., q Ck =

m∑

i=1

c(i)
∑

j=1

θij,kF
i
j (5.8)

∀l = 1, ..., g Ciso,l =

g
∑

i=1

θiiso,lF
i
iso,l (5.9)

An illustration of this global interpolation scheme is presented in Fig 5.1. This

framework is very generic and can be applied to any MCM as long as we provide a

way to compute a similarity matrix between anisotropic compartments. The spec-

tral clustering is described in Section 5.2.2. The isotropic compartment averaging

is common to any MCM and is described in Section 5.3. We derive MCM compart-

ments averaging and similarity measure for the multi-tensor in Section 5.4.1 and

then for the DDI in Section 5.4.2.

5.2.2 Spectral clustering

Reducing a number of objects or variables into a smaller group (often denoted as

clusters) is a common issue to many different domains: machine learning, data

compression or image segmentation for example [Haralick 1985]. This is a difficult

and open problem with a large litterature on it [Jain 1999]. Here we want to cluster

n compartments into q comparments as in Fig 5.2.

Among the most popular algorithms proposed, the k-means consists in minimiz-

ing the distance across groups between points and their cluster centroids [Lloyd 1982]
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Figure 5.1: Global scheme of the interpolation of 4 MCMs with two anisotropic com-

partments and one isotropic compartment each. The detail of the spectral clustering

is presented in Fig 5.1

[Likas 2003]. In this algorithm, each data point is affected to one and only one class.

The algorithm thus alternates, from an initial position, between centroid computa-

tion and cluster affectation. The minimization of the distance in the k-means algo-

rithm is a NP-hard problem [Mahajan 2009], for which a large number of approx-

imations in a polynomial time have been proposed [Hartigan 1979, Kanungo 2002,

Park 2009]. However these methods are sensitive to a random inizialization and the

risk to converge to a local minimum is high [Bradley 1998]. Another clustering cate-

gory considers a different way of affecting data points to classes by assiging a weight

to each point which corresponds to a probability of membership to each cluster. The

fuzzy C-means clustering belong to this category [Bezdek 1984, Pal 2005].

Here we use a normalized spectral clustering algorithm [Ng 2002], illustrated in

Fig 5.2. From a similarity matrix S between inputs, spectral vectors of dimension

q (where q is the number of clusters) are computed and used to initialize a clus-

tering algorithm, generally the k-means, but we choose the fuzzy-C-means to keep

continuity in the interpolation. Several choices are possible to define spectral vec-

tors : we use the largest eigenvectors of the symmetric normalized Laplacian of S

[Ng 2002]. This method only needs a similarity matrix between the inputs (here

MCM compartments), is robust, well-reviewed with a large number of algorithms

proposed [Von Luxburg 2007, Spielmat 1996]. For each type of compartments, we

define specific semimetric {d(Fi, Fj)}i,j=1,...,n which are used to compute the simi-

larity matrix. A semimetric d has the same properties than classic distance without

the triangle inequality:
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Figure 5.2: Illustration of spectral clustering using Fuzzy C-Means







d(Fi, Fj) ≥ 0

d(Fi, Fj) = 0 if and only if Fi = Fj

d(Fi, Fj) = d(Fj , Fi)

(5.10)

this allows to define a weak metric in spaces not equipped with a natural distance.

From this semimetric, we compute the similarity matrix as:

Si,j =

{

e
−d2(Fi,Fj)

2σ2

}

i,j=1,...,n

(5.11)

where σ is a normalization coefficient to avoid computational errors. We describe

how distances {d(Fi, Fj)}i,j=1,...,n are defined for isotropic compartments in Section

5.3 for the multi-tensor and several DDI semimetrics in Section 5.4.

5.3 Isotropic compartments averaging

Isotropic compartments are treated differently from other compartments as they

represent specific tissues with no preferred direction and known properties. Each

MCM M i has g isotropic diffusivities diiso,l from its isotropic compartments F i
iso,l,

associated to weights θiso,l. Isotropic diffusions follow a Gaussian distribution with

covariance matrix Di
iso,l defined as :

∀l = 1, ..., g Di
iso,l = diiso,lI3 (5.12)

where I3 is the identity matrix. These covariance matrices Di
iso,l define tensors and

then belong to S+3 (R), the space of positive-definite matrices and can be averaged

following the log-Euclidean framework described in Section 3.3.4.6. Then the average

isotropic tensors are defined as:
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∀l = 1, ..., g Diso,l = exp

(
m∑

i=1

θ̂iiso,l log(D
i
iso,l)

)

(5.13)

In this simple case, the exponential and the logarithm of identity matrices multiplied

by a scalar are given by:

exp(αI3) = exp(α)I3 (5.14)

log(αI3) = log(α)I3 (5.15)

which simplify Eq (5.13) and lead to the mean diffusivities:

∀l = 1, ..., g diso,l = exp

(
m∑

i=1

θ̂iiso,l log(d
i
iso,l)

)

(5.16)

5.4 Anisotropic compartments averaging

Each MCM has one or several anisotropic compartments which represent a con-

strained water diffusion along particular tissues. Within an axon, the water is

indeed trapped and then diffuses along the axon direction. A bundle of axons ori-

ented in the same direction creates an unisotropic water diffusion at the voxel level.

This water diffusion is represented as an anisotropic compartment following different

models depending on the MCM considered. We present the interpolation scheme

for two MCM: the multi-tensor model (MTM) in Section 5.4.1 and the diffusion

direction imaging (DDI) in Section 5.4.2.

For each cluster k, we wish to average the set of F i
j with weights θ̂ij,k into a com-

partment Ck with weight φk. To simplify notations in the following section, we now

just consider n anisotropic compartments with their corresponding weights wi that

we want to average into a single one. To perform spectral clustering, we also need

to be able to compute a similarity measure between two anisotropic compartments.

In each part of the following sub-section, we define the similarity measure induced

by the semimetric used to average compartments.

5.4.1 Multi-tensor

The multi-tensor model (MTM) is one of the classical MCM (see Section 3.5.3.1).

It contains several anisotropic tensors and one or several isotropic compartments.

We want to average these anisotropic tensors and define a distance between them.

Let {Ti}i=1..n be a set of tensors with their corresponding weights {wi}i=1..n. All

{Ti}i=1..n belong to S+3 (R), the space of positive-definite matrices and can be average

following a log-Euclidean framework. The computation is done in the log-Euclidean

space and the average tensor is recovered as:

T = exp

(
n∑

i=1

wi log(Ti)

)

(5.17)



68 Chapter 5. Interpolation of multi-compartment models

From this, we can easily and efficiently average any number of tensors into a

unique one. A distance between two tensors is also directly defined in the log-

Euclidean space as:

d(T1, T2) = || log(T1)− log(T2)||F (5.18)

where ||.|| is the Frobenius norm:

||M ||F =
√

Tr(MTM) =
∑

j

λ2
j (5.19)

where Tr is the trace operator and λj are the eigenvalues of M . The similarity

matrix used for spectral clustering is thus derived from Eq 5.11. Examples of the

multi-tensor averaging are given in the results part (Section 5.5). In the following,

we continue to focus on the compartments averaging on an other MCM: the DDI.

We introduce the DDI model and then compare several metrics to average the DDI

anisotropic compartments.

5.4.2 DDI model

5.4.2.1 Presentation of the DDI model

In addition to one or several isotropic water compartments, a number of axonal com-

partments are added to the DDI to model how water molecules diffuse in axonal

bundles with various orientations. Diffusing water molecules in a particular axonal

compartment are assumed to undergo a random displacement that is the indepen-

dent sum of a von Mises & Fisher (VMF) vector on the sphere S2 of radius r and

a Gaussian vector on R
3 [Stamm 2012c]. The VMF is an orientation distribution

with the following PDF on the unit sphere [Banerjee 2005]:

f(x|µ, κ) = κ

2π(eκ − e−κ)
eκµ

T x (5.20)

where x ∈ S2, µ ∈ S2 is the principal axis of diffusion, κ ∈ [0,∞[ is an index

of the concentration of diffusion around µ (κ = 0 is an isotropic distribution and

κ → ∞ is a distribution focused on one point, see Fig 5.3). This definition of a

VMF distribution is extended to a sphere of radius r :

f(x|µ, κ, r) = κ

2πr
3
2 (eκ − e−κ)

e
κµ⊤x

r (5.21)

Hence, the resulting PDF describing this random displacement is given by the

3D convolution of the VMF distribution with the Gaussian distribution:

p0(x|µ, κ, d, ν) = f(x|µ, κ, r) ∗ e
− 1

2
xTΣ−1x

(2π)
3
2 |Σ| 12

(5.22)
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Figure 5.3: From Wikimedia Commons : Points sampled from three von Mises-

Fisher distributions on the sphere (blue: κ = 1, green: κ = 10, red: κ = 100). The

mean directions µ are shown with arrows.

where r is the radius of the VMF sphere given by r =
√
νd and Σ the covariance

matrix of the Gaussian part defined as:

Σ =
(1− ν)d

κ+ 1
[I3 + κµµT ] (5.23)

where d is the diffusivity along µ and ν the non Gaussianity proportion of the

compartment. The VMF distribution present a favorite direction along µ. However

an anisotropic compartment represents a bundle of axons which is assumed to be

in a unique orientation with no privileged forward or backward direction within a

voxel. Therefore the water diffusion is equal in both direction ±µ, thus to consider

orientation instead of direction, the PDF is symmetrized:

p(x|µ, κ, d, ν) = p(x|µ, κ, d, ν) + p(x| − µ, κ, d, ν)

2
(5.24)

We now consider n compartments Fi(i = 1, ..., n) with their corresponding weights

wi that we want to average into one compartment F . From this model, let µi, κi, νi, di
be the parameters of all the compartments Fi and µ, κ, ν, d be the parameters of the

final average compartment F . We propose four different methods to compute this

average: simplest, tensor, log VMF, and covariance analytic.

