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Key points 

Transit times are determined by integrated features of groundwater and seepage distribution in 

constant-slope convergent/divergent hillslopes 

The coefficient of variation of the transit time distribution scales linearly with the mean distance 

of the groundwater volume to the river 

The extent and structure of seepage modify the groundwater outlet and impact the distribution 

of transit time and increase its variability  
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Abstract  

We investigated how geomorphological structures shape Transit Time Distributions (TTDs) in 

shallow aquifers. Extensive 3D simulations were performed to determine the TTDs for 

synthetic convergent, straight and divergent hillslopes with a constant slope. The uniform 

recharge applied on top of the aquifer is transferred to the receiving stream through steady-state 

groundwater flows, return flows and saturation excess overland flows. Without seepage, TTDs 

evolve from uniform- to power law-like- distributions depending on the average distance of the 

groundwater volume to the river (barycenter). Remarkably, the coefficient of variation (ratio of 

the standard deviation to the mean) of the TTDs scales linearly with the barycenter in agreement 

with a theoretical prediction based on three analytical approximations derived for specific cases. 

With seepage, the TTD has three separate modes corresponding to rapid saturation excess 

overland flows, to the intermediate flow paths ending in seepage area and to the slower flow 

paths going all the way to a discharge in the river. The coefficient of variation additionally 

depends on the extent of the seepage area. For a natural hillslope in the crystalline basement of 

Normandy (France), the same synthetic analysis demonstrates that the coefficient of variation 

is not only determined by the extent of the seepage zone but also by its structure in relation to 

the local and global geomorphological organization. The results suggest the possibility to assess 

the variability of transit times by combining geomorphological analysis, surface soil saturation 

observations and environmental tracers.  
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1 Introduction 

Water transit times vary over several orders of magnitude in between and within each of the 

main compartments of the hydrological cycle (Sprenger et al., 2019). This distribution has 

fundamental consequences for the water availability, renewal (Gleeson et al., 2016; Jasechko 

et al., 2017) and quality (Appelo & Postma, 1994; Wachniew et al., 2016). This is especially 

the case for shallow aquifers in direct connection to anthropogenic activities. Water ages 

broadly range from some weeks to several decades. This has immediate consequences on the 

transmission or buffering of recharge deficits and contamination loads (Cuthbert et al., 2019). 

Being intermediary between the surface and the deeper subsurface, shallow subsurface flows 

are potentially controlled by both geology and geomorphology (Bresciani et al., 2016; Fan & 

Bras, 1998; Haitjema & Mitchell‐ Bruker, 2005). Globally, they follow the conductive 

subsurface structures down topographical gradients and discharge in saturated zones (Fetter, 

2000; Leray et al., 2012; Ogden & Watts, 2000). Yet, it remains largely unknown how geology 

and geomorphology shape the Transit Time Distribution (TTD). Transit time is defined here as 

the time needed for any parcel of water to go from its recharge in the groundwater system to its 

discharge in the receiving water bodies (e.g. stream, lake). In this study, we distinguish 

“geology” from “geomorphological” constraints based on the effective hydraulic parameters 

and the structure of the topography respectively.  

The controls of geology on flow partitioning and transit times has mainly been addressed for 

global aquifer structures. For subsurface flows, the mean transit time directly scales with the 

overall volume of the aquifer (Bolin & Rodhe, 1973; Cornaton & Perrochet, 2006; Eriksson, 

1971) regardless the degree of its internal heterogeneity (Bethke & Johnson, 2002). In semi-

confined aquifers where geology is the dominant controlling factor through the aquifer 

thickness, the shape of the TTD under uniform recharge follows the distribution of water within 

the system (Leray et al., 2019). The TTD is exponential when the aquifer volume is uniformly 

distributed (Haitjema, 1995) or without any marked trends (Luther & Haitjema, 1998). It 

evolves to power-law like distributions with higher standard deviations when the aquifer 

volume is located further away from the outlet (Etcheverry & Perrochet, 2000). It becomes 

uniform with lower standard deviations when the aquifer volume is clustered close to the outlet 

(Etcheverry, 2001; IAEA, 2006; Leray et al., 2019; Małoszewski & Zuber, 1982). The 

variability of the distribution increases with the relative distance of the saturated volume to the 

outlet. Even though the structure of the aquifer appears to be a primary driver of the shape of 
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the TTD (Eberts et al., 2012; Leray et al., 2012, 2016), it has been mainly related to the hillslope 

geological characteristics and much less to its geomorphological characteristics. 

However, geomorphology is a primary controlling factor of the dynamics of surface and 

shallow subsurface flows (Beven & Wood, 1983; Rodríguez-Iturbe & Valdés, 1979). Response 

functions to climatology have been and remain an active field of research at the integrated 

regional scales (Condon & Maxwell, 2015), at the catchment scale (Ambroise et al., 1996; 

Cudennec et al., 2004; Hrachowitz et al., 2013) and at the more local hillslope scale involving 

mechanistic models of Boussinesq flows (Berne et al., 2005; Bogaart & Troch, 2006; Lyon & 

Troch, 2007). Climatic conditions and topographic structures (e.g. slope, flow path distances 

over flow gradients) directly impact the saturation state and condition transit times as shown 

by global analyses across different geomorphic provinces (McGuire et al., 2005; Tetzlaff et al., 

2009).  

Fewer studies have investigated the direct control of topography on transit times partly because 

of the inherent difficulty to untangle the effects of climate and topography (Remondi et al., 

2019; Seeger & Weiler, 2014). Analyses based on mechanistic models calibrated for well-

instrumented sites have confirmed the dependence of the mean transit time on the catchment 

wetness with seasonal shifts in the contribution of shallower and deeper flow paths (Remondi 

et al., 2018; Yang et al., 2018). The fraction of young water increases with the mean slope 

(Remondi et al., 2019) suggesting an effect of topographic structures on the TTD This link 

between the distribution of groundwater, the geomorphological structures, the TDD and 

associated control factors is however not clearly established. 

Here, we investigate how geology and geomorphology shape Transit Time Distributions for 

shallow free aquifers conditions at the hillslope scale. We define “local” as the conditions for 

which flow lines dominantly end up in the closest river downhill and only marginally go below 

the stream to eventually reach another outlet (Gburek & Folmar, 1999). Thus, the local scale is 

typically the hydrologically defined hillslope (Kirkby, 1978). Using 3D steady-state flow and 

transport simulations, as well as simplified analytical developments for a synthetic hillslope 

model, we analyze the influence of the aquifer and topographic structures on the mean and 

standard deviation of the TDD. The coefficient of variation (or relative standard deviation) 

defined as the ratio of the standard deviation to the mean of the TTD, is used to determine the 

relative dispersion and the shape of the TTD. We seek to relate it to geomorphological and 

hydrological indices that may be inferred in natural hillslopes. We more specifically explore 

indices related to the distribution of the effective water volume within the aquifer and its 
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interaction with the surface through the characterization of the seepage area. We assess the 

relevance of these indices on models of natural hillslopes in a crystalline basement area of 

Normandy (France). We discuss their application in conjunction with age tracers to assess 

hillslope Transit Time Distributions. 

