
HAL Id: tel-01256966
https://inria.hal.science/tel-01256966

Submitted on 15 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Caching and prefetching for efficient video services in
mobile networks

Ali Gouta

To cite this version:
Ali Gouta. Caching and prefetching for efficient video services in mobile networks. Distributed,
Parallel, and Cluster Computing [cs.DC]. University of Rennes 1, 2015. English. �NNT : �. �tel-
01256966�

https://inria.hal.science/tel-01256966
https://hal.archives-ouvertes.fr

 ANNÉE 2015

THÈSE / UNIVERSITÉ DE RENNES 1

sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

Ecole doctorale Matisse

présentée par

Ali Gouta

Préparée à l’unité de recherche UMR 6074 IRISA
 Equipes d’accueil : Orange Labs IDA/CDS - Irisa/ASAP

Convention Cifre N 1326/2011

Caching and

prefetching for

efficient video

services in mobile

networks

Thèse soutenue à Rennes
le 15 janvier 2015

devant le jury composé de :

Felber Pascal
Professeur - Université de Neuchâtel / rapporteur

Noel Crespi
Professeur - Télécom Sud Paris / rapporteur
Guillaume Pierre
Professeur - Irisa / examinateur

David Hausheer
Professeur - université de Darmstadt / examinateur

Anne Marie Kermarrec
Directrice de recherche - Irisa / directeur de thèse

Yannick Lelouédec
Ingénieur - Orange Labs / co-directeur de thèse

Wings are a constraint that makes

it possible to fly.

— Robert Bringhurst

To my parents. . .

Acknowledgments

I am most grateful to my advisors, Yannick Le louedec and Pr. Anne-Marie Kermarrec. Their

guidance and insights over the years have been invaluable to me. I feel especially fortunate for

the patience that they have shown with me when I firstly stepped into the field of data analysis,

caching and prefetching in mobile networks. I am indebted to them for teaching me both

research and writing skills. Without their endless efforts, knowledge and patience, it would

have been extremely challenging to finish all my dissertation research and Ph.D study in 3

years. It has been a great honor and pleasure for me to do research under their supervision. I

would like to thank Pr. Guillaume Pierre, Pr. David Hausheer, Pr. Noel Crespi and Pr. Pascal

Felber for serving as my Ph.D committee members and reviewing my dissertation. I also owe

thanks to Zied Aouini and Saifallh Ksibi, who helped me to address technical and scientific

problems. Before coming to the University of Rennes 1, I received my engineering degree from

Sup’Com in Tunis. I thank Dr. Yvon Ghourant for introducing me to the field of computer

networking and for helping me to complete my thesis on computer networks.

I must thank my family in Tunisia, who supported me a lot. Without their endless love and

encouragement I would have never completed this dissertation.

i

Abstract

Cellular networks have witnessed phenomenal traffic growth recently fueled by new high

speed broadband cellular access technologies. This growth is in large part driven by the

emergence of the HTTP Adaptive Streaming (HAS) as a new video delivery method. In HAS,

several qualities of the same videos are made available in the network so that clients can

choose the quality that best fits their bandwidth capacity. This strongly impacts the viewing

pattern of the clients, their switching behavior between video qualities, and thus beyond on

content delivery systems.

Our first contribution consists in providing an analysis of a real HAS dataset collected in France

and provided by the largest French mobile operator. Firstly, we analyze and model the viewing

patterns of VoD and live streaming HAS sessions and we propose a new cache replacement

strategy, named WA-LRU. WA-LRU leverages the time locality of video segments within the

HAS content. We show that WA-LRU improves the cache hit-ratio mostly at the loading phase

while it reduces significantly the processing overhead at the cache.

In our second contribution, we analyze and model the adaptation logic between the video

qualities based on empirical observations. We show that high switching behaviors lead to

sub optimal caching performance, since several versions of the same content compete to be

cached. In this context we investigate the benefits of a Cache Friendly HAS system (CF-DASH)

which aims at improving the caching efficiency in mobile networks and to sustain the quality

of experience of mobile clients. We evaluate CF-dash based on trace-driven simulations and

test-bed experiments. Our validation results are promising. Simulations on real HAS traffic

show that we achieve a significant gain in hit-ratio that ranges from 15% up to 50%.

In the second part of this thesis, we investigate the mobile video prefetching opportunities.

Online media services are reshaping the way video content is watched. People with similar

interests tend to request same content. This provides enormous potential to predict which

iii

Chapter 0. Abstract

content users are interested in. Besides, mobile devices are commonly used to watch videos

which popularity is largely driven by their social success. We design a system, named "Central

Predictor System (CPsys)", which aims at predicting and prefetching relevant content for each

mobile client. To fine tune our prefetching system, we rely on a large dataset collected from a

large mobile carrier in Europe. The rationale of our prefetching strategy is first to form a graph

and build implicit or explicit ties between similar users. On top of this graph, we propose the

Most Popular and Most Recent (MPMR) policy to predict relevant videos for each user. We

show that CPSys can achieve high performance as regards prediction correctness and network

utilization efficiency. We further show that CPSys outperforms other prefetching schemes

from the state of the art. At the end, we provide a proof-of-concept implementation of our

prefetching system.

Key words: caching, HAS, DASH, HLS, prefetching, collaborative filtering, mobile networks,

passive measurements, dataset.

iv

Résumé

Les réseaux cellulaires ont connu une croissance phénoménale du trafic alimentée par les

nouvelles technologies d’accès cellulaire à large bande. Cette croissance est tirée en grande

partie par le trafic HTTP adaptatif streaming (HAS) comme une nouvelle technique de diffu-

sion de contenus audiovisuel. Le principe du HAS est de rendre disponible plusieurs qualités

de la même vidéo en ligne et que les clients choisissent la meilleure qualité qui correspond

à leur bande passante. Chaque niveau d’encodage est segmenté en des petits vidéos qu’on

appelle segments ou chunks et dont la durée varie entre 2 à 10 secondes. L’émergence du

HAS a introduit des nouvelles contraintes sur les systèmes de livraison des contenus vidéo

en particulier sur les systèmes de cache. Dans cette thèse, nous nous intéressons à l’étude de

cet impact et à proposer des algorithmes et des solutions qui optimisent les fonctionnalités

de ces systèmes. D’autre part, la consommation des contenus est fortement impactée par

les nouvelles technologies du Web2.0 tel que l’émergence des réseaux sociaux. Dans cette

thèse, nous exploitons les réseaux sociaux afin de proposer un service de préchargement des

contenus VoD sur terminaux mobiles. Notre solution permet l’amélioration de la QoE des

utilisateurs et permet de bien gérer les ressources réseaux mobile.

Nous listons nos contributions comme suit :

Notre première contribution consiste à mener une analyse détaillée des données sur un trafic

HAS réel collecté en France et fournie par le plus grand opérateur de téléphonie mobile du

pays. Tout d’abord, nous analysons et modélisons le comportement des clients qui demandent

des contenus catch-up et live. Nous constatons que le nombre de requêtes par segment suit

deux types de distribution : La loi log-normal pour modéliser les 40 premiers chunks par

session de streaming, ensuite on observe une queue qui peut être modélisé par la loi de

Pareto. Cette observation suggère que les clients ne consomment pas la totalité du contenu

catch-up. On montre par simulation que si le cache implémente des logiques de caching qui

v

Chapter 0. Abstract

ne tiennent pas en compte les caractéristiques des flux HAS, sa performance diminuerait

considérablement.

Dans ce contexte, nous proposons un nouvel algorithme de remplacement des contenus que

nous appelons Workload Aware-LRU (WA-LRU). WA-LRU permet d’améliorer la performance

des systèmes de cache en augmentant le Hit-Ratio en particulier pour les premiers segments

et en diminuant le temps requis pour la mise à jour de la liste des objets cachés. En fonction

de la capacité du cache et de la charge du trafic dans le réseau, WA-LRU estime un seuil sur le

rang du segment à cacher. Si le rang du chunk demandé dépasse ce seuil, le chunk ne sera

pas caché sinon il sera caché. Comme WA-LRU dépend de la charge du trafic dans le réseau,

cela suppose que le seuil choisit par WA-LRU est dynamique sur la journée. WA-LRU est plus

agressif pendant les heures chargées (i.e. il cache moins de chunks, ceux qui sont les plus

demandés) que pendant les heures creuses où le réseau est moins chargé.

Dans notre deuxième contribution, nous étudions plus en détail les facteurs qui poussent

les clients HAS à changer de qualité lors d’une session vidéo. Nous modélisons également ce

changement de qualité en se basant sur des données empiriques provenant de notre trace

de trafic. Au niveau du cache, nous montrons que le changement fréquent de qualité crée

une compétition entre les différents profiles d’encodages. Cela réduit les performances du

système de cache. Dans ce contexte, nous proposons Cache Friendly-DASH (CF-DASH), une

implémentation d’un player HAS compatible avec le standard DASH, qui assure une meilleure

stabilité du player. Nous montrons à travers des simulations et des expérimentations que CF-

DASH améliore expérience client et permet aussi d’atteindre un gain significatif du hit-ratio

qui peut varier entre 15% à 50%.

Dans la deuxième partie de cette thèse, nous proposons un système de préchargement de

contenus vidéos sur terminaux mobile. La consommation des contenus vidéo en ligne est

fortement impactée par les nouvelles technologies du Web2.0 et les réseaux sociaux. Les

personnes qui partagent des intérêts similaires ont tendance à demander le même contenu.

Cela permet de prédire le comportement des clients et identifier les contenus qui peuvent

les intéresser. Par ailleurs, les smartphones et tablettes sont de plus en plus adaptés pour

visionner des vidéos et assurer une meilleure qualité d’expérience. Dans cette thèse, nous

concevons un système qu’on appelle CPSys (Central Predictor System) permettant d’identifier

les vidéos les plus pertinentes pour chaque utilisateur. Pour bien paramétrer notre système

vi

de préchargement, nous analysons des traces de trafic de type User Generated Videos (UGC).

En particulier, nous analysons la popularité des contenus YouTube et Facebook, ainsi que

l’évolution de la popularité des contenus en fonction du temps. Nous observons que 10% des

requêtes se font sur une fenêtre de temps d’une heure après avoir mis les vidéos en ligne et

40% des requêtes se font sur une fenêtre de temps de un jour. On présente aussi des analyses

sur le comportement des clients. On observe que la consommation des contenus vidéo varie

significativement entre les clients mobiles. On distingue 2 types de clients :

• les grands consommateurs : Ils forment une minorité mais consomment plusieurs

vidéos sur une journée.

• les petits consommateurs : Ils forment la majorité des clients mais consomment quelques

vidéos par jour voir sur une période plus longue.

On s’appuyant sur ces observations, notre système de préchargement adapte le mode de pré-

chargement selon le profil utilisateur qui est déduit à partir de l’historique de la consommation

de chaque client.

Dans un premier temps, CPSys crée un graphe regroupant les utilisateurs qui sont similaires.

Le graphe peut être soit explicite (type Facebook) ou implicite qui est construit à la base

des techniques de colllaborative filtering dérivés des systèmes de recommandations. Une

fois le graphe est créé, nous proposons la politique Most Popular Most Recent (MPMR) qui

permet d’inférer quel contenu doit-on précharger pour chaque utilisateur. MPMR trie les

vidéos candidats selon la popularité locale du contenu définit comme le nombre de vues

effectués par les voisins les plus similaires, ensuite MPMR donne la priorité aux contenus les

plus frais. Nous montrons que CPSys peut atteindre des performances élevées par rapport à

d’autres techniques présentées dans l’état de l’art. CPSys améliore la qualité de la prédiction

et réduit d’une manière significative le trafic réseau.

Finalement, nous développons une preuve de concept de notre système de préchargement.

vii

Contents

Acknowledgments i

Abstract iii

List of figures xiii

List of tables xv

Publications xvii

1 Introduction 1

1.1 The early days of content delivery over the internet 1

1.1.1 CDN 1.0 . 1

1.1.2 CDN 2.0 . 1

1.1.3 Streaming over HTTP . 2

1.1.4 Video streaming in mobile networks . 3

1.2 Why should we care and what can we do? . 3

1.2.1 Growing trend of mobile video traffic VS ISP investments 3

1.2.2 User-engagement and QoE . 4

1.3 Contributions . 5

1.4 Thesis Organization . 6

2 Traffic measurements, caching and prefetching: A review of the literature 9

2.1 Data collection: Measurements and analysis . 9

2.1.1 Data collection . 10

2.1.2 Video streaming analysis . 12

ix

Contents

2.1.3 Positioning . 14

2.2 Adaptive steaming over HTTP . 15

2.2.1 HAS methods . 16

2.2.2 Stability of HAS players . 18

2.2.3 Positioning . 19

2.3 Caching . 20

2.3.1 Replacement strategies in context of HAS 20

2.3.2 Positioning . 22

2.4 Prefetching . 23

2.4.1 Prefetching systems in context of video streaming 24

2.4.2 Positioning . 25

3 HTTP adaptive streaming in mobile networks : characteristics and caching oppor-

tunities 27

3.1 Introduction . 27

3.2 The Dataset overview . 28

3.2.1 Data collection . 28

3.2.2 Content types . 28

3.2.3 Data processing . 29

3.2.4 Fields description . 31

3.3 Clients’ behavior analysis . 32

3.3.1 Distribution of requested chunks per session 32

3.3.2 Analayis on user engagement . 33

3.4 Caching HAS content . 36

3.4.1 Presentation of WA-LRU . 36

3.4.2 WA-LRU in action . 38

3.4.3 Pseudo-code of WA-LRU . 39

3.4.4 Evaluation . 40

3.5 Conclusion . 42

4 Improving caching efficiency and quality of experience with CF-Dash 43

4.1 Introduction . 43

x

Contents

4.2 Analysis on the adaptation logic in HAS . 44

4.2.1 Profiles in catch-up and live sessions . 44

4.2.2 Video bitrate adaptation . 45

4.2.3 Impact of HAS on caching performance 46

4.2.4 Markov characterization of the switching between profiles 48

4.3 Motivation to CF-DASH . 51

4.3.1 Empirical study summary . 51

4.3.2 QoE evaluation . 52

4.4 Cache Friendly-Dash . 53

4.4.1 Cache Friendly-Dash in a nutshell . 53

4.4.2 PoC implementation . 54

4.5 Evaluation . 56

4.5.1 Simulation evaluation . 56

4.5.2 Experiments evaluation . 58

4.6 Conclusion . 60

5 CPSys: A system for mobile video prefetching 61

5.1 Introduction . 61

5.2 Background and related works . 62

5.3 Traffic analysis . 64

5.3.1 Dataset . 64

5.3.2 Distribution of the number of views per video 65

5.3.3 Distribution of the number of views per user 65

5.3.4 Relationship between request frequency and request inter-arrival rate . 66

5.3.5 Video lifetime distribution . 68

5.3.6 Load variation across the day . 69

5.4 System Design . 70

5.4.1 What to prefetch? . 71

5.4.2 When to prefetch? . 75

5.4.3 How many videos to prefetch? . 76

5.5 Trace-driven simulation experiments . 78

xi

Contents

5.5.1 Simulation setup . 79

5.5.2 Performance analysis . 80

5.6 Prototype implementation . 83

5.7 Conclusion . 85

6 Conclusion & Perspective 87

6.1 Achievements . 87

6.1.1 Traffic analysis . 87

6.1.2 Caching HAS videos . 89

6.1.3 Prefetching videos on mobile devices . 89

6.2 Future work . 90

6.2.1 Future works on data analysis . 90

6.2.2 Future works on caching . 90

6.2.3 Future works on prefetching . 91

Bibliography 104

xii

List of Figures

2.1 HLS configuration . 16

2.2 DASH standard . 18

3.1 Hosting servers for both catch-up content videos and live channels 29

3.2 Profiles presentation used for catch-up contents 30

3.3 Distribution of number of chunks per session for live and catch-up HAS sessions 33

3.4 Download throughput and Profiles interdependencies 34

3.5 Impact of the Delays in chunks delivery on the playing-time 35

3.6 CDFs of number of chunks per session when D < 1 and D > 1 36

3.7 Workload pattern measured by the logging system from 08/11/2012 to 15/11/2012 37

3.8 Scenario 1: comparison between θ and chunk A
i ndex 39

3.9 Scenario 2: comparison between θ and |chunk A
i ndex − chunkB

i ndex | 39

3.10 Average hit-ratio . 40

3.11 Metrics evaluation: Average hit-ratio, update-ratio and average hit-ratio per

chunk position . 41

4.1 Proportion of sessions requesting pr o f i l ei . 44

4.2 Distribution of requested profiles with respect to the chunki ndex for both catch-

up and live video streaming . 45

4.3 Switching during HAS sessions . 47

4.4 single profile VS multi-profile: Implication on caching efficiency 48

4.5 Percentage of contents in which clients request different profiles when request-

ing the same chunki ndex . 50

4.6 Average and Gain in hit ratio . 57

xiii

List of Figures

4.7 Metrics evaluation: Average hit-ratio, GH . 57

4.8 Profiles distribution . 59

4.9 Evaluation: Hit ratio and stability . 60

5.1 Video popularity distribution on 3 different measurement periods: 1 day, 1 week

and 1 month, starting from 03/28/2014 . 65

5.2 Number of views per user on 3 different measurement periods: 1 day, 1 week

and 1 month, starting from 03/28/2014 . 66

5.3 YT+FB data . 66

5.4 a: Relationship between the daily request frequency and the daily request inter-

arrival rate on 01/13/2014; b and c : on the week starting from 01/13/2014 . . . 67

5.5 Lifetime distribution of videos made available on January 8, 2014 68

5.6 (a) Number of active sessions across the day; (b) Zoom in during peak hours . . 70

5.7 CPSys design . 71

5.8 QNotif: Data structure which holds the prefetching candidates 74

5.9 Transition-state control mechanism running on the prefetcher agent 76

5.10 CPR with different content seleciton policies . 81

5.11 Overhead with different content selection policies 81

5.12 FNR with different content selection policies . 82

5.13 CPR . 83

5.14 Overhead . 83

5.15 Snapshots from CPClient . 84

xiv

List of Tables

2.1 Datasets description . 14

3.1 Breakdown of the number of proposed profiles per HAS content 30

3.2 Profiles settings . 31

3.3 Empirical models . 32

4.1 Sojourn time distribution . 49

4.2 MoS of the perceived quality of experience . 53

5.1 Properties of the two used datasets . 64

5.2 Traffic trace used for the simulation . 80

xv

Publications

Gouta, A., Hong, D., Kermarrec, A. M., & Lelouedec, Y. (2013, August). HTTP adaptive stream-

ing in mobile networks: characteristics and caching opportunities. In Modeling, Analysis &

Simulation of Computer and Telecommunication Systems (MASCOTS), 2013 IEEE 21st Interna-

tional Symposium on (pp. 90-100). IEEE.

Gouta, A., Hong, C., Hong, D., Kermarrec, A. M., & Lelouedec, Y. (2013, June). Large scale

analysis of HTTP adaptive streaming in mobile networks. In World of Wireless, Mobile and

Multimedia Networks (WoWMoM), 2013 IEEE 14th International Symposium and Workshops

on a (pp. 1-10). IEEE.

Amann, N., Gouta, A., Hong, D., Kermarrec, A. M., & Le Louedec, Y. (2013). Large scale analysis

of HTTP Adaptive Streaming over the Mobile Networks. 15èmes Rencontres Francophones sur

les Aspects Algorithmiques des Télécommunications (AlgoTel), 1-4.

Aouini, Z., Diallo, M. T., Gouta, A., Kermarrec, A. M., & Lelouedec, Y. (2014, March). Improving

caching efficiency and quality of experience with CF-Dash. In Proceedings of Network and

Operating System Support on Digital Audio and Video Workshop (p. 61). ACM.

xvii

1 Introduction

Internet forms a universe of information accessible via networked devices. Today, it becomes

clear that distributing, delivering and servicing content have become the first challenge of

today’s internet. In this introduction, we survey the history of Content Delivery Networks

(CDNs) and multimedia streaming over the internet and illuminate the key challenges raised

by the new content delivery constraints.

1.1 The early days of content delivery over the internet

1.1.1 CDN 1.0

Back in the nineties, the first generation of CDN - named CDN 1.0 here - emerged to overcome

the web’s bottlenecks and slowdowns. CDN 1.0 was designed to serve mainly the frequently

requested and static web content. That was achieved by moving and staging the content at an

edge server close to the end users.

1.1.2 CDN 2.0

Over the past ten years, as storage capacity and bandwidth increased, videos started to be

embedded in web sites and content providers gradually shifted their business model towards

media content delivery. This allowed the emergence of Over The Top (OTTs) video providers

since the 2000s, such as the introduction of a new DVD rental business by Hulu in 2007, and in

the emergence of User Generated Content (UGC) services such as YouTube. So far, the BBC

called the 2012 London Olympics the first truly digital games and streamed over 2.8 petabytes

of data in one single day. CDNs had to evolve during this period to support the huge traffic

growth caused by media delivery. A new generation of CDNs, we name CDN2.0, has thus

1

Chapter 1. Introduction

ermeged and has become a cornerstone of the current Internet.

In this evolutionary step, the most important features that were introduced in CDN2.0 were

the focus on real time media delivery and caching functionality optimization. A key step to

meet these requirements was to revisit the streaming protocols. Initially, the RTSP/RTP stack

was considered the most prevalent protocol for streaming video, but it turned out to have

issues such as to be blocked at routers or firewall settings. In this context, HTTP streaming

had the potential to make a significant inroad to replace RTSP/RTP to deliver media content.

It was gradually being adopted by CDNs for its low deployment costs, simplicity and flexibility.

1.1.3 Streaming over HTTP

In [39], authors report that today 98% of multimedia streaming traffic is delivered over HTTP.

Streaming over HTTP has known multiple step evolution. The first wave of HTTP-based

video streaming applications used the simple progressive download method, in which a TCP

connection simply transfers the entire movie file as quickly as possible. The shortcomings of

that approach are many, however. One major issue is that all clients receive the same encoding

of the video, despite the large variations in the underlying available bandwidth both across

different clients and over the time for the same client. This has recently led to the development

of a new wave of HTTP-based streaming applications that we refer to as HTTP Adaptive

Streaming (HAS). Motivated by the appealing opportunities of such a content delivering

scheme, several major players have developed their own implementations: Microsoft smooth

streaming, Adobe OSPF, HTTP Live streaming (apple), GPAC, Move networks. In adaptive

streaming, the server maintains multiple profiles of the same video, encoded at different

bitrates and quality levels. Further, each profile is then segmented into smaller parts, called

chunks or segments, which usually correspond to 2 to 10 second of video content. When a user

requests a video content, the hosting server sends back to the client a formalized description

of the media presentation, named manifest file or Media Presentation Description (MPD),

describing all available profiles of the requested content. The MPD enables the client-player

to choose the quality that matches best with the network state and device capacities.

Today, HTTP live streaming is the most popular streaming protocol used for this type of

streaming transfer. Since 2010, MPEG started working on a new HAS standard. Later, in 2012,

the first MPEG-Dash (Dash1.0) standard was published. It turns out that Dash1.0 did not

2

1.2. Why should we care and what can we do?

highlight the role of content delivery actors -typically CDNs and ISPs- within the Internet

content delivery landscape. In July 2013, MPEG started working on the second edition of

DASH (Dash2.0). This second edition addresses various issues related to HAS, among them

was the impact on the Internet delivery infrastructures such as CDNs and caches.

1.1.4 Video streaming in mobile networks

The proliferation of mobile smartphones has significantly changed the landscape of mobile

usage. Smartphones are now designed to provide end users with high quality video experience,

and they are commonly used by users to watch TV-programs either in live or in replay. Cisco

forecasts that mobile video will grow at a compound annual growth rate of 90% between 2011

and 2016. All these factors suggest that mobile streaming services will soon dominate the

mobile communication landscape. Hence, ensuring a fast and a reliable content delivery

accounting for users’ network constraints is critical in this context. In this dissertation, we set

out to discover the major challenges that mobile and CDN operators could incur while deliver-

ing video content in mobile ecosystem. Then, we provide guidelines and novel strategies to

improve caching systems and to sustain the QoE.

1.2 Why should we care and what can we do?

In this section, we underline and discuss 2 major challenges CDN market players or service

providers faces: The first is how to reduce or postpone investments in network and CDN

infrastructures and the second is how to provide a high quality experience for every viewer,

anytime, anywhere, on any device.

1.2.1 Growing trend of mobile video traffic VS ISP investments

Why is it important?