5.4.2.2 Simplest averaging

In the DDI model, each µi is a unit direction in S2. However, as we saw previously,

they do not represent a direction but an orientation. The simplest way to solve

this problem (as two opposite directions) is to put all µi in the top hemisphere and

average them on the sphere to obtain µ :







ρ =
n∑

i=1

wiρi

ϕ =
n∑

i=1

wiϕi

(5.25)
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where ρi ∈ [0, π] and ϕi ∈ [0, π] represent the spherical coordinates of the µi put

in the top half sphere, ρ and ϕ the average angles of µ. The rest of the parameters

are simply estimated as a weighted Euclidean averaging :







κ =
n∑

i=1

wiκi

d =

n∑

i=1

widi

ν =
n∑

i=1

wiνi

(5.26)

In this average, all parameters are estimated independently and we wish to compute

a similarity measure to this semimetric. A weighted sum of distances using all

parameters is used and defined as:

dsimple(F1, F2) = | < µ1, µ2 > |+ α|κ1 − κ2|+ β|d1 − d2|+ γ|ν1 − ν2| (5.27)

with α, β, γ normalization terms to give each parameters the same influence in the

similarity between compartments. The similarity matrix S used for spatial clustering

related to this average is then defined using the semimetric defined in Eq 5.27 along

Eq 5.11.

5.4.2.3 Tensor averaging

The simple averaging is only a partial solution, especially for directions close to the

sphere equator which might generate discontinuities in averaging. We now consider

µi as orientations instead of directions. To do so, µi is represented as a cigar-shaped

tensor Ti defined as:

Ti = µiµ
T
i + εI3 (5.28)

with ε = 10−6 to have non degenerated tensors and I3 the identity matrix. Then,

Ti ∈ S+3 (R) and we can use the log-Euclidean framework. The Ti are averaged in

the log space in a similar way to MTM:

T = exp

(
n∑

i=1

wi log(Ti)

)

(5.29)

We define the average µ as the principal direction of T (i.e the eigenvector with

the largest eigenvalue). The other parameters are obtained by weighted Euclidean

averaging as for the simple averaging. Also the semimetric between compartments

is defined as:

dtensor(F1, F2) = || log(T1)− log(T2)||F +α|κ1−κ2|+ β|d1− d2|+ γ|ν1− ν2| (5.30)

where α, β and γ are normalization coefficients. This semimetric is then used along

Eq 5.11 to compute the similarity matrix.
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5.4.2.4 Covariance analytic

Another approach uses information from covariance matrices Σi of the DDI com-

partments. These Σi matrices belong to S+
3 (R) and can be averaged into Σ using

the log-Euclidean framework similarly to Eq. (5.29):.

Σ = exp

(
n∑

i=1

wi log(Σi)

)

(5.31)

We then wish to extract all parameters from the average Σ. We start by approxi-

mating Σ by a cigar-shaped tensor to match the DDI compartment model. To do

this, we need to enforce two equal secondary eigenvalues λ⊥. In the log-Euclidean

framework, this amounts to compute λ⊥ as λ⊥ =
√
λ2λ3 where λ2, λ3 are the two

lowest eigenvalues of Σ. We now have Σ̂ the cigar-shaped tensor of F :

Σ̂ =
(1− ν)d

κ+ 1
[I3 + κµµT ] (5.32)

A tensor in S+
3 (R) with 3 different eigenvalues has 6 specific parameters, however

our tensor is cigar-shaped and then only has 4 specific parameters. We want to

recover 2 parameters for the direction µ and 1 for κ, µ and d. For the missing

5-th parameter, we process by identification using the given relation r2 = νd. To

exploit this relation, we define the average radius as the one whose sphere surface is

the average of the input sphere surfaces. This corresponds to a weighted Euclidean

average of the individual r2i :

r =

(
n∑

i=1

wir
2
i

) 1
2

(5.33)

This therefore gives us a direct relation between ν and d leading to only 4 parameters

to estimate (µ, κ and ν), d being computed as d = r2/ν. Then, we can estimate

all the parameters by the resolution of the eigensystem of Σ̂. Interestingly, we can

develop the product Σ̂µ as follows:

Σ̂µ =
(1− ν)d

κ+ 1
[I3 + κµµ⊤]µ (5.34)

Additionally, µ belong to S2 and thus µ⊤µ = 1. We thus obtain:

Σ̂µ =
(1− ν)d

κ+ 1
(1 + κ)µ (5.35)

Σ̂µ = (1− ν)dµ (5.36)

We can therefore see that µ is an eigenvector of Σ̂ and λ = (1 − ν)d is its cor-

responding eigenvalue. We note µ⊥ any perpendicular vector to µ and compute

Σ̂:

Σ̂µ⊥ =
(1− ν)d

κ+ 1
[I3 + κµµ⊤]µ⊥ (5.37)
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the dot product µ⊤µ⊥ being null, then:

Σ̂µ⊥ =
(1− ν)d

1 + κ
µ⊥ (5.38)

any µ⊥ ∈ Vect(µ)⊥ is an eigenvector of Σ̂ forming a two-dimension eigenspace with

an unique eigenvalue associated λ⊥ = (1−ν)d
1+κ . We can notice that λ > λ⊥ is the

largest eigenvalue because κ > 0, then µ corresponds to the principal direction of
ˆSigma that can be computed from the numerical resolution of the eigensystem. We

have λ = (1− ν)d, λ⊥ = (1−ν)d
1+κ and d = r2

ν . Resolving the system, we obtain these

estimations for κ and ν:

{

λ = (1−ν)r2

ν −→ ν = r2

λ+r2

λ⊥ = (1−ν)r2

(1+κ)ν −→ κ = λ
λ−λ⊥

(5.39)

In the covariance analytic method, all the parameters except r are estimated from

the eigenanalysis of Σ̂, the average of the covariance matrices. Therefore the natural

choice to define a distance in this case is to compute directly the log-Euclidean

distance following Eq 5.18:

dcovariance analytic(F1, F2) = || log(Σ1)− log(Σ2)||F (5.40)

This metric (which is a distance in this case) is used to compute the similarity

matrix following Eq 5.11

5.4.2.5 log VMF

We now explore the option to use the VMF to compute µ and κ and recover only

ν from Σ̂. We want to consider a VMF distribution as a point in a Riemannian

manifold following geometric information methods. To define a metric on PDF

spaces, a theoretical framework exists using partial derivatives of the PDF though

Christoffel symbols[Amari 2007]. We tried to apply such a framework to VMF

distributions, unfortunately, the corresponding partial derivative equations are not

solvable. Therefore, to consider a VMF as a point of a Riemannian manifold, the

two parameters need to be treated separately.

The space S2×R+ where the couple of parameters (µ, κ) evolves is a Riemannian

manifold as a product of two Riemannian manifolds. Therefore the averaging of the

two parameters µ and κ can be treated independently. To average several points, a

geodesic on these manifolds is defined (refer to [McGraw 2006] for details). Following

this geodesic, the orientation averaging is similar to tensor averaging as in Section

5.4.1. The interpolation of κ is done recursively by projection as in McGraw et al.

Letting κ = κ1, we repeat until convergence (i.e until lκ < ε):

lκ =
n∑

i=1

wi log
(κi
κ

)

(5.41)

κ = κ exp(lκ) (5.42)
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This iterative methods converges to the Frechet mean in the tangent space. Similarly

to the covariance analytic method, we then use the relation r2 = νd. Then knowing

all parameters except ν, we obtain it from Σ̂ using (Eq 5.36 and Eq 5.38). As

2 equations are available to estimate one parameter, we compute the least square

solution to ensure more stability:

ν =
r2[2r2 + λ+ λ⊥(1 + κ)]

2(r2 + λ)[r2 + λ⊥(1 + κ)]
(5.43)

The log VMF metric in the Riemiannian manifold S2×R+ belongs to the log-space

for both direction and concentration parameters. Therefore we compute the distance

of tensors and the distance of κ with their corresponding Riemannian metric which

give the following semimetric between compartments:

dlogVMF(F1, F2) = || log(T1)− log(T2)||F +α| log(κ1)− log(κ2)|+β||r1−r2||22 (5.44)

where α, β and γ are normalization coefficients.