2 Hillslope structures, flow and transport models and methods 

2.1 Synthetic Hillslopes  

Synthetic hillslopes (Figure 1) that were modeled were classic convergent, straight and 

divergent hillslopes used in several previous studies (Fan & Bras, 1998; Marçais et al., 2017; 

Matonse & Kroll, 2009; Troch et al., 2003).  

Hillslopes extend over a length L [L] from the river downstream (𝑥 = 0) to the water divide 

upstream (𝑥 = 𝐿). Hillslopes have a constant thickness 𝐻0 [L]and a constant slope Θ [-]. Both 

the surface and the soil-bedrock interface have the same tilt Θ. Hillslope shape is defined by the 

shape coefficient 𝐶𝑊 [-]: 

𝐶𝑊 = 𝑊0 𝑊𝐿⁄  (1) 

 where 𝑊0 [L] is the downstream hillslope width and 𝑊𝐿 [L] the upstream hillslope width. The 

hillslope width 𝑊(𝑥) [L] is a linear function of the distance to the river x:  

𝑊(𝑥) =  
𝑊𝐿 −𝑊0

𝐿
𝑥 + 𝑊0 = 𝑊𝐿 [1 + (𝐶𝑊 − 1) (1 −

𝑥

𝐿
)]. (2) 

Hillslopes are convergent when 𝐶𝑊 < 1, straight for 𝐶𝑊 = 1 and divergent for 𝐶𝑊 > 1. The 

hydraulic conductivity 𝐾 [L.T-1] is constant throughout the system and the recharge rate 𝑅 [L.T-

1] is uniformly distributed. 

The shape coefficient 𝐶𝑊, the tilt Θ, the thickness to length ratio 𝐻0/𝐿 and the recharge to 

hydraulic conductivity ratio 𝑅 𝐾⁄  condition the thickness of the aquifer and its intersection with 

the surface. These parameters were varied over a broad range of values (see section 3.5) to 

provide a large variety of hillslope configurations: from thin hillslopes (𝐻0 𝐿⁄ = 10−2) to thick 

hillslopes (𝐻0 𝐿⁄ = 10−1), from highly convergent hillslopes (𝐶𝑊 = 10−2) to highly divergent 

hillslopes (𝐶𝑊 = 102), and from flat hillslopes (Θ = 0%) to steep hillslopes (Θ = 10%). To 

study the impact of the seepage area, we simply added a topographic limit allowing the 

development of the seepage area 𝐴𝑆 [L²]. This limit is placed in such a way that the thickness 

is fixed to 𝐻0 (distance between the surface and the bedrock limit). 
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2.2 Natural Hillslope  

We additionally analyzed a natural hillslope structure in the western part of Normandy (France). 

The hillslope is defined on the basis of the hydrological catchment and extracted by defining 

all surface flow paths to a limited section of a downstream perennial river close to the Atlantic 

coast. The extraction was performed using TopoToolbox (Schwanghart & Scherler, 2014). The 

hillslope is approximately 3 km by 1 km. The elevation range varies between 5 m and 70 m. It 

is almost straight (𝐶𝑊 = 2.43) with a cliff at the limit between relatively flat upstream and 

downstream sections (Figure 2). Such cliffs are common in this area. They are mainly due to a 

transition between an overlying crystalline basement with permeable upper layer dipping below 

a sedimentary prism composed of sands, both resting on the same impermeable bedrock (Doré 

et al., 1988; Dupret et al., 1987). In spite of some degree of heterogeneity, the hydraulic 

conductivity and porosity are assumed to be homogeneous so as to focus on the sole effect of 

the morphology of the aquifer. The aquifer is mostly shallow with typical depths much smaller 

than its lateral extents, similar to the synthetic hillslopes. The recharge is assumed uniform, 

considering the moderate relief of the area. Natural and synthetic cases differ by the roughness 

of the topography and of the soil-bedrock interface. In the synthetic case, the topography is 

gently increasing with a constant slope from the river to the hillslope divide. In the natural case, 

the slope varies along the major cliff structure and has smaller scale local depressions. To 

investigate the relative effects of the local and global scale structures, we use the DTM at a 

resolution of 5m (IGN, 2018) and smoothed topographies obtained by using the moving average 

function “filter” of TopoToolbox (Schwanghart & Scherler, 2014) parameterized by a 

smoothing scale (Figure 2c-d). The studied topographies thus range from the one with “natural” 

roughness to the synthetic one where only the larger wavelengths are maintained.  

2.3 Flow model 

Hydrodynamic flow and transport models were applied both to the synthetic and natural 

hillslopes. Flows were modeled by the Laplace equation (Bear, 1972; Bresciani et al., 2014; 

Neuman & Witherspoon, 1970): 

∇. (𝐾∇ℎ) = 0 in Ω  (3) 

where ℎ [L] is the hydraulic head and 𝐾 [L.T-1] is the hydraulic conductivity. 𝐾 is assumed to 

be homogeneous and isotropic. The Laplace equation is defined for the saturated domain Ω 

limited upstream by the groundwater divide (Γ𝑁), which is a no flow boundary condition:  
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𝐾
𝜕ℎ

𝜕𝑁
= 0 at Γ𝑁  (4) 

where the derivative operator is taken with respect to the exterior normal N. Downstream, at 

the river ( Γ𝑅), the head is fixed at a constant value 𝐻0: 

ℎ = 𝐻0 at Γ𝑅 . (5) 

At the top, the free surface ( Γ𝐹) and the seepage area ( Γ𝑆) of the aquifer are represented by: 

ℎ = 𝑧 at Γ𝑆 and Γ𝐹, (6) 

𝐾
𝜕ℎ

𝜕𝑁
= 𝑅 at Γ𝐹 .  (7) 

The recharge 𝑅 is uniform over the hillslope. All water infiltrates in the section where the 

aquifer remains below the surface. The recharge that does not infiltrate becomes a saturation 

excess overland flow that is directed to the downslope river. The distribution of saturation in 

the hillslope depends on both the hillslope structure and the recharge to hydraulic conductivity 

ratio 𝑅/𝐾. Larger 𝑅/𝐾 ratios, flatter, more convergent and thinner hillslopes promote the 

development of large saturated zones, which area 𝐴𝑆 will be compared to the hillslope area 𝐴 

as the ratio of saturated area 𝐴𝑆/𝐴. Below the surface, the aquifer structure is characterized by 

its volume 𝑉 [L3] given by the integration of the cross-sectional volume 𝑉(𝑥) [L²] and its 

distribution within the hillslope relative to the river measured by the barycenter 𝜉 expressed in 

a dimensionless form as: 