Recent studies point out the explosive growth in mobile data demand driven by wireless

devices and video services [51]. This growth is in large part driven by mobile video applications

and subsequently drives telcos to invest in their networks to keep pace with the increasing

need for resources 1. According to recent estimates [1], mobile carriers in US invested 75

billions of dollars in network infrastructure in 2012. This suggests that a small saving in traffic

1http://www.fiercewireless.com/tech/press-releases/us-carriers-will-outlay-105-billion-network-
investments-2013-they-chase-4g

3

Chapter 1. Introduction

can therefore correspond to save millions of dollars.

What can we do?

Caching is still to be a prominent solution and a fundamental building block of the internet

to offload the network and to achieve savings. However with the emergence of HAS, caching

strategies should be reviewed. Yet few is known about the characteristics of this class of traffic

and its network cost implications that may consequently arise. One prominent solution would

be to investigate these characteristics and to design new cache replacement strategies tailored

to the HAS properties.

1.2.2 User-engagement and QoE

Why is it important?

According to the 2013 Conviva Viewer Experience Report [2], poor quality streaming video

solutions has resulted in an estimated revenue loss of 2.16 Billion of dollars for the media

industry in 2012. Today encoding bitrates ranges from low bitrates typically to fit small screen

sizes such as handled devices to Ultra High Definition typically 4K and 8K. For instance, Netflix

moved beyond HD and started streaming the 4K video format. The increase in the number

of encoding profiles within the network leads to new constraints on users’ experience and

caching efficiency. This is particularly challenging for content delivery actors and much more

constraining for mobile carriers, since resources are expensive and bandwidth can significantly

fluctuate over short periods. This makes the video delivery optimization more subtle, yet more

challenging.

What can we do?

The following key actions briefly outline promising directions for improving the user QoE.

Characterizing HAS traffic To identify the challenges raised by HAS, a key step is by devel-

oping a deep understanding of how HAS videos are being consumed by clients. For instance,

the knowledge of the video encoding distribution and video session abandonment distribu-

tion (number of chunks requested during a video session) could help to better understand

and evaluate how much caching optimization opportunity one can achieve. This also allows

identifying the appropriate optimization techniques and how to implement them.

4

1.3. Contributions

Caching and HAS players stability We infer from the mobile data trace several key factors

affecting the QoE and caching performance. Stability of the client player (switching between

video qualities) has a straight implication on caching performance. In this thesis, we address

the stability issue and propose a novel mechanism to reduce the switching rate between

profiles and sustain the QoE.

Prefetching videos to reduce the response time perceived by users In context of content

distribution, prefetching has potential benefits as it reduces the start-up delays and enables a

smooth playback. However, prefetching is usually accompanied with costs. In this thesis, we

deeply investigate the costs-benefits trade-off problem raised by mobile video prefetching.

1.3 Contributions

Adaptive streaming over HTTP has changed the way videos are delivered over the Internet.

The caching paradigm needs to be revisited to meet the challenges raised by HAS. We therefore

start to characterize the adaptive streaming traffic by collecting a real mobile traffic traces.

Based on this trace, we uncover several findings that could be leveraged by content delivery

networks to improve their caching strategies.

This thesis consists of two parts. In the first part, we investigate properties of HAS, then we

propose 2 approaches to improve the caching performance and the user experience.

The first approach is driven by the video consumption pattern that we infer from the traffic

traces:

• HTTP Adaptive Streaming in Mobile Networks: Characteristics and Caching Oppor-

tunities: We show that the distribution of the number of requested chunks per video

session is a piece-wise combination of Log-normal and Pareto distributions. The Pareto

distribution infers that few of users request the very last chunks of HAS videos. We

show how this leads to a sub-optimal caching performance. Besides, we revisit the user-

engagement based on several key metrics. Then, we propose a new caching strategy; we

name it WA-LRU. WA-LRU infers from the state of the network which chunk should be

cached and the ones that should be left away.

In a second step, we turn our interest towards the video quality adaptation logic:

5

Chapter 1. Introduction

• Improving caching efficiency and quality of experience with CF-Dash: In HAS, a wide

range of video bitrates of the same video content are made available over the internet

so that clients’ players pick the video bitrate that best fit their bandwidth. Considering

a very large number of clients switching between video bitrates, we show that this

adversely affects the performance of CDNs and transparent caches since several versions

of the same content compete to be cached. Relying on a large dataset, we analyze the

frequency of switching between video qualities during HAS sessions, then we assess

and quantify the performance of the cache through simulations. Then we carry out a

subjective quality perception tests over 26 individual user. We observe that the user-

engagement is guaranteed starting from a specific encoding profile. We leverage both

findings and investigate the benefits of a Cache Friendly HAS player (CF-DASH), which

aims at improving the caching efficiency and sustaining the quality of experience of

mobile clients. We evaluate CF-Dash through simulations and prototype experiments.

The second part of this dissertation is dedicated to the design, evaluation and implementation

of a mobile video prefetching system.

• CPSys: A Centralized Predictor System to Prefetch Mobile Videos: CPSys leverages

users’ preferences and machine learning techniques to predict relevant videos for each

user. The design principles of CPSys is guided by findings and empirical analysis we

have carried out on users’ behavior. We then evaluated CPSys based on real traffic with

millions of views. At the end, we provide a proof-of-concept implementation and first

steps towards a large scale deployment of CPSys.

1.4 Thesis Organization

The dissertation is structured as follows:

In Chapter 2, we provide an overview of prior works related to the research areas we highlight

in this thesis. First, we give a brief outline of the the most used data collection techniques

and discuss some related works on traffic analysis and characterization. Then we overview

several proposed caching algorithms and prefetching schemes and expose their strengths

and weaknesses. For each research field we cite representative works to illustrate the range of

6

1.4. Thesis Organization

issues that have been addressed and position our contributions in that respect.

In Chapter 3, we introduce and evaluate a novel cache replacement strategy, we name it

Workload Aware-LRU(WA-LRU) and show that it outperforms traditional LRU algorithm.

In Chapter 4, we deepen our analysis and investigate the rate-adaptation paradigm in HAS.

We identify the trade-offs raised by the HAS quality-adaptation logic. More precisely, we show

that the high frequency of rate adaptation adversely affects the cache performance which

subsequently leads to a sub-optimal streaming performance. We then propose CF-Dash, a

cache friendly Dash mechanism to improve caching efficiency and sustain the QoE.

In Chapter 5, we propose CPSys, a Central Predictor System to prefetch videos on clients’

mobile devices. In this design we answer 3 fundamental questions: What to prefetch? When to

prefetch? How much to prefetch?

Finally in Chapter 6, we conclude this dissertation by summarizing our main contributions

and discuss remaining open questions.

7

2 Traffic measurements, caching and

prefetching: A review of the literature

There is a vast literature on dataset collection and analysis, traditional web or media caching.

However, previous caching strategies are not necessarily efficient with respect to today’s media

streaming technologies. The widespread adoption of HAS has raised new challenges to content

distribution networks. Therefore we believe that revisiting caching strategies is ever more

relevant now than before.

Additionally, prefetching has been advocated by researches to reduce latency and increase

the user experience. However, prefetching has been broadly investigated in context of peer-

assisted video streaming. Yet, very little work has been done in context of mobile video

prefetching.

The purpose of this chapter is to give a state-of-the art overview of the research topics we

highlight in this thesis. In section 2.1, we overview related works on datasets collection

methodologies and analysis. In section 2.2, we survey different HAS implementations and

overview the DASH standard. In section 2.3, we overview existing caching strategies and in

section 2.4 we overview related works on prefetching systems, their design and performance.

2.1 Data collection: Measurements and analysis

Since the last decade, data collection and mining have become a common practice for the

research community and networking actors to monitor the network and to provide a deep

understanding on traffic characteristics. ISPs supply their networks with NMIs (Network

measurement infrastructure) to continuously monitor the network performance and follow-up

the dynamics of traffic flows. On the other hand, research communities always try to provide

a comprehension of peculiar traffic patterns. So far, this helps modeling and characterizing

9

Chapter 2. Traffic measurements, caching and prefetching: A review of the literature

the traffic properties. In this section, we shed light on methodologies and techniques used to

collect data, then we provide insights into related works on video traffic analysis.

2.1.1 Data collection

Data collection is an important aspect as it helps us to collect, study, and provide a compre-

hension about a specific topic or research area. Inaccurate data collection leads to a bias

regarding lessons inferred from the analysis.

In this thesis, we collected and analyzed several datasets. We used different techniques

to collect the datasets. Therefore, in this section, we provide a survey of the existing data

collection methods. Overall, we classify them into 2 types: On-line and Off-line measurements.

The former consists in: active and passive measurements [26], while the latter consists of

crawling and API extraction.

On-line data collection

On-line method requires probe nodes being deployed in the network. These nodes serve as to

monitor and report feedback about the state of the network.

Active measurements Active measurements require injecting test packets in the network

for testing performance. A wide range of tools are proposed and have been largely deployed

in the network to actively monitor the network. In the literature many have been developed:

Iperf [3],OWAMP [109], Pathchar [38], Pathload [52], etc. These tools are designed to routinely

monitor key performance metrics of the network such as: packet loss, jitter, Round Trip Time

(RTT) and connection bandwidth.

Passive measurements Active measurements techniques have shown their limitations across

several studies [97, 48] especially when probing the entire cellular network. In comparison to

the active measurements, the passive measurements do not require any packet injection. The

passive probe system remains transparent to the network and is usually deployed at strategic

points in the network. The system captures flows established between the end-user terminal

and the server. Such systems are usually supplied with packet sniffing and filtering modules

to determine the signature of the flow which subsequently allows classifying it.

ISPs are likely to instrument their network with passive monitoring tools since it is more

10

2.1. Data collection: Measurements and analysis

practical to monitor the entire network[48]. In [39, 48, 110], authors deployed the monitoring

probe at the Gn interface between the Gateway GPRS Support Nodes (GGSN) and Serving

GPRS Support Nodes (SGSN). For the 2 former studies, authors characterized the traffic flowing

through AT & T mobile network. In [84], authors adopted the passive measurement approach

to monitor the major mobile carrier in Austria. They monitored links at 3 different levels: 1-Gn

interface between the SGSN-GGSN. 2-Gi interface between GGSNs and internet. 3- between

peering links and edge routers linking a national ISP. So far, this study is the unique work we

are aware of, in which authors provide such a complete picture of the monitoring system.

In [98], authors used tstat [71] -an open source passive sniffer supplied with classification

capabilities- to collect YouTube flows records. Records are collected from 5 locations spread

across 2 European ISPs and 2 university campus networks. In [57], authors proposed Nornet

Edge (NNE) a dedicated infrastructure for passive measurements and experiments in Mobile

Broadband networks.

Off-line data-collection

API extraction Crawling and Rest-based APIs are two off-line methods largely used to collect

data. Content providers -mainly Online Social Networks- such as Twitter, Facebook and

YouTube are publicly providing a sheer amount of structured data related to their services.

This enabled researchers to carry out measurements and data analysis to provide a deep

understanding on patterns of clients’ subscribing to their services.

In this context, YouTube has attracted most interest and was extensively studied by the research

community. In most of the studies [40, 40, 24] authors used the API provided by YouTube to

study the properties of YouTube videos.

Crawling extraction Alternatively to API method, crawling was extensively used when the

required data can not be accessed via an API or revealed data is insufficient for subsequent

analysis. Conceptually, crawling is a technique derived from web data extraction. It consists of

sampling a graph where the source node is called a seeder, then the crawler visits the list of

connected nodes to this source. This operation is iteratively repeated until the crawler collects

a representative view of the entire graph.

In [29], authors crawled all YouTube videos in the Science category for six consecutive days

to understand the characteristics of globally popular videos. In [72], authors crawled 4 OSNs,

11

Chapter 2. Traffic measurements, caching and prefetching: A review of the literature

namely Orkut, YouTube, flicker and LiveJournal. They combined API data extraction with

crawling technique to collect datasets and study the properties of these OSNs.

2.1.2 Video streaming analysis

Now, we outline the existing VoD datasets that represent similar or complementary character-

istics to the ones we have collected and analyzed in this thesis. We give insights into the data

collection process, particularities and major findings in each of them.

VoD datasets

Over the last decade, video streaming over the internet has been widely investigated. There are

many measurements study of VoD streaming services [17, 18, 28, 29, 89]. In [28, 29], authors

analyzed properties of YouTube videos, they deepened their analysis on viewing, popularity

and age distribution of YouTube videos. They inferred that the popularity distribution could

be modeled by a piece wise distribution: Power and exponential decay lows and that user’s

preference seems relatively insensitive to video’s age.

In [89], authors inferred that YouTube, Dailymotion, and Metacafe videos exhibit a Zipf-like

with truncated tail popularity distribution and concluded that caching popular videos can

significantly reduce the server load.

In [37], authors studied how video quality affects the user engagement when streaming on-

demand and live content videos. They observed that 1% increase in buffering ratio can reduce

the user engagement by 3 minutes, they also correlated the playing time with several quality

metrics. In this work authors did not report analysis on quality adaptation logic and its impact

on the user-engagement. Additionally, authors did not investigate the root cause affecting the

user-engagement which we believe to be the network conditions.

In [50] authors collected data from the popular MSN video site and studied popularity of MSN

videos. Authors have also explored the growth in demand and video bit rate increase over a

period of 9 months. They observed that the distribution of the bitrate for MSN videos shifted

from 200 kbps to 300 kbps and that the aggregated number of requests increased by 57.4% .

In [80], authors observed that for short videos of 3 minutes or less, users abort their video

session at any moment, while for videos longer than 3 minutes, users either stop downloading

early or download the video entirely. When the reception quality deteriorates, fewer videos

are fully downloaded, and the decision to interrupt the download is taken earlier. They also

12

2.1. Data collection: Measurements and analysis

correlated the viewing behavior with the quality reception.

In [65], authors compared users’ behavior when they access the VoD catalog from WiFi and

3G connections. They collected a large mobile dataset from a Chinese TV provider namely

PPTV[4] and inferred that users’ behavior exhibits a strong daily and weekly patterns. While

analyzing the behavior of clients individually, they observed a concentration of interest and

peculiar access patterns which helps classifying users and predict their behavior. They also

studied video popularity aspect and inferred that it fits the Pareto distribution.

To this end, VoD systems have been largely studied. However, HTTP adaptive streaming is not

yet deeply investigated. A few measurements and analysis have been done to characterize

this class of video traffic. In the next paragraph, we enumerate the very few studies that have

investigated the HAS traffic.

Adaptive streaming datasets

In [64, 63], authors collected traces from CNLive[5] a leading mobile TV service provider in

china. CNlive provides a platform to distribute content for TV and radio stations to broadcast

programs to smart phones and other devices. In both works, authors highlighted several key

observations about clients’ behavior. First, they reported that the playback length of videos

can be separated into two distinct groups. The first group represents users’ video browsing,

where the average playback length is 4.1 second. The second group represents users’ video

viewing, with the average playback length being 185.17 second. Second, they modeled the

video playback time of active viewers. The joining-phase is modeled by Weibull distribution,

while the viewing phase is a piece-wise combination of log-normal and Pareto distributions.

Besides, they reported that the sojourn time of 3G users are generally shorter than that of

WiFi users. For example, 58.40% of the audio sessions are from 3G connections, but they only

consume 48.34% of the audio sojourn time. They further made a comparison between IPTV

systems and accessing TV from mobile devices.

In [39], authors provided insights into HLS traffic characteristics such as the average bitrate,

video duration, and object size distribution. They additionally studied other HTTP-based

streaming methods such as progressive download. In [69] authors studied characteristics

of Netflix, Hulu and YouTube on Android and IOS based devices. They observed that video

players implementations vary significantly across mobile platforms and network types and

13

Chapter 2. Traffic measurements, caching and prefetching: A review of the literature

this comes at the expense of CDNs and caching performance.

2.1.3 Positioning

We compile in Table 2.1 a taxonomy of datasets that have been studied in the state of the art.

The table reports the service provider (column 1), the number of unique users in the datasets

referred by U (column 2), the number of views referred by V (column 3), number of content

referred by C (column 4), the duration of data collection(comlumn 5), the method used to

collect the data, and the last column refers to the topic and purpose for which the data was

collected. The last 3 rows report the datasets we collected and analyzed all along this thesis.

Service provider U C V Time (days) Method Topic
103 103 106

YouTube - 252 539 6 crawling Dataset
characterization[29]

16 303 0.6 14 passive Traffic
characterization[112]

Dailymotion 15 - 2 120 passive Traffic
analysis[27]

- 1194 1795 14 crawling Dataset
characterization[73]

Yahoo! - 99 770 1 crawling Workload
analysis[73]

Veoh - 269 588 1 crawling Workload
analysis[73]

Metacafe - 239 3076 1 crawling Workload
analysis[73]

PowerInfo 42 8 20 210 request log VoD system
analysis[108]

Hulu - 2 0.01 3 passive prefetching[56]
Netflix 480 18 100 2725 ratings log Recommendation[20]

HAS 247 - 2 63 passive HAS characterization
and caching

YouTube UGC 3,179 10,676 65 111 passive and API Prefetching
Facebook UGC 400 2,856 15 111 passive Prefetching

Table 2.1: Datasets description

Most studies related to mobile workload characterization relied on datasets collected at the

Gn interface of the mobile carrier. However, our passive probing system is installed at all Gi

interfaces of the mobile carrier, i.e. above the Gn interface. This way we have succeeded in

14

2.2. Adaptive steaming over HTTP

collecting a large dataset, in which we captured all requests of all subscribers in France over

several time periods.

Characterizing the HAS traffic from an operator standpoint Li and al. [63] were first to

provide insights on HAS traffic characteristics. However, their study was limited to count

the number of chunks requested during live streaming sessions. In this thesis, we provide a

thorough characterization of HAS traffic. First, we characterize and model live and on-demand

HAS traffic at per video-chunk level. Second, it is crucial for content providers to identify the

factors that may affect the user engagement. Therefore, we quantify the user engagement at

per-view and per-chunk level for both live and VoD streams. Third, we unveil one major HAS

property which is the bitrate adaptation mechanism. We quantify and model the switching

between bitrates based on empirical observations. Then, we study the implication of such

transitions on network caching systems.

Providing guidelines to design a mobile video prefetching system We collected a YouTube

(YT) and a Facebook (FB) dataset for a period of 94 days. The FB dataset consists of logs of

users requesting akamaized Facebook UGC videos. These videos are requested from Facebook

pages and hosted by Akamai CDN [6] and served on-demand. The YT dataset consists of

logs of users requesting videos from YouTube. Most of the studies related to YouTube are

coarse-grained. Yet authors carried out analysis of aggregated data to study YouTube videos

characteristics. Instead, our analysis is fine-grained and design oriented. The purpose of our

YT and FB analysis is to gain broad insights into the design of a mobile video prefetching

system.

2.2 Adaptive steaming over HTTP

In HAS, the bitrate selection decision is made at the client-player. Incorrect or ineffective

selection leads to a sub-optimal streaming and network components’ performance [106, 83].

In this section, we overview the existing adaptive streaming implementations, then we shed

light on issues related to the client player stability.

15

Chapter 2. Traffic measurements, caching and prefetching: A review of the literature

2.2.1 HAS methods

Over the past few years, many commercial and opensource HAS players have been released.

Each implementation has a different approach regarding the decision of bitrate adaptation

and chunks’ format. Following, we give insights on characteristics of the most popular HAS

implementations.

HTTP Live Streaming

If you are interested in any of the following:

 ● Streaming audio or video to iPhone, iPod touch, iPad, or Apple TV

 ● Streaming live events without special server software

 ● Sending video on demand with encryption and authentication

you should learn about HTTP Live Streaming.

HTTP Live Streaming lets you send audio and video over HTTP from an ordinary web server for playback on
iOS-based devices—including iPhone, iPad, iPod touch, and Apple TV—and on desktop computers (Mac OS
X). HTTP Live Streaming supports both live broadcasts and prerecorded content (video on demand). HTTP Live
Streaming supports multiple alternate streams at different bit rates, and the client software can switch streams
intelligently as network bandwidth changes. HTTP Live Streaming also provides for media encryption and user
authentication over HTTPS, allowing publishers to protect their work.

HTTP

Server

MPEG-2
transport stream

stream segmentermedia encoder

Client

Distribution

origin web server

.ts

Index
file

Audio/Video
inputs

2014-02-11 | Copyright © 2014 Apple Inc. All Rights Reserved.

5

Introduction

Figure 2.1: HLS configuration

HTTP Live Streaming (HLS) is the most popular video streaming technology released by

Apple[7] and largely supported and deployed by Akamai[8]. Figure 2.1 depicts the key prepara-

tion steps of a HAS content. First, a source MPEG video file is converted into multiple MPEG-2

transport streams. Each stream is segmented into small videos, namely chunks, with duration

of 10 seconds of video. Each stream is encoded at different bitrate, making the entire video

available at several bitrates. For each stream a manifest or playlist is created which contains

metadata about the video files in the stream, including the URL for each file. A master manifest

is also created, with metadata about the existing streams. HLS supports live video streaming

as well as video on demand. For a live video broadcast, the stream segment files are created

16

2.2. Adaptive steaming over HTTP

continuously and the manifests are regularly refreshed.

Microsoft Smooth Streaming

Microsoft smooth streaming (MSS) was first tested in 2008 during the Beijing Summer Olympic

Games. Since then, MSS has gained popularity and has attracted the industry attention. There

are several key differences between HLS and MSS.

The major difference is that MSS videos are no longer segmented into large number of chunks,

but are instead implicitly segmented into fragments and then stored in a contiguous MP4

file. In MSS, users’ requests encompass pointers to the desired quality and fragment of the

video stream that the server holds. While in HLS, each chunk has a different URL which does

not essentially include information related to the quality or number. The second important

difference is that the client and the server holds two different manifest files .ismc and .ism, re-

spectively. The former is served to the clients to learn about the available qualities, resolutions,

codecs, and list of available chunks while the latter is held by the server. The .ism file is used

to map the user’s request to the corresponding .ismv or .isma file on disk. These 2 last files

contain the video stream (.ismv) and the audio stream (.isma) that will be served to the client.

DASH protocol

A lot of standardization efforts are currently being conducted by researchers, MPEG and

3GPP to promote MPEG-DASH as to become the next major driver for multimedia streaming

technology. Conceptually DASH has many common key points with the HLS approach.

Figure 2.2 summarizes the DASH standard. The server side holds the MPD and the chunks.

The MPD has to follow a particular XML structure, while chunks should follow the ISO base

media format[94]. The server side is fully standardized, but the client is not. The green blocks

are left to the interested actors to define their own strategies of bitrate selection.

Christophe Muller has largely contributed in the emergence of Dash. In [77], Muller and al.

developed a VLC media player plugin which enables VLC to play DASH videos. In [58], Le

Feuvre and al. has implemented GPAC[9], an open source multimedia framework supporting

DASH which comes with its own player.

In [76], Muller and al. collected a dataset in which they recorded the measured download

throughput during separate freeway car drives linking 2 cities in Austria. They used this dataset

as a landmark to emulate the fluctuations of the bandwidth and to benchmark their DASH

17

Chapter 2. Traffic measurements, caching and prefetching: A review of the literature

5 Mbps. So, at the next available switching

point, it switches the video down to 2 Mbps

by streaming the next segments from the

mid-quality track while continuing streaming

of the 128-Kbyte AAC English audio (label 2

in Figure 1). The device continues to monitor

the actual network bandwidth and realizes

that the network bandwidth has further

decreased to a value lower than 2 Mbps. There-

fore, to maintain continuous playback, the de-

vice further switches the streams down to

500-Kbps video and 48-Kbps audio (label 3 in

Figure 1). It continues playing the content at

these rates until the network bandwidth

increases and then it switches the video up to

2 Mbytes (label 4 in Figure 1). After a while,

the user decides to pause and rewind. At this

point, the device starts streaming the video

from the trick-mode track to play the video in

reverse order, while audio is muted (label 5 in

Figure 1). At the desired point, the user clicks

to play the content with the original French

audio. At this point, the device resumes stream-

ing the video from the highest quality (5 Mbytes)

and audio from 128-Kbyte French audio (label 6

in Figure 1).

This example perhaps is one of the most

simple use cases of dynamic streaming of mul-

timedia content. More advanced use cases

might include switching between multiple

camera views, 3D multimedia content stream-

ing, video streams with subtitles and captions,

dynamic ad insertion, low-latency live stream-

ing, mixed-streaming and prestored content

playback, and others.

Scope of MPEG-DASH
Figure 2 illustrates a simple streaming sce-

nario between an HTTP server and a DASH cli-

ent. In this figure, the multimedia content is

captured and stored on an HTTP server and is

delivered using HTTP. The content exists on

the server in two parts: Media Presentation De-

scription (MPD), which describes a manifest of

the available content, its various alternatives,

their URL addresses, and other characteristics;

and segments, which contain the actual multi-

media bitstreams in the form of chunks, in

single or multiple files.