5.5 Experiments and results

5.5.1 DDI compartment averaging evaluation on simulated data

We first evaluate DDI compartment averaging into a single one. To do so, we

simulate random DDI compartments by drawing parameter values from uniform

distributions between different bounds depending on the parameter: [0, 20] for κ,

[5.10−4, 5.10−3]mm2.s−1 for d, [0, 1] for ν, and random orientation on S2 for µ. Four

random DDI compartments are computed, that correspond to the four corners of a

grid of size 11×11 that we want to extrapolate. The reference is a grid containing 4

compartments per pixel with a weight proportional to the position of the voxel with

respect to each corner (see Fig. 5.4.e). For each method, we average each pixel of the

reference image into only one DDI compartment. To quantitatively evaluate DDI

averaging, we simulate, for each method and the reference, a DWI signal from DDI

models following Eq. (6) in [Stamm 2012b] on 60 directions for each of 3 different

b-values (1000, 2000 and 3000 s.mm−2). A Euclidean distance between simulated

DWIs of the 4 methods and the reference provides quantitative results.

To perform a robust experiment, we created a database of 500 sets of 4 corners.

Then taken as the Euclidean distances on the 500 random images are normalized

so that the simplest error mean is 100. The result for the different methods are

simplest: 100, tensor: 31.6, log VMF: 28.0, covariance analytic: 11.1. We present

in Fig. 5.4 representative images from averaged DDI models superimposed on the

corresponding error maps. The simplest method has a large error explained by di-

rection averaging. The tensor method is better: thanks to the orientation averaging

part. However, there are still large errors which can be explained by large κ values

in regions averaging orthogonal directions, which is not realistic. log VMF suffers
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(a) simplest (b) tensor (c) log VMF

(d) covariance analytic (e) reference (f)

Figure 5.4: First four images (a-d) illustrate DDI averaging using the four methods

superimposed on their local error maps. Image (e) is the reference. (f) Error map

corresponding scalar bar.

from the same problem as tensor. Covariance analytic performs much better than

all other methods. This is mainly due to smaller errors in crossing fibers. This is

logical as when two orthogonal compartments are averaged, the best single compart-

ment representing them is almost spherical, meaning a low κ value. The Euclidean

distance map in the DWI signal confirms this idea.

5.5.2 MCM interpolation experiments on real data

5.5.2.1 Multi-tensors model

We now test the entire MCM interpolation pipeline including spectral clustering

and isotropic compartments averaging. A MTM is estimated from a subject of the

Human Connectome Project (HCP) data [Van Essen 2012] which is a DWI with

145 × 174 × 145 voxels with a 1.25 × 1.25 × 1.25 mm3 resolution and 270 gradient

directions over 3 b-values (1000, 2000, and 3000 s.mm−2). The estimated MTM

includes 3 anisotropic compartments (tensors) and 2 isotropic compartments (one

free water with a diffusivity dfree = 3× 10−3 mm2s−1 and one restricted water with

a diffusivity drestricted = 1× 10−3 mm2s−1).

To test the global interpolation scheme, a rotation of angle 120 degrees is picked
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around a random axis and then applied 3 consecutive times to the original MTM

image. We then compare the final MTM obtained to the original one. To visualize

the MTM, we compute the MTM PDF values on several points of a sphere and

deform it using these values. As a consequence, the sphere will be elongated along

the most probable diffusion directions and contracted elsewhere.

The visual representation of the original and interpolated MTM is presented in

Fig 5.5. At the brain level, the MTM seem very similar to the original one though

smoother. In the zoomed area, despite crossing in the original MTM, the rotated

MTM stay close to the original models even in the crossing zone. As expected, the

image is smoothed by the interpolation but all main orientations are recovered. We

cannot perform quantitive evaluation on only one method, however at least visually

after 3 consecutive interpolations the result seems very correct compared to the

original MTM image.

5.5.2.2 DDI model

We then tested the entire MCM interpolation pipeline for the DDI model. To

perform the validation of the different DDI interpolation methods on real data, we

tested methods on a set of 46 real DDI images estimated from DWI with 128 ×
128 × 55 voxels with a 2 × 2 × 2 mm3 resolution, 30 gradient directions with one

b-value = 1000 s.mm−2. Input DDI models have been estimated with three DDI

compartments and one free water compartment [Stamm 2016].

For each input DDI, we compute a rotation of angle 120 degrees and then apply

it 3 consecutive times for each four methods: simpliest, tensors, log VMF and

covariance analytic. From the 4 resulting DDI, one for each method, and the original

one we compute the corresponding DWI images. These DWI are estimated from

a set of 270 gradient on 3 shells (b = 1000, b = 2000, b = 3000 s.mm−2) coming

from the HCP database [Van Essen 2012]. We then compute the Euclidean distance

between each rotated DDI and the original one on the DWI corresponding images.

All DDI methods and their corresponding DWI Euclidean distances are illustrated

in Fig 5.6. The DDI image of the simpliest method seems very different to the

original DDI image showing that the orientation of the interpolated compartments

is not well estimated. At this scale, the DDI images of the three other methods

look similar to the original DDI image. Regarding the DWI Euclidean distances,

the two worst images correspond to the simplest and the log VMF methods, the

best of all being the covariance analytic method. A deeper visual analysis of the 2

best methods will be made in the following, but first, we present the quantitative

results.

For each DWI difference image the sum of the Euclidean distances is divided by

the size of the mask of the brain, then the global results are normalized to set the

median of the simplest method to 100. The results are presented in Fig 5.7. Means

are respectively: simpliest 101.2, tensor: 69.1, logVMF: 118.1, covariance analytic:

58.0. The methods are classified in the same order for all 46 subjects showing very

robust results (all paired t-tests, p < 1.0 × 10−18). The logVMF suffers from the
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(a) Original (b) Rotated

(c) Original zoomed (d) Rotated zoomed

Figure 5.5: Visualisation of an original MTM image and its corresponding in-

terpolation after 3 rotations. The MTM is estimated from a subject of the

HCP data [Van Essen 2012] which is a DWI with 145 × 174 × 145 voxels with a

1.25×1.25×1.25 mm3 resolution and 270 gradient directions over 3 b-values (1000,

2000, and 3000 s.mm−2). The estimated MTM includes comports 3 anisotropic

compartments (tensors) and 2 isotropic compartments (one free water with a dif-

fusivity dfree = 3 × 10−3 mm2s−1 and one restricted water with a diffusivity

drestricted = 1× 10−3 mm2s−1).
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(a) simplest DDI (b) simplest DWI (c) Tensor DDI

(d) Log VMF DDI (e) Original DDI (f) Tensor DWI

(g) Log VMF DWI (h) Covariance DDI (i) Covariance DWI

Figure 5.6: Illustration of the 4 DDI interpolation methods: simplest, tensor, log

VMF and covariance analytic. These DDI have been estimated from DWI with

128 × 128 × 55 voxels, a 2 × 2 × 2 mm3 resolution and 30 gradient directions with

one b-value = 1000 s.mm−2. The interpolation is done after 3 consecutive rotation

of 120 degrees. Each method is represent by two contiguous images, the interpolated

DDI and the DWI Euclidean distances. The original DDI image is located at the

center of the 9 images.

multiple interpolations and obtains worse results than the simplest method, which

stays far from the two best methods. The covariance analytic performs significantly

better than the tensor showing better robustness for several successive interpola-

tions.

Following the same process than for MTM, we visualize the original DDI and

the one rotated, for one of the 46 subjects of our dataset, by the 2 methods which

obtained the best results, tensor and covariance analytic(see Fig 5.8). On the first

line, the 3 images have the same aspect though the rotated DDI seems smoother
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Figure 5.7: Error between the DWI corresponding images of the original DDI and

the one estimated after 3 rotations following the 4 different methods.

than the original one, however more interesting observations come with a zoom. On

the second line, the covariance analytic method compartments are smaller than the

original ones probably due to an under estimation of the diffusivity. On the same

line, the compartments size of the tensor method seem slightly bigger than the orig-

inal DDI. The third line represents all the compartments at the same size to focus

on the orientation. We can see that orientations of the compartments obtained with

covariance analytic methods are very similar to the original ones while the com-

partments from the tensor method orientations seem different. These observations

show that all these methods have imperfections confirming the complexity of the

interpolation of MCM.