𝜉

𝐿
=

∫
𝑥
𝐿  𝑉(𝑥) 𝑑𝑥

𝐿

0

∫ 𝑉(𝑥) 𝑑𝑥
𝐿

0

 . 
(8) 

 

2.4 Transit times 

The volume V has been previously related to the mean transit time. The organization of the 

volume within the hillslope characterized by 𝜉/𝐿 will be tested as a proxy of the variability of 

the transit times in the aquifer. The mean transit time 〈𝑡〉 over the porosity is directly given by 

the renewal rate expressed by the aquifer volume 𝑉 over the hillslope area 𝐴 multiplied by the 

recharge 𝑅: 

〈𝑡〉

Φ
=  

𝑉

𝐴𝑅
 .  (9) 
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This equation holds regardless of the distribution of the aquifer volume within the hillslope and 

of the distribution of flows between the surface and the subsurface flows. Knowing the mean 

transit time, the coefficient of variation 𝐶𝑉 is considered as a normalized expression of the 

transit time variability. It is expressed by:  

𝐶𝑉 = √
〈𝑡2〉

〈𝑡〉2
− 1. (10) 

To determine the transit times and their distribution, we solved the advection equation 

expressed in the Lagrangian framework with a classical particle tracking (Kinzelbach, 1988): 

{
 
 

 
 Φ

𝑑𝑋(𝑡0, 𝑡)

𝑑𝑡
= 𝐾∇ℎ(𝑥, 𝑦, 𝑧)

𝑋(𝑡 = 𝑡0) = (

𝑥0
𝑦0

𝑧0 = ℎ(𝑥0, 𝑦0)
)

 (11) 

where t [T] is the transit time, t0 [T] is the initial time, X [L] is the trajectory vector and x0, y0 

and z0 [L] are the initial position of the particle. The injection is carried out on the water table 

𝑧0 = ℎ(𝑥0, 𝑦0). The porosity Φ [-] is assumed uniform over the hillslope. As transit time t 

directly scales with Φ, it will be handled through its ratio to the porosity 𝑡/Φ. The transport 

equation is made up of a sole advection term without diffusive nor dispersive terms as transit 

times characterize parcels of water rather than tracers.  

Transit time variability is also expected to come from the relative rate of the saturation excess 

overland flow to the groundwater and return flows. This relative rate is typically characterized 

by the ratio of saturated area 𝐴𝑆/𝐴. We will thus rely on 𝜉/𝐿 and 𝐴𝑆/𝐴 to describe, in a first 

approach, the aquifer and topographic controls of the Transit Time Distribution. 

2.5 Numerical methods 

Apart from the specific cases where analytical developments are proposed (see in section 3), 

the flow and transport models are solved numerically. All numerical methods are fully 3D and 

do not introduce any other approximations, other than errors of the numerical schemes. The 

MODFLOW and MODPATH software suite was used to solve the flow and transport equations 

(Harbaugh, 2005; Niswonger et al., 2011; Pollock, 2016). For the flow solution, hillslopes are 

discretized in 1 m by 1 m regular mesh cells, resulting in 275 by 1,000 mesh cells for each of 

the 10 layers of the model. A drainage boundary conditions is implemented at the surface. It is 

active when and where the saturated zone reaches the surface. The TTDs are obtained from 
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particles injected on the aquifer surface, regularly spaced, weighted proportionally to the 

recharge magnitude, and transported forward in time to the river. The transit time of the 

particles injected over the outflow zone of the seepage area is considered much shorter than 

that of any other particles transported underground and is considered null, the particle reaching 

instantaneously the stream. The transit time of the particles injected over the recharge area are 

obtained from equation (11) Error! Reference source not found.. The FloPy Python package 

is used to generate and handle simulations (Bakker et al., 2016).   
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3 Analytical derivation of TTDs for specific hillslope structures 

Four analytical developments are proposed to explore the relation between the coefficient of 

variation of the transit times and the barycenter (i.e., center of mass) of the aquifer volume for 

the specific cases of (a) thin aquifers in flat straight hillslopes, (b) thick aquifers in flat 

convergent and divergent hillslopes, (c) aquifers in steep convergent and divergent (d) 

hillslopes and aquifers with a seepage area (Figure 3 a-d). The impact of saturation excess 

overland flow is explored for the exponential model. 

3.1 Thin aquifers in flat straight hillslopes 

The first analytical solution is developed for flat and straight hillslopes (Θ = 0%, 𝐶𝑊 = 1) 

(Figure 3a). Assuming that head variations with depth are much smaller than in the horizontal 

direction, the hydraulic head 𝐻(𝑥) is integrated over the vertical, as given by the equation of 

Dupuit-Forchheimer (Dupuit, 1863): 

𝐻(𝑥/𝐿)

𝐿
=  √

𝑅

𝐾
 . √

2𝑥

𝐿
− (

𝑥

𝐿
)
2

− 1 + 𝜆2 (12) 

where 

𝜆 = √1 +
𝐾

𝑅
(
𝐻0
𝐿
)
2

. (13) 

Solving the transport equation, the transit time can be expressed as a function of the distance to 

the river 𝑥 as (Chesnaux et al., 2005): 

𝑡(𝑥) =  
Φ𝐿

√𝐾𝑅
𝜆 [𝑓 (

1 −
𝑥
𝐿

𝜆
) − 𝑓 (

1

𝜆
)] (14) 

where 𝑓 is the function defined by: 

𝑓(𝑢) =  𝑙𝑛 (
1

𝑢
+ √

1

𝑢2
− 1) − √1 − 𝑢2. (15) 

Apart from the normalization factor for time Φ𝐿 √𝐾𝑅⁄ , transit times depend only on the 

dimensionless parameter 𝜆. The moments of the transit time and the coefficient of variation are 

obtained by numerically integrating equation (14) using the quadrature methods of the SciPy 

Python package based on the Fortran library QUADPACK (Piessens et al., 1983; Virtanen et 
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al., 2020). Because it is dimensionless, the coefficient of variation only depends on 𝜆 according 

to the following expression:  

𝐶𝑉 =

√
  
  
  
  
  
  
  
  
  
  

∫ [𝑓 (
1 −

𝑥
𝐿

𝜆
) − 𝑓(𝜆)]

2
1

0

𝑑 (
𝑥
𝐿)

[
 
 
 
 

∫ (𝑓 (
1 −

𝑥
𝐿

𝜆
) − 𝑓(𝜆))

1

0

𝑑 (
𝑥
𝐿)

]
 
 
 
 
2 − 1. (16) 

The barycenter of the aquifer volume is expressed analytically as:  

𝜉

𝐿
=

∫
𝑥
𝐿
𝐻(𝑥/𝐿)

𝐿  𝑑 (
𝑥
𝐿)

1

0

∫
𝐻(𝑥/𝐿)

𝐿  𝑑 (
𝑥
𝐿)

1

0

= 1 +

𝜆2

3 [(1 −
1
𝜆2
)
3 2⁄

− 1]

1
2
√1 −

1
𝜆2
−
𝜆
2 sin

−1 (−
1
𝜆
)

. 