To play the content, the DASH client first

obtains the MPD. The MPD can be delivered

using HTTP, email, thumb drive, broadcast, or

other transports. By parsing the MPD, the

DASH client learns about the program timing,

media-content availability, media types, resolu-

tions, minimum and maximum bandwidths,

and the existence of various encoded alterna-

tives of multimedia components, accessibility

features and required digital rights manage-

ment (DRM), media-component locations on

the network, and other content characteristics.

Using this information, the DASH client selects

the appropriate encoded alternative and starts

streaming the content by fetching the seg-

ments using HTTP GET requests.

After appropriate buffering to allow for net-

work throughput variations, the client contin-

ues fetching the subsequent segments and also

monitors the network bandwidth fluctuations.

Depending on its measurements, the client

decides how to adapt to the available band-

width by fetching segments of different alterna-

tives (with lower or higher bitrates) to maintain

an adequate buffer.

The MPEG-DASH specification only defines

the MPD and the segment formats. The deliv-

ery of the MPD and the media-encoding for-

mats containing the segments, as well as the

client behavior for fetching, adaptation heuris-

tics, and playing content, are outside of MPEG-

DASH’s scope.

Multimedia Presentation Description
Dynamic HTTP streaming requires various

bitrate alternatives of the multimedia content

to be available at the server. In addition, the

multimedia content might consist of several

media components (for example, audio, video,

and text), each of which might have different

characteristics. In MPEG-DASH, these character-

istics are described by MPD, which is an XML

document.

Figure 3 demonstrates the MPD hierarchical

data model. The MPD consists of one or multi-

ple periods, where a period is a program

[3B2-9] mmu2011040062.3d 27/10/011 13:8 Page 64

Segment

Segment

Segment

Segment

HTTP server DASH client

Media
player

HTTP client

MPD delivery

HTTP l.lSegment

Segment

Segment

Segment

 Media
Presentation
Description

(MPD)Segment

Segment

Segment

Segment

Segment
parser

MPD parser

Control heuristics

Figure 2. Scope of the

MPEG-DASH standard.

The formats and

functionalities of the

red blocks are defined

by the specification.

The clients control

heuristics and media

players, which aren’t

within the standard’s

scope.

IE
E
E

M
u

lt
iM

e
d

ia

64

Industry and Standards

Figure 2.2: DASH standard

implementation with other commercial implementations, namely HLS, MSS and HDS. They

demonstrated that their DASH implementation is more reactive to bandwidth fluctuations

and achieves roughly a similar average bitrate compared to MSS implementation.

In [60], Muler and al. provide a public dataset[10] which consists of a set of videos encoded

with respect to DASH standard. The videos are available in 20 different qualities. The dataset

was created with a DASH encoder provided by the university of Klagenfurt. The dataset might

be used by researchers to benchmark different DASH implementations.

2.2.2 Stability of HAS players

In the context of HAS, instability of the player means that the player switches very often

between qualities, which consequently annoys the user experience[35].

The instability of the client players has been addressed in several studies [53, 14, 16, 15, 67].

All these works reported that the main root cause of the client-player instability occurs when

multiple players compete for a shared bandwidth behind a bottleneck link. A client player

supporting HAS starts a session with a buffering-state. In this state, the players try to build

the playback buffer as quickly as possible. Then the buffer turns into the steady-state during

which it maintains a constant playback buffer size. This steady-state consists of 2 sub-states:

The player is either ON, and downloads a new chunk, or OFF where the buffer is full enough

and does not require downloading a new chunk. In [16], authors reported that most of the

18

2.2. Adaptive steaming over HTTP

players including commercial players estimate the bandwidth based on the download speed

of the last downloaded chunk to decide what would be the next bitrate of the next chunk. This

suggests that during the OFF state, the player does not estimate the available bandwidth. In

the case where multiple players are competing for a shared bandwdith behind a bottleneck link

typically a broadband, one of the players might be ON while all the others are OFF, therefore,

the player estimates a high available bandwidth which pushes her/him selecting the highest

encoding profile with respect to the observed available bandwidth. Depending on the overlap

between the ON-OFF periods; 3 key performance are affected, namely unfairness, instability

and under-utilization of resources.

Saamer and al. [15] proposed to tackle the issue of instability at the server-side without any

cooperation between the client and server. They considered that client players receive all

chunks from the same video server, which is not true in the presence of caches or CDNs. Their

proposal was to supply the server with a shaping module tied to each client player. Their

proposal was to avoid the OFF period during the steady-state. This is by streaming the chunk at

its playback rate. In Festive[53], authors used a different approach to cope with the instability

issue. Their approach is client-based and does not require any interaction with the server.

They estimated the current bandwidth using the harmonic mean of the download speed of

the twenty last downloaded chunks. They demonstrated that this leads to a much more stable

player.

Instability is an important issue that should be carefully investigated especially in the context

of mobile video streaming where bandwidth is subject to frequent fluctuation. In the next

section we position our contribution in this context.

2.2.3 Positioning

Most studies related to clients’ instability are limited to the scenario where a small number of

players are competing for a shared bandwidth. Yet, the mobile ecosystem has many different

characteristics, for example the bottleneck is likely to be shifted towards the nodeB which

is usually shared by a large number of users. Besides, resources are allocated in a different

way with regard to fixed networks. Therefore, we believe that the instability issue -in mobile

context- should be resolved differently. To this end, In this thesis, we provide the first empirical

study and guidelines on clients switching between profiles at large scale. Then, we model this

19

Chapter 2. Traffic measurements, caching and prefetching: A review of the literature

behavior based on empirical observations. In this study, we answer the following questions:

how frequently users switch between profiles?, how far this switching adversely affect caching

performance?.

Answering these questions led us to design and implement a cache friendly-adaptive streaming

player (CF-DASH), which aims at giving networking actors such as ISPs and CDN providers

the ability to assist the player to select the video quality that both clients’ players and content

delivery actors find it convenient to serve. CF-DASH aims at enhancing both caching efficiency

and QoE perceived by users. This contribution is in line with the emerging standard SAND, the

second edition of DASH. Recently, MPEG has addressed various issues related to the actual

HAS version [11], among them was the impact on the existing internet infrastructure such

as servers, proxies, caches and CDNs. Therefore we consider our contribution as a first step

towards implementing SAND principles.

2.3 Caching

Closer is better. Caches are widely deployed in today’s internet infrastructure to reduce

load on web servers and the backbone network. Caching replacement policies have been

widely investigated in context of web content[101, 23, 54, 105, 81]. Caching techniques for

streaming media have different characteristics. Streams have important real-time and time

synchronization requirements. Therefore, caching polices need to be amended with respect

to these requirements. The full scope of this research is too broad. However, this section

describes the basic concepts of today’s solutions and ongoing research in caching adaptive

streaming videos. Several selected techniques are described in detail because of their practical

importance and positioning regarding our contribution.

2.3.1 Replacement strategies in context of HAS

Storing the entire content would quickly exhaust the storage capacity of a cache. The segmen-

tation nature of HAS videos has opened new perspectives to revisit the content replacement

policies and amend them with respect to the content properties.

Once the cache is full, deciding to store a recently requested chunk requires a decision to

remove and replace an object that is already stored. In the following, we overview a set of

replacement algorithms that have been introduced and evaluated in context of adaptive

20

2.3. Caching

streaming:

FIFO [55]

Replace the oldest chunk based on when it was stored. Eventually, the cache will be filled with

the recently requested chunk.

LRU [82]

Replace the chunk that has not been requested for the longest time. The most recently re-

quested chunk will be placed at the top of the list of the cached chunks. LRU is the most

popular and used algorithm. However, LRU does not consider the temporal locality of seg-

ments in the HAS content. In the next chapter, we show that this adversely affects the cache

performance.

LFU [61]

Replace the chunk with the fewest request-rate. Eventually, the chunk with the highest fre-

quency will remain longer in the cache. LFU is not widely adopted because of its log complexity

and the necessity for a periodic check and eviction of the stale chunks.

MIN [100]

The MIN algorithm is considered to be near-optimal replacement policy. Chunks with no

more requests are subject to replacement. Yet this requires a knowledge about the future

which is hard to predict. This makes MIN unrealistic for real implementation.

CC [49]

The Chunk-based Caching (CC) algorithm takes into account the time structure of the video

content. CC associates a score for each chunk, then chunks with lowest scores are subject to

eviction. The rationale behind is as the following: Assuming that a content C has M chunks. If

a user is requesting chunk i , where i ∈ [0..M], then all chunks with indexes ranging from i +1

to M increment their scores. This gives priority to the chunks that will be requested shortly

given the latest clients’ requests.

21

Chapter 2. Traffic measurements, caching and prefetching: A review of the literature

RT [103]

The Reuse Time-based (RT) algorithm is a step forward towards enhancing CC. RT has many

common points with CC strategy except that RT takes in addition the distance between chunk

indexes of clients requesting the same content. This case is particularly suitable for long

movies since it might be that one user is requesting the first chunk of the stream while the user

ahead is at the end of the same stream. Therefore, it is worth weighting the scores of chunks

in-between rather than simply incrementing all the scores.

WAVE [33]

Wave was designed for collaborative in-network caching such as content oriented networks.

The number of chunks to be cached is adjusted based on the popularity of the content. As the

request count increases, WAVE exponentially increases the number of chunks to be cached

per file. WAVE aims at decreasing the overhead of cache management and improving caching

efficiency.

2.3.2 Positioning

CC and RT algorithms are first algorithms to leverage the temporal locality of chunks in HAS to

improve caching efficiency. However, these algorithms assumed that users watch the content

entirely which is not always true[46, 47]. Subsequently, this introduces a bias into the real

performance CC and RT could achieve. These replacement algorithms might be adopted to

pay-per-view video services as the end user is motivated to watch the video she paid entirely.

Furthermore, these algorithms are tunable, i.e. selecting the appropriate parameters depends

primarily on traffic properties. In this thesis, we propose a workload aware LRU (WA-LRU) a

cache replacement strategy to decide which chunk to replace and how to update the list of

cached chunks. To do so, WA-LRU relies on 3 information: First, number of users requesting

the same content simultaneously. Second, the workload on the cache. Third, the cache

capacity.

WA-LRU adopts a dynamic behavior across the day. It evicts aggressively the video segments

when the cache is under a heavy load and behaves less aggressive during the off-peak times.

WA-LRU gives more priority to the first chunks to be cached since they are much more

requested than the latest chunks of the same content. We demonstrate that WA-LRU improves

22

2.4. Prefetching

the hit-ratio and reduces the processing overhead required to update the list of cached objects.

2.4 Prefetching

Fundamentally prefetching is different from caching. The main principle of caching is to

leverage the historic information about an object to decide if it is worth caching it or not, while

prefetching consists of predicting then pre-staging the content that is likely to be consumed by

clients in the future. Prefetching might be applied to various architectures and implemented

in different ways. In this thesis, we choose to push the content items on the users’ devices.

Prefetching is a promising approach to reduce delays, optimize the QoE, ensure a smooth

playback and to reduce energy consumption. For instance authors in [43] suggest prefetching

videos when the WiFi connection is turned on, while authors in [74] suggest prefetching

mobile-ads to achieve energy savings.

Recently, video prefetching for mobile users has gained considerable interest by the research

community. In this section, we overview several prefetching systems and prediction models

derived from recommendation techniques and applied to the context of content delivery

optimization.

recommendation Video Recommendation is a hot topic. Currently there is 3 prevalent and

widely adopted recommendation approaches, namely Collaborative Filtering (CF), Content-

based filtering (CBF), and Hybrid Filtering (HF). The CBF approach suggests filtering video

items based on the unseen and viewed videos by the user [44]. The CF approach compares a

user’s preference on items with others to find out people sharing simlar interests [19, 79]. The

HF approach combines both CF and CBF approaches.

Other works has deepened this scope of research. For instance, in [111] authors propose

attributing a score for each video candidate. The score is composed of two parts: The interest

degree of this video by user’s friends. This interest is based on textual (i.e. category of the

video) and visual similarity with the other viewed videos. The second part is the relationship

strength between the user and his friends, i.e. affinity. In[70], Mei and al. designed a video

recommendation system they name it VideoReach. VideoReach recommends a list of videos

related to the user’s current viewing based on three modalities: textual, visual and aural

relevance.

23

Chapter 2. Traffic measurements, caching and prefetching: A review of the literature

Recent studies suggest supplying the recommender system with additional input derived from

online social networks properties. In [34, 90, 86, 87, 42], authors leveraged information derived

from social cascades such as geographic information and shared YouTube videos to improve

caching and to predict the information dissemination around the world. In [99], authors

developed TailGate that exploits information available in Twitter so as to deliver long-tailed

content while decreasing bandwidth costs and improving the QoE.

Other prediction algorithms have been proposed in the context of social networks. These

algorithms estimated the relevancy of content items for a given user. EdgeRank [12] is used by

Facebook and relies on 3 criteria to estimate how relevant a content item is for a given user

user:

• Tie-strengh (affinity): The relationship strength between a user and the content creator.

• Timedecay: Timedecay refers to how long the content was popular and requested by

users.

• Weight: Weight is related to the type of the displayed element (photo, status, video , etc.).

EdgeRank gives a score to each content item based on the 3 above criteria, then sorts and

display the content items with respect to these scores.

2.4.1 Prefetching systems in context of video streaming

Several prefetching systems have been designed and evaluated in context of video stream-

ing. In [31] authors designed NetTube a peer-to-peer streaming system tailored to the short

YouTube video clips. They observed that YouTube videos have strong correlations with each

other. NetTube creates an overlay, through which peers re-distribute videos that they have

cached. NetTube implements a cluster-aware prefetching system to reduce delays during

transitions between video playbacks. Authors consider that related videos in YouTube form a

social network and that videos are highly clustered. Therefore, they propose prefetching video

prefixes of the related video of the currently viewed video. Huang and al. [50] have designed a

similar peer-assisted VoD system to reduce MSNs’ servers stress. In [66], authors leveraged

social closeness derived from OSNs to build the P2P overlay. For each source node, the overlay

endorses nodes within 2-hops away from the source node. This is because they observe that

more than 90% of the viewers of the video are within 2 hops away. Their prefetching scheme

24

2.4. Prefetching

consists on prefetching only one chunk of each video from the source to the rest of social

neighbor peers. In [102], Zhi and al. observed that OSNs help predicting users’ behavior. They

designed a user preference guided prefetching strategy tailored to P2P systems. In their design,

authors rely on social closeness and video popularity to decide if worth prefetching a video or

not.

In [96], Samamon and al. proposed deploying a prefetching module at the client and at a

proxy cache level to prefetch YouTube videos. Their prefetching strategy consists of two main

algorithms. The first algorithm is based on user’s search results. The search query sends back

a list of videos displayed in a search result page, then authors propose prefetching the top-N

videos from this list. The second algorithm consists on prefetching the top-N related videos.

That is because the next video is likely to be confined by the related list of the current viewed

video.

In [56], authors proposed prefetching the weekly most popular videos from Hulu and prestage

them at a campus network. Similarly and in mobile context, authors proposed in [41] to

periodically prefetch bundles of popular videos on mobile devices.

2.4.2 Positioning

While most of the prefetching systems have been designed and evaluated in context of Peer-

assisted video streaming, few of works [43, 41]addressed prefetching in context of mobile

video streaming. Yet, in these works authors did not address several questions which we see as

being fundamental and with a prevalent importance in context of mobile video streaming.

Their study was coarse-grained and did not address the question of what to prefetch. Prefetch-

ing irrelevant videos may strongly decrease the user QoE and systematically increase the

traffic in the network. We show that our strategy is worth to reduce the traffic overhead while

enhancing the prediction accuracy. To do so, we deeply investigate the 3 following key design

questions: what to prefetch? when to prefetch? and how mush to prefetch?

To evaluate our system performance, we use our own and unique dataset which is based on real

world measurements with millions of views. Prior work depend on small-scale experiments

with few users. For example, in [102], authors considered only the 500 most active user to

assess the performance of their prefetching strategy.

For testing performance, in [21], authors considered users’ ratings to simulate the traffic

25

Chapter 2. Traffic measurements, caching and prefetching: A review of the literature

workload. Potentially, this leads to biased results since only few users express their opinion on

videos they watch.

In a nutshell, we design a pefetching system we call it CPSys. The system principle is driven by

the video consumption and users’ behavior patterns. Then we evaluate our system and show

that it achieves considerable performance. At the end, we provide a prototype implementation

of CPSys.

26

3 HTTP adaptive streaming in mo-

bile networks : characteristics and

caching opportunities

3.1 Introduction

Cellular networks have witnessed the emergence of HTTP Adaptive Streaming (HAS) as a new

video delivery method. In HAS, the source content is encoded at multiple bitrates so that

clients can pick the best quality that fits their bandwidth capacity. In the previous chapter, we

showed that this has particular implications on caching strategies with respect to the viewing

patterns and the switching behavior between video qualities. In this chapter and in Section

3.2 we present analysis of a real HAS dataset collected in France and provided by the country’s

largest mobile phone operator. We outline our methods for collecting and processing the

data, then we give insights into the traffic properties and the variety of different categories and

video services requested by clients. In Section 3.3, we analyze and model the abandonment

rate and infer guidelines regarding caching. We also gain insights into the clients’ attitude and

study the factors that decreases the user engagement. In Section 3.4, we leverage all these

observations and findings to design and evaluate a novel cache replacement strategy, namely

WA-LRU. WA-LRU requires the knowledge about the traffic load and chunks requested by

users to decide whether it is worth caching a chunk or not. We conclude this chapter in Section

3.5.

27

Chapter 3. HTTP adaptive streaming in mobile networks : characteristics and caching
opportunities

3.2 The Dataset overview

3.2.1 Data collection

We have connected a server-log system at a Gi interface of one of the Gateway GPRS Support

Nodes (GGSNs) deployed by the European largest mobile career in France. We captured

1.763.516 adaptive streaming sessions. We logged exactly 92.595.115 HTTP GET requests. Each

HTTP request corresponds to a chunk request. In our study, the considered GGSN serves 230

NodeB/BTS. This area is covered by 3G/HSPA/HSPA+ and 2G (EDGE) radio access networks

and served 246.913 unique active client during the measurement period. The data collection

was conducted over a period of 9 weeks from November 7th 2012 until January 9th 2013,

involving mainly Apple HTTP Live Streaming (HLS) and Microsoft smooth streaming sessions

(MSS). However, we limit our analysis to HLS sessions since they form more than 99% of HAS

sessions in our dataset.

3.2.2 Content types

Currently, HTTP adaptive streaming is mainly used by Over-The-Top TV industries. Telecom

companies, on their side, offer their subscribers the TV-service as a free value-added service.

Our dataset mainly contains:

• Live TV sessions, where clients watch live TV sessions;

• Catch-up TV sessions, where TV content providers offer clients a catalog of videos previ-

ously broadcasted in live.

In our dataset, we observe that around 76% of HAS sessions correspond to Live streaming

sessions, while the rest corresponds to catch-up sessions. In the following we give insights on

the requested domain names:

Domain names for Catch-up videos Figure 3.1(a) shows that the domain wat.tv is the most

frequently requested domain name (25% of client requests) by mobile clients when requesting

catch-up videos. wat.tv is a TV service provider that hosts catch-up videos of most of the

local French-TV broadcasters. Other TV channels delegates to world wide CDNs to deliver

their content on their behalf. For example: "vod-flash.canalplus.fr" cnames Akamai servers.

28

3.2. The Dataset overview

wat.tv26%

others28%

orange.fr14%

cdn.m6web.fr8%

medias2.francetv.fr7%

vod-flash.canalplus.fr4%

videos.prismamediadigital.com3%
download.od.tv-radio.com2%

ncdn.adam.sfr.fr2%

cdn.hexaglobe.net2%
streamer1.medfon.com2%

akamihd.net2%

(a) catch-up hosts

orange.fr: 75%

others: 8%

chunk-output-1.live.tv-radio.com: 7%

m6-hls-live.adaptive.level3.net: 4%
live02.netechangisme.com: 3%

tf1hlsioslive-i.akamaihd.net: 2%

vipwowza.yacast.net: 2%

(b) live hosts

Figure 3.1: Hosting servers for both catch-up content videos and live channels

Other TV companies also play the role of content service providers (CSPs) by using their own

streaming infrastructure such as the domain cdn.m6web.fr.

Domain names for Live sessions Figure 3.1(b) shows that 75% of live HAS sessions are

streamed from servers with domain name orange.fr: This means that subscribers usually

access live TV channels through the Orange application. Orange provides streaming servers

to enable local TV channels to broadcast their videos to mobile clients. The domain chunk-

output-1.live.tv-radio.com is the second most requested domain (7% of client requests) which

cnames Akamai servers.

3.2.3 Data processing

We identify a session through the first HTTP-GET request of the first chunk for which the URL

address ends with either a .ts for a HLS stream, or with a .ism for a MSS stream. Each HAS

session corresponds to the set of chunks sent to a client over the TCP connection. Our logging

system captures all packet headers of HAS streams which contain useful information, such

as the packet size and sequence number. All information is aggregated per TCP connection

and exported into a database, from where they are analyzed. Each persistent-TCP connection

corresponds to one downloaded video segment. This means that the number of downloaded

chunks during one session is equal to the number of persistent TCP connections established

between the server side and the end-user over time. The encoding scheme of the different

profiles may differ among content videos since each of the TV service providers may define

29

Chapter 3. HTTP adaptive streaming in mobile networks : characteristics and caching
opportunities

his own range of encoding profiles.

Figure 3.2(a) shows the distribution of the encoding profiles (bi∈[1..N]) where N represents the

number of profiles defined for each catch-up content within the data-set. We observe that

most of the defined encoding profiles are below 1000 kbps.

Nbr of profiles 1 2 3 4 5 6 7 8
percentage 17% 22% 32% 13% 7% 4% 4% 1%

Table 3.1: Breakdown of the number of proposed profiles per HAS content

In Table 3.1, we show the breakdown of number of the available profiles for catch-up TV videos

requested during the measurement period. In Figure 3.2(b), we estimate the average distance

in kbps between the encoding profiles defined for each catch-up video:

di st ance =
∑N−1

i=2 (bi+1 −bi)

N
= bN −b2

N

We observe that in 95% of catch-up videos, the average difference between the encoding

profiles is higher than 100 kbps. For this reason and since we are interested in aggregated

statistics to draw conclusions about HAS characteristics, we define a scale of 8 different

profiles (see Table 3.2) that will be used to map each requested chunk in each HAS session to

the appropriate profile (P).

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90 100

k
b
p
s

catch-up video index (Normalized)

Encoding profiles

(a) encoding profiles

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700 800

p
ro

p
o
rt

io
n

distance (kbps)

Distance

(b) distance between profiles

Figure 3.2: Profiles presentation used for catch-up contents

We assume that the encoding rate is equal to the volume of data contained in the packet

payloads per chunk and divided by the chunk’s duration. The measurement of the encoding

rate of each chunk is initiated the time we capture the HTTP-200 response from the hosting

30

3.2. The Dataset overview

server. When the download finishes, we map the encoding rate to the corresponding profile.

Profile i Encoding bitrate (kbps)
Profile 0 (P0) < 50
Profile 1 (P1) [50-150)
Profile 2 (P2) [150-280)
Profile 3 (P3) [280-420)
Profile 4 (P4) [420-600)
Profile 5 (P5) [600-1000)
Profile 6 (P6) [1000-2000)
Profile 7 (P7) ≥ 2000

Table 3.2: Profiles settings

3.2.4 Fields description

The dataset consists of hundreds of thousands of rows. A new row is added each time a user

switches to a different encoding rate. For each HAS session and during each transition, we

record the timestamp and the newly visited profile (Pi).

In the following we describe the fields we report in each row:

Sessi oni d

• Session Start (in timestamp).

• Requested URL.

• Cumulative number of requested chunks in sessi oni d .

• Current profile P jε[0..7].

• Next profile Pkε[0..7],k 6= j (when a bitrate-switching happens).

• Cumulative number of requested chunks within profile P jε[0..7].

• Cumulative Bytes downloaded in profile P jε[0..7].

• Cumulative time to deliver all requested chunks in profile P jε[0..7].

31

Chapter 3. HTTP adaptive streaming in mobile networks : characteristics and caching
opportunities

3.3 Clients’ behavior analysis

3.3.1 Distribution of requested chunks per session

In HAS, the video content is segmented into multiple chunks and subsequently requested

independently. This opens the opportunity to study the behavior of clients at a fine-grained

level. To start, we show in Figure 3.3 the distribution of the number of requested chunks per

catch-up TV and Live HAS sessions.