5.5.3 DDI Atlas Construction

The ultimate goal of the registration of MCM images is the production of an average

atlas of the white matter microstructure. We computed an atlas from 46 DDI

images following Guimond et al. atlas construction method [Guimond 2000]. This

atlas construction was performed using non linear DTI registration as proposed by

Suarez et al. [Suarez 2012]. Then, the obtained transformations were applied to the

DDI models. We interpolated the DDI models using our clustering approach with

the covariance analytic averaging. In addition, when applying a transformation to

oriented models, it is necessary to apply the local linear part of the transformation
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(a) Original (b) Covariance analytic (c) Tensor

(d) Original Zoomed (e) Covariance Zoomed (f) Tensor Zoomed

(g) Original Enhance (h) Covariance Enhance (i) Tensor Enhance

Figure 5.8: Illustration of 2 DDI interpolation methods, covariance analytic and

tensor, compared to the original DDI. The interpolation is made applying 3 consec-

utive rotation of 120 degrees. The first line represent the original DDI and the two

interpolated by the covariance analytic method and the tensor method. The second

line represents the same DDI images zoomed on the yellow rectangle. The third line

represents the same zoom with all the compartments normalized to the same size

to focus on the orientation of the DDI compartments.

to the interpolated models. We used a technique similar to finite-strain reorientation

for tensors [Ruiz-Alzola 2002a] by applying the local rotation to the µi directions of

each anisotropic compartment of the interpolated DDI. We present the visual result
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of the atlas and a zoomed area in Fig. 5.9. This atlas provides a clear distinction

of crossing fibers and will be of great interest in future studies for example of white

matter microstructure destruction in diseases.

Figure 5.9: Example of a DDI atlas superimposed on the average B0 image: Axial

view on the first line and coronal view. This atlas is constructed from our database

of 46 real DDI images estimated from DWI with 128 × 128 × 55 voxels with a

2× 2× 2 mm3 resolution, 30 gradient directions with one b-value = 1000 s.mm−2.

5.6 Conclusion and perspective

We have addressed the problem of interpolation and averaging of MCM images. As

MCMs become increasingly popular and used, the issue of interpolation (e.g. for a

registration purpose) or averaging (e.g. for atlas creation) becomes acute in the ab-

sence of relevant dedicated solutions yet. We have proposed to perform interpolation

as a MCM simplification problem, relying on spectral clustering and compartment

averaging methods handling both isotropic and anisotropic compartment parame-

ters. For this latter part, we have proposed and compared four different alternatives,

for the DDI model these methods being evaluated with synthetic and real data. Ac-
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cording to these different experimental conditions, the covariance analytic solution

exhibits significantly better performance than the others. As we saw in the visual

analysis there are still some question to be analyzed further on the attenuation of the

diffusivity with the covariance analytic method, nevertheless it is able to robustly

recover the orientation after several transformations.

Another accute problem is the number of clusters of the model. In our experi-

ments, the number of anisotropic compartments is the same for the entire image. A
priori, some parts of the brain do not need 3 compartments in addition to a free water

compartment. Tools based on akaike information criterion (AIC) [Sakamoto 1986]

exist to compute a specific number of compartments for each voxel . The number

of compartments after interpolation in our algorithm is however fixed for the entire

image. Simple solutions towards handling better images with varying number of

anisotropic compartments include taking the mean or maximum of the number of

clusters of the input voxels do not support successive transformations.

We can also imagine smart algorithms to estimate automatically the optimal

number of clusters after interpolation. Such methods already exist for spectral clus-

tering based on rotation of the spectral vector [Zelnik-Manor 2004] or the selection

of eigenvalues [Sanguinetti 2005]. Unfortunately they cannot consider one cluster

as a solution and are thus not directly applicable to our problem.
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6.1 Introduction

A clinical study often includes data from a group of healthy subjects, named con-

trols, and a group of patients affected by the same disease. From such a database,

we are looking for biomarkers that highlight anatomical abnormalities. A longitudi-

nal study can also compare the evolution of the symptoms along the successive MRI

scanners. One solution is to manually select region of interest (ROI) of damage tis-

sues for a particular disease for one or several patients [Filippi 2001, Werring 2000].
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Then a comparison can be made with healthy tissue to follow the evolution of one

patient along several MRI scans or compute statistic for a population.

For now, the majority of clinical dMRI is made from DWI acquisitions with

a limited number of b-values and directions, using scalar maps as MD or simple

models as DTI to investigate the brain microstructure. More complex models, such

as MCM, are instead specifically designed to reveal this microstructure. Therefore,

fine biomarkers can be considered to better interpret the damage and evolution of

a disease.

From a group of patients and a group of controls, there are mainly two ways to

study the influence of a disease. First, the two populations (controls and patients)

can be aligned on a template to perform a voxel-wise comparison or tract-based

statistics. One method is to make a patient population versus a control population

comparison [Whitcher 2007, Lepore 2008]. This method allows to highlight general

biomarkers common to a population and, therefore, improves the understanding of

a particular disease. These techniques are interesting in that they do not require

the tedious ROI delimitation. However, diseases with too much variability, such as

multiple sclerosis (MS), are not well-adapted for this kind of statistics. Here, we

prefer to compare one patient again the entire group of control [Commowick 2008].

Contrarily to the population versus population, this method does not reveal statis-

tically robust biomarker for a disease at a population level. Instead, it offers the

possibility to highlight particular changes of some parameters specific to a patient

evolution for each patient individually and thus to perform longitudinal studies.

In this chapter, we propose two different approaches that exploit the potential of

MCM to better understand and describe patient disease and evolution: one solution

from voxel-based analysis and one solution from tract-based analysis. The classical

voxel-based method considers each voxel independently to compute statistics. For

the second method, a tractography is computed from an average control derived from

the atlas. Parameters are extracted along the fibers for the patient and the controls

and subsequently used to compute statistic. The voxel-based and the tract-based

methods are respectively presented in Sections 6.4 and Section 6.5.

6.2 Atlas based patient to group statistics

6.2.1 General method

An atlas, in neuroscience, is a collection of brain images, brain representation or

brain labeling. First, print atlases were used to guide surgical operations [Talairach 1988,

Schaltenbrand 1998]. Now, progress in image processing allows to automatically es-

timate all kinds of atlas [Woods 1999, Commowick 2007, Lancaster 2000, Cabezas 2011].

We consider in this chapter an atlas as a collection of control acquisitions registered

on the same support.

It is possible to compute an evolving atlas that can easily integrate an extra ac-

quisition to the current average atlas through weighted average or geodesic[Beg 2006].

However, these methods are more adaptive to big data as the HCP when it is highly
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time consuming to compute an other atlas. Here, we follow a process to create an

atlas from a data collection once and for all. We want to perform patient to group

comparison. To do so, the following steps are processed:

• Creation of an atlas. For one or several modalities, the entire collection

of data control is first pre-processed: denoising, distortion correction, MCM

model estimation (see Section 6.3). Then the pre-processed images are regis-

tered on the same space. The resulting collection of images is called an atlas

A. From this point on, the control subjects in A all have the same position

in space and scalar or compartment values extracted at a given voxel or along

a given tract are comparable. The atlas creation and the registration method

are respectively detailed in Section 6.2.2 and Section 6.2.3. The creation of

the atlas is made off-line, once and for all.

• Patient to population comparison. For each new patient, the DWI acqui-

sition is registered on the atlas using the same pre-processing and registration

technique. The patient image is thus aligned with all controls in A and may

be compared to the population. We present two different approaches for sta-

tistical comparison: one voxel-based solution in Section 6.4 and one tract-base

solution in Section 6.5.

6.2.2 Atlas construction

We assume in this section that we are able to compute a transformation between

two individual brain images. The registration algorithm used for this task will be

presented in Section 6.2.3. Unfortunately we do not currently use a specific MCM

registration method which is part of the perspective of this work. Therefore, the

atlas is created from the DTI models. Then, the corresponding transformations can

be applied to any MCM, using the MCM interpolation method proposed in Chapter

5, to contruct a MCM atlas. From a database of control images T1, ..., TN (here the

DTIs computed from the DWI images) , the atlas is computed iteratively as follows

[Guimond 2000]:

• TR is the DTI reference, at first iteration TR = T1 .

• Until convergence, i.e until the average diffeomorphic transformation Davg is

almost null, do:

1. Register all DTIs T1, ..., TN on TR following Section 6.2.3. Let R1, ...,RN

be the corresponding transformations (at the first iteration R1 is null).

EachRi is the composition of an affine and a diffeomophic transformation

Ri = Ai ◦ Di

2. Average all the registered DTIs into a single one Tavg in the log-Euclidean

space of tensors:
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log(Tavg(x)) =
1

N

N∑

i=1

log(T̃i(x)) (6.1)

where log denotes the matrix logarithm and T̃i is Ti resampled with Ri

with its tensors reoriented appropriately [Ruiz-Alzola 2002b].