 

(17) 

The results (Figure 3e) show that 𝐶𝑉 depends linearly on 𝜉: 

𝐶𝑉(𝐶𝑊 = 1, 𝜉/𝐿) = 1 + 𝛼 (
𝜉

𝐿
−
1

2
), (18) 

with the slope  approximatively equal to 2.59. This linear dependence is a compelling result. 

It cannot be explained by the broad difference of expressions of the coefficient of variation 𝐶𝑉 

and of the barycenter of the aquifer volume 𝜉  (Equations (16) and (17)). It reveals that, in this 

specific configuration, the distribution of the aquifer volume in the hillslope as characterized 

by its barycenter is an excellent proxy of the transit time variability described by 𝐶𝑉. 𝐶𝑉 

evolves linearly from 1 to 1.2 with 𝜉 𝐿⁄  ranging from 0.5 to 0.58. The minimal value is obtained 

for a constant thickness aquifer case with a marginally varying head corresponding to an 

exponential distribution (𝐶𝑉 = 1) and a barycenter of the aquifer volume exactly at mid-slope 

(𝜉 𝐿⁄ = 1 2⁄ ). CV increases when the volume tends to be located some more uphill. 

3.2 Thick aquifers in flat convergent and divergent hillslopes 

In such a case (Figure 3b), the variations of the hydraulic head 𝐻 are limited because of the 

high transmissivity (thick highly conductive aquifer). As the aquifer thickness is relatively 

constant, we assume that the TTD is exponential (Haitjema, 1995). The assumption holds for 

convergent, straight and divergent hillslopes. Within the analytical development (Leray et al., 

2019), this is straightforwardly related to the evolution of the surface of recharge from the river 
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to the hillslope divide exactly compensated by the surface of filtration orthogonal to the flow 

direction within the aquifer. The standard deviation being equal to the mean, the coefficient of 

variation is equal to 1. The barycenter of the aquifer volume is given by the convergence or 

divergence ratio of the hillslope (CW): 

𝜉𝐸
𝐿
=  

𝐶𝑊 + 2

3𝐶𝑊 + 3
 , (19) 

the subscript E standing for exponential. The barycenter of the aquifer volume varies from 2/3 

for highly convergent hillslope (small 𝐶𝑊) to 1/3 for highly divergent hillslopes (large 𝐶𝑊). 

This approximation indicates that the convergence-divergence ratio 𝐶𝑊 controls independently 

from 𝜉 but not 𝐶𝑉. With the previous analytical solution, it indicates that 𝐶𝑉 depends both on 

𝜉 and 𝐶𝑊.  

3.3 Aquifers in steep convergent and divergent hillslopes 

The third analytical development is obtained for steep hillslopes (Figure 3c). The aquifer shape 

is assumed to be trapezoidal, on the basis of the linear model (IAEA, 2006; Małoszewski & 

Zuber, 1982) with a saturated thickness 𝐻 linearly evolving with 𝑥 following the kinematic 

wave approximation :  

𝐻(𝑥) =  𝐻0 (1 −
𝑥

𝐿
).  (20) 

The flow rate 𝑄(𝑥) is expressed thanks to the kinematic wave approximation of Darcy’s 

equation (Sabzevari et al., 2010; Troch et al., 2002): 

𝑄(𝑥) = −𝐾
𝑆(𝑥)

Φ

𝜕𝑧

𝜕𝑥
= −𝐾

𝑆(𝑥)

Φ
𝑡𝑎𝑛Θ   (21) 

where z is the elevation of the bedrock. In this case, we consider a constant slope along the 

model: 𝜕𝑧 𝜕𝑥⁄ = 𝑡𝑎𝑛Θ.The saturated thickness of the aquifer 𝑆(𝑥) is defined as: 

𝑆(𝑥) = Φ𝐻(𝑥)𝑊(𝑥) (22) 

 

. The derivative of the transit time is obtained with respect to the ratio of the soil moisture 

storage to the flow rate: 

𝑑𝑡

𝑑𝑥
=
𝑆(𝑥)

𝑄(𝑥)
= −

Φ

𝐾 𝑡𝑎𝑛Θ
.  (23) 
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The transit time 𝑡(𝑥) does no longer depend on the hillslope convergence/divergence. It is 

expressed after integration of equation (23) by: 

𝑡(𝑥) =
Φ

𝐾 𝑡𝑎𝑛Θ
𝑥. (24) 

With the assumption of a uniform recharge, the TTD is uniform between 0 and Φ𝐿 (𝐾 𝑡𝑎𝑛Θ)⁄ . 

By further integrating equation (24), the kth moment is given by: 

< 𝑡𝑘 > = (
Φ𝐿

𝐾 𝑡𝑎𝑛Θ
)
𝑘

∫ (
𝑥

𝐿
)
𝑘

𝑑 (
𝑥

𝐿
)

1

0

  (25) 

leading to: 

𝐶𝑉 = √
1 12⁄

1 4⁄
 =  

1

√3
 . (26) 

In this case, similar to the previous exponential distribution case, the coefficient of variation 

has a fixed value whatever the convergence/divergence structure of the hillslope. The 

barycenter of the aquifer volume however changes and can be computed using equations (2) 

and (20):  

𝜉𝑈
𝐿
=  

𝐶𝑊 + 1

4𝐶𝑊 + 2
 , (27) 

the subscript 𝑈 standing for uniform. The barycenter ranges from 1/4 to 1/2 for convergent to 

divergent hillslopes. 

3.4 Generalized expression for the coefficient of variation without seepage 

Based on the three analytical solutions (18), (19) and (27), a general formulation of CV can be 

proposed for any hillslope without seepage area:  

𝐶𝑉𝑈(𝐶𝑊, 𝜉/𝐿) = 1 + 𝛼 (
𝜉 − 𝜉𝐸(𝐶𝑊)

𝐿
) (28) 

with  

𝛼 =  

1

√3
− 1

𝜉𝑈(𝐶𝑊) 𝐿⁄ − 𝜉𝐸(𝐶𝑊) 𝐿⁄
. 