Using the maximum likelihood (MLE) estimation, we show that the Log-normal (µ,σ1) distri-

bution is best to model the requested number of chunks for both live and catch-up TV sessions

for the first 40 chunks per session. Log-normal distribution is ubiquitous to describe several

mobile communication patterns such as the call holding times [93], the file data transfer

in the mobile networks [62]. We observe that this still to be the case for the first 40 chunks

per session, which applies for more than 90% of HAS sessions. Then, we observe a sharper

distribution when the number of chunks per session exceeds 40 chunks. The generalized

pareto distribution (GPD (k,σ2,θ)) is best to model that tail. In general, the GPD is well known

to model long-tailed profiles such as the non-popular video distribution [28]. In our case, the

tail suggests that in very few sessions users watch a content for a long time.

We show in Table 3.3, the parameters of both log-normal and GPD distributions used to model

the requested number of chunks per session.

Log-normal (x ≤ 40) Generalized pareto (x > 40)
params µ σ1 k σ2 θ

catch-up 1.75145 1.01198 0.034218 118.55 40
live 1.87679 1.00993 0.412856 78.5267 40

Table 3.3: Empirical models

In the case where the chunks are delivered by caches or edge servers deployed by CDNs, such

a tailed profile could degrade the caching efficiency especially for a limited storage capacity

and the use of a highly reactive replacement strategy. Requesting these latest chunks would

result in a competition between chunks that belong to the head of the distribution which

are frequently requested and chunks that belong to the tail even though few of clients will

reach that latest chunks of the videos. This becomes more critical when the cache adopts the

LRU (Least recently used) algorithm, where these chunks will be top-ranked the time they

32

3.3. Clients’ behavior analysis

10
0

10
1

10
2

10
3

10
4

10
5

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

N chunks per session

P
(X

>
N

)

CCDF

catch-up

catch-up: lognormal(x<41),GP(x>40)

live

live: lognormal(x<41),GP(x>40)

Figure 3.3: Distribution of number of chunks per session for live and catch-up HAS sessions

will be requested, thus pushing down chunks that will probably get requested in the near

future. In the last section of this chapter, we evaluate through simulations the benefit of not

systematically caching the latest chunks of HAS videos when deploying a proxy-cache between

the clients and servers holding the videos.

3.3.2 Analayis on user engagement

In HAS, client-players try to adapt at best the playback quality to match the available band-

width. Authors in [16] studied throughout experiments the behavior of the playback buffer

under bandwidth restrictions using open source tools. However, in the real world and in the

context of mobile streaming, bandwidth fluctuation is potentially the root cause that pushes

client-players to decide what would be the next bitrate to select. Figure 3.4 shows that the

profile selection is potentially correlated to the Download Throughput (DT) experienced by

the clients. In Figure 3.4, we bin DT every 500 kbps and we assess the profiles picked by clients

when they experience a DT that ranges from 500 kbps to higher than 2000 kbps. When DT is

equal to 500 kbps, we observe that 82% of requests are to download profiles equal or below P3.

However the distribution of profiles equal or higher than P4, is superior to 60% when clients

experience a DT higher than 2 Mbps.

33

Chapter 3. HTTP adaptive streaming in mobile networks : characteristics and caching
opportunities

 0

 0.2

 0.4

 0.6

 0.8

 1

catch-up

live
catch-up

live
catch-up

live
catch-up

live
catch-up

liveF
ra

ct
io

n
 o

f
re

q
u

es
te

d
 p

ro
fi

le
s

kbps

profile 0
profile 1
profile 2
profile 3
profile 4
profile 5
profile 6
profile 7

>2000200015001000500

Figure 3.4: Download throughput and Profiles interdependencies

So far, we study the user-engagement [37] by correlating the average playing time across all

sessions as a function of the experienced average delay while delivering video chunks. The

playing time in our case corresponds to the length of data that was downloaded during a

session (i.e. nb of requested chunks per session * C hunkdur ati on). To do so, we define the delay

metric (D) that we associate for each session. D is equal to the average delivery time of one

chunk (T̃chunk) per session divided by the average chunk duration per session:

D =
[

T̃chunk
Aver ag e chunk dur ati on

]
sessi on

If (D > 1), then the playback was potentially interrupted at least one time during the stream. If

the time spent in the network to deliver one chunk exceeds the chunk duration, this would

certainly turn the client-player into the buffering mode. In Figure 3.5(b), we bin D in units

of 0.2 and evaluate the playing time as a function of D. We stopped at D = 6, since as shown

in Figure 3.5(a), the number of sessions in which D is superior to 6 is handful and thus

not enough representative. For catch-up TV sessions, Figure 3.5(b) shows that the average

playing time is exponentially distributed as a function of D . When D = 1, we observe that the

user-engagement decreases with a ratio of 3
4 , and still decreases as far as D becomes higher.

However, surprisingly, for live sessions, we observe that the average playing time is still higher

for D > 1 and does not show a clear pattern as the case for catch-up sessions. One possible

reason is that when D > 1 clients might let their live session active while doing something else

and waiting until the stream comes back.

34

3.3. Clients’ behavior analysis

 10

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4 5 6

N
u

m
b

er
 o

f
se

ss
io

n
s

D

catch-up
live

(a) Number of sessions = f(D)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 1 2 3 4 5 6

P
la

y
in

g
 t

im
e

D

catch-up videos
live

(b) user-engagement = f(D)

Figure 3.5: Impact of the Delays in chunks delivery on the playing-time

We show in Figure 3.6(a) that when D < 1, clients are more likely to maintain their catch-

up sessions active. We find that in 13% of catch-up sessions clients request at least 100

chunks. However, clients spend less time viewing a video when D > 1, mainly due to the

video interruptions. We find that only in 2% of HAS sessions, clients request more than 100

chunks. We also observe that 50% of HAS sessions are aborted after requesting only 3 chunks

per session when D > 1. This suggests that while experiencing long delays in the joining-phase

(i.e. D>1), we observe that one out of two sessions is aborted from the beginning of the stream.

While delivering video chunks, it is worth to give priority to the first chunks of video content

to be served to guarantee a smooth joining-phase to the end-users. Our algorithm WA-LRU

-which we present in the last section- takes up this challenge since it gives priority to the first

chunks to be cached. For live sessions (Figure 3.6(b)), we observe that in 15% of live sessions,

clients request more than 100 chunks per session when D < 1, while only 3% of live sessions

reach 100 chunks per session when D > 1.

In summary, we observe that around 60% of HAS sessions are aborted when users experience

delays at the joining-phase. This clear correlation between the user-engagement and the

joining-phase suggests that prestaging the first chunks of a video content at a cache -close

to the clients- will clearly improve the user-engagement. This finding is inline with the

observation we did in 3.3.1, where the piece-wise of log-normal and Pareto distribution

suggests that clients do not systematically watch the content until the end. These 2 findings

35

Chapter 3. HTTP adaptive streaming in mobile networks : characteristics and caching
opportunities

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N chunks per session

P
(X

<
N

)

Empirical CDF

D<1

D>1

(a) catch-up

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N chunks per session

P
(X

<
N

)

Empirical CDF

D<1

D>1

(b) live

Figure 3.6: CDFs of number of chunks per session when D < 1 and D > 1

drive the design principle of WA-LRU which we describe in the next section.

3.4 Caching HAS content

In this section, we introduce and evaluate WA-LRU using a real mobile traffic trace.

3.4.1 Presentation of WA-LRU

WA-LRU takes advantage of the temporal locality of the chunks within a HAS video to increase

the performance of the cache.

LRU blindly caches the video chunks without considering any property of the content (i.e.

popularity, temporal locality of video chunk, etc.). A cache-miss will systematically triggers a

pull request to download and cache a new chunk from the parent-server or origin server, thus

evicting the least recently requested chunk. It turns out that the first and latest chunks of a

HAS content have equal opportunities regarding caching, although we previously reported

that the access to chunks is not uniformly distributed. Yet we observe a heavy tail leading to a

disproportional access to video chunks. To tackle this issue, WA-LRU does not systematically

cache the latest chunks of a video content. The decision of caching a chunk depends on its

36

3.4. Caching HAS content

position within the stream. WA-LRU needs to learn about the traffic load on the cache and

the number of simultaneous users watching the same video content to decide if it is worth

caching a chunk or not. WA-LRU adopts a dynamic behavior across the day since the caching

strategy is function of the traffic load.

In Eq 3.1 we define the traffic load on the cache over a period of T seconds as a multiplication

of the encode-rate (in kbps) of each requested chunk between (t) and (t+T) seconds and the

chunk-duration (in seconds).

[W]T = ∫ t+T
t encode-rate(t)∗ chunk-duration(t)dt (3.1)

In Figure 3.7, we picked one representative week data from our dataset and we plot the aggre-

gated traffic load on the Gi interface at a granularity of one hour (T=3600s). We observe that

the traffic load follows a strong diurnal pattern which suggests that the caching mechanism

should consider the variation of the workload along the day. It should be aggressive at peak

hours, and less conservative at off-peak times.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

08/11 09/11 10/11 11/11 12/11 13/11 14/11 15/11

N
o
rm

al
iz

ed
 W

o
rk

lo
ad

 (
g
ra

n
u
la

ri
ty

 o
f

o
n
e

h
o
u
r)

Days

Figure 3.7: Workload pattern measured by the logging system from 08/11/2012 to 15/11/2012

Under a high workload, a cache -running LRU- will be highly reactive and will intensively evict

chunks. We define the parameter R (Reactiveness of the cache, c.f. Eq 3.2) to measure the

bytes’ ratio (B E)T to be evicted periodically from the cache each T seconds. We have:

(B E)T = 1− (B S)T , where (B S)T represents the ratio of the bytes served from the cache.

37

Chapter 3. HTTP adaptive streaming in mobile networks : characteristics and caching
opportunities

C represents the cache capacity.

RT = [B E]T
C = [W]T −[B S]T

C
(3.2)

RT is sensitive to the diurnal pattern since it depends on the traffic load. Under a high load,

RT will increase and thus reach its maximum at peak hours. We set T to 10 seconds to match

it to the chunk length. Subsequently, if we assume that RT=10s is static or varies slightly at

each round of T = 10s (next we show that this assumption could be retained). Additionally, if

a particular chunk is requested at time t0 and does not receive any additional request for the

next t0 +10∗b 1
RT

c, this chunk will be subject for eviction. For the rest of this chapter, we note

∆T = b 1
RT

c. Using LRU, if one chunk is not requested at least twice in a time frame of 10∗b 1
RT

c,

then this chunk will be evicted.

∆T=10s varies across the time since it is a function of the traffic load. At a high load, ∆T=10s

becomes small and vice versa. We then consider the following weighted moving average

method to periodically compute the value of the threshold θT at each 10 seconds. θT is used

as a landmark to decide what to cache and what to leave. Following, we show how we compute

the value of θT :


θ0 = 1

RT=10s

θT = (1−β)∗θT−10 +β∗ 1
RT=10s

If θT is lower than the i ndex of the chunk, then this chunk is not cached; else it will be cached.

β is used to avoid the outliers that may happen such as a drastic variation of RT=10s . However,

in our dataset we find that the coefficient of variance of the traffic load (Cov = σ
µ) over the day

is equal to 0.7 which remains less than 1. This suggests that the variation of R is smooth across

the time. Based on this information and for the sake of simplicity we set β equal to 1.

3.4.2 WA-LRU in action

Now, we describe the mechanism of WA-LRU based on 2 use cases. Let chunk A
i ndex represents

the position of client A in the video content, where index ranges from 1 to the last chunk of the

38

3.4. Caching HAS content

video content (m). The two following scenarios (Figures 3.8 and 3.9) outline the principle of

WA-LRU:

Use case 1:

In Figure 3.8, client A requests a new chunk where the i ndex is superior to θ. If this chunk is

not already cached, then it will be ignored by the cache.

��������

	
 � � � � �
	 �

 � �

��	��

����� �

Figure 3.8: Scenario 1: comparison between θ and chunk A
i ndex

Use case 2:

In Figure 3.9, client A and B are simultaneously requesting the same video content. If

chunk A
i ndex > chunkB

i ndex +∆T=10s , then it is useless to cache chunk A
i ndex since after 10∗

∆T=10s seconds, it should be evicted and client B will be redirected to the origin server to

download it. If chunk A
i ndex É chunkB

i ndex +∆T=10s , then chunk A
i ndex should be cached since

we suppose that in less than 10∗∆T=10s seconds, client B will eventually reach chunk A
i ndex of

the video stream. However, in this scenario chunkB
i ndex should be ignored by the cache since

the index is higher than θ.

� � � � � � � � � �

�	�
�

��
�����
�

��

��
������
�

����� �

Figure 3.9: Scenario 2: comparison between θ and |chunk A
i ndex − chunkB

i ndex |

3.4.3 Pseudo-code of WA-LRU

Let ST=10s = [s0, s1, .., sN]T=10s be the set of active sessions updated each T = 10s. si could be

represented by a 3-dimension vector: si = [V i deoi d ,C hunki d ,Pk (pr o f i l e)]i . In Algorithm 1,

we show the pseudo-code of WA-LRU:

• Line 1: updates ST periodically to capture the active sessions.

39

Chapter 3. HTTP adaptive streaming in mobile networks : characteristics and caching
opportunities

• Lines [3-4]: The cache is not full yet and no policy is applied. We cache all chunks.

• Lines [5-14]: The cache is full and chunks (schunki d

i) are cached and evicted with respect

to the WA-LRU policy.

• Line 17: After T seconds, the value of R is updated with respect to the number of bytes

evicted from the cache.

Require: ST ;
1: update(ST)
2: if R=0 then
3: cache
4: else
5: for i = N → 1 do
6: for j = N → 1 do

7: if s
V i deoi d
j == s

V i deoi d
i then

8: if s
C hunki d
j + 1

R É s
C hunki d
i then

9: cache
10: else
11: forward
12: end if
13: end if
14: end for
15: end for
16: end if
17: update(R)

Algorithm 1: WA-LRU

3.4.4 Evaluation

1

10

28

 1 10 100

h
it

-r
a
ti

o
 (

%
)

Γ

LRU
WA-LRU

Figure 3.10: Average hit-ratio

We evaluate our algorithm based on the 3 following metrics:

• Average hit-ratio.

40

3.4. Caching HAS content

 10

 100

 1 10 100 1000

u
p

d
at

e-
ra

ti
o

 (
%

)

Γ

LRU
WA-LRU

(a) Average update-ratio

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10

W
A

-L
R

U
 -

 L
R

U
 (

%
)

chunkindex

Γ=2
Γ=5

Γ=10
Γ=50

Γ=100
Γ=200
Γ=300

(b) Average Hit-ratio per chunki ndex

Figure 3.11: Metrics evaluation: Average hit-ratio, update-ratio and average hit-ratio per chunk
position

• Update-ratio: Ratio of requests leading to update the list of cached chunks. This ratio

has an impact on the processing overhead to update the list of cached chunks.

• Per-chunk hit ratio: Average cache hit-ratio per each chunki ndex .

An efficient replacement strategy should reduce the update-ratio and increase the hit-ratio. We

evaluate the performance of the cache based on trace-driven simulations and with different

values of the storage capacity C such as: C = Γ∗S, where S represents a video size of 50 MB

and Γ represents the number of videos that the cache can hold. For the sake of simplicity, we

assume that:

• All chunks are 10 seconds length.

• we only consider the Catch-up TV sessions.

• We use the following encoding profiles: Piε[0..7] = [40,64,240,360,440,640,1840,2540]kbps .

• Clients do not make any jump forward/backward during the catch-up session 1.

We observe in Figure 3.10 that WA-LRU outperforms LRU when Γ< 50. This means that when

the cache avoids updating blindly the list of cached chunks -especially chunks driving the tail

distribution- Earlier chunks are more likely to hold longer within the cache. On the other hand,

we observe in Figure 3.11(a) that WA-LRU reduces significantly the update-ratio when Γ< 100.

1Previous studies on video streaming in mobile context show that up to 80% video sessions are without any
trick mode (no pause and no jump forward/backward) [50], [107]

41

Chapter 3. HTTP adaptive streaming in mobile networks : characteristics and caching
opportunities

This relieves the cache from unnecessary cache-updates and thus reduces significantly the

amount of fetching and processing time within the cache.

In Figure 3.11(b), we assess the gain in hit-ratio at per-chunk level. We show that for the low

cache sizes, we may achieve at least a gain of 3% for the 3 first requested chunks of videos. This

is important for the j oi ni ng −phase since clients will be served from the cache rather than

the origin server, and since this is the most critical phase that impacts the user-engagement as

we demonstrated in the previous section. In addition, we observe that WA-LRU enhances the

hit ratio for the advanced chunks position even though they are less frequently requested.

One limitation of our approach is that we can not predict when clients abort their sessions.

For example, in scenario 2 represented in Figure 3.9, if clients A and B are watching the same

video content, such as:

chunk A
i ndex É chunkB

i ndex +∆T=10s , then WA-LRU will decide to cache chunk A
i ndex because

it considers that client B will request it soon. However, client B may abort his session before

reaching chunk A
i ndex , hence, our prediction regarding caching the chunk A

i ndex will be inaccu-

rate. Yet, this is very uncommon and can only happen in one particular case: The cache has a

very limited storage capacity with regard to the traffic load. In this case, WA-LRU gives more

priority to the first chunks to be cached and thus improves significantly the hit-ratio for these

chunks, but it behaves less efficient regarding the latest chunks.

3.5 Conclusion

The findings on users’ behavior could be leveraged to provide guidelines to design adequate

content delivery systems and mechanisms for mobile networks, including for content caching

logic, as well to model clients’ behavior in that context. In this chapter, we collected the

first large and timely dataset of its kind that allowed us to characterize the users’ behavior

and engagement at the level of chunk. We ended this chapter by presenting and evaluating

WA-LRU a cache replacement strategy that leverages the time-structure of video chunks of a

video content. We show that WA-LRU improves the average hit-ratio, in particular the first

chunks of HAS videos, while it significantly decreases the processing overhead.

42

4 Improving caching efficiency and

quality of experience with CF-Dash

4.1 Introduction

In HAS, the client player dynamically adjusts the video bitrate as a function of the network

condition and CPU usage. While this may reduce the playback interruptions at the client

side, it still adversely affect the user experience with the rise of the number of switching

between qualities during the video session [78]. In this chapter we deeply investigate the users’

bitrate adaptation logic based on empirical traffic observations. In Section 4.2, we address the

following questions: How frequently do mobile clients switch between the encoding bitrates

during the sessions? and to which extent this affects the performance of caches and CDNs. To

answer these questions, we made a thorough characterization and modeling of the switching

pattern we observe in the real mobile traffic. We also show through simulations that the high

rate of transitions leads to a sub-optimal caching performance.

This motivated us to design a Cache-Friendly Dash player which we present and evaluate in

section 4.3. Following, we outline the key steps towards the design of CF-DASH:

• First, we identify the encoding profiles that are commonly requested by clients. We

carried out subjective quality perception tests over 26 individual user to quantify the

satisfaction of clients when requesting HAS videos. This study aims at identifying which

profile should sustain longer within the cache so that we may increase the hit-ratio, we

call this profile: profile-limit.

• We promote the profile-limit within the cache: By default clients with high bandwidth

do not systematically move beyond the profile limit since we assume that the user-

43

Chapter 4. Improving caching efficiency and quality of experience with CF-Dash

engagement is guaranteed at that profile.

• We carry out testbed experiments and trace-driven simulations to evaluate CF-Dash.

Simulations show that we may achieve a gain in hit-ratio that ranges from 15% up to

50%.

• Clients still have the option to move beyond the profile-limit. They should manually

select profiles higher than the profile limit.

4.2 Analysis on the adaptation logic in HAS

In this section, we rely on the dataset we described in the previous chapter to unveil key

characteristics of the rate-adaptation in HAS. More precisely, we study the distribution and

frequency of switching between profiles during live streaming and catch-up sessions. Then,

we quantify the implication of such switching on cache performance.

4.2.1 Profiles in catch-up and live sessions

A key advantage and characteristic of HTTP Adaptive Streaming is the possibility for the users

to dynamically change the encoding bitrate of the video content as a function of the state

of the network. Figure 4.1 shows the fraction of sessions in which pr o f i l ei (Pi) has been

requested. We observe that P3 was requested in 63% of catch-up sessions, followed by P2

(60%), followed by P4 and P5 (52% of catch-up sessions). While in live sessions, we observe

that P2 figures out in more than 80% of sessions.

 0

 0.2

 0.4

 0.6

 0.8

 1

profile 0

profile 1

profile 2

profile 3

profile 4

profile 5

profile 6

profile 7

F
ra

ct
io

n
 o

f
re

q
u
es

te
d
 p

ro
fi

le
s

requested profiles

catch-up

live

Figure 4.1: Proportion of sessions requesting pr o f i l ei

44

4.2. Analysis on the adaptation logic in HAS

 0

 0.2

 0.4

 0.6

 0.8

 1

1 51 101
151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951
1001
1051
1101
1151
1201
1251
1301
1351
1401
1451
1501d

is
tr

ib
u
ti

o
n
 o

f
p
ro

fi
le

 i

Chunkindex (for index=1, then we bin every 50 chunk)

profile 0

profile 1

profile 2

profile 3

profile 4

profile 5

profile 6

profile 7

(a) catch-up

 0

 0.2

 0.4

 0.6

 0.8

 1

1 51 101
151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951
1001
1051
1101
1151
1201
1251
1301
1351
1401
1451
1501d

is
tr

ib
u
ti

o
n
 o

f
p
ro

fi
le

 i

Chunkindex (for index=1, then we bin every 50 chunk)

profile 0

profile 1

profile 2

profile 3

profile 4

profile 5

profile 6

profile 7

(b) live

Figure 4.2: Distribution of requested profiles with respect to the chunki ndex for both catch-up
and live video streaming

In Figure 4.2(a) and 4.2(b), we bin chunki ndex every 50 chunk over all HAS sessions, where

the i ndex ranges from 1 to the last requested chunk in the session and points to the number

of the chunk within the stream. We show in these figures the proportion of the requested

profiles in each bin. Interestingly, in Figure 4.2(a), we observe that the breakdown of P3 is

respectively 30% for the first chunk, then it consistently falls below 20% for chunki ndex>50.

However, in Figure 4.1, we observe that P3 was requested in at least 63%. This is because

clients tend to start with the lowest encoding profiles. For example, we observe that in 82%

of catch up sessions, clients start with a profile lower than P4. Then, the player upgrades

the quality as soon as it captures a high bandwidth. In HLS, the first profile is set by default.

Content providers usually define low encoding rates for the first 3 chunks. The rationale is to

build the playback buffer as quickly as possible in order to guarantee a smooth playback at the

joining-phase. Once the buffer is full, clients decide to switch to higher profiles as far as they

experience a high available bandwidth. This is well illustrated in Figure 4.2(a), since profiles

higher than P3 accounts for more than 60% of requests when chunki ndex≥51.

4.2.2 Video bitrate adaptation

We show in Figure 4.3(a), the maximum, minimum, average and median number of transitions

when requesting N chunks per session. We stopped at N equal to 300 chunks per session since

a minority of sessions reaches that stage of catch-up sessions (around 25 catch-up sessions,

see Figure 4.3(b)), which is not enough representative. Figure 4.3(a) shows that regardless

of the number of requested chunks per session, the minimum number of transitions during

45

Chapter 4. Improving caching efficiency and quality of experience with CF-Dash

a session is always 0. This suggests that in these sessions, clients never switched between

bitrates either because the content provider might have defined a single video bitrate for

the considered catch-up content, or clients may experience a high available bandwidth that

hindered them from making any transition during the session. In the same figure, we also

observe that clients start making transitions after requesting at least 2 chunks. This is a

property of HLS where clients start buffering low profiles before moving to higher ones in

order to guarantee a smooth loading time. We also observe that on average, the number of

transitions during a HAS session is in between [1/6,1/2] of the total requested chunks per

session which is considered important and may adversely affect the end-to-end quality of

service. We believe that switching between bitrates may sustain the video stream by allowing

clients suffering from resources scarcity to switch to low profiles. However, assuming that we

have a cache-server as a middle-box between clients and content-hosting servers, we show in

the following that switching from one quality to another may affect the performance of the

cache.

4.2.3 Impact of HAS on caching performance

To quantify the implication of the switching between profiles on caching, we conduct a 15 day

trace-driven simulation from the dataset and compare the case where the source is encoded

at one single profile (e.g. progressive download) to the case where the source is encoded at

multiple profiles (e.g. HAS). We assume that the cache is deployed at the Gi interface, i.e. on

the same link where we have fixed our probing system.