3. Average all the diffeomorphic transformations with the log-Euclidean

framework for diffeomorphisms to recover an average transformationDavg:

log(Davg) =
1

N

N∑

i=1

log(Di) (6.2)

where log denotes here the logarithm of a diffeomorphism.

4. The new DTI reference TR is obtained applying D−1
avg to Tavg.

Finally, we have the initial DTIs with the corresponding final transformations

R1, ...,RN . These transformations can be used to estimate a DTI atlas. They are

applied to the MCMs computed from the original DWIs to create a MCM atlas.

6.2.3 Registration

From a group of images (medical or not), there exist several ways to register them. A

non-exhaustive review of the large literature on the non-linear registration methods

has been proposed recently [Klein 2009]. Here, from two sets of DWI, we assume

one fix subject F and one moving subject M . We want to compute a global trans-

formation R that sends F to M , i.e F (x) = M ◦ R(x). This purpose is however an

ill-posed problem, hence, T has regularity constraints. As mentioned in the previ-

ous section, wa have not yet developed registration tools for MCM (especially the

similarity measure between MCMs). Therefore, from the two sets of DWI, the cor-

responding DTI, TF and TM are estimated. Then the derived MD scalar maps AF

and AM are computed. The global transformation comes from two transformations,

i.e R = A ◦ D:

• An affine transformation A to roughly register the moving image on the fixed

image.

• A dense transformation R estimated as a smooth constrained concatenation

of local affine BM transformations [Commowick 2012c].

The first transformation is estimated with a block-matching algorithm from the

two scalar maps AF and AM [Ourselin 2000]. Then, this transformation is applied

to TM . The dense transformation is recovered by matching this temporary registered

DTI on the fixed DTI. Finally, the global transformation is the combination of these

2 transformations.

We do not remind the entire BM algorithm as it is largely described in Chapter 4

and [Commowick 2012c], yet we can notice some important differences. Contrary to
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local transformations in distortion correction specifically designed for the distortion

model, here, transformations are classical rigid transformations. These transforma-

tions are applied to DTI instead of scalar images. Thus a tensor interpolation is

done following the log-Euclidean framework (see Section 3.3.4.6) and tensors are

reoriented using finite strain reorientation [Ruiz-Alzola 2002b].

The similarity measure cannot be a well-defined correlation coefficient between

blocks of scalar values anymore. Instead, we use a generalized correlation metric

adaptable to the tensor case proposed by[Suarez 2012]. The total covariance matrix

is expressed as:

Λ(X,Y ) =

(
ΣX,X ΣX,Y

ΣY,X ΣY,Y

)

(6.3)

where X, Y are the 6D log-tensors respectively in the fixed and in the registered

blocks. Each Σ.,. is the 6 × 6 covariance matrix between the 6D log-tensors. The

correlation matrix Γ(X,Y ) is then defined as:

Γ(X,Y ) = Σ
− 1

2
X,XΣX,Y Σ

− 1
2

Y,Y (6.4)

The generalized squared correlation coefficient (GCC) is finally expressed as:

GCC(X,Y ) =
1

6
Tr
(

Γ(X,Y )⊤Γ(X,Y ))
)

(6.5)

The general transformation obtained can be applied to the DTI as well as any

MCM following the interpolation scheme presented in Chapter 5. For both cases,

reorientation is done using finite-strain reorientation.

6.3 Experimental design

6.3.1 Database

The pipeline presented previously is tested on the USPIO dataset [Crimi 2014].

This study, named after the contrast agent ultrasmall super paramagnetic iron oxid

(USPIO), consists of two groups: patients suffering MS (at a very early stage: first

event suggestive of MS, i.e clinically isolated syndromes (CIS)) and control subjects.

Images were acquired in 5 French centers, for a total of 36 patients and 46 controls.

For each patient and control among other modalites, we used the following images:

• A DWI acquisition with a spatial resolution 128×128×55, a corresponding

voxel size 2 × 2 × 2 mm3 with 30 gradient directions acquired on one shell

(b = 1000 s.mm−2).

• A T2 TSE with a spatial resolution 192×256×44, a corresponding voxel size

1× 1× 3 mm3. The other parameters were set to obtain a T2-weighted image

(TR = 6530ms, TE = 84ms). A T1-weighted image was also acquired. For a

better comparison, in all the figure illustrations of this chapter, these structural

image, are resampled on the DWI acquisition for anatomy visualization.
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From the entire dataset, a subset of 46 controls and 20 patients is used as our

dataset. Our atlas A is thus constituted from the 46 controls registered for DDI,

DTI models and also structural images. The DDI are resampled using the covariance

analytic metric presented in Section 5.4.2.4 and with finite strain reorientation of

the anisotropic compartments.

6.3.2 Preprocessing pipeline

For all patients and controls some preprocessing steps to enhance the DWI acquisi-

tions were performed.

6.3.2.1 Distortion correction

We have seen in Chapter 4 that EPI suffers from distortion artifacts and we pro-

posed a method to correct these distortions. Unfortunately, the USPIO study

started in 2009 and extra acquisitions with reversed PED were not included in

the protocol at this time. Therefore, although we advocate for reversed PED

based correction for future studies, the distortion correction is here roughly per-

formed using a simple registration from the b0 image to the T2-weighted image

[Ourselin 2000, Commowick 2012c]. All the new protocols of our team concern-

ing dMRI now include a reversed PED image to correct distortion as presented in

Chapter 4.

6.3.2.2 Denoising

A denoising step is then performed to enhance images quality. This is done using a

non-local means (NLM) method specifically adapted for the Rician noise in DWI ac-

quisitions [Wiest-Daesslé 2007]. The algorithm uses the redundancy of information

on the whole DWI dataset to denoise each DWI image.

6.3.2.3 Model estimation

From the preprocessed DWI acquisitions, DDI models are estimated. The non-

linearity of the cost function makes it hard to minimize. Hence, the minimiza-

tion is performed trough successive steps by revealing the parameters progressively

[Stamm 2016]. First a stick model is estimated, then a zeppelin model and finally

the DDI model (see Section 3.5.3.1 for more details). Each DDI is computed with

3 anisotropic compartments and one isotropic compartment (with a fixed diffusiv-

ity equal to dfree = 3.10−3mm2.s−1 corresponding to a free water compartment).

Each DTI is estimated with a linear least square solution on the log acquired signals

[Westin 2002].

6.3.3 Scalar parameters evaluation

We describe in this section microstructure parameters potentially of interest that

can be evaluated from the DDI images in our framework. Each DDI comports one
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free water compartment with a fixed diffusivity and a corresponding weight w1
iso,

and several anisotropic compartments and their corresponding weights wi. Each

anisotropic compartment is described by 5 parameters : d is the diffusivity along the

axon, κ is the orientation concentration index, ν is a non Gaussianity parameter, µ

is the main diffusion orientation. The only parameter of the free water compartment

is its weight wiso. However, for anisotropic compartments, classical diffusivity and

anisotropy measures can be derived from their parameters [Stamm 2013]:

• The axial diffusivity d‖ that represents the diffusivity along the principal

direction of diffusion is expressed as:

d‖ = d(1− 2νξ(κ)) (6.6)

with

ξ(κ) =
cosh(κ)

κ sinh(κ)
− 1

κ2
(6.7)

where cosh is the hyperbolic cosine and sinh is the hyperbolic sine.

• The radial diffusivity d⊥ represents the diffusivity in the orthogonal plane

of the axial diffusivity:

d⊥ = d

(
1− ν

1 + κ
+ νξ(κ)

)

(6.8)

• The mean diffusivity (MD) that represents the average diffusivity in all

directions it thus defined as:

λ̂ =
d‖ + 2d⊥

3
(6.9)

• The fractional anisotropy (FA) describes the degree of anisotropy of the

compartment, FA belong to [0, 1]:

FA =
d‖ − d⊥
√

d2‖ + 2d2⊥
(6.10)

6.3.4 Statistical test

We consider our atlas A containing n registered images {Ci}i=1,..,n of diffusion

models (DDI or DTI) of control subjects. From one image of a patient C0 registered

on the atlas, it is thus possible to compute different statistics. The statistical test is

common to the voxel-based and the tract-based approaches. Hence, let us assume

that we have in one point x (voxel or tract) a parameter p extracted. For each point

x, {Ci
x,p}i=1,..,n denotes the value of p for all the control images and C0

x,p the value

of p for the patient image. Hence, a z-score can be computed:

zx =
C0
x,p − µx,p

σx,p
(6.11)
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where µx,p and σx,p are respectively the mean and standard deviation of the pa-

rameter p at the voxel x for the entire population, the control group excluding the

patient. The z-score is a normalized measure, i.e it does not depend on the mean

and the standard deviation of a variable. A negative z-score means a patient param-

eter value is lower than the average value of the control parameters and inversely

for a positive value. The scaled z-score is assumed to follow a Fisher distribution

F (1, n− 1) and is thus used to compute a p-value:

p(zx) = 1− F1,n−1

(
N(N − 1)

N2 − 1
z2x

)

(6.12)

where F1,n−1 is the cumulative distribution function of a Fisher distribution with

parameters 1 and n-1 and p is the corresponding p-value.