(29) 

 is approximatively equal to 2.53 when 𝐶𝑊 = 1 in close agreement with 𝛼 = 2.59 obtained 

in the case of the thin aquifer in flat straight hillslopes (section 3.1). Both values are similar 

despite the strong differences between the assumptions of the three analytical solutions. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Equation (28) assumes a linear control of CV by  generalized from the first analytical solution 

(Equation (18)), an assumption that will be extensively tested on the general hillslope structures 

in section 4. 

3.5 Hillslopes with a seepage area 

The last case (Figure 3d) is obtained for a water table intersecting the surface over an area 𝐴𝑆 

where recharge is transferred to the river as saturation excess overland flow. The TTD is made 

up of two modes. The first one corresponds to the surface excess overland flow with a 

characteristic time essentially controlled by surface flows that much faster than any transfer 

underground. It will be approximated by a transit time of 0 resulting in 0 mean and variance 

(〈𝑡〉1 = 0; 𝜎1
2 = 0). It counts for a proportion 𝐴𝑆 𝐴⁄  of the overall flow with the reasonable 

approximation that the seepage area is mostly an outflow zone (Bresciani et al., 2014). The 

second mode corresponds to the times required for transfer through the aquifer. It accounts for 

1 − 𝐴𝑆 𝐴⁄  of the recharge. Its mean 〈𝑡〉2 is derived from the expression of the mean of a binary 

distribution, knowing that the mean transit time of the full distribution 〈𝑡〉 is given by equation 

(9)Error! Reference source not found.:  

〈𝑡〉2  =  
〈𝑡〉

1 − 𝐴𝑆 𝐴⁄
.  (30) 

Two assumptions can be tested to derive the variance 𝜎2
2. In the first one, 𝜎2

2 is assumed equal 

to the variance of the TTD for hillslopes without a seepage area (𝐴𝑆 𝐴⁄ = 0) obtained with the 

same other parameters. It is a strong assumption underpinned by the shift of the underground 

distribution in the presence of a seepage zone. The assumption is expected to break down for 

wide seepage zones. In this case, the variance of the full dispersion 𝜎2 can be expressed as:  

𝜎2 = 𝜎2
2(1 − 𝐴𝑆 𝐴⁄ ) + 〈𝑡〉2

𝐴𝑆 𝐴⁄

1 − 𝐴𝑆 𝐴⁄
 (31) 

and the coefficient of variation is derived using equations (10)Error! Reference source not 

found., (30) and (31) as:  

𝐶𝑉1(𝐶𝑊, 𝜉/𝐿, 𝐴𝑆 𝐴⁄ ) =  √(1 − 𝐴𝑆 𝐴⁄ )[𝐶𝑉𝑈(𝐶𝑊, 𝜉/𝐿)]2 +
𝐴𝑆 𝐴⁄

1 − 𝐴𝑆 𝐴⁄
 (32) 

where 𝐶𝑉𝑈(𝐶𝑊, 𝜉/𝐿) is the coefficient of variation obtained for the same parameters without 

any seepage area. This formulation extends the approximation of the coefficient of variation 

from the case without any seepage to cases with seepage on the basis of the binary distribution 
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and the conservation of variability of the subsurface mode. The relation between 𝐴𝑆 𝐴⁄  and 

𝑅 𝐾⁄  can be related through the characterization of the distance 𝐿𝐴𝑆 from the river over which 

the aquifer is outcropping (seepage zone) (Figure 3e). At the onset of the seepage zone, the flux 

recharged uphill in the aquifer is equal to the flux through the aquifer at 𝑥 = 𝐿𝐴𝑆 (Bresciani et 

al., 2014):  

𝑊(𝐿𝐴𝑆)𝐻0𝐾𝜃 = 𝑅(𝐴 − 𝐴𝑆)  (33) 

assuming that the thickness of the aquifer is similar to that of the river. Using equation (2) to 

express 𝑊(𝐿𝐴𝑆), 𝐴𝑆 𝐴⁄  can be expressed as a function of 𝑅 𝐾⁄ : 

𝐴𝑆
𝐴
= 1 −

𝐾

𝑅
 
2𝑊(𝐿𝐴𝑆)

𝑊𝐿 +𝑊0
 
𝐻0𝜃

𝐿
.  (34) 

It can alternatively be assumed that the coefficient of variation of the underground contribution 

with seepage is equal to the coefficient of variation without seepage. Following the same type 

of developments as in the previous case, the coefficient of variation can be derived as:  

𝐶𝑉2(𝐶𝑊, 𝜉/𝐿, 𝐴𝑆 𝐴⁄ ) =  √
1

(1 − 𝐴𝑆 𝐴⁄ )
[𝐶𝑉𝑈(𝐶𝑊, 𝜉/𝐿)]2 +

𝐴𝑆 𝐴⁄

1 − 𝐴𝑆 𝐴⁄
 (35) 

Equations (32) and (35) rely on the previous assumptions, and namely, the linear dependency 

of 𝐶𝑉 and 𝜉 in the absence of seepage, the validity of the head profiles for the exponential and 

uniform distributions, and the conservation of the variance or of the coefficient of variation of 

the subsurface contribution in the presence of seepage. Equations (32) and (35) organize the 

effect of the parameters 𝐶𝑊, 𝜉 and 𝐴𝑆 𝐴⁄  on the coefficient of variation 𝐶𝑉 assuming implicitly 

that the other parameters 𝐾 𝑅⁄ ,𝐻0 𝐿⁄  and Θ only affect 𝐶𝑉 through 𝜉 and 𝐴𝑆 𝐴⁄  and not 

independently.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

4 Numerical determination of TTDs for the general synthetic 

and natural hillslopes 

We assessed the relevance of the analytical developments of the previous section to describe 

the coefficient of variation, specifically the relevance of equations (28), (32) and (35). Based 

on 378 synthetic hillslopes we explore a wide range of hillslope configurations by changing the 

values of the model parameters 𝐶𝑊, 𝐾 𝑅⁄ , 𝐻0 𝐿⁄  and Θ (Table 1). We successively evaluated 

189 cases without and with seepage to assess both the analytical expressions and the 

assumptions on which they rely. The objective was also to determine to which extent the 

location of the center of mass of the aquifer and the proportion of seepage control the coefficient 

of variation and, more generally, the shape of the TTD. We eventually scale up our study to the 

natural shallow aquifer example (in section 4.3). 

4.1 Control of the coefficient of variation 𝑪𝑽 by the barycenter of the aquifer 

volume 𝝃 in the absence of seepage. 