For the sake of simplicity, we assume that:

• All chunks are 10 seconds length.

• we only consider the Catch-up TV sessions.

• When the source is provided at multiple profiles, we consider the following profiles:

Piε[0..7] = [40,64,240,360,440,640,1840,2540]kbps .

• When the source is provided at a single-profile, we consider that all chunks are encoded

at 640kbps (i.e. P5).

• We use LRU as a cache replacement strategy.

46

4.2. Analysis on the adaptation logic in HAS

 0

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300

N
u
m

b
er

 o
f

tr
an

si
ti

o
n
s

x chunks per session

max-min
median
average

(a) Number of transitions during HAS sessions

 1

 10

 100

 1000

 10000

 100000

10
0

10
1

10
2

10
3

10
4

N
u

m
b

er
 o

f
se

ss
io

n
s

x chunks per session

(b) Number of sessions reaching chunki

Figure 4.3: Switching during HAS sessions

• Clients do not make any jump forward/backward during the catch-up session 1.

We evaluate the performance of the cache for different values of the capacity C such as:

C = Γ∗S, where S represents a video size of 50 MB and Γ represents the number of videos that

the cache may hold. Γ ranges from 2 to 300.

In Figure 4.4, we compare the average hit-ratio for both single and multi-profile cases. When

Γ≥ 100, we observe that the difference in hit-ratio can reach 15%, even though the encoding

rate we have defined for the single-profile is high. This simulation clearly shows that the

instability of client players potentially reduces the performance of the cache. Raising the

1Previous studies on video streaming in mobile context show that up to 80% video sessions are without any
trick mode (no pause and no jump forward/backward) [50], [107]

47

Chapter 4. Improving caching efficiency and quality of experience with CF-Dash

 1

 10

 100

 1 10 100 1000

h
it

-r
at

io
 (

%
)

Γ

single-profile, LRU
multi-profile, LRU

Figure 4.4: single profile VS multi-profile: Implication on caching efficiency

number of qualities of the same chunki ndex from the same video content in the network will

potentially decrease the probability to find this chunk within the cache. Consequently, clients

will be redirected to the origin server which subsequently adds further delays to download

the video segment. So far this pushes client-players to trigger more and more the adaptation

mechanism. To tackle this issue, one possible solution would be to decrease the number

of transitions (i.e. maximizing the sojourn time per profile) during the video session, while

sustaining the user quality of experience. In this chapter, we propose CF-Dash which aims at

enhancing the cache performance and sustain the QoE.

4.2.4 Markov characterization of the switching between profiles

Markov chains are best to describe and model the transitions between profiles [104] during a

HAS session. Deciding for the next profile does not require any prior knowledge about the

past requested profiles. Additionally, since the switching between bitrates is time-dependent,

i.e. clients remain for a while in a particular profile before visiting a new profile, then the

continuous-time Markov chain (CMTC) is best to characterize the switching between profiles.

To this end, we use our dataset to characterize the CTMC. More precisely, we investigate:

• The sojourn time per profile Pi∈[0..7]

• The initial distribution π(0) = [πi (0)]

• The infinitesimal generator

• State of the CTMC (π(t)) at instant t > 0

48

4.2. Analysis on the adaptation logic in HAS

We start to formulate the switching process between profiles, and then identify step-by-step,

all parameters needed to feed that model based on empirical observations. Formally, let t0 be

the time during which a client decides to switch from profile Pi to P j 6=i in time slot d t , after

spending an amount of time Ti in Pi . We note pi , j the probability to move from Pi to profile

P j .Then we have:

P{i , j }(d t) = P [(X (t0 +d t) = j |X (t0) = i]

= P [T i É d t]∗pi , j

(4.1)

Sojourn time per profile: µiε[0..7] P [T i É d t] represents the cumulative distribution for

staying Ti slot at Pi . We use MLE estimation to evaluate the law that best fits the sojourn

time in Pi . We find that the exponential distribution fits the empirical data well. We show in

Table 4.1, the parameters per each profile.

Pr o f i lei exponential µi (seconds)
P0 583.898
P1 865.413
P2 934.798
P3 995.341
P4 1107.89
P5 1088.39
P6 1128.9
P7 1236.49

Table 4.1: Sojourn time distribution

Then using Taylor series, Eq (4.1) becomes:

P [T i É d t] = (1−e−µi∗d t)∗pi , j

=µi ∗d t ∗pi , j +o(d t)

This suggests that the transition rate (µi , j) from Pi to P j is also exponentially distributed, such

as: µi , j =µi ∗pi , j

49

Chapter 4. Improving caching efficiency and quality of experience with CF-Dash

The initial distributionπ(0) = [πi (0)] In HLS, the client begins by retrieving the master MPD

file which depicts the list of encoding profiles proposed by the content provider. The media

player begins the playback with the first bitrate listed in the master MPD; it is expected that

the first bitrate to be selected is the one suggested by the content provider[68]. Hence, all

clients should start with a preset profile. This is consistent with what we observe in Figure 4.5.

In this figure we show the percentage of videos in which clients request the same chunki ndex

from the same catch-up videos, but with different encoding bitrates. We observe that for

chunki ndex=1, all clients requesting the same catch-up video start always with the preset

profile in the manifest file. Then client-players change the video-bitrate as soon as they

experience a high bandwidth.

The initial distribution π(0) = [pi (0)i]i∈[0..7] is derived from the analysis we carried out in

section 4.2.1:

π(0) =
(
0.0029 0.0981 0.3704 0.3473 0.0888 0.0843 0.0082 0

)
π(0) shows that in around 81% of sessions, clients start always requesting profiles lower

than or equal to P3, since clients start always requesting low profiles to reduce delays at the

joining-phase, then the distribution in mostly concentrated between profiles 3,4 and 5 for

chunki ndex>50.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 51 101
151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951
1001
1051
1101
1151
1201
1251
1301
1351
1401
1451
1501

y
%

 o
f

co
n
te

n
ts

chunkindex (for index=1, then we bin every 50 chunk)

1 bitrate
2 different bitrates
3 different bitrates
4 different bitrates

5 different bitrates
6 different bitrates
7 different bitrates
8 different bitrates

Figure 4.5: Percentage of contents in which clients request different profiles when requesting
the same chunki ndex

The infinitesimal generator: Transition from i → j Let Q = [qi , j] be the infinitesimal gen-

erator of the CTMC we are characterizing, such as:

50

4.3. Motivation to CF-DASH

q{i , j } =


µi , j =µi ∗pi , j ; ∀ i 6= j

−∑ j=7
j=0; j 6=i µi , j =−∑ j=7

j=0; j 6=i µi ∗pi , j ; i = j

The transition probabilities (pi , j) are the coefficients of the transition probability matrix P

from one state i (rows) to the next state j (columns). we derive these coefficients from our

dataset:

P =



0 0.0997 0.2650 0.2685 0.1784 0.1358 0.0460 0.0066

0.0053 0 0.1533 0.3482 0.2683 0.1753 0.0464 0.0029

0.0036 0.0405 0 0.4237 0.28 0.2034 0.0456 0.0028

0.0021 0.0410 0.2496 0 0.4204 0.2486 0.0339 0.0041

0.0007 0.0192 0.1271 0.3867 0 0.4080 0.0500 0.0079

0.0009 0.0099 0.0817 0.2005 0.4790 0 0.2016 0.0260

0.001 0.0055 0.0303 0.0739 0.1617 0.6060 0 0.1213

0.0004 0.0018 0.0078 0.0160 0.0441 0.2266 0.7031 0


We infer the state of the CMTC as follows: Let π(t) be the distribution of Pi∈[0..7] at t > 0.

Since the sojourn time in one profile is exponentially distributed, then we have:

π(t) =π(0)∗eQ∗t

π(t) achieves the stationary regime. In figure 4.2(a), we observe that the distribution of Pi∈[0..7]

tends to stabilize. We observe that the distribution of profiles is likely to be uniform for

chunk50<i ndex<900. However, we observe a bias for chunki ndex>900. That is because the set of

sessions in this range is not enough representative to conduct inference.

4.3 Motivation to CF-DASH

Our motivation stems from the results of the empirical study that we carried out in the previous

section. Next, we report the main findings. Then, we introduce CF-DASH.

4.3.1 Empirical study summary

Our motivation for the present study is derived from the 3 following observations:

51

Chapter 4. Improving caching efficiency and quality of experience with CF-Dash

• We showed that clients’ players often switch between the encoding bitrates. On average

the number of transitions during a HAS session is in between [1/6, 1/2] of the total

requested chunks per session. In case where a caching system (e.g. CDN or transparent

cache) is deployed at the Gi interface of the mobile carrier, our simulations show that

this high switching behavior and video bitrate selection heterogeneity reduces the cache

hit ratio by 15%.

• The analysis of the encoding bitrates in the collected data led us to classify them into a

set of representative ranges. Profile 5 was clearly the most frequently requested profile

over all HAS sessions, while the lowest profiles are mostly requested at the beginning of

the sessions.

• We used markov chain to characterize the switching between profiles. We estimated

the probability to move from Pi∈[0..7] to profile P j∈[0..7]; j 6=i (c.f. transition matrix P). We

observed that the probability to move from Pi=5 to P j>5 is 22%, then when clients are

in Pi=6, they are more likely to switch to P j=5 with a probability equal to 60%. When

being in P7, clients move to P6 and P5 with a probability of 92%. All this suggests that

when being in P5, we observe that a significant proportion of transitions are limited

within the highest profiles. When being in P4, around 45% of transitions are made to the

upper profiles, and that 48% are made from Pi=5 to P j=4. This intermittently switching

between the highest profiles does not necessarily yield improvement of qualities of

experience. But instead, it adversely affects some network components such as caches.

These three observations show that there is a potential opportunity to improve the caching

efficiency in the mobile network by favoring one specific profile in the HAS adaptation logic

without compromising the user engagement and the ability of HAS clients to react adequately

in case of network congestion and adverse conditions on the server and client devices.

4.3.2 QoE evaluation

In this section we show the results of a subjective quality perception tests we conducted on 26

individual users. Tests were conducted with five ranges of quality from bad 1 to excellent [4,5].

The purpose of the experiment was to gain insights into the user quality of experience to draw

reliable conclusions regarding the user engagement. Type of videos we used fits well the type

52

4.4. Cache Friendly-Dash

of HAS videos we observe in the dataset: News, Animation and Film. Subjects were invited to

watch video content twice: on smart phone, then on Tablet. The resolution description and

results of the average Mean Opinion Score (MOS) of each profile are reported in Table 4.2.

Profile Video resolution User perception (MOS)
Profile 1 (P1) 176 x 144 bad (1)
Profile 2 (P2) 280 x 160 bad (1.2)
Profile 3 (P3) 320 x 180 medium (2.2)
Profile 4 (P4) 400 x 224 good (3.3)
Profile 5 (P5) 480 x 270 good (3.8)
Profile 6 (P6) 640 x 360 Excellent (4)
Profile 7 (P7) 1024 x 576 Excellent (4.5)

Table 4.2: MoS of the perceived quality of experience

In [88], authors suggest that a minimum guaranteed MOS equal to 3 is required to ensure an

acceptable service quality for any connected user. This requirement is guaranteed with P4

and P5. Based on these considerations, we observe that by defining a wide range of encoding

profiles -such as content providers do actually- brings clients’ players to acute instability

which pushes them to switch very often. However, the tests that we have conducted underline

that the user engagement is guaranteed at a specific profile. In CF-Dash, we leverage these key

findings to improve on-network caching.

4.4 Cache Friendly-Dash

In this part, we introduce CF-Dash adaptation logic and detail our implementation and

test-bed setup.

4.4.1 Cache Friendly-Dash in a nutshell

In CF-Dash, we intentionally promote one specific profile within the cache. This is achieved

by pushing clients’ players to request one specific and commonly requested profile, we call

it profile-limit. By doing so, the profile-limit will be populated within the cache and clients

will be more likely to be served from the cache. In CF-Dash, even though clients experience a

high bandwidth, by default clients’ players never ask for profiles above the profile-limit. The

profile-limit is chosen in such a way we guarantee a good user-engagement. Hence switching

to the highest profiles would be unnecessary and would not affect the user-engagement. For

53

Chapter 4. Improving caching efficiency and quality of experience with CF-Dash

clients who want to move beyond the profile-limit, they have to select manually profiles higher

than the profile-limit. The rationale behind this idea is to prevent clients to turn systematically

to the highest profiles when they experience a high bandwidth.

4.4.2 PoC implementation

In our PoC, we chose GPAC [59] as an Open Source multimedia framework installed on end-

terminals, since it incorporates the major DASH standard components. We chose Squid as

a proxy cache and Apache as HTTP server. We integrated our proposed changes within the

core of GPAC, and carried out test-bed experiments to evaluate our approach and validate our

implementation.

In CF-Dash, clients’ players and cache-servers share information so that the clients’ player

learn about the profile-limit. In MPEG-SAND, 3 options have been considered to make clients’

players and content delivery servers communicate: either by modifying the MPD at some

network level (i.e. CDN), or by adding new fields in the HTTP header, or by adding a new

interface through which clients’ players and network components exchange messages. In our

PoC, when a client starts a new video session. First, her HTTP-GET request gets forwarded

to the proxy-cache server. Then, the proxy-cache is configured so that it does not cache

the initialization segment 2 that points to the profile-limit but caches all the rest. Squid

implements the X-CACHE header. Therefore, if the init segment is not cached, the X-CACHE

header will contain a miss. The HTTP-Response being sent to the client, the latter parses the

header fields and maps the miss into the profile-limit candidate. Herein we consider 2 cases:

Leader This is the case when a new video is being added to the catalog of VoDs, and a first

user (we call it leader) requests that video. This first client will not be able to identify the

profile-limit, since none of the init segments is cached. This pushes the leader to download

all init segments from the origin server and admits that the latest downloaded init segment

(highest profile) corresponds to the profile limit.

Followers Followers refer to all users who will successfully identify the profile-limit based

on the aforementioned mechanism.

2During the connection setup, the clients’ player downloads all the init segments defined within the Media
Presentation Description. Each init segment is associated to one encoding profile. The init segment has the
metadata needed by the player to decode the associated profile.

54

4.4. Cache Friendly-Dash

Pseudo code

Algorithm 2 depicts the pseudo-code of CF-Dash rate-adaptation logic:

Require: Client, AdaptationSet, Representation, Limit_Profile,
1: if (disable_switching = TRUE) then
2: return
3: end if
4: Go_Up=FALSE
5: DL=compute_download_rate(Client)
6: if (Repr esent ati on.band wi d th É DL) then
7: Go_Up=TRUE
8: end if
9: if (DL É Ad apt ati onSet .Mi n_Repr esent ati on_Bi tr ate) then

10: DL=AdaptationSet.Min_Representation_Bitrate
11: end if
12: N=AdaptationSet.total_representations
13: for k = 0 → N do
14: SR=Get_Representation(AdaptationSet,k)
15: if (DL ≥ Sel ected_Repr esent ati on.band wi d th) then
16: if (!New_Representation) then
17: New_Representation=SR
18: else if (Go_Up) then
19: if (SR.band wi d th Ê New_Repr esent ati on.band wi d th)and(k ≤ Ad apt ati onSet .Li mi t_Pr o f i le) then
20: New_Representation=SR
21: end if
22: else
23: if (SR.band wi d th Ê New_Repr esent ati on.band wi d th)and(k ≤ Ad apt ati onSet .Li mi t_Pr o f i le) then
24: New_Representation=SR
25: end if
26: end if
27: end if
28: end for
29: if (di sable_swi tchi ng = F ALSE)and(New_Repr esent ati on)and(New_Repr esent ati on 6= Repr esent ati on) then
30: Representation = New_Representation
31: end if

Algorithm 2: CF-Dash: rate adaptation logic

• In Require: AdaptationSet and Representation are dash standard words naming.Representation

refers to the encoding profile.

• Line 1: disable switching becomes true when clients select manually profiles higher

than the profile limit.

• Lines [6,8]: DL corresponds to the download speed of the last downloaded chunk. In

these lines, we compare the last representation (last requested profile) with the new DL.

• Lines [13,28]: This loop parses all existing profiles and identifies the profile that fits

the user bandwidth. Conditions 19 and 23, forces the clients’ player to not surpass the

profile limit whatever the value of DL.

55

Chapter 4. Improving caching efficiency and quality of experience with CF-Dash

• Line 30: We save the actual representation, so that we can compare it with the next

computed DL, when requesting the next chunk.

4.5 Evaluation

In this part, we demonstrate through simulations and test-bed experiments that CF-Dash

adaptation logic improves the cache efficiency on large scale.

4.5.1 Simulation evaluation

We performed a trace-driven simulation to evaluate the impact of CF-Dash on caching effi-

ciency. The trace considered in the simulation corresponds to HAS sessions collected over a

period of 2 weeks from the dataset that we introduced in the previous chapter. Each record

in the trace corresponds to one HAS session; it includes the timestamp of the connection

setup, the reference of the requested video, the number of requested chunks, and for each

video bitrate switching the timestamp and the newly requested Profile. The caching system is

deployed at the Gi interface on the mobile network. For the sake of simplicity, we assume that:

All chunks are 10 second long. The encoded profiles are selected with respect to the following

encoding profiles:

Piε[0..7] = [40,100,210,250,510,900,1500,3500]kbps . LRU is the content replacement algorithm

of the caching system. We evaluate the performance of the cache for different values of the

capacity C such as: C = Γ∗ S, where S represents a video size of 10 MB, typically a short

video-clip of 5 minute long, and Γ represents the number of videos that the cache holds. In

Figure 4.6, we evaluate CF-Dash with the baseline (i.e. native trace) based on 3 key metrics:

• Average hit-ratio

(H = r equest s ser ved f r om the cache
all requests): average ratio of requests successfully served from the

cache.

• Gain on hit-ratio

(GH = HC F−Dash−Hbasel i ne
Hbasl i ne

), to assess the gain we may achieve on hit-ratio with CF-Dash in

comparison to the baseline.

• GH per chunki ndex .

56

4.5. Evaluation

We observe on Figure 4.6 a significant improvement in the hit-ratio when clients adopt CF-

Dash adaptation logic. When the profile-limit is set to P4, we reach more than 40% of GH .

When the profile-limit is set to P5, we still reach a gain of 15%.

 0

 0.2

 0.4

 0.6

 0.8

 1

100 300 500 700 900
 0

 0.2

 0.4

 0.6

 0.8

 1
A

ve
ra

ge
 H

it-
R

at
io

 (
A

V
R

)

G
ai

n
in

 H
it-

ra
tio

Γ: cache capacity

AVR with Baseline
AVR with CF-Dash, PL 4
AVR with CF-Dash, PL 5

gain in hit-ratio, PL4
gain in hit-ratio, PL5

Figure 4.6: Average and Gain in hit ratio

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

G
H

 %

chunkindex

Γ=100
Γ=300
Γ=500
Γ=700
Γ=900

(a) Average Hit-Ratio per chunk index when setting pro-
file limit to 4

 1

 10

 100

 1000

 1 10 100 1000

G
H

 %

chunkindex

Γ=100
Γ=300
Γ=500
Γ=700
Γ=900

(b) Average Hit-Ratio per chunk index when setting pro-
file limit to 5

Figure 4.7: Metrics evaluation: Average hit-ratio, GH

In [47], we observed that around 65% of HAS sessions are being aborted from the start when

clients experience long delays during the joining-phase. Figures 4.7(a) and 4.7(b) show that

reducing the aggregated number of switching gives more chance to the earlier chunki ndex

to hold in the cache. This is because the earlier chunks compete less with the latest chunks

for whom CF-Dash takes action. This is important for the joining-phase since clients will be

served from the cache rather than from the origin server, and since this is the most critical

phase that impacts the user-engagement.

57

Chapter 4. Improving caching efficiency and quality of experience with CF-Dash

4.5.2 Experiments evaluation

Test bed and scenario

The experimental test-bed and setup is similar to that described in [75]. We install Gpac on

both end-terminals. The configuration of each component of the test-bed is as follows:

• The Apache HTTP server hosts a catalog of 20 videos encoded with respect to the profiles

used in the previous simulations. Each video is hosted jointly with its MPD. Videos

are segmented into 12 chunks, 10 second long each one. We skip P0, since it is rarely

requested (c.f. figure 4.2(a)).

• The cache proxy is placed between the clients and the origin server. Evaluation tests

are carried out by varying the cache size capacity C . We keep on the same parameters

used in the simulations: C = Γ∗S, where S represents a video size of 12 MB, which is the

average size of one video from our catalog, and Γ represents the number of videos that

the cache may hold. We set the profile limit to P5. We use Dummynet on both clients to

emulate the bandwidth variation. We use real world bandwidth variation traces [85] of

clients being covered by 3G/HSPA network in Norway. We periodically reproduce the

network conditions when moving by train from Oslo to Vestby, and the way back (c.f.

[13]).

Finally, we simulate 200 clients requesting videos from the catalog. Content popularity is

distributed according to Zipf law with parameter equal to 1.

Results and interpretation

We evaluate the following:

• Profiles distribution: We analyze the proportion of each profile per requested chunk.

Our goal is to promote the profile-limit within the cache.

• Gain in hit-ratio (GH)(c.f. Section 4.5.1).

• Stability of clients’ players: We show how CF-Dash reduces the aggregated number of

switching during HAS sessions.

58

4.5. Evaluation

Profiles distribution Most HAS implementations (commercial and open source) agree that

the first requested chunk from a video content should be preset in the MPD by the content

provider. Usually, the content provider defines the start-up profile as the lowest encoding

profile, so that to guarantee a smooth playback at the joining-phase. In figure 4.8, we observe

that this holds the same in Gpac for chunk1. Then, clients decide to move to the profile that

fits best their available bandwidth. We observe that the profile-limit is largely requested by

client-players. Profiles higher than the profile-limit (i.e. P6 and P7 in our case), are still being

requested. This is because leaders do not recognize the profile-limit as do the followers, since

all init segments are downloaded from the origin server.

 0

 0.2

 0.4

 0.6

 0.8

 1

D
ash

C
F-D

ash
D

ash
C

F-D
ash

D
A

SH
C

F-D
A

SH
D

ash
C

F-D
ash

D
ash

C
F-D

ash
D

ash
C

F-D
ash

D
ash

C
F-D

ash
D

ash
C

F-D
ash

D
ash

C
F-D

ash
D

ash
C

F-D
ash

D
ash

C
F-D

ash
D

ash
C

F-D
ash

D
ash

C
F-D

ash
F

ra
ct

io
n

 o
f

re
q

u
es

te
d

 p
ro

fi
le

s

Chunks

profile 1
profile 2
profile 3
profile 4
profile 5
profile 6
profile 7

1211109287654321

Figure 4.8: Profiles distribution

Gain in hit-ratio Figure 4.9(a) confirms that the GH significantly increases. When Γ= 4.5,

we observe that CF-Dash adaptation logic allows doubling the performance of the cache

with regard to the dash adaptation logic. Then, although the GH decreases as the cache

size increases, we still maintain a promising gain in hit-ratio that reaches around 38% when

Γ= 17.5. Our evaluations demonstrate that CF-Dash improves significantly the hit-ratio.

Stability of client-players Figure 4.9(b) shows that most HAS sessions upgrade their video

quality when moving from the first to the second chunk of the stream. This is because the

emulated bandwidth variation is most of the time higher than the preset profile. With CF-Dash,

59

Chapter 4. Improving caching efficiency and quality of experience with CF-Dash

 0

 0.2

 0.4

 0.6

 0.8

 1

4.5 9 13.5 17.5 0

 0.2

 0.4

 0.6

 0.8

 1

A
ve

ra
ge

 H
it-

ra
tio

G
ai

n
in

 H
it-

ra
tio

Γ: cache capacity

LRU
LRU+CF-Dash
gain in hit-ratio

(a) Average Hit ratio

 0
 0.2
 0.4
 0.6
 0.8

 1

 2 4 6 8 10 12

Pe
rc

en
ta

ge

Chunks

CF-Dash
Dash

(b) Percentage of switchings per chunki ndex

Figure 4.9: Evaluation: Hit ratio and stability

we decrease the aggregated number of switching over all HAS sessions by 20%. Hence, this

promotes the profile-limit within the cache and increases the opportunity to the followers to

be served from the cache.

4.6 Conclusion

In this chapter, we investigated the effect of the rate-adaptation in HAS on cache performance.

Having observed that the QoE is guaranteed from a specific encoding bitrate, we designed

CF-Dash - a cache friendly DASH player- with the aim to have further control on the rate-

adaptation and to promote one specific encoding profile within the cache. In our future work,

we will further investigate the ideal profile to be cached based on the content characteristics

and to define incentive strategies to encourage clients requesting the same encoding profiles.