6.4 Voxel based method

6.4.1 Voxel specific measures

We present a visual result of the voxel-based analysis for one patient. The com-

parison is made between the DDI model and the DTI model. For the DTI models,

the classical FA and MD values are computed following respectively Eq 3.15 and

Eq 3.16. For the DDI models, the free water and anisotropic compartments are

separated. For the free water compartment, the weight of the compartment is com-

puted. For the anisotropic compartments, the three AD and RD extracted for each

compartment are averaged into two global measures:







d̂‖ =
3∑

i=1

di‖
3

d̂⊥ =

3∑

i=1

di⊥
3

(6.13)

where di‖ and di⊥ are respectively the axial diffusivity and radial diffusivity of the i-th

anisotropic compartment. The global MD and FA are derived from these average

axial and radial diffusivity following Eq 6.9 and Eq 6.10.

6.4.2 Results

The z-scores of all these parameters for DDI and DTI models are presented Fig 6.1.

As expected around the lesions, the destruction of myelined fibers results into an

increase of the MD combined with a decrease of the FA. For the DDI model, the

injury of myelin and axons results in a strong increase of the free water compartment

weight. This also results into a small decrease of the MD into the average anisotropic

compartments measure. We propose an explanation of such a behavior in the next

section with tract-based analysis.



6.4. Voxel based method 91

(a) T1-weighted (b) Free water weight (c) DDI MD (d) DTI MD

(e) DDI AD (f) DDI RD (g) DDI FA (h) DTI FA

(i) Scalar bar

Figure 6.1: Illustration of the z-score (patient vs atlas controls) on several parame-

ters. The z-score scalar bar is presented in (i), a negative z-score means a patient

parameter value under the average controls and a positive z-score a value superior

to the average. Values outside the blue marks denote a p-value under 0.05. (a) T2-

weighted image. (b) DDI free water compartment weight. (c) DDI mean diffusivity.

(d) DTI mean diffusivity. (e) DDI axial diffusivity. (f) DDI radial diffusivity. (g)

DDI fractional anisotropy. (h) DTI fractional anisotropy. The DDI free water com-

partment weight and the DTI MD clearly highlight the lesion indicated with the

horizontal arrow with an important positive z-score. The DTI FA and, to a lesser

extent, the DDI MD and the DDI AD also highlight the lesion with a negative z-

score. This denotes the free water DDI weight and the DTI MD and FA as the best

to characterize lesions. The other DDI parameters are relatively weaker biomarkers.

This can be explained by the difficulty to analyze together parameters of several

anisotropic compartments at a voxel-level.
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We illustrate in the Fig 6.2 and 6.3, the DDI free water weight of a patient

compared to the average free water scalar map of all the controls in the atlas. This

results, as shown before, into an important increase of the free water compartment

weight that is clearly highlighted by the corresponding z-scores. We can already

conclude on the fact that the increase of MD is probably attributed to a large

increase in free water, showing the interest of MCM to better understand from

dMRI, what is happening .

6.5 Tracts-based method

6.5.1 Introduction to tractography

Before going into more details about the tract-based framework, we first briefly

present tractography. Tractography is a method to model the WM tracts in the

brain, from dMRI, represented by 3D curves without diameters. A tractography

is computed from a diffusion model, generally the DTI, but not necessarily. There

are various algorithms to perform this task. They can be mainly classified in two

types: deterministic and probabilistic [Yamada 2009]. The DTI model has some

issues and strengths due to its simplicity (see Section 3.3). Hence, a tractography

performed from a DTI has the corresponding problems, in particular in crossing fiber

areas [Yamada 2007, Wedeen 2008]. In Section 6.5.3, we propose a deterministic

tractography algorithm specifically designed for MCM.

As basic dMRI, tractography is used in clinic in several diseases: strokes, multiple

sclerosis (MS), epilepsy, brain tumors, spinal cord disorders and more [El-Sourgy 2015,

Ciccarelli 2008, Hagler 2009, Hesseltine 2007, Akai 2005, Holodny 2001, Parmar 2004].

A tractography provides useful information for surgical operation to avoid damage

of motor tracts. It is used for both surgical planning and post-procedure evaluation

[Romano 2009, Berman 2009, Yu 2005]. The tractography is generally performed

once for all before the surgery with fixed parameters. However, recent work on real-

time fiber tracking can offer a direct and adaptable visualization during the surgery

[Chamberland 2014]. Tractography can also be used to do statistics as we will see

in the following [Smith 2006].

6.5.2 Tract-based statistical test

We assume that we have a tractography T adapted for all the registered images

computed from an average DDI. The computation of such a tractography in de-

scribed in details in Section 6.5.3. For now, let just notice that a tractography is a

sequence of spatial positions and thus the derived local directions can be estimated.

For each DDI registered on our atlas (both control and patient), parameter values

are added to T . Contrarily to the voxel-based approach, the parameters are directly

extracted from one compartment. For each point r that belongs to T , we do the

following:

• Estimate, for one patient C0 and all DDI control images registered {Ci}i=1,...,n
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(a) Patient free water weight (b) Average controls free water weight

(c) T1-weighted (d) Patient free water z-score

Figure 6.2: Illustration of the voxel-based analysis. (a) Patient free water weight

scalar map. (b) Average of the free water weight scalar map of all the DDI controls

on the atlas. (c) T2-weighted image of a patient, MS lesions are highlighted with

blue arrows. (d) Z-score of the patient free water weight scalar map compared to

the atlas. A negative z-score means a patient parameter value under the average

controls and a positive z-score a value superior to the average. Values outside the

blue marks denote a p-value under 0.05.
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(a) Patient free water weight (b) Average controls free water weight

(c) T1-weighted (d) Patient free water z-score

Figure 6.3: Illustration of the voxel-based statistic. (a) Patient free water weight

scalar map. (b) Average of the free water weight scalar map of all the DDI controls

on the atlas. (c) T2-weighted image of a patient, MS lesions are highlighted with

blue arrows. (d) Z-score of the patient free water weight scalar map compared to

the atlas. A negative z-score means a patient parameter value under the average

controls and a positive z-score a value superior to the average. Values outside the

blue marks denote a p-value under 0.05.
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at the spatial position Pr of point r, the interpolated MCM {M i
r}i=0,...,n using

the MCM interpolation framework (see Chapter 5).

• At each point r, let DT
r be the direction of T . For each {M i

r}i=0,...,n, se-

lect the anisotropic compartment {M i,q(i)
r }i=0,..,n with the closest orientation

compared to DT
r :

q(i) = argmax
i∈[1,...,p]

| < Dn, O
i
Mn

> | (6.14)

where | < Dn, O
i
Mn

> | is the cosine between the i-th anisotropic compartment

and the current direction and q(i) is the selected compartment number.

• For all of the n + 1 DDI registered {M i
r}i=0,...,n, extract the corresponding

parameter {Ci
r,p}i=0,..,n from the selected compartment M

i,q(i)
r .

• Finally, compute the statistical test for the patient versus controls with the

z-score and p-value computation and affect these values to T .

6.5.3 Tractography from MCM

6.5.3.1 Tractography algorithm

Our atlas of 46 DDI subjects registered is now used to obtain an average DDI model

using the MCM interpolation framework. The tractography is thus estimated on

this average model as follows:

• A masked of the average DDI model is computed as the intersection of the

registered masks of the 46 original DDI models.

• Seeds are placed on each voxel on the entire masked image.

• For each seed in the image, a tract, i.e a sequence of spatial position, is esti-

mated. The entire tractography is composed by the union of all these tracts.

There are several methods to perform the estimation of a tract from one seed.

The final tractography highly depends of the algorithm type (deterministic or prob-

abilistic) and the stop conditions of the fiber tract. Our deterministic algorithm for

MCM is an extension to MCM of the usual FACT tractography [Mori 1999]:

For a current point n and a previous point n − 1 in a sub-tract with their

corresponding spatial positions Pn and Pn−1, do:

1. Estimate the model Mn at the current position Pn using the MCM interpo-

lation scheme (see Chapter 5)

2. Compute the current direction from the spatial locations:

Dn =
Pn − Pn−1

||Pn − Pn−1||
(6.15)
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3. We note {Oi
Mn
}i=1,..,p the orientation of the p anisotropic compartments of

Mn. Then, the closest orientation Om
Mn

compared to the current direction is

selected:

m = argmax
t∈[1,...,p]

| < Dn, O
t
Mn

> | (6.16)

Om
Mn

is now considered to be the selected direction, i.e the one that is the

closest to the current direction. For more regularity, the next direction is

computed as a weighted sum of the current direction and the selected direction:

Dn+1 = W (r)Om
Mn

+ (1−W (r))Dn (6.17)

where Dn+1 is the next direction and W (r) is a weight balancing the selected

Om
Mn

and the previous direction to make the fiber smoother.