The barycenter of the aquifer 𝜉 and the coefficient of variation 𝐶𝑉 are represented with respect 

to the normalized head profile and the probability distribution function for three of divergent 

hillslopes (Figure 4a). As for the analytical development in Figure 3e, 𝐶𝑉 is linearly 

proportional to 𝜉. In the first case (top row) obtained for small values of 𝐻0 𝐿⁄  and Θ, the 

hydraulic head has a marked parabolic profile, similar of the flat straight hillslope with small 

𝐻0 𝐿⁄  (Figure 4b). The barycenter of the aquifer volume is close to the river (𝜉 𝐿⁄ = 0.41) 

because of the diverging shape of the hillslope. The TTD has higher quantities for the smallest 

and largest times than the exponential distribution (red curve above the dashed black curve, 

Figure 4c). The parabolic head profile speeds up flows close to the outlet while it slows them 

down on the top of the hillslope. The diverging structure of the hillslope also contributes to the 

relative large proportion of the shorter times due to the higher recharge close to the river. The 

first effect is especially strong as the aquifer remains thin. For thick aquifers for which the head 

profile becomes more linear (Figure 4d), the TTD becomes similar to the exponential 

distribution as expected even with a non-zero but small slope (Θ = 1%) (Figure 4e). In the 

third case of a steep diverging hillslope, the water accumulates downhill (Figure 4f) and the 

TTD tends to a uniform distribution (Figure 4g) as observed with the linear model (Cook & 

Böhlke, 2000). Although the TTD is approximately uniform, the water accumulates more 

downhill than expected with a very low aquifer thickness uphill. It significantly differs from 
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the linear head profile expected in the third analytical solution. As a consequence, the value of 

𝜉 𝐿⁄  (0.22) is notably smaller than the value (0.26) predicted by equation (27). 

These first results are confirmed by the systematic exploration of the parameter space for the 

other simulated hillslopes (convergent and divergent). The coefficient of variation 𝐶𝑉 increases 

linearly with the barycenter of the aquifer volume 𝜉. Equation (28) is closely consistent with 

the numerical results as long as the barycenter of the aquifer volume in the uniform case 𝜉𝑈 is 

taken as its numerical estimate rather than as its analytical approximation given by equation 

(27). Numerical estimates of 𝜉𝑈 are obtained by minimizing the least-square difference between 

numerical results and the approximation given by equations (28) and (29) in which 𝜉𝑈 is taken 

as a fitting parameter. Numerical results obtained for the full range of convergent, straight and 

divergent hillslopes show that 𝜉𝑈 is approximatively equal to 𝜉𝐸 + 𝐿/6 with a mean deviation 

of 15%. The relevance of equation (28) is further assessed by the insert of Figure 5 showing the 

numerical results versus the analytical approximations of 𝐶𝑉. The mean and variance of their 

differences are limited to -0.0058 and 0.0172 respectively, equal to 1% and 3% of the range of 

𝐶𝑉 (0.6-1.2). The linear dependence of 𝐶𝑉 on 𝜉 is again a striking result. The linear coefficient 

only depends on the convergent-divergent structure of the hillslope. 𝜉 is a good proxy of 𝐶𝑉 

when the hillslope convergent or divergent shape 𝐶𝑊is known. The influence of the other 

parameters 𝐾 𝑅⁄ ,𝐻0 𝐿⁄  and Θ on 𝐶𝑉 is well captured by 𝜉.  

We further investigate the relevance of 𝜉 and 𝐶𝑊 to characterize the shape of the TTD beyond 

its coefficient of variation. Beyond some limited differences, the shape of the distributions 

remains similar for each of the value of 𝐶𝑉 (Figure 6) showing that 𝐶𝑉 is a good descriptor of 

the TTD. Note that the shape of the TTDs more widely differs towards the uniform distribution 

(𝐶𝑉 < 1) than towards the power-law distribution (𝐶𝑉 > 1). It is also reflected by the larger 

interval of values of CV below 1 ([0.6;1]) than above 1 ([1;1.2]) (Figure 5). 

Therefore, we conclude that equations (28) and (29) closely characterize the coefficient of 

variation without any seepage. At any given hillslope shape characterized by 𝐶𝑊, the repartition 

of water as measured by 𝜉 is a good proxy of 𝐶𝑉 and of the shape of the TTD. 

4.2 Dependence of the coefficient of variation 𝑪𝑽 on the seepage area 

Simulations with seepage were performed with the additional upper drainage boundary 

condition to model the development of the seepage zone as a result of the interception of the 

water table by the surface... The extension of the seepage zone has several effects on the TTD. 

It increases the percentage of saturation excess overland flow 𝐴𝑆 𝐴⁄  and modifies the TTD of 
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the subsurface component resulting in more complex shapes. As the extent of the seepage zone 

relative to the hillslope area (𝐴𝑆 𝐴⁄ ) increases from 10% to 70% (Figure 7c), the TTD of the 

subsurface contribution shifts from a closely exponential distribution to a more complex shape 

(Figure 7b) and the coefficient of variation increases without any marked change in the 

barycenter of the aquifer volume 𝜉 (Figure 7a).  

Without any significant change in /L, modifications of the shape of the transit time distribution 

are mostly driven by the seepage area. As expected, larger seepage areas (from hillslope bottom 

to top) increase the probability of occurrence of short transit times (infiltration excess overland 

flow (not shown on Figure 7)) and of times much larger than the mean. The distribution does 

not however follow the expected shape of the confined cases from which the first development 

of section 3.5 is inspired. The distribution is rather deformed with a remaining first peak at 

smaller times (t/<1) and a longer uniform-trending tail (Figure 7, right column). The first peak 

is coming from the flow lines outcropping in the seepage zone (Figure 8). The flow lines are 

relatively short remaining close to the surface where velocity remains high (blue lines on Figure 

8). Water gets in and quickly out. The probability of these short times tends to increase as also 

observed for natural catchment shapes. This is explained by an intensification of the circulation 

with the rise of the groundwater level (Kaandorp et al., 2018). The presence of the seepage 

guarantees the existence of this short-time peak. The second trailing part of the distribution 

mostly corresponds to the flow lines all the way from a recharge upstream from the seepage 

zone to a discharge area in the river (red and orange lines on Figure 8). In addition to the longer 

length of the flow lines, velocity is significantly reduced by the lateral and depth extent of the 

seepage zone.  

A more systematic analysis of 𝐶𝑉 against 𝜉 𝐿⁄  for convergent, straight and divergent hillslopes 

confirms that larger seepage areas do not significantly modify 𝜉 but strongly increase 𝐶𝑉 

(Figure 9). Even though the fundamental assumption on which the derivation of equation (32) 

relies does not hold (the distribution shape being modified), the deviation between the analytical 

and numerical results is small (Figure 9). The differences between the analytical expression 

(32) and the numerical results have a mean and standard deviation of 0.0627 and 0.15, which 

given the range of variation of 𝐶𝑉 between 0.5 and 2.225, represent respectively 3.5% and 8.5% 

of the range.  