60

5 CPSys: A system for mobile video

prefetching

5.1 Introduction

Today, mobile devices are commonly used to watch videos everywhere. Within a few years

mobile devices are likely to become the users’ preferred choice for accessing the Internet 1

while according to [92], multimedia content represents already a significant portion of the

mobile traffic today. This growing trend is to a large extent driven by social networks. Online

social networks (OSNs) are reshaping the way videos are being consumed. First, by boosting

popularity of video content within groups of users with similar interest [45]. Second, by provid-

ing viewing recommendation for each user. EdgeRank [25] is used by Facebook to sort items

on the news feed of the individual users based on affinity, weight and time decay scores. These

key factors drive users to conduct a specific behavior when browsing their news feed and allow

for a prediction of content a user is interested in. This social or interest based interaction

can be leveraged by networking actors, in particular over-the-top (OTT) content providers

and content delivery networks (CDNs) to predict future behavior of users and decide if it is

worth pushing videos to the interested users at a particular time. Hence, if properly designed,

prefetching videos can alleviate the network during peak traffic periods, i.e. flash crowds.

Besides, it can improve the user experience since it avoids buffering delays or stalling of the

streaming video as the content can be played from local storage.

In this chapter, we design and implement CPSys, a Central Predictor system to prefetch videos

on users’ mobile devices. Our prefetching scheme aims to answer the 3 following questions:

1http://www.morganstanley.com/about/press/articles/4659e2f5-ea51-11de-aec2-33992aa82cc2.html

61

Chapter 5. CPSys: A system for mobile video prefetching

• Which content should be prefetched? To determine which content the user is interested

in is hard in general. The distribution of lifetime video views combined with the prefer-

ences of the users are key factors to build an accurate prediction model. Our model relies

on an enhanced recommendation techniques tailored to the prefetching requirements.

We capture users with similar interests and give priority to the most viewed and most

recent videos that have been requested by the user’s neighbors to be prefetched.

• When to trigger prefetching? We define two control mechanisms: a network-oriented

and a state-transition control mechanism. The former allows an efficient use of net-

work resources while the latter aims at controlling the prefetcher agent running on the

user device. Combined, these control mechanisms avoid the agent to prefetch videos

aggressively or randomly.

• How many videos are to be prefetched? This is a design choice. We differentiate between

2 kinds of users: Heavy and light users. We correlate the number of videos to prefetch

with the user’s past activity and conclude on the number of videos to be prefetched.

Our system design can be leveraged by all networking actors, in particular by OTTs, CDN

providers, and Telcos. We implemented several features to make it open and flexible for future

extension.

The rest of this chapter is organized as follows. Section 5.2 describes the background and

related works. Section 5.3 represents observations on the behavior of clients through ana-

lyzing the used traffic trace. In Section 5.4, we introduce our system and configure it with

respect to the observations drawn from the previous section. In Section 5.5, we extensively

evaluate our system with different assumptions. Section 5.6, we provide a proof-of-concept

implementation of our system. Finally, we conclude this chapter in Section 5.7.

5.2 Background and related works

Recent studies have brought forth the benefits of prefetching videos on mobile devices. Net-

Tube [30] and SocialTube [66] were designed to leverage P2P overlays to download YouTube

videos. In these systems, authors proposed a prefetching scheme for prefetching prefixes

of videos to improve the user experience at the joining phase. In SocialTube, the authors

assumed optimistic hypothesis to evaluate their prefetching strategy. They limited their study

62

5.2. Background and related works

to 2000 videos shared among 5000 nodes. While this holds reasonable to assess the maximum

performance the system may achieve, we believe that this introduces a bias on the perfor-

mance results. In contrast, the present chapter exploits real traffic traces collected over a

large mobile carrier in Europe; thus all the specific characteristics of mobile video traffic are

captured and taken into account in the assessment works reported in this chapter.

Recommendation systems have been widely investigated by the research community. In [22],

authors proposed a decentralized system for disseminating news items in a large-dynamic

setting with no central authority. In [95], authors represent a survey of the state-of-the art

of existing recommendation techniques. In this chapter, we use a k-nearest neighbor-based

collaborative filtering (CF) technique to identify people with similar interests. Once we we

identify the neighbors, our new prefetching strategy selects videos to be prefetched for each

individual user: We present the MPMR policy which gives priority to the Most Popular and

Most Recent videos viewed among similar users to be prefetched.

In [43], authors show that prefetching has potential benefits regarding energy savings. Prefetch-

ing when the device is connected to Wifi can reduce the energy consumption by 10% with

respect to a 3G connection. Yet, the authors did not investigate the fundamental and prior

question that should be addressed: which content should be prefetched to individual users?

Even if connected to Wifi, an aggressive prefetching strategy, i.e. prefetching all videos, would

drain the battery very fast which, as well, leads to a bad user experience. In this respect, we

focus on the primarily question: what to prefetch ? Once we identify the video candidates, we

address the second question: when to prefetch?

Prashanth and al. [74], proposed to prefetch advertisements (ads), to achieve energy savings.

Ads form a very small set of videos being watched by the user over a day. In this chapter we

do not limit our study to ads. Instead we prefetch all videos that may interest an individual

user including the ads. Alessandro et al. [41] proposed to periodically prefetch bundles of

popular content videos on mobile devices. In the prefetching context, we believe that the term

popularity has no absolute meaning. A content might be locally popular inside a group of

users sharing similar interests, but not globally popular and vice versa.

As briefly discussed above, none of the presented related works address several fundamental

questions that we see as being of fundamental importance to prefetching. To this end, we carry

out analysis and draw lessons using real mobile traffic traces. Based on these observations, we

63

Chapter 5. CPSys: A system for mobile video prefetching

design CPSys a network-friendly prefetching system. Then, we assess the proposed mechanism

using real traffic traces. At the end, we provide a PoC implementation of CPSys.

5.3 Traffic analysis

In this section, we introduce our dataset and provide analysis and findings on users’ behavior.

Then, we use these findings to infer the design principles of our prefetching system.

5.3.1 Dataset

We rely on a large dataset gathered at all Gi interfaces of all GGSNs deployed by the afore-

mentioned mobile carrier in France. The dataset consists of logs of video streaming sessions

generated by all connected devices of the carrier’s subscribers. The logs were collected from

8 January 2014 to 28 April 2014. Due to maintenance reasons, the monitoring infrastructure

was disabled for 27 days, which makes the real period of data collection lasting about 94 days.

These disruptions do not introduce any bias in the data analysis and simulations reported in

this chapter since they are not achieved over the whole duration of the dataset. We limit our

study to 2 subsets of video traffic: requests for YouTube (YT) videos and requests for Facebook

(FB) videos. Table 5.1 gives an overview of both these subsets of traffic. Parsing the HTTP

header in FB and YT traffic flows enables to extract the unique video identifier (noted reference

ID) requested by the users. For illustrative purpose, typical URI from YT and FB are given in

Table 5.1, the field in bold pointing to this reference ID of the video. To preserve confidentiality

and privacy, our dataset is anonymized during an early stage in the collection process.

Dataset Number of Number of Number of Service Typical URI
name unique users unique videos requestes provider

YT 3,179,296 10,676,156 64,722,755 Google r8—sn-4g57kue6.youtube.com/videoplayback?id=←-
(Youtube dataset) CDN d1875abcee9b6d33&itag=36&source=youtube&....

FB 399,645 2,856,321 14,305,404 Akamai video.ak.fbcdn.net/hvideo-ak-prn2/v/←-
(Facebook dataset) 1608327_750958311600439_982850231_n.mp4?...

Table 5.1: Properties of the two used datasets

In the following, we provide empirical traffic observations and Findings (noted F), upon which

we establish the design principles of our prefetching system. More precisely, we investigate

5 fundamental traffic properties: video popularity distribution, distribution of the number

of views per user, relationship between request frequency and request inter-arrival rate, video

lifetime distribution, and load variation across the day.

64

5.3. Traffic analysis

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Number of views per video

requests per day
requests per week

requests per month

(a) YT data

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Number of views per video

requests per day
requests per week

requests per month

(b) FB data

Figure 5.1: Video popularity distribution on 3 different measurement periods: 1 day, 1 week
and 1 month, starting from 03/28/2014

5.3.2 Distribution of the number of views per video

Figure 5.1 shows the popularity distribution of YT and FB videos over 3 different measurement

periods: one day, one week, and one month starting from Monday, March, 3, 2014. The

skewness of popularity distribution of YT and FB videos is very similar and follows a Zipf-like

distribution. Around 75% of YT videos and 65% of FB videos are requested only once.

F1: Most of the videos are requested only a few times, and a majority only once. There-

fore, their future consumption is hard to predict. Popularity is thus an important factor to

maximize the prediction accuracy and to best manage network resource utilization: a safe

prefetching strategy would be to favor the prefetching of popular videos.

5.3.3 Distribution of the number of views per user

Figure 5.2 shows the CDF of the number of requests per user over the 3 periods of data collec-

tion. Figure 5.2 shows that users exhibit various viewing patterns. Few users request far more

frequently video contents – we call them heavy users – while the majority is less active – we

call them light users. Over a month, we observe that 72% and 83% of active users requested at

most 10 YT and FB videos, respectively. Predicting the behavior of light users is hard in general

and turns into a typical cold start situation where it is hard to learn the preferences of the user

65

Chapter 5. CPSys: A system for mobile video prefetching

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

C
D

F

Number of requests per user

requests per day
requests per week

requests per month

(a) YT data

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

C
D

F

Number of requests per user

requests per day
requests per week

requests per month

(b) FB data

Figure 5.2: Number of views per user on 3 different measurement periods: 1 day, 1 week and 1
month, starting from 03/28/2014

from a small set of viewed videos. In prefetching context, this has to be carefully considered

since these users access videos on their devices less frequently.

F2: It is important to adapt the prefetching strategy with regard to the user activity. Ag-

gressively prefetching videos to light users does not make sense: Our prefetching system

differentiates between heavy and light users based on their past activity.

5.3.4 Relationship between request frequency and request inter-arrival rate

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

er
 o

f
re

q
u

es
ts

 p
er

 d
ay

request rate ’λ’ binned each 900 seconds

facebook videos
youtube videos

Figure 5.3: YT+FB data

Figure 5.3 quantifies the relationship between the request rate and the request inter-arrival

66

5.3. Traffic analysis

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

m
ea

n
-s

td
 o

f
n

u
m

b
er

 o
f

re
q

u
es

ts
 p

er
 d

ay

request rate ’λ’ binned each 900 seconds

Mean youtube requests
Std w sunday

Std w/o sunday

(a) YT data

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

m
ea

n
-s

td
 o

f
n

u
m

b
er

 o
f

re
q

u
es

ts
 p

er
 d

ay

request rate ’λ’ binned each 900 seconds

Mean facebook requests
Std w sunday

Std w/o sunday

(b) FB data

Figure 5.4: a: Relationship between the daily request frequency and the daily request inter-
arrival rate on 01/13/2014; b and c : on the week starting from 01/13/2014

rate for YT videos, respectively FB videos, on one given day, here Monday, January 13, 2014.

Given a row data - a vector of (xλ, yN)u values representing one single user, where xλ represents

the inter-arrival rate of requests over one day and yN represents the number of viewed videos

per day - on the x-axis, we start creating bins of 900 second long. This subsequently generates

96 bins to cover the entire day. Then each user is associated to one bin. The bin 0 in the x-axis

refers to users having their inter-arrival request rate ranging from 0 to 900 seconds. Bin 1

corresponds to the range [900 seconds, 2*900 seconds[, etc. On the y-axis, for each of these 96

groups, we show the number of requests per day (yN) of the 99-percentile most active user

within each bin. Figure 5.3 shows that the activity of users could be modeled and quantified

with an exponential decay. Users do not request more than 3 videos per day when their request

inter-arrival rate is higher than 20∗900 seconds.

Figures 5.4(a) and 5.4(b) generalize this observation for the rest of the days of a week (until 20

January). On these figures, users are binned on the x-axis as per the daily average inter-arrival

rate of the requests they generated in the week of Monday, January, 13, 2014. On the y-axis,

for each of the 96 bins, we show the mean over the seven days of number of requests of the

99-percentile most active user within each bin. The standard deviation is also given twice:

once over the seven days, and once over six days from Monday to Saturday (excluding Sunday).

Figures 5.4(a) and 5.4(b) show that the request inter-arrival rate remains slightly similar across

the days of the week. The standard deviation gets quickly close to zero for the least active

users and it also remains relatively low for the heaviest users. The standard deviation is slightly

67

Chapter 5. CPSys: A system for mobile video prefetching

higher when it includes Sunday. This illustrates that users have more heterogeneous con-

sumption behaviors on Sunday than on other days. On Sunday, we record a lower activity on

mobile devices. This suggests that the majority of users consume less FB and YT videos on

their mobile devices while a minority is much more active on Sundays. The patterns are quite

similar for YT (Figure 5.4(a)) and FB (Figure 5.4(b)); only the mean request inter-arrival rate of

the heaviest users is higher for YT.

F3: The request inter-arrival rate might be used to identify the heaviest users from the least

active ones in order to enforce them a specific prefetching strategy. Moreover Figures 5.4(a)

and 5.4(b) provide additional insights to fine tune the prefetching system: The 99-percentile

most active users request no more than 35 FB videos and 52 YT videos per day on average,

which gives an insight on the daily number of videos to prefetch.

5.3.5 Video lifetime distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

C
D

F

time (granulality per hour)

CDF of number of views across the time

Figure 5.5: Lifetime distribution of videos made available on January 8, 2014

In Figure 5.5, we show the lifetime distribution of YouTube videos across time. We limited our

study to videos that have been uploaded to YouTube on January 8, 2014, which is the starting

day of the dataset. In this study, the following process was applied:

• First, the unique reference IDs of the YT videos in the dataset are extracted from the URIs

(as explained in Section 5.3.1).

68

5.3. Traffic analysis

• Second, the reference-id of each of these videos is decoded into a base64 encoding

scheme to get the unique identifier of the video attributed by YouTube to index the

content.

• Third, the YouTube API 2 is used to retrieve the day the videos were made available

online and their category.

• Fourth, we observe that 4554 YouTube videos were uploaded on 8 January 2014 and are

present in the dataset.

• Fifth, the aggregated cumulative distribution of the number of views of these videos is

computed at a granularity of 1 hour and for the whole period of the dataset (94 days).

An offset is associated to each of these video to shift the first request of each video to the

origin. Then we use the same offset to shift the rest of requests of the same content.

We plot in Figure 5.5 the cumulative distribution of the number of views of these videos. The

figure clearly shows that most of the views happen in a short time frame after the videos are

made available: 10% the first hour and 40% the first day.

F4: According to Cha et al. [28] a large part of content items is immutable which means that

users tend to lose interest in an item immediately after they consumed it. Figure 5.5 confirms

that any prefetching strategy shall be proactive and quickly anticipate the interest of each user

towards each video.

5.3.6 Load variation across the day

We plot in Figure 5.6(a) the aggregated number of simultaneous YT and FB sessions in the

dataset across one representative day. As expected, it follows a classic daily pattern with peaks

at 1pm and in the evening. Figure 5.6(b) concentrates during the most loaded hours: 1-2pm

and 9-10pm. At a granularity of seconds we observe that traffic is not uniformly distributed.

A clever prefetching strategy would be to leverage the local minimum in these most loaded

hours to push content on mobile devices. Digging further, one might investigate the best way

to allocate the mobile spectrum. One possible solution would be to efficiently reuse white

2https://developers.google.com/youtube/hl=fr

69

Chapter 5. CPSys: A system for mobile video prefetching

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 5 10 15 20

N
u
m

b
er

 o
f

si
m

u
lt

an
eo

u
s

se
ss

io
n
s

hour

daily pattern

(a) Load variation during the day

 700

 750

 800

 850

 900

 950

 1000

 1050

 1100

 50 100 150 200 250 300 350

N
u
m

b
e
r

o
f

si
m

u
lt

a
n
e
o
u
s

se
ss

io
n
s

(10*x) seconds

13h00-14h00
21h00-22h00

(b) Load variation during peak hours

Figure 5.6: (a) Number of active sessions across the day; (b) Zoom in during peak hours

spaces [32] and push content during these periods. Yet, we investigate this in future work.

F5: Load is not uniformly distributed, including at peak hours. Therefore, prefetching should

be scheduled either at off-peak hours or at much smaller time scales at the least loaded in-

stants during the peak hours, and in coordination with the mobile carrier’s resource allocation

control.

5.4 System Design

CPSys (Central Predictor System) is designed to leverage the user’s interest or social ties to

determine a personalized list of content items to be prefetched for each user. Figure 5.7 depicts

the CPSys architecture. The system consists of two main components:

• Prefetcher agent. Installed on the user device, this component runs as a background

service to ensure two main functions. First it provides the centralized predictor with

reports on the user’ activities. Second it triggers and controls the prefetching of the

videos from a list it receives from the centralized predictor.

• Central predictor (CP). This component holds and updates profiles of all users running

the prefetcher agents by using the reports provided by the latter ones. It also creates

and updates social ties between users. Finally it exploits all these sets of information to

70

5.4. System Design

predict the candidate videos to prefetch for each user running the prefetcher agent.

The 3 following questions are used to drive the design of our system: What to prefetch? When

to prefetch? How many videos to prefetch?

5.4.1 What to prefetch?

Figure 5.7: CPSys design

Our prefetching strategy is derived from the recommendation techniques, yet tailored to the

mobile networks requirements and constraints. First, we identify users with common interests.

The rationale is to affiliate for each user a group of users - we call them neighbors - who tend

to request similar content items, hence we build a directed graph. Second, on top of this graph

and for a given user X, the centralized predictor tracks the videos that has been requested by

neighbors of user X and defines a personalized list of prefetching candidates. In the following,

we detail how the CP creates the graph and updates the users’ profiles:

71

Chapter 5. CPSys: A system for mobile video prefetching

Building the graph

The graph (B1 on Figure 5.7) is one of the most important components of the CP. It builds and

maintains ties between users based on social or interest affinity. It implements the following

two interfaces:

Social graph interface (SG) The prefetcher agent, installed on the user device, reports the

IDs of all social neighbors running the prefetcher agent to the central predictor. Hence, the

social graph is inferred from the OSN such as we do for Facebook. The social neighbors should

as well install an instance of the prefetcher agent so that CPSys could create the edge between

two users socially connected.

Interest graph interface (IG) The central predictor updates in daily routine the list of neigh-

bors affiliated to each user. It computes similarities between users based on all past and

recorded user preferences, hence re-affecting the implicit ties with respect to the new similar-

ity scores. The more we learn about the user preferences the more accurate the prediction

model can become. There exist many similarity measures between pair of sets such as cosine,

euclidean, Pearson, Jaccard, etc. We use the Jaccard index [91] to compute the Affinity (A)

score between all users. The reason of this choice is twofold. First, we suppose that a user is

interested in a video only if she watches it. This leads to a binary preference either the video

content is releavent or not for a user. Second, in CPSys we avoid creating edges between the

heaviest and the lightest users. This reduces the time overhead required to update the profile

of light users, since an update is triggered each time a neighbor watches a video. Formally, the

affinity score is computed as the following:

A(u, y)d = |Lu(v)t ..d−t−1 ∩Ly (v)t ..d−t−1|
|Lu(v)t ..d−t−1 ∪Ly (v)t ..d−t−1| (5.1)

Lu(v)t ..t−d is the set of videos viewed by user u over the time window of d days. We associate

for each user the K -Nearest Neighbors (KNN), i.e. the ones with the highest affinity scores.

The decision for an appropriate K value is a design choice.

72

5.4. System Design

Content selection process

Having established the graph, when User X requests a content item v at instant t , the central-

ized predictor captures this request in real time and proceeds as follows:

• Neighborhood Notification (B2 on Figure 5.7). The CP manages (creates and updates) a

queue named QNotif which contains the identifiers, i.e. URLs, of the videos watched by

the user’s neighbors. This queue is updated each time one of these neighbors watches

a video. More precisely, each element in the queue, named index, is a data-structure

composed of the unique identifier of a video and several attributes of the video, including

its local popularity, the source(s) of the request(s) for that video (the neighbor(s) who

requested the same content), its freshness (the date of the latest request for that content),

and the pointers to the next and previous indexes in QNotif. QNotif may implement

different policies to rank the indexes in the queue. We opted for the Most Popular Most

Recent (MPMR) policy for the queue QNotif in CPsys, as detailed below.

• Update User Profile (B3 on Figure 5.7): The CP updates the profile of user X. First, it

updates the request rate associated to this user and increments the number of requested

videos viewed per day. Then the CP inserts the index of the viewed video into the

Qviewed queue. In CPsys we do not prefetch the same content multiple times. The

rationale behind this design choice is twofold:

First, according to Cha et al. [28] a large part of content items is immutable which means

that users tend to lose interest in an item immediately after they consumed it. This is

especially the case for, e.g. catch-up [47] or user-generated content, where users tend to

watch the content only one time.

Second, we consider the local cache of a user being large enough to hold content items

for a considerable period of time before removing it. As a result, requests for already

prefetched items can be easily served locally, even for multiple requests.

Figure 5.8 presents the queue QNotif implemented with the MPMR policy. QNotif is divided

into a set of classes (C j=0..Γ):

• Each class C j includes at least the indexes of the videos that have been watched by a

part or all of the user’s neighbors on day d = (N − j), where N points to the actual day

73

Chapter 5. CPSys: A system for mobile video prefetching

𝑉ℎ
𝑝ℎ,𝑡ℎ 𝑉𝑖

𝑝𝑖,𝑡𝑖 𝑉𝑡
𝑝𝑡,𝑡𝑡 𝑉ℎ

𝑝ℎ,𝑡ℎ 𝑉𝑡
𝑝𝑡,𝑡𝑡

𝐶0: 𝐷𝑎𝑦 𝑁 𝐶1 ∶ 𝐷𝑎𝑦 𝑁 − 1 𝐶𝑇 ∶ 𝐷𝑎𝑦 𝑁 − Γ

𝑉𝑙
𝑝𝑙,𝑡𝑙

Figure 5.8: QNotif: Data structure which holds the prefetching candidates

(d equals to N in that case).

• Γ is a parameter, expressed in terms of number of days. Γ is used to prevent the queue

from growing indefinitely. The setting of this parameter is a design choice. The higher

the value of Γ, the more costly the look_up and update operations will be. Given that the

number of views in the considered dataset drops significantly 3 days after the upload

(c.f. Finding F4 in Section 5.3.5), we set Γ to 3.

In MPMR and within each class C j , the rank of the index is attributed with respect to the

popularity (p) as a first criteria, then with respect to the freshness of the content. The index

heading the class is referred by (vh
ph ,th) which should point to the most viewed content by

neighbors, then as far as we iterate through the list of indexes, the popularity should either

remain the same or drops until we reach the tail of the class (vt
pt ,tt).

Based on the notations used in Figure 5.8, we illustrate how QNotif is maintained with respect

to the MPMR policy, we suppose that one of the neighbors of user X requests a content item

Vl . As a result, CP updates the list of indexes Qn(v) of user X. Algorithm 3 and the following

paragraphs detail where exactly in the list to insert the index vl . vl is a pointer to content item

Vl .

• Line 1,2: This is the case where index vl does not exist in Qn(v), hence the index is

created and inserted into class C0. A newly created index starts always with p = 1, since

only one of the neighbors watched the content. When we insert vl , first, we determine

its target location which is index vi t ar g et where : (pi t ar g et−1 > 1) and (pi t ar g et = 1), then we

shift each index after this target location vi t ar g et by one position to make room for the

new insertion.

74

5.4. System Design

Require: Qn (v), vl ;
1: if vl ØQn (v) then
2: insert(vl , N , pit ar g et > 1, pit ar g et == 1)

3: else
4: dl ← g et_d ay(Qn (vl))
5: pl ← g et_popul ar i t y(Qn (vl))
6: pl ← pl +1
7: if dl == N then
8: move(vl , N , pit ar g et +1 > pl , pl ≥ pit ar g et)

9: else
10: dl ← dl +1
11: move(vl , dl , pit ar g et > pl , pl ≥ pit ar g et)

12: end if
13: end if

Algorithm 3: Update of user X’s QNotif upon the request for video Vl with index vl by one of
User X’s neighbors

Now, if the index vl already exists within QNotif, we take both the C and p parameter to decide

where to move it.

• Line 7: This line corresponds to the case where C equals to N . This index remains within

class N and only the number of views (pl) is incremented. Then, vl is moved ahead to

the position before index vi t ar g et with property (pi t ar g et−1 > pl) and (pi t ar g et <= pl).