4. The next direction is added to the current position to give the next position:

Pn+1 = Pn + sDn+1 (6.18)

where s is a scalar step that involves the velocity of the fiber progression. In

our algorithm s is set to 1 mm.

6.5.3.2 Implementation details

Each tract from one seed is composed by two sub-tracts: one forward and one back-

ward. They are computed separately and finally regrouped. For the first position,

D1, the orientation of the main anisotropic compartment is taken, i.e the one with

the largest weight within M1. Both directions correspond to the anisotropic com-

partment orientation, one is used to initialize the forward sub-tract, the other to

initialize the backward sub-tract.

Optionally, it is possible to add the compartment weight (or a function of it) in

front of the dot product Eq 6.16 to give more importance to "heavy" compartments.

The weight used to smooth the fiber is expressed as:

W (r) = (1− r)FA(Om
Mn

) + r (6.19)

where FA(Om
Mn

) is the FA of the selected direction Om
Mn

and r ∈ [0, 1] is a minimal

weight attributed to the new direction. For r = 1, the next direction is the selected

direction and the previous direction is not taken into account. For r = 0, the

weight of the selected compartment corresponds to its FA value. Therefore, a very

anisotropic compartment has more value than an isotropic one in the computation

of the next direction. In our algorithm, r = 0.25 is chosen, giving some significance

to the previous direction and, hence, some smoothness to the tract.

The tract progresses until one stop condition is reached. There are various

possibilities of stop conditions and the parameters chosen highly influence the final

result. In this tractography, we use as stop conditions:
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• The point needs to belong to the brain mask.

• The maximum tract angle between two following directions is 60 degrees.

• The maximum length of a tract is 150 mm, i.e when the maximum is reached,

the fiber tract stops.

• The minimum length of a tract is 10 mm, i.e tracts shorter than 10 mm are

not considered in the final tractography.

• The tract is stopped for a total weight of isotropic compartments up to 0.8.

This is explained by the incertitude regarding the selection of an anisotropic

compartment with low weight.

This algorithm is applied to the average DDI of our atlas. This results in a

tractography adapted to perform statistics on the entire atlas and for all patients.

6.5.4 Results

From the average MCM tractography T , we compute statistics for several param-

eters: compartment AD, MD and FA. Two subsets are extracted from the whole

brain tractography: the left and the right corticospinal tract (CST). These tracts

are chosen for a patient with lesions on the left CST and no lesion on the right CST.

The patient is the one illustrated in the voxel-based approach on Fig 6.1 and Fig

6.2.

The results are presented for three parameters, one figure per parameter: AD in

Fig 6.4, MD in Fig 6.5 and in FA Fig 6.6. For each figure, the first line corresponds

to the left CST and the second line to the right CST. From left to right these

figures show: the patient parameter value, the average parameter value computed

from the entire atlas, the p-value range between 0 and 0.25 superimposed with a

lesion manual segmentation.

These figures show visually the ability of the AD and MD parameters to char-

acterize a lesion within the brain. Both measures present a reasonable number of

false positive areas. The FA does not seem to be an adapted measure on this image.

Normally, DTI MD within a MS lesion is supposed to be higher than for normal

WM tissues [Filippi 2000]. In this example, the change of the DTI MD is contained,

in the DDI model, in the weight of the free water compartment (see Fig 6.1). Hence,

the AD within the anisotropic compartments decrease and so does the MD. This

may correspond to a physical reality. If the myelin and WM bounds are damaged,

the water is less trapped within the axons and thus can hit glial cells interrupting

its axial diffusion. However, this kind of interpretation needs to be taken with high

caution, considering the difficulty to understand the microstructure process. What

is sure is that DTI MD entangles everything and DDI separates information which

is in itself interesting.
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: Compartment axial diffusivity study. First line: left CST, second line:

right CST. The first column is the patient AD value and the second column the AD

average value computed from the entire atlas. The corresponding scalar bar is low

the two first columns and represents the diffusivity in mm2.s−1. The last column

corresponds to the p-value rescaled between 0 and 0.25 (all values above 0.25 are

put to 0.25). On the first line the green 3D volume represents a 3D lesion segmented

manually on the T2-weighted image (see Fig 6.2). On the first line within the left

CST, the AD value is lower on the patient than the average within the lesion leading

to a significant difference in a large part of the lesion. On the second line the AD

seems also lower for the patient than the average. These results are less significant

according to the p-value, however there are still some small false positive area.
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Compartment mean diffusivity study. First line: left CST, second line:

right CST. The first column is the patient MD value and the second column the MD

average value computed from the entire atlas. The corresponding scalar bar is low

the two first columns and represents the diffusivity in mm2.s−1. The last column

corresponds to the p-value rescaled between 0 and 0.25 (all values above 0.25 are

put to 0.25). On the first line the green 3D volume represents a 3D lesion segmented

manually on the T2-weighted image (see Fig 6.2). These results seem highly similar

compared to the AD (see Fig 6.4). However the lesion comports more significant

with the MD measure than with the AD measure.
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(a) (b) (c)

(d) (e) (f)

Figure 6.6: Compartment fractional anisotropy study. First line: left CST, second

line: right CST. The first column is the patient FA value and the second column

the FA average value computed from the entire atlas. The corresponding scalar bar

is low the two first columns and represents the diffusivity in mm2.s−1. The last

column corresponds to the p-value rescaled between 0 and 0.25 (all values above

0.25 are put to 0.25). On the first line the green 3D volume represents a 3D lesion

segmented manually on the T2-weighted image (see Fig 6.2). Contrary to the AD

and MD measures, the FA is not able to recover the major part of the lesion.

However, interestingly, the measure seems almost complementary to the AD and

MD measure.
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6.6 Conclusion

In this chapter, we have presented two different approaches to perform statistics

using MCM. The USPIO dataset contains both control subjects and patients suf-

fering from MS. From 46 controls, we first computed a DDI atlas using the MCM

interpolation framework presented in Chapter 5. We introduced specific parame-

ters computed from the DDI anisotropic compartment and modalities to perform

statistics from a set of measures. Then we proposed two different approaches: one

voxel-based and one tract-based.

For the voxel-based method, we presented several scalar maps from both DDI

and DTI models. The z-score shows the ability of the DDI free water compartment

weight to characterize MS lesions for two patients, as well as the classical MD

from the DTI. The other scalar measures, coming from anisotropic compartments

average, seem less adapted to this kind of voxel-based measure.

To better use the MCM specificity, we have proposed a deterministic MCM trac-

tography. From a tractography computed on the average DDI, we then computed

statistics on tracts. The AD and MD, extracted from the anisotropic compartment,

have an inverse behavior compared to the AD and MD computed from the DTI

model at the voxel level. However, they appear to be relevant biomarkers with high

p-value significance within a lesion. On the right CST, there are no lesions for the

patient. Yet, the AD and the MD of the patient seem to be globally lower than

the average control, although this trend is not statistically significant. That might

be explained by difference between normal-appearing white matter (NAWM) diffu-

sion between patient and control subjects [Wiest-Daesslé 2009]. As a future work,

we can study this assumption with a patient population versus control population

statistical test.

We demonstrated the possibility to perform statistics on MCMs at both the voxel

level and the tract level. The parameters extracted from the DDI are complementary

to the ones extracted from the DTI. However, the compartments separation offers

a possible microstructure explanation contrary to the scalars from DTI that can

lead to inaccurate interpretation. Behind this proof of concept, a lot of experiments

can be done. This work can be extended to more patient or other diseases. It

is also possible to compute a quantitative score (as a dice score) to estimate the

performance of the model and use it to compare several models.
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7.1 Contributions summary

This manuscript has presented contributions to dMRI processing tools, in particular

MCM. Several preprocessing steps are necessary before the exploitation of DWI

acquisitions. With the goal of the clinical use of complicated models such as MCM,

a lot of research studies are indeed necessary to evaluate prospective benefits. To

perform quantitative evaluation, we need to be able to compute statistics on data

and thus create an atlas, register MCM and more. In the following, we summarize

the major contributions of this thesis. All the processing methods proposed have

been integrated in our team code Anima. This open software is available on line

with the corresponding documentation1.

7.1.1 Distortion correction of EPI

The dMRI needs ultra fast acquisition modalities as echo planar imaging (EPI)

that are corrupted by artifacts. To better exploit the diffusion model resulting

from these DWI, preprocessing steps need to be performed. EPI suffers from large

distortions mainly at the air/bone interfaces. We have proposed a new registration

method to correct these distortions. This method uses b0 images with opposite phase

encoding direction (PED), the acquisition of such an extra image not being time

consuming. The registration is based on a new BM algorithm specifically adapted

to the distortion model.