As a partial conclusion at this stage, the development of the seepage zone appears to have a 

more complex effect on the subsurface contribution to the TTD than expected. Its shape 

significantly evolves from a classical exponential behavior to a two-sided shape following the 
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organization of the circulations in shallower flows to the seepage zone and deeper flows to the 

river. For any convergent or divergent hillslope shape characterized by 𝐶𝑊, 𝐶𝑉 is well 

approached by 𝜉 and 𝐴𝑆 𝐴⁄  as expressed by equation (32). Without a strong basis, this 

agreement is however not guaranteed to hold for any other type of systems. 

4.3 Development of seepage areas in natural hillslopes and its impact on the 

coefficient of variation 𝑪𝑽 

Flow and transport were modeled for the real hillslope using the same approach defined in 

section 2.2 with evolving aquifer thickness and seepage. Figure 10 shows in colors some of the 

flow lines and in black the seepage zones for real and smoothed topography. In the real case, 

the seepage zones are highly clustered downstream at low points in the topography (Figure 

10a). The drainage condition applied at the surface efficiently transports the groundwater flows 

in the steep depressions limiting the development of the zone of seepage. The extent of the 

seepage zone AS/A sharply increases from 6% in the rough case to 27% for the smooth case 

without any marked difference in the organization of flow pathways. Flow lines are essentially 

similar (Figure 10). The downhill low area remains also the main outflow zone as expected in 

natural cliff systems. In the real case, some flow lines outcrop uphill from the main seepage 

zone in localized areas. Overall, outflow zones are smaller and less clustered for the real case. 

Figure 11 confirms the importance of the extent of the seepage zone AS/A for the variation of 

the TTD. Once the hillslope has been defined, AS/A fully explains the coefficient of variation 

CV. The relation between AS/A and CV however strongly depends on the shape of the hillslope, 

as well as on the resolution of the topographic data. Both the ranges of values of AS/A and CV 

are quite different. For the same recharge over hydraulic conductivity rates 𝑅/𝐾 = [0.00025 −

0.005], AS/A is limited to 0.1 for the real case while it goes up to 0.5 in the smooth case. CV is 

in turn only 1.74 in the real case where it goes up to 2.05 for the smooth case. The extent of the 

seepage zone AS/A increases the saturation excess overland flow, the proportion of short times 

and the relative variability of the TTD. Both trends remain much steeper than the analytical 

estimates obtained with synthetic hillslopes. The main difference to the analytical estimate 

obtained with a uniform slope comes from the effect of the cliff limiting both the extension of 

the seepage zone and the differentiation in the TTD distribution between short rapid and long 

slow flow pathways. 

The values of CV and the TTD for the natural hillslopes (Figure 12, blue and red lines) strongly 

differ from the TTD of the equivalent hillslope having the same average slope (dotted-dashed 
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grey line). The percentage of saturated area AS/A goes up to 78% for the uniform hillslope, 

respectively 3 and 12 times larger than for the smooth and rough hillslope structures. It 

demonstrates that the extension and organization of the seepage zone are critical for the 

determination of the groundwater contribution to the TTD. In the presence of seepage zone, the 

structure of the topography should be considered as a dominant factor controlling the 

groundwater transit times. Comparatively, the TTD of the rough and smoothed topography 

cases remain similar even at high smoothing scales for not too large forcing terms R/K (Figure 

12, blue and red curves). The results also show that, once the topographic structure is fixed 

(smoothed natural, rough natural, synthetic hillslope with constant slope), the extent of the 

seepage zone AS/A determines the TTD variability. The precise relation between the TTD 

variability and the extent of the seepage zone depends on the organization of the seepage areas 

in the hillslope. Determination of this relation and its dependency on the geomorphological 

structures require complementary investigations as discussed further in section 5.2. 
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5 Discussion 

The results show that, for the investigated hillslope structures, the coefficient of variation 𝐶𝑉 

of the TTD is determined by the distribution of the groundwater volume with respect to the 

river, as represented by its barycenter  and by the organization and extent of the saturated area 

AS/A. Compared to the initial formulation of the problem, it is not so much the reduction of the 

number of degrees of freedom from the four initial ones (CW, H0/L, R/K, ) to three (CW,, 

AS/A) than the nature of the controlling factors that are important. We argue that /L and AS/A 

can be more directly estimated from field observations than H0/L, R/K and  to estimate the 

variability of the TTD. The relative position of the water within the aquifer and the saturated 

area are also integrated features at aggregated scales, which filter some of the details of the 

geomorphological landscape structures.  

5.1 Relevance and determination of the barycenter of the aquifer volume (/L)  

In the absence of seepage, the coefficient of variation of the TTD is directly given by /L for 

all synthetic hillslope structures analyzed here. While it is well know that the mean transit time 

is directly related to the aquifer volume (Cornaton & Perrochet, 2006; Haitjema, 1995), we 

show that the variability of the transit times is controlled by the spatial distribution of 

groundwater with respect to the river, as identified by its barycenter . This is a new and 

compelling result, which highlights how important it is to anticipate potential deviations from 

the exponential transit times distribution model that are classically used for shallow aquifers 

under uniform recharge and in the absence of seepage. Any divergence from the exponential 

distribution results from the spatial distribution of aquifer thickness from the bottom up to the 

top of the hillslope. Decreasing saturated thicknesses uphill lead to more uniform TTDs with 

lower variability. Increasing thicknesses of the saturated area uphill results in more variable 

Gamma-like TTDs. Beyond the characterization of the overall volume required for the mean 

transit time, the coefficient of variation requires more advanced information on the architecture 

of the flow paths and saturated thickness.  

Even though  cannot be measured directly in the field, it can be estimated in several ways. Its 

evaluation for flat and steep aquifers given by equations (19) and (27) indicate that it can be 

assessed without the detailed knowledge of the saturation. More precisely, equations (28) and 

(29) show that CV is directly given by the relative distance between the barycenter of the 

saturated groundwater volume 𝜉 and the barycenter obtained with a uniform saturation 𝜉𝐸 

compared to the full width of the interval 𝜉𝐸 − 𝜉𝑈 expressed quantitatively as 1 −
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(𝜉 − 𝜉𝐸) (𝜉𝑈 − 𝜉𝐸)⁄ . It can be more broadly interpreted as the saturated thickness of the aquifer 

relative to the constant saturated thickness leading to 𝜉𝐸 (Figure 3b) normalized by the width 

of the interval 𝜉𝐸 − 𝜉𝑈, which is relatively constant and equal to around L/6. For convergent or 

divergent hillslopes, such as the ones presented here, the relative filling can be determined by 

simple modelling approaches either analytical, semi-analytical or numerical (Harman, 2015). 

For more complex hillslope structures, the digital terrain model and some assumption on the 

bedrock structure should be integrated to capture the geomorphological control on the 

convergence-divergence rate CW. For example, for crystalline basements, assumptions on the 

structure of the weathered zone might be obtained from geophysics (Clair et al., 2015), from 

local databases (Mougin et al., 2008), from global databases (Shangguan et al., 2017), or from 

prediction derived from coupled groundwater, erosion and weathering models (Rempe & 

Dietrich, 2014). Additional hydraulic and geological information might be integrated to refine 

the effective location of the water within the aquifer. While the dependence of CV to CW and  

given by equation (28) is expected to hold globally, the determination of  and to a lesser extent 

of CW might require complementary approximation methods. The results obtained here might 

then be used in a more qualitative way to assess the deviation of the TTD from the exponential 

model towards the uniform- or gamma-like models taking CV as a proxy of the shape of the 

expected TTD (Figure 13). 

Without seepage, the Figure 13 shows that  is the main factor controlling the variability in the 

TTD and needs to be estimated more carefully than for large saturated thicknesses, where the 

effect of AS/A dominates over  on the variability of transit times. However, intermediate cases 

are expected to be more common, especially in the context of headwater catchment  where 

saturation conditions strongly fluctuate between dry and wet seasons (Rosenberry & Winter, 

1997).  

5.2 Relevance, determination and limitations of the relative saturated area AS/A  

The observed and modeled seepage zone should closely correspond to ensure the relevance of 

AS/A in the prediction of the TTD. From the field perspective, seepage both introduces fast 

transit times and modifies the groundwater contribution to the TTD. The fast transit times come 

from saturation excess overland flows. The groundwater contribution to the TTD is extended 

with more shorter times to the seepage zone and more longer times below the seepage zone 

where flows are reduced. Both depend directly on the extent of the saturated area AS/A. AS/A 

can be estimated based on direct observations of the wet areas and of their extension. Such 
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information is available at places through local expertise and recurrent observations both in dry 

and wet seasons from which a mean saturation could be estimated. The information might be 

also indirectly deduced from remote sensing techniques and vegetation mapping (Franks et al., 

1998; Merot et al., 2003).  

The modeled AS/A is highly sensitive to the topographic features involved at large scales, as 

demonstrated by the fundamental differences in TTDs between the natural and synthetic 

hillslope cases, and at smaller scales with its dependence on the resolution of the digital 

elevation model. AS/A is only conditioned by the subsurface flows, under the assumption of 

non-limiting surface drainage, which could otherwise limit the extension of the seepage zones. 

This is mainly the case for the rough topography for which local small depression zones have 

a strong impact by attracting flow lines without much extension of the seepage zones. The 

saturated area is sharply reduced compared to the smooth topography case while it keeps the 

same overall distribution. Therefore, comparison between observed and modeled saturated 

zones should not only be based on their average extent but also on their spatial structure.  

The investigated synthetic and natural hillslope cases display marked differences in the 

structure of the seepage zones. In the synthetic converging and diverging cases with uniform 

slope, the seepage area progresses monotonically uphill with increasing recharge to hydraulic 

conductivity ratios. Even though the extent of the seepage zone from the river leads to some 

variations between the center and the hillslope divides on the sides, it remains essentially a 1D 

problem that can be handled with an equivalent hillslope formalism (Troch et al., 2003). This 

is especially the cases for smooth natural hillslopes.  

In the case of more complex topographies such as the one introduced in section 2.2 and studied 

in section 4.3, the structure of the seepage zone is controlled by other structures like the cliff. 

In other cases, it may develop irregularly uphill through local depressions serving as extensions 

of the stream network making the problem fully 2D. In such cases, the coefficient of variation 

is not only determined by the extent of the seepage zone but also by its structure. 

Complementary metrics should be determined to capture the structural features controlling the 

subsurface transit times.  

Determination of complementary indices might be inspired from spatially distributed metrics 

classically used in hillslope hydrology to characterize the spatial distribution of the seepage 

area as well as the distribution of transit times. Seepage areas have been related to the 

Topographic Wetness Index (Grabs et al., 2009; Güntner et al., 2004), a distributed indicator 

based on the ratio of the upstream contributing area to the slope (Beven & Kirkby, 1979; 
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Hrachowitz et al., 2010). Generalizations have been proposed to account for the climatic 

conditions in the climato-topographic index (Infascelli et al., 2013; Remondi et al., 2019; 

Seeger & Weiler, 2014) and for the aquifer transmissivity condition in the soil topographic 

index (Mukherjee et al., 2013). Transit times have also been expressed for surface transfers as 

a function of the flow path distance to the flow gradient to the stream network (Dunn et al., 

2007; Gabrielli et al., 2018; Lane et al., 2020; McGuire et al., 2005). Such indices might be 

useful to characterize the dependence of transit times on topographic structures. 

5.3 Implications for the interpretation of groundwater age data and the inference 

of TTDs  

We discuss how the presented results can practically be used to interpret groundwater age and 

infer TTDs from field data. Environmental tracers such as dissolved gases (CFCs, SF6, 

tritium/3He) and radioactive isotopes 3H, 14C, 39Ar, 36Cl, 85Kr have been used to characterize 

the residence and transit times in groundwater systems (Alvarado et al., 2005, 2007; Bauer et 

al., 2001; Carreira et al., 2011; Chambers et al., 2019; Chen et al., 2011; Cook & Herczeg, 

2000; Massoudieh et al., 2012; Newman et al., 2010; Stotler et al., 2009). Taken alone, each of 

these tracers only provides a partial vision of the TTD limited to the range of transit times they 

cover. When several tracers are available, covering different age ranges, shape-free distribution 

models (Engdahl & Maxwell, 2014) should be used to combine the flexibility of the approach, 

the relevance of the emerging distribution models and the information capacities of the tracers 

considered (Massoudieh et al., 2014; McCallum et al., 2014).  

When only limited groundwater age data are available without significant differences between 

them, as it is the case for tracers that are used to characterize recent circulations (typically <50 

years), the problem remains largely under-constrained. Physically-based TTDs resulting from 

quantitative representations of groundwater flows can be used to account for water mixing and 

tracer dispersion within and between formations (Broers, 2004; Eberts et al., 2012; Ju et al., 

2021; Kolbe et al., 2016; Leray et al., 2012). When the development of a fully