• Line 8: This is the case where C < N . In this case, vl jumps to class C +1, increments the

(pl) score, and is moved ahead before index it ar g et with property (pi t ar g et−1 > pl) and

(pi t ar g et <= pl).

In the next section, we show that MPMR outperforms other policies by improving the predic-

tion accuracy and decreasing the overload. In particular we compare MPMR to LRU and FIFO

policies.

5.4.2 When to prefetch?

To efficiently manage the prefetching process, the system includes a double control mech-

anism, consisting of a network-oriented and a state-transition control mechanism. The

prefetching -triggered and performed by the user device- is hindered until both control mech-

anisms meet.

Network control mechanism

The prefetching shall be hindered when the network is overloaded. And, ideally, it should be

achieved in coordination with the mobile carrier’s resource allocation control (See Finding F5

75

Chapter 5. CPSys: A system for mobile video prefetching

in Section 5.3.6).

Hence, the Network status component (B5 on Figure 5.7) is used to monitor and report the

traffic load to the centralized predictor. If the load exceeds a certain threshold, prefetching is

not allowed to be performed.

State-transition control mechanism

The prefetcher agent is also controlled by a state-transition control mechanism. Figure 5.9

shows the transition states that the prefetcher agent should follow-up.

sleep listen prefetch

Figure 5.9: Transition-state control mechanism running on the prefetcher agent

Figure 5.9 depicts the 3 states the prefetcher agent goes through. By default, the prefetcher

agent is in the "listen" state and tracks all user requests. If the network control mechanism

allows it (i.e. if the network conditions are met) and if the prefetcher agent detects a session

established between the user device and one of the content applications for which the prefetch-

ing system is deployed, the agent switches to the "prefetch" state and the video prefetching

process starts effectively. When this process ends, the agent turns to the "sleep" state for a

certain period of time ∆, predefined at the central predictor. Then it turns back to the "listen"

state.

This double-check control mechanism aims at maintaining a solid control on the prefetcher

agent, so as to prevent too aggressive video prefetching plans especially for light users. This is

in line with the Findings F2 and F3 from Sections 5.3.3 and 5.3.4.

5.4.3 How many videos to prefetch?

Finding F3 in Section 5.3.4. shows that a small set of users behaves as heavy users. However,

the users may change their behavior across the time. The number of prefetched videos should

also follow the evolution of each user’s behavior accordingly. In CPsys, the Update User Profile

block (B3 on Figure 5.7) models the user behavior as a function of time, based on her past

activity, and it determines the final list of videos to prefetch with these three parameters:

76

5.4. System Design

[S̃max]d , Npr e f etch and pth .

• [S̃max]d is a prediction of the number of content items the user would request at day d .

It is updated on a daily basis and equals to the average number of requested videos per

day over the 10 past days.

[S̃max]d =
∑d−1

i=d−11 (number of requests per day)i

10
(5.2)

• Npr e f etch is the maximum theoretical number of videos from the queue QNotif that the

prefetcher agent is allowed to prefetch when the prefetching process is executed.

Npr e f etch = S̃max ∗ r +1 (5.3)

• The threshold popularity score, pth , is used to achieve a final filter among the Npr e f etch

best ranked candidate videos in QNotif. The rationale is to avoid prefetching the very

unpopular content videos. Hence only the subset of the videos satisfying the property

(pi >= pth) are moved to the QCandidates queue in the Update User profile block and

communicated as a list to the prefetcher agent on the user device to be prefetched

sequentially. In the next section, we investigate the impact of fine-tuning this parameter

pth on the performances of CPsys.

The queue QRemoved on Figure 5.7 is just used for debugging purposes. If the user requests a

content which had already been prefetched previously but removed before the user watches it,

due to storage capacity limitation for example, QRemoved is updated with the index of the

removed video. Later, this information is used to feed the Statistics component (B4 on Figure

5.7).

77

Chapter 5. CPSys: A system for mobile video prefetching

5.5 Trace-driven simulation experiments

We developed Prefsim 3, written in Java, a simulator implementing the CPSys architecture as

presented in Figure 5.7 and described in the previous section. Prefsim runs either in social or

interest mode. It is a trace-driven simulator. In both modes, Prefsim requires a traffic trace

as an input file which contains the timestamp, the userID, the videoID, and the duration for

individual user sessions. Additionally, if it runs in social mode, the simulator requires the

social graph as input file.

The task performed by the prefetching system might be considered as an instance of a rec-

ommendation problem: the system should be able to predict the user’s interest and to timely

prefetch the content of interest. The approaches applied in studies in the area of recommen-

dations usually rely on the collection and exploitation of preferences expressed by users -

mostly ratings - to build recommendation algorithms and engines, as well as to assess their

performances - mostly recall and precision - [36]. In recommendation systems, it is commonly

known that a very small set of users express their opinions on items through rating or liking,

while the majority consume items without expressing their opinion. Instead, our dataset

captures real users’ views and not their expressions, hence we are able to further characterize

the users’ interests.

The finding F1 in Section 5.3.2 suggests that the heavy long tail of the video popularity distri-

bution leads to a high sparsity levels of the user-video matrix, which includes all users and

videos from the trace and describes how the two are linked by observed sessions. Even if

the prediction runs perfectly, it is expected that the recall -later we call it Hit-Ratio (HR)- of

approaches based on this matrix will be too low to show a considerable benefit in the context

of prefetching.

We evaluate CPsys based on 3 metrics which are network oriented. We evaluate the following:

• Correct Prediction Ratio (CPR): Ratio of requests served from the user’s local cache out

of the number of prefetched videos.

• Overhead: Ratio of videos being prefetched and not requested by the user divided by

the number of requests that were not served from the user’s local cache. Formally, it is

3http://www.ict-ecousin.eu/public-deliverables-dissemination/public-deliverables/ecousin-deliverable-
d3.2-v1.0-public.pdf/view

78

5.5. Trace-driven simulation experiments

equal to:

Over head = (1−C PR)∗Nprefetched videos

(1−HR)∗Nrequested videos
(5.4)

• False Negative Ratio (FNR): Ratio of requests that the prediction policy failed to detect,

although clients have already been notified about these contents: The QNotif holds an

index pointing to the requested content, but the content was not prefetched since it

was not considered to be relevant for the user. The reason for this failure might be that

the content was not considered popular enough (pv < pth), and/or the freshness of the

content was not good enough to position it among the Nprefetch best ranked content

items in QNotif, i.e. among the ones selected as prefetching candidates. Thus the sum

of FNR and CPR gives insights into the optimal CPR we may achieve.

The goal of the Prefsim implementation is to get insights into the prediction accuracy that one

can achieve.

5.5.1 Simulation setup

In Prefsim, the simulation setup is defined in an XML-based configuration file (input.xml). We

evaluated our system using the FB dataset that was introduced in Section 5.1. In order to ensure

fast simulation processing, we only considered the users who requested at least 100 videos over

the whole data collection period (in average 1 video per day). Table 5.2 summarizes the traffic

trace used for the simulation. The sparsity level (1− number of requests
number of user∗number of videos) is extremely

high and, thus, sticks to the real world traffic properties. To the best of our knowledge, no

studies have used such a sparse user-video matrix in context of video prefetching; hence this

makes the prefetching task tougher, yet more realistic and makes this work unique in this

respect.

The interest graph is updated in a daily routine. Each user has at most 20 similar neighbors.

The cache size used for users is limited to 50 videos and LRU is used as a cache replacement

policy. We maintain a history size of the 10 past requests to model the user activity. r is equal

to 0.334. For a given user, we do not prefetch videos unless she requests at least 20 videos.

This is to get a first insight on users’ preferences and to better assign neighbors for each user

79

Chapter 5. CPSys: A system for mobile video prefetching

in the system. The sleep state period (∆) is set to 1 hour. Regarding the configuration of the

queues QNotif and QCandidates, Γ is set to 3 days, and only the videos that belong either to

the classes C0 or C1 of QNotif are candidates for prefetching.

Number of Number of Number of Sparsity level
FB sessions unique users unique videos

4,152,885 23,548 962,406 0.9998

Table 5.2: Traffic trace used for the simulation

5.5.2 Performance analysis

In the first experiment, we evaluate the average CPR and the overhead of several policies

adopted by QNotif: FIFO, LRU, and MPMPR-pth , i.e. the MPMR policy with different values for

the threshold popularity score pth (pth ∈ [1..5]). In the same experiment, we also compare the

case where Npr e f etch is either dynamic and equal to Smax as described in Section 5.4.3 or static

and fixed to 6. Figure 5.10 shows that regardless of the values of pth , MPMR outperforms the

LRU and FIFO policies. We observe a significant increase in the CPR when pth > 1, reaching

up to 18%. The CPR improves when the value of pth increases, as this makes the prediction

policy more conservative: the prefetching process is triggered only when the content was

viewed at least pth times by the neighbors.

Figure 5.11 shows that the overhead decreases significantly when adopting MPMR, especially

when pth is high. We observe that if prefetching is not well tuned, then the traffic increases

significantly and may even double, which obviously cannot be accepted by Telcos. However, a

fine tuning of parameters significantly decreases the Overhead. We show that it drops below

5% when (pth > 2). Besides, adapting the number of prefetched videos with respect to the past

user activity (Npr e f etch = Smax) also reduces the overhead, hence leads to a better network

experience.

The lesson we learn from this result is in line with Finding F1: it is safer to avoid prefetching

very unpopular content and wise to control the overhead caused by content prefetching on

the network load.

Figure 5.12 shows that the FNR increases as far as the prediction policy becomes more con-

servative, which in return increases the CPR and decreases the overhead. Relying on users’

neighbors, FNR reaches 12% and CPR reaches 18% when pth is equal to 5, this suggests that

80

5.5. Trace-driven simulation experiments

 0

 0.05

 0.1

 0.15

 0.2

FIFO
LR

U
M

PM
R
-1

M
PM

R
-2

M
PM

R
-3

M
PM

R
-4

M
PM

R
-5

C
P

R

Nprefetch=Smax
Nprefetch=6

Figure 5.10: CPR with different content seleciton policies

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

FIFO
LR

U
M

PM
R
-1

M
PM

R
-2

M
PM

R
-3

M
PM

R
-4

M
PM

R
-5

O
v

er
h

ea
d

Nprefetch=Smax
Nprefetch=6

Figure 5.11: Overhead with different content selection policies

while setting pth to 5, an optimal content selection policy would rise the CPR to 30%. How-

ever, decreasing the FNR will systematically increase the overhead. This trade-off should be

carefully handled in operational networks.

The lesson we learn from the past simulation results is that regardless of the policy used

to select the prefetching candidates, prediction is still hard in general. While the MPMR

suggests pushing the most popular and fresh content items that have been seen by the most

similar neighbors, we observe that the large majority of viewed videos by individual users

are considered as personalized content items. Prefetching these personalized content items

81

Chapter 5. CPSys: A system for mobile video prefetching

is risky and leads to an acute trade-off between the overhead and prediction accuracy. In

CPsys, the more we learn about users’ preferences, the more accurate the prediction model is.

Unfortunately, the dataset we used does not cover all users’ preferences since it was collected

from mobile networks. We could have successfully identified and pushed a content the user is

interested in. However, this user was connected to a fixed network through a WiFi connection

the time he requested that content. In this case, we do not capture this request in our mobile

traffic traces. This suggests that the performance assessment we carry out in this section

represents the lower bound of the real performance we may achieve.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

FIFO
LR

U
M

PM
R
-1

M
PM

R
-2

M
PM

R
-3

M
PM

R
-4

M
PM

R
-5

F
N

R

Nprefetch=Smax
Nprefetch=6

Figure 5.12: FNR with different content selection policies

In the second experiment, we limit the simulation to 4 days and compare our prefetching

system with the authors’ proposition in [41] which consists of pushing bundles of popular

content on mobile devices. Mapping this to Prefsim, if one user watches a video, then every

user should update her list of prefetching candidates with the most recently watched videos.

Figures 5.13 and 5.14 show that limiting the neighborhood to the 20 most similar users and

setting pth to 3 improves the CPR up to 3 times, while it decreases the overhead by 5 times.

This means that pushing only popular content to everyone is not necessarily the best option

with regard to the prediction efficiency. Yet, it is better to personalize the list of prefetching

candidates according to the preferences of the user’s most similar neighbors.

82

5.6. Prototype implementation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

M
PM

R
-1

M
PM

R
-2

M
PM

R
-3

C
P

R

Nprefetch=Smax
Only popular contents

Figure 5.13: CPR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

M
PM

R
-1

M
PM

R
-2

M
PM

R
-3

O
v

er
h

ea
d

Nprefetch=Smax
Only popular contents

Figure 5.14: Overhead

5.6 Prototype implementation

We have implemented a prototype of CPsys using a client-server model. The central predictor

runs as a third-party server holding profiles of all users running the prefetcher agent.

At the server side, we used an Apache Tomcat server 4 as well as the Jersey framework 5 to

implement the restful web services. We used the Mahout framework 6 to build and update

the interest graph and compute the Jaccard affinity scores. As a content selection policy, we

4http://tomcat.apache.org/
5https://jersey.java.net/
6https://mahout.apache.org/

83

Chapter 5. CPSys: A system for mobile video prefetching

(a) CPClient interface (b) Prefetched videos (c) Notification

Figure 5.15: Snapshots from CPClient

implemented MPMR.

At the client side, users should install the CPclient which is an Android-based application.

The CPclient endorses the prefetching agent and a frontend interface (c.f. Figure 5.15(a)).

The CPClient is linked to the user’s Facebook account, i.e. the user is asked to log in to his

Facebook account to initiate running the CPClient. The reason for this is that, in CPSys, we

use the Facebook_ID as a unique user identifier. The same ID is used at the server to update

all data structures, including databases, QNotifs, QViewed, etc.

We use an intent-filter mechanism 7 to follow users’ activities and report the list of videos

watched to the CPserver. When prefetching is executed, CPClient pulls the video IDs from

QNotif. Subsequently, the agent asynchronously prefetches these videos. When prefetching is

complete, thumbnails of the videos are displayed (cf. Figure 5.15(b)). In this example, QNotif

holds the IDs of YouTube videos which are considered for prefetching.

At last, in our prototype implementation, we enriched the prefetching-app with a notification

mechanism (c.f. Figure 5.15(c)). When the prefetching process is over, a user – running

CPclient receives a notification to motivate him or her to watch the recently prefetched videos.

7http://developer.android.com/guide/components/intents-filters.html

84

5.7. Conclusion

We believe that this incentive strategy improves both CPR and HR, since clients are more likely

to consult and watch the prefetched videos.

A video demonstration of this work is available at

http://tinyurl.com/pq2v28s.

5.7 Conclusion

In this chapter, we designed, evaluated and implemented CPSys, a prefetching system we

have designed based on traffic patterns and clients’ behavior that we observed in a real op-

erational mobile network. We addressed a series of key design issues. Subsequently, CPSys

relies on recommendation techniques to build the implicit or social graph, then we use the

MPMR policy to select the video prefetching candidates. At the end, we evaluated CPSys

through trace-driven simulations. We show that the highest lower-bound performance of

CPSys regarding CPR ranges from 18% to 22% while we show that the traffic overhead de-

creases significantly. We observed that prefetching performance is strictly related to content

characteristics. When content items become further personalized, prediction becomes harder

and potentially reduces the prediction accuracy.

There are many possible venues towards enhancing CPsys. One primary direction would be to

focus on the personalized content items, hence supplying CPsys with additional information

to further personalize the list of prefetching candidates. In parallel, we plan to enhance our

system implementation and make it faster and more scalable. The goal is to study how CPSys

performs at large scale and study how notifications can improve the system performance.

85

http://tinyurl.com/pq2v28s

6 Conclusion & Perspective

This thesis has explored the design of streaming media content distribution techniques to

reduce the delivery costs and increase the user quality of experience. In the context of caching,

costs include the server load and the total volume of data crossing the transit links, while in

context of prefetching, costs consist of the traffic overhead resulting from the false negative

prefetched videos. First, we analyzed and provided an in-depth understanding of user behavior

and video traffic properties. More precisely, we have deeply investigated and modeled the

user video access patterns. Then, we analyzed the user-engagement and quantified the video

abandonment rate as a function of the bandwidth. We have further studied and modeled the

switching between qualities that the client may incur while watching a HAS content.

The findings on users’ behavior have served as guidelines for the design of new caching

strategies for conventional CDN and transparent caches. Additionally, we leveraged these

observations to motivate our work on prefetching.

Section 6.1 outlines our contributions in this thesis. In section 6.2, we provide possible

directions for future work.

6.1 Achievements

We now provide a brief summary about our contributions.

6.1.1 Traffic analysis

We have mainly investigated the properties of 2 classes of traffic. The first class consists of

HAS traffic, and consists mainly on catch-up and live streaming sessions. The second class

consists of UGC traffic, mainly YouTube and Facebook user generated videos. In the following

87

Chapter 6. Conclusion & Perspective

we outline the major findings we derived from the data analysis.

HAS traffic characterization

• The number of requested chunks in live and on-demand HAS sessions could be mod-

eled by a piece-wise distribution. The head of the distribution follows the log-normal

distribution while the tail follows the generalized Pareto distribution.

• Delays perceived at the joining-phase has a straight impact on the user engagement. If

clients experience video interruptions or long loading delays during the 3 first requested

chunks, the user-engagement decreases by a factor of 7.

• Most of the requested profiles are encoded between 600 and 1000 kbps. The lowest

encoding profiles are mostly requested at the beginning of the session. Then users

rapidly switch to the highest profiles.

• We used Markov chain to model the switching between profiles. We estimated the

probability to move from Pi∈[0..7] to profile P j∈[0..7]; j 6=i . We observed that the probability

to move from Pi=5 to P j>5 is 22%, then when clients are in Pi=6, they are more likely to

switch to P j=5 with a probability equal to 60%. When being in P7, clients move to P6

and P5 with a probability of 92%. This suggests that when being in P5, a very limited

number of transitions happen among the highest profiles. When being in P4, around

45% of transitions are made to the upper profiles, and that 48% are made from Pi=5 to

P j=4. This intermittently switching between the highest profiles does not necessarily

yield improvement of quality of experience. But instead, it adversely affects some major

network building blocks such as caches. On average the number of transitions during

a HAS session falls within [1/6, 1/2] of the total requested chunks per session. In case

where a cache is deployed at the Gi interface of the mobile career, our simulations show

that this high switching behavior and video bitrate selection heterogeneity results in a

significant decrease of the cache hit-ratio.

UGC traffic: YouTube and Facebook traffic characterization

• The YT and FB video popularity distribution follows the Zipf distribution. We observe

that around 75% of YT videos and 65% of FB videos are requested only once.

88

6.1. Achievements

• Users do not request more than 3 videos per day when their request inter-arrival rate

is higher than 1800 seconds and few users request far more frequently videos, while

the majority is less active. Over a period of one month measurement, we observed that

around 72% and 83% of active users requested at most 10 YT and FB videos respectively.

• The lifetime distribution of the user generated videos could span over a long period.

However, most of the views happen over a short time frame. we observe that 10% of the

views happen only one hour after the content becomes available online, while near the

half of the views are done the first day.

6.1.2 Caching HAS videos

In this thesis, we proposed WA-LRU as a new caching strategy that leverages the time locality

of the segments within the HAS content. The principle of WA-LRU is driven by 2 main findings

about the client browsing behavior. First, we observed a heavy long tail distribution which

suggests that the probability to abandon the viewing becomes high as far as users remains

watching the video. Second, long start up delays increases significantly the abandonment

rate. Therefore, in WA-LRU we give priority to the first chunks to be cached. The requested

chunk is compared with the threshold index which is computed with respect to the cache

capacity and traffic load on the cache. Simulations show that WA-LRU decreases significantly

the processing time at the cache while increases the average cache hit-ratio.

We have also proposed CF-DASH a cache friendly Dash player to tackle the player instability

issue. In CF-Dash, we reduce the number of switching between qualities while we sustain

the user quality of experience. We evaluated CF-DASH through simulations and test-bed

experiments. Both evaluation methods show that we achieve more than 15% of gain in hit-

ratio.

6.1.3 Prefetching videos on mobile devices

The last part of this thesis was dedicated for the design, evaluation and implementation of

CPSys a system for mobile video prefetching. In CPSys, we build implicit and explicit ties

between users sharing similar interests. Then, we proposed MPMR policy to sort content

items that have been viewed by the most similar neighbors with respect to the popularity and

freshness scores. Prefetching is executed when two control mechanisms meet: a state control

89

Chapter 6. Conclusion & Perspective

mechanism implemented at the user device and a network control mechanism defined by the

mobile carrier. At the end, the number of items to be prefetched depends on the engagement

of the user. We classify clients into heavy and light users and prefetch items accordingly.

We developed prefsim a java simulator implementing the CPSys architecture. Simulations

show that CPsys achieves a satisfactory performance. Based on our simulation settings, the

lower bound prediction accuracy could reach 22% while we decrease significantly the traffic

overhead down to 5%. We also provided a proof of concept implementation of CPSys by

implementing an android application that runs as a prefetcher agent and the central predictor

as a web server.

6.2 Future work

We conclude this dissertation by highlighting some open problems and items for future work.

6.2.1 Future works on data analysis

• In the HAS dataset, we only analyzed live and catch-up traffic. It would be interesting to

study other types of videos such as UGC videos and infer additional guidelines regarding

caching as well prefetching mechanisms.

• We provided a coarse-grained analysis on the user-engagement since we collected the

data from a vantage point in the mobile network. However, it would be interesting to get

closer to the client and assess the user-engagement from a user perspective. For instance

by instrumenting the video player with an agent that reports fine grained information

related to each buffering or stalling event that may happen during the video viewing.

• Using our datasets, we were not able to derive inference on users profiles in Facebook or

YouTube. Mining the different attributes that are accessible through the user profile and

combining them with the user activity at the network would help to further characterize

and better predict the user behavior.

6.2.2 Future works on caching

• In CF-DASH, it would be interesting to further investigate the ideal profile to be cached.

In our work, we were limited to the MOS criteria to decide which profile should be

cached and served to the clients. However, several other criteria could be involved such

90

6.2. Future work

as the category of the content, the playback buffer, etc.

• Caching performance depends crucially on the type of content to be cached. In this

thesis we evaluated WA-LRU using a catch-up traffic trace to drive our simulations.

We demonstrated that WA-LRU performs better than the widely adopted LRU. That is

because we observe a heavy tailed distribution of the requested number of chunks per

session. The heavier the tail the better WA-LRU performs, otherwise if the number of

views per segment is uniformly distributed, then WA-LRU will perform the same like

LRU.

6.2.3 Future works on prefetching

• We used the collaborative filtering techniques to infer the interest graph. One limitation

of this method is the cold start problem. In our simulations, we assign the interest ties

for a user after requesting at least 20 videos. One promising way to solve the cold-start

problem is to further investigate the social ties and infer which content is more likely

to be consumed by the user based on his social neighborhood. Then as far as CPSys

learns about the user preferences, we may therefore consider the interest graph as an

alternative to the social graph.

• In context of prefetching scalability and sparsity should be addressed when the number

of clients and items in the system grows exponentially. Therefore, new methods have

to be developed to reduce the computational costs and to tackle this potential issue.

This should drive us to investigate new research directions such as cloud computing or

distributed systems to make the system highly deployable on large scales.

91

Bibliography

[1] http://www.progressivepolicy.org/wp-content/uploads/2013/09/2013.

09-Carew-Mandel_US-Investment-Heroes-of-2013.pdf.

[2] http://blogs.msdn.com/b/interoperability/archive/2014/01/03/

mpeg-dash-tutorial-embedding-an-adaptive-streaming-video-within-your-html5-application.

aspx.

[3] https://iperf.fr/.

[4] http://www.pptv.com/.

[5] http://www.cnlive.it/.

[6] http://www.akamai.fr/.

[7] https://developer.apple.com/streaming/.

[8] http://www.akamai.fr/enfr/html/resources/http-live-streaming.html.

[9] http://gpac.wp.mines-telecom.fr/.

[10] http://www-itec.uni-klu.ac.at/dash/?page_id=207.

[11] http://cmm.khu.ac.kr/korean/download.php?id=808&sid=

6a267a6d7b2f771ab06f776dc67a21ba.

[12] http://www.whatisedgerank.com/.

[13] http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/.

93

http://www.progressivepolicy.org/wp-content/uploads/2013/09/2013.09-Carew-Mandel_US-Investment-Heroes-of-2013.pdf
http://www.progressivepolicy.org/wp-content/uploads/2013/09/2013.09-Carew-Mandel_US-Investment-Heroes-of-2013.pdf
http://blogs.msdn.com/b/interoperability/archive/2014/01/03/mpeg-dash-tutorial-embedding-an-adaptive-streaming-video-within-your-html5-application.aspx
http://blogs.msdn.com/b/interoperability/archive/2014/01/03/mpeg-dash-tutorial-embedding-an-adaptive-streaming-video-within-your-html5-application.aspx
http://blogs.msdn.com/b/interoperability/archive/2014/01/03/mpeg-dash-tutorial-embedding-an-adaptive-streaming-video-within-your-html5-application.aspx
https://iperf.fr/
http://www.pptv.com/
http://www.cnlive.it/
http://www.akamai.fr/
https://developer.apple.com/streaming/
http://www.akamai.fr/enfr/html/resources/http-live-streaming.html
http://gpac.wp.mines-telecom.fr/
http://www-itec.uni-klu.ac.at/dash/?page_id=207
http://cmm.khu.ac.kr/korean/download.php?id=808&sid=6a267a6d7b2f771ab06f776dc67a21ba.
http://cmm.khu.ac.kr/korean/download.php?id=808&sid=6a267a6d7b2f771ab06f776dc67a21ba.
http://www.whatisedgerank.com/
http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/

Bibliography

[14] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis. What happens when

http adaptive streaming players compete for bandwidth? In Proceedings of the 22nd

international workshop on Network and Operating System Support for Digital Audio and

Video, pages 9–14. ACM, 2012.

[15] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. Server-based traffic

shaping for stabilizing oscillating adaptive streaming players. In Proceeding of the 23rd

ACM Workshop on Network and Operating Systems Support for Digital Audio and Video,

pages 19–24. ACM, 2013.

[16] S. Akhshabi, A. C. Begen, and C. Dovrolis. An experimental evaluation of rate-adaptation

algorithms in adaptive streaming over http. In Proceedings of the second annual ACM

conference on Multimedia systems, pages 157–168. ACM, 2011.

[17] M. Arlitt and T. Jin. A workload characterization study of the 1998 world cup web site.

Network, IEEE, 14(3):30–37, 2000.

[18] M. F. Arlitt and C. L. Williamson. Internet web servers: Workload characterization and

performance implications. IEEE/ACM Transactions on Networking (ToN), 5(5):631–645,

1997.

[19] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D. Ravichandran, and M. Aly.

Video suggestion and discovery for youtube: taking random walks through the view

graph. In Proceedings of the 17th international conference on World Wide Web, pages

895–904. ACM, 2008.

[20] R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve

accuracy of large recommender systems. In Proceedings of the 13th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 95–104. ACM,

2007.

[21] W. Bellante, R. Vilardi, and D. Rossi. On netflix catalog dynamics and caching perfor-

mance. In Computer Aided Modeling and Design of Communication Links and Networks

(CAMAD), 2013 IEEE 18th International Workshop on, pages 89–93. IEEE, 2013.

94

Bibliography

[22] A. Boutet, D. Frey, R. Guerraoui, A. Jégou, and A.-M. Kermarrec. Whatsup: A decentral-

ized instant news recommender. In Parallel & Distributed Processing (IPDPS), 2013 IEEE

27th International Symposium on, pages 741–752. IEEE, 2013.

[23] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and zipf-like distribu-

tions: Evidence and implications. In INFOCOM’99. Eighteenth Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings. IEEE, volume 1, pages

126–134. IEEE, 1999.

[24] A. Brodersen, S. Scellato, and M. Wattenhofer. Youtube around the world: geographic

popularity of videos. In Proceedings of the 21st international conference on World Wide

Web, pages 241–250. ACM, 2012.

[25] T. Bucher. Want to be on the top? algorithmic power and the threat of invisibility on

facebook. New Media & Society, 14(7):1164–1180, 2012.

[26] P. Calyam, D. Krymskiy, M. Sridharan, and P. Schopis. Active and passive measurements

on campus, regional and national network backbone paths. In Computer Communica-

tions and Networks, 2005. ICCCN 2005. Proceedings. 14th International Conference on,

pages 537–542. IEEE, 2005.

[27] L. Carlinet, T. Huynh, B. Kauffmann, F. Mathieu, L. Noirie, and S. Tixeuil. Four months in

daily motion: Dissecting user video requests. In Wireless Communications and Mobile

Computing Conference (IWCMC), 2012 8th International, pages 613–618. IEEE, 2012.

[28] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I tube, you tube, everybody

tubes: analyzing the world’s largest user generated content video system. In Proceedings

of the 7th ACM SIGCOMM conference on Internet measurement, pages 1–14. ACM, 2007.

[29] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. Analyzing the video popularity

characteristics of large-scale user generated content systems. IEEE/ACM Transactions

on Networking (TON), 17(5):1357–1370, 2009.

[30] X. Cheng and J. Liu. Nettube: Exploring social networks for peer-to-peer short video

sharing. In INFOCOM 2009, IEEE, pages 1152–1160. IEEE, 2009.

95

Bibliography

[31] X. Cheng and J. Liu. Exploring interest correlation for peer-to-peer socialized video shar-

ing. ACM Transactions on Multimedia Computing, Communications, and Applications

(TOMCCAP), 8(1):5, 2012.

[32] R. I. Chiang, G. B. Rowe, and K. W. Sowerby. A quantitative analysis of spectral occupancy

measurements for cognitive radio. In Vehicular Technology Conference, 2007. VTC2007-

Spring. IEEE 65th, pages 3016–3020. IEEE, 2007.

[33] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack. Wave: Popularity-based

and collaborative in-network caching for content-oriented networks. In Computer

Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on, pages

316–321. IEEE, 2012.

[34] G. Christodoulou, C. Georgiou, and G. Pallis. The role of twitter in youtube videos

diffusion. In Web Information Systems Engineering-WISE 2012, pages 426–439. Springer,

2012.

[35] N. Cranley, P. Perry, and L. Murphy. User perception of adapting video quality. Interna-

tional Journal of Human-Computer Studies, 64(8):637–647, 2006.

[36] J. Davis and M. Goadrich. The relationship between precision-recall and roc curves. In

Proceedings of the 23rd international conference on Machine learning, pages 233–240.

ACM, 2006.

[37] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and H. Zhang.

Understanding the impact of video quality on user engagement. ACM SIGCOMM

Computer Communication Review, 41(4):362–373, 2011.

[38] A. B. Downey. Using pathchar to estimate internet link characteristics. In ACM SIG-

COMM Computer Communication Review, volume 29, pages 241–250. ACM, 1999.

[39] J. Erman, A. Gerber, K. Ramadrishnan, S. Sen, and O. Spatscheck. Over the top video:

the gorilla in cellular networks. In Proceedings of the 2011 ACM SIGCOMM conference

on Internet measurement conference, pages 127–136. ACM, 2011.

96

Bibliography

[40] F. Figueiredo, F. Benevenuto, and J. M. Almeida. The tube over time: characterizing

popularity growth of youtube videos. In Proceedings of the fourth ACM international

conference on Web search and data mining, pages 745–754. ACM, 2011.

[41] A. Finamore, M. Mellia, Z. Gilani, K. Papagiannaki, V. Erramilli, and Y. Grunenberger. Is

there a case for mobile phone content pre-staging? In Proceedings of the ninth ACM

conference on Emerging networking experiments and technologies, pages 321–326. ACM,

2013.

[42] W. Galuba, K. Aberer, D. Chakraborty, Z. Despotovic, and W. Kellerer. Outtweeting the

twitterers-predicting information cascades in microblogs. In Proceedings of the 3rd

conference on Online social networks, pages 3–3. USENIX Association, 2010.

[43] N. Gautam, H. Petander, and J. Noel. A comparison of the cost and energy efficiency

of prefetching and streaming of mobile video. In Proceedings of the 5th Workshop on

Mobile Video, pages 7–12. ACM, 2013.

[44] M. Gibas, G. Canahuate, and H. Ferhatosmanoglu. Online index recommendations for

high-dimensional databases using query workloads. Knowledge and Data Engineering,

IEEE Transactions on, 20(2):246–260, 2008.

[45] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Youtube traffic characterization: a view from the

edge. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement,

pages 15–28. ACM, 2007.

[46] A. Gouta, C. Hong, D. Hong, A.-M. Kermarrec, and Y. Lelouedec. Large scale analysis of

http adaptive streaming in mobile networks. In World of Wireless, Mobile and Multime-

dia Networks (WoWMoM), 2013 IEEE 14th International Symposium and Workshops on

a, pages 1–10. IEEE, 2013.

[47] A. Gouta, D. Hong, A.-M. Kermarrec, and Y. Lelouedec. Http adaptive streaming in

mobile networks: characteristics and caching opportunities. In Modeling, Analysis &

Simulation of Computer and Telecommunication Systems (MASCOTS), 2013 IEEE 21st

International Symposium on, pages 90–100. IEEE, 2013.

97

Bibliography

[48] E. Halepovic, J. Pang, and O. Spatscheck. Can you get me now?: estimating the time-to-

first-byte of http transactions with passive measurements. In Proceedings of the 2012

ACM conference on Internet measurement conference, pages 115–122. ACM, 2012.

[49] D. Hong, D. De Vleeschauwer, F. Baccelli, et al. A chunk-based caching algorithm for

streaming video. In NET-COOP 2010-4th Workshop on Network Control and Optimiza-

tion, 2010.

[50] C. Huang, J. Li, and K. W. Ross. Can internet video-on-demand be profitable? ACM

SIGCOMM Computer Communication Review, 37(4):133–144, 2007.

[51] C. V. N. Index. Global mobile data traffic forecast update, 2012–2017 http://www.

cisco. com/en. US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-

520862. html, 2013.

[52] M. Jain and C. Dovrolis. Pathload: A measurement tool for end-to-end available band-

width. In In Proceedings of Passive and Active Measurements (PAM) Workshop. Citeseer,

2002.

[53] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and stability in http-based

adaptive video streaming with festive. In Proceedings of the 8th international conference

on Emerging networking experiments and technologies, pages 97–108. ACM, 2012.

[54] S. Jin and A. Bestavros. Greedydual< sup>∗</sup> web caching algorithm: exploiting

the two sources of temporal locality in web request streams. Computer Communications,

24(2):174–183, 2001.

[55] T. F. Joyce. First in first out activity queue for a cache store, Mar. 25 1980. US Patent

4,195,340.

[56] D. K. Krishnappa, S. Khemmarat, L. Gao, and M. Zink. On the feasibility of prefetching

and caching for online tv services: a measurement study on hulu. In Passive and Active

Measurement, pages 72–80. Springer, 2011.

[57] A. Kvalbein, D. Baltrūnas, K. Evensen, J. Xiang, A. Elmokashfi, and S. Ferlin-Oliveira.

The nornet edge platform for mobile broadband measurements. Computer Networks,

61:88–101, 2014.

98

Bibliography

[58] J. Le Feuvre, C. Concolato, J.-C. Dufourd, R. Bouqueau, and J.-C. Moissinac. Experiment-

ing with multimedia advances using gpac. In Proceedings of the 19th ACM international

conference on Multimedia, pages 715–718. ACM, 2011.

[59] J. Le Feuvre, C. Concolato, and J.-C. Moissinac. Gpac: open source multimedia frame-

work. In Proceedings of the 15th international conference on Multimedia, pages 1009–

1012. ACM, 2007.

[60] S. Lederer, C. Müller, and C. Timmerer. Dynamic adaptive streaming over http dataset.

In Proceedings of the 3rd Multimedia Systems Conference, pages 89–94. ACM, 2012.

[61] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim. On the existence of

a spectrum of policies that subsumes the least recently used (lru) and least frequently

used (lfu) policies. In ACM SIGMETRICS Performance Evaluation Review, volume 27,

pages 134–143. ACM, 1999.

[62] C. W. Leong, W. Zhuang, Y. Cheng, and L. Wang. Call admission control for integrated

on/off voice and best-effort data services in mobile cellular communications. Commu-

nications, IEEE Transactions on, 52(5):778–790, 2004.

[63] Y. Li, Y. Zhang, and R. Yuan. Measurement and analysis of a large scale commercial

mobile internet tv system. In Proceedings of the 2011 ACM SIGCOMM conference on

Internet measurement conference, pages 209–224. ACM, 2011.

[64] Y. Li, Y. Zhang, and R. Yuan. Characterizing user access behaviors in mobile tv system.

In Communications (ICC), 2012 IEEE International Conference on, pages 2093–2097.

IEEE, 2012.

[65] Z. Li, J. Lin, M.-I. Akodjenou, G. Xie, M. A. Kaafar, Y. Jin, and G. Peng. Watching videos

from everywhere: a study of the pptv mobile vod system. In Proceedings of the 2012

ACM conference on Internet measurement conference, pages 185–198. ACM, 2012.

[66] Z. Li, H. Shen, H. Wang, G. Liu, and J. Li. Socialtube: P2p-assisted video sharing in

online social networks. In INFOCOM, 2012 Proceedings IEEE, pages 2886–2890. IEEE,

2012.

99

Bibliography

[67] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran. Probe and adapt: Rate

adaptation for http video streaming at scale. Selected Areas in Communications, IEEE

Journal on, 32(4):719–733, 2014.

[68] K. J. Ma and R. Bartos. Http live streaming bandwidth management using intelligent

segment selection. In Global Telecommunications Conference (GLOBECOM 2011), 2011

IEEE, pages 1–5. IEEE, 2011.

[69] A. Mansy, M. Ammar, J. Chandrashekar, and A. Sheth. Characterizing client behavior

of commercial mobile video streaming services. In Proceedings of Workshop on Mobile

Video Delivery, page 8. ACM, 2014.

[70] T. Mei, B. Yang, X.-S. Hua, L. Yang, S.-Q. Yang, and S. Li. Videoreach: an online video

recommendation system. In Proceedings of the 30th annual international ACM SIGIR

conference on Research and development in information retrieval, pages 767–768. ACM,

2007.

[71] M. Mellia, R. Lo Cigno, and F. Neri. Measuring ip and tcp behavior on edge nodes with

tstat. Computer Networks, 47(1):1–21, 2005.

[72] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Measure-

ment and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM

conference on Internet measurement, pages 29–42. ACM, 2007.

[73] S. Mitra, M. Agrawal, A. Yadav, N. Carlsson, D. Eager, and A. Mahanti. Characterizing

web-based video sharing workloads. ACM Transactions on the Web (TWEB), 5(2):8, 2011.

[74] P. Mohan, S. Nath, and O. Riva. Prefetching mobile ads: Can advertising systems afford

it? In Proceedings of the 8th ACM European Conference on Computer Systems, pages

267–280. ACM, 2013.

[75] C. Mueller, S. Lederer, and C. Timmerer. A proxy effect analyis and fair adatpation

algorithm for multiple competing dynamic adaptive streaming over http clients. In

Visual Communications and Image Processing (VCIP), 2012 IEEE, pages 1–6. IEEE, 2012.

100

Bibliography

[76] C. Müller, S. Lederer, and C. Timmerer. An evaluation of dynamic adaptive streaming

over http in vehicular environments. In Proceedings of the 4th Workshop on Mobile

Video, pages 37–42. ACM, 2012.

[77] C. Müller and C. Timmerer. A vlc media player plugin enabling dynamic adaptive stream-

ing over http. In Proceedings of the 19th ACM international conference on Multimedia,

pages 723–726. ACM, 2011.

[78] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen. Spatial flicker effect in video scal-

ing. In Quality of Multimedia Experience (QoMEX), 2011 Third International Workshop

on, pages 55–60. IEEE, 2011.

[79] J. Park, S.-J. Lee, S.-J. Lee, K. Kim, B.-S. Chung, and Y.-K. Lee. Online video recommen-

dation through tag-cloud aggregation. IEEE MultiMedia, 18(1):0078, 2011.

[80] L. Plissonneau and E. Biersack. A longitudinal view of http video streaming performance.

In Proceedings of the 3rd Multimedia Systems Conference, pages 203–214. ACM, 2012.

[81] S. Podlipnig and L. Böszörmenyi. A survey of web cache replacement strategies. ACM

Computing Surveys (CSUR), 35(4):374–398, 2003.

[82] T. R. Puzak. Analysis of cache replacement-algorithms. 1985.

[83] X. Qiu, H. Liu, D. Li, S. Zhang, D. Ghosal, and B. Mukherjee. Optimizing http-based

adaptive video streaming for wireless access networks. In Broadband Network and

Multimedia Technology (IC-BNMT), 2010 3rd IEEE International Conference on, pages

838–845. IEEE, 2010.

[84] F. Ricciato, E. Hasenleithner, and P. Romirer-Maierhofer. Traffic analysis at short time-

scales: an empirical case study from a 3g cellular network. Network and Service Man-

agement, IEEE Transactions on, 5(1):11–21, 2008.

[85] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen. Commute path bandwidth traces

from 3g networks: analysis and applications. In Proceedings of the 4th ACM Multimedia

Systems Conference, pages 114–118. ACM, 2013.

101

Bibliography

[86] T. Rodrigues, F. Benevenuto, M. Cha, K. Gummadi, and V. Almeida. On word-of-mouth

based discovery of the web. In Proceedings of the 2011 ACM SIGCOMM conference on

Internet measurement conference, pages 381–396. ACM, 2011.

[87] N. Sastry, E. Yoneki, and J. Crowcroft. Buzztraq: predicting geographical access patterns

of social cascades using social networks. In Proceedings of the Second ACM EuroSys

Workshop on Social Network Systems, pages 39–45. ACM, 2009.

[88] A. Saul. Wireless resource allocation with perceived quality fairness. In Signals, Systems

and Computers, 2008 42nd Asilomar Conference on, pages 1557–1561. IEEE, 2008.

[89] M. Saxena, U. Sharan, and S. Fahmy. Analyzing video services in web 2.0: a global per-

spective. In Proceedings of the 18th International Workshop on Network and Operating

Systems Support for Digital Audio and Video, pages 39–44. ACM, 2008.

[90] S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcroft. Track globally, deliver locally:

improving content delivery networks by tracking geographic social cascades. In Pro-

ceedings of the 20th international conference on World wide web, pages 457–466. ACM,

2011.

[91] S. Shafer and D. Rogers. Similarity and distance measures for cellular manufactur-

ing. part i. a survey. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH,

31(5):1133–1142, 1993.

[92] M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang. Characterizing and modeling internet traffic

dynamics of cellular devices. In Proceedings of the ACM SIGMETRICS joint international

conference on Measurement and modeling of computer systems, pages 305–316. ACM,

2011.

[93] D. S. Sharp, N. Cackov, N. Laskovic, Q. Shao, and L. Trajkovic. Analysis of public safety

traffic on trunked land mobile radio systems. Selected Areas in Communications, IEEE

Journal on, 22(7):1197–1205, 2004.

[94] T. Stockhammer. Dynamic adaptive streaming over http–: standards and design princi-

ples. In Proceedings of the second annual ACM conference on Multimedia systems, pages

133–144. ACM, 2011.

102

Bibliography

[95] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Advances in

artificial intelligence, 2009:4, 2009.

[96] V. Suranuntakul and C. Srinilta. Pp caching: Proxy caching mechanism for youtube

videos in campus network. In Proceedings of the International MultiConference of

Engineers and Computer Scientists, volume 1, 2011.

[97] R. Teixeira, K. Marzullo, S. Savage, and G. M. Voelker. In search of path diversity in isp

networks. In Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement,

pages 313–318. ACM, 2003.

[98] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo, and S. Rao. Dissecting

video server selection strategies in the youtube cdn. In Distributed Computing Systems

(ICDCS), 2011 31st International Conference on, pages 248–257. IEEE, 2011.

[99] S. Traverso, K. Huguenin, I. Trestian, V. Erramilli, N. Laoutaris, and K. Papagiannaki.

Tailgate: handling long-tail content with a little help from friends. In Proceedings of the

21st international conference on World Wide Web, pages 151–160. ACM, 2012.

[100] B. Van Roy. A short proof of optimality for the min cache replacement algorithm.

Information processing letters, 102(2):72–73, 2007.

[101] J. Wang. A survey of web caching schemes for the internet. ACM SIGCOMM Computer

Communication Review, 29(5):36–46, 1999.

[102] Z. Wang, L. Sun, S. Yang, and W. Zhu. Prefetching strategy in peer-assisted social video

streaming. In Proceedings of the 19th ACM international conference on Multimedia,

pages 1233–1236. ACM, 2011.

[103] T. Wu, K. De Schepper, W. Van Leekwijck, and D. De Vleeschauwer. Reuse time based

caching policy for video streaming. In Consumer Communications and Networking

Conference (CCNC), 2012 IEEE, pages 89–93. IEEE, 2012.

[104] S. Xiang, L. Cai, and J. Pan. Adaptive scalable video streaming in wireless networks. In

Proceedings of the 3rd multimedia systems conference, pages 167–172. ACM, 2012.

103

Bibliography

[105] Q. Yang, H. H. Zhang, and T. Li. Mining web logs for prediction models in www caching

and prefetching. In Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 473–478. ACM, 2001.

[106] J. Yao, S. S. Kanhere, I. Hossain, and M. Hassan. Empirical evaluation of http adaptive

streaming under vehicular mobility. In NETWORKING 2011, pages 92–105. Springer,

2011.

[107] H. Yin, X. Liu, F. Qiu, N. Xia, C. Lin, H. Zhang, V. Sekar, and G. Min. Inside the bird’s nest:

measurements of large-scale live vod from the 2008 olympics. In Proceedings of the 9th

ACM SIGCOMM conference on Internet measurement conference, pages 442–455. ACM,

2009.

[108] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng. Understanding user behavior in large-scale

video-on-demand systems. In ACM SIGOPS Operating Systems Review, volume 40, pages

333–344. ACM, 2006.

[109] M. J. Zekauskas, A. Karp, B. Teitelbaum, S. Shalunov, and J. W. Boote. A one-way active

measurement protocol (owamp). 2006.

[110] Y. Zhang and A. Årvidsson. Understanding the characteristics of cellular data traffic.

ACM SIGCOMM Computer Communication Review, 42(4):461–466, 2012.

[111] X. Zhao, J. Yuan, R. Hong, M. Wang, Z. Li, and T.-S. Chua. On video recommendation

over social network. Springer, 2012.

[112] M. Zink, K. Suh, Y. Gu, and J. Kurose. Characteristics of youtube network traffic at

a campus network–measurements, models, and implications. Computer Networks,

53(4):501–514, 2009.

104

	Acknowledgments
	Abstract
	List of figures
	List of tables
	Publications
	Introduction
	The early days of content delivery over the internet
	CDN 1.0
	CDN 2.0
	Streaming over HTTP
	Video streaming in mobile networks

	Why should we care and what can we do?
	Growing trend of mobile video traffic VS ISP investments
	User-engagement and QoE

	Contributions
	Thesis Organization

	Traffic measurements, caching and prefetching: A review of the literature
	Data collection: Measurements and analysis
	Data collection
	Video streaming analysis
	Positioning

	Adaptive steaming over HTTP
	HAS methods
	Stability of HAS players
	Positioning

	Caching
	Replacement strategies in context of HAS
	Positioning

	Prefetching
	Prefetching systems in context of video streaming
	Positioning

	HTTP adaptive streaming in mobile networks : characteristics and caching opportunities
	Introduction
	The Dataset overview
	Data collection
	Content types
	Data processing
	Fields description

	Clients' behavior analysis
	Distribution of requested chunks per session
	Analayis on user engagement

	Caching HAS content
	Presentation of WA-LRU
	WA-LRU in action
	Pseudo-code of WA-LRU
	Evaluation

	Conclusion

	Improving caching efficiency and quality of experience with CF-Dash
	Introduction
	Analysis on the adaptation logic in HAS
	Profiles in catch-up and live sessions
	Video bitrate adaptation
	Impact of HAS on caching performance
	Markov characterization of the switching between profiles

	Motivation to CF-DASH
	Empirical study summary
	QoE evaluation

	Cache Friendly-Dash
	Cache Friendly-Dash in a nutshell
	PoC implementation

	Evaluation
	Simulation evaluation
	Experiments evaluation

	Conclusion

	CPSys: A system for mobile video prefetching
	Introduction
	Background and related works
	Traffic analysis
	Dataset
	Distribution of the number of views per video
	Distribution of the number of views per user
	Relationship between request frequency and request inter-arrival rate
	Video lifetime distribution
	Load variation across the day

	System Design
	What to prefetch?
	When to prefetch?
	How many videos to prefetch?

	Trace-driven simulation experiments
	Simulation setup
	Performance analysis

	Prototype implementation
	Conclusion

	Conclusion & Perspective
	Achievements
	Traffic analysis
	Caching HAS videos
	Prefetching videos on mobile devices

	Future work
	Future works on data analysis
	Future works on caching
	Future works on prefetching

	Bibliography