1https://github.com/Inria-Visages/Anima-Public
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The BM method has been tested on in vivo data. A quantitative evaluation

performs on two pair of images with opposite PEDs show high similarity between

the corrected images.

This work leads to several publications including one oral presentation at a peer

reviewed international conference and one peer-reviewed international journal:

• Journal article

Block-Matching Distortion Correction of Echo-Planar Images With Opposite

Phase Encoding Directions

Renaud Hédouin, Olivier Commowick, Elise Bannier, Benoit Scherrer, Maxime

Taquet, Simon Warfield, Christian Barillot

IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics
Engineers, May 2017, 36(5):1106-1115. doi: 10.1109/TMI.2016.2646920

• Conference papers: Oral presentation

Symmetric Block-Matching Registration for the Distortion Correction of Echo-

Planar Images

Renaud Hédouin, Olivier Commowick, Maxime Taquet, Elise Bannier, Benoit

Scherrer, Simon Warfield, Christian Barillot

IEEE International Symposium on Biomedical Imaging (ISBI), Apr 2015, New
York, United States. pp.717-720, 2015

• Poster communication

Symmetric Block-Matching Registration for the Distortion Correction of Echo-

Planar Images

Renaud Hedouin, Olivier Commowick, Elise Bannier, Christian Barillot

ESMRMB, Oct 2015, Edinburgh, United Kingdom. 2015

7.1.2 MCM interpolation

The interpolation of images is a prerequisite to perform many of classical processing

steps: averaging, registration, atlas creation. A large number of algorithms perform

interpolation on scalar data and interpolate each DWI individually. However it is

better to directly work on the diffusion models and thus use an MCM interpolation

scheme.

We have proposed such a general framework viewed as a simplification problem

based on spectral clustering. This method is adaptable to any MCM as long as

a weighted average and pseudo-distance between anisotropic compartments can be

provided. We tested our interpolation scheme for two particular MCM: the DDI and

the MTM. The MTM offers nice visual images while the analytic DDI anisotropic

compartment average computation provides good quantitative results.

This work has been presented at the peer reviewed international conference MIC-

CAI in Munich 2015:

• Conference papers

Interpolation and Averaging of Multi-Compartment Model Images
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Renaud Hédouin, Olivier Commowick, Aymeric Stamm, Christian Barillot

18th International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI), Oct 2015, Munich, Germany. 9350, pp.354-
362, 2015

7.1.3 From MCM to statistics

We have presented a statistical framework on a dataset of patients suffering from

MS at an early stage. From this dataset, DTI and DDI models were estimated.

We detailed the construction of a DDI atlas using the MCM interpolation frame-

work presented in Chapter 5. Statistics including z-scores and p-values have been

computed from the parameters extracted from the DDI free water and anisotropic

compartments as well as classic MD and FA DTI parameters.

Two different approaches were proposed to compute statistics: one voxel-based

and one tract-based. With the voxel-based, the weight of the free water compart-

ment z-score highlights lesions on several visual examples showing the interest of

such a method to separate isotropic and anisotropic compartments. For the tract-

based approach, a tractography algorithm adapted to MCM was specifically de-

signed. Results show a decrease of AD and MD extracted from a single anisotropic

compartment within lesions. Visual examples with p-value were presented to il-

lustrate this behavior. This proof of concept demonstrates the interest of MCMs

to characterize MS lesions showing a better and easier interpretability than with

parameters extracted from DTI and offers the possibility of longitudinal studies.

7.2 Perspectives

7.2.1 Methodological perspectives

In dMRI, the distortion artifacts of the EPI acquisition are a major problem. It will

become worse with stronger scanner magnetic fields. Hence, the correction of these

artifacts stays an open problem. In addition to DWI acquisitions with one or several

PED, a structural image is generally acquired in a classical MRI exam. The use of

a structural image as a reference to correct distortion has already been proposed

[Irfanoglu 2015]. Our new block-matching algorithm currently takes two b0 images

with opposite PED. Therefore, we want to adapt this method to an additional

undistorted image as a reference for improved correction.

Such a block-matching with three images instead of two would be an innovation

to our knowledge. This framework offers a well-adapted multiple correlation metric

with a structural image as a target variable. Unfortunately, the T2-weighted image

presents more details than the b0 images in some brain areas and thus the block-

matching is corrupted in these areas. We have not currently handled these issues,

however this method offers promising results. We can try to adapt a specific brain

mask to this task to remove unwanted extra information from the T2-weighted

image. An additional specific weight could also be added to treat this issue. Other



106 Chapter 7. Conclusion

similarity measures are also an option to penalize areas where the two bo images

with reversed PED do not match and thus recover the best of classic and multiple

correlation BM. Last but not least a non-distorted structural image more similar

to a b0 image could be provided with new MRI sequences such as the readout-

segmented EPI [Holdsworth 2008, Porter 2009]. This BM extension constitutes a

major perspective of this thesis that we started to explore rapidly as shown in

Section 4.6.

Behind the preprocessing steps, various works can be done directly on diffusion

models. First, we have proposed a method to interpolate MCM. This framework

was developed for two anisotropic compartment types: tensor and DDI. However,

the method is very generic and can be extended to any anisotropic compartment

modeling. Hence the use of this interpolation framework can be extended with

specific metrics for other classical anisotropic compartments such as NODDI or

CHARMED.

These interpolation tools can be used to create an atlas and then compute statis-

tic on patient and control populations. The MCM atlas is made through several

steps:

1. DTI and MCM are estimated from the original DWI.

2. The DTI atlas is created following Section 6.2.2 using a specific DTI registra-

tion technique.

3. The transformations used for the DTI atlas are applied to the MCM using the

interpolation framework to create a MCM atlas.

It is better to use DTI to register models than a registration on T1-weighted images

applied to the tensors [Ruiz-Alzola 2002b]. However, it would be even better to do

the registration directly on MCM and perform the entire pipeline with the MCMs

to be more coherent and obtain more accurate registration. Thus, a generic MCM

registration method is a natural extension of the interpolation framework proposed

in Chapter 5, where only a new MCM based similarity metric needs to be defined.

These preprocessing steps allow to compute statistics from a dataset. In Chapter

6, we have presented some results from the USPIO database that concerns patients

suffering from early stage MS. This evaluation could be extended with quantitative

results on the entire database and comparison with other diffusion models. More-

over, the two statistical approaches, voxel-based and tract-based, can be applied to

other diseases such as Alzheimer’s disease, traumatic brain injury, brain tumors...

Previous propositions are natural evolutions of the work presented in this thesis.

However, more general considerations about dMRI can also be studied. The dMRI

is blind to myelin due to the short T2 relaxation time of the water within the

myelin [Brunberg 1995]. Other MRI modalities such as relaxometry can detect and

quantify the myelin sheath. The ratio between the axon diameter, known as g-ratio,

and the axon with its myelin sheath diameter is a known biomarker from particular

diseases [Stikov 2011]. MS damages indeed in majority the myelin sheath and the
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demyelination causes important change in this ratio. Hence, a combination of dMRI

and relaxometry could offer useful information to compute this kind of biomarker

on a compartment basis.

7.2.2 Clinical perspectives

Nowadays, dMRI is a routine process in clinic to diagnose several brain diseases.

Generally a DWI sequence is made of 3 different gradient directions and a b0 image

to compute a MD scalar map. Recently, the Observatoire français de la sclérose

en plaques (OFSEP), that studies MS, recommended to acquire at least 6 different

gradient directions and one b0 that allows to estimate a DTI [Cotton 2015]. Thus

the standard protocol (i.e, not in clinic research) does not offer the possibility to

estimate a MCM. Therefore, there is a challenge to transfer MCM from pure re-

search to clinical applications. A MCM, in clinical research, is estimated with at

least 30 gradient directions and many MCMs need more than one b-value shell.

Therefore, the acquisition time is a central problem for a routine clinical use. In

this domain that goes beyond the topic of this thesis, many recent developments

(specific sequences such as CUSP [Scherrer 2012], compressed sensing, multi-band

acquisitions) are very promising. As a future work, we can study how these fast and

multi-shell sequences can be useful for computing more precise biomarkers in the

clinics.

In addition to this consideration, MCM has to provide intelligible information

easy to interpret for the medical corpus. To convince radiologists of the interest

of MCMs, solid studies that related diffusion models to the ground truth are also

required. One way to do that is to practice dissections or biopsy on animals. An

interesting database of dMRI and histology towards such a validation was proposed

in 2017 at International Society for Magnetic Resonance in Medicine (ISMRM) and

will be of great interest for relating specific MCM parameters to tissue damage2.

Elaborated diffusion models can be the future of dMRI provided that we are able

to explain and prove their interest in an improved comprehension of brain diseases.

2doi.org/10.17605/OSF.IO/YP4QG

doi.org/10.17605/OSF.IO/YP4QG
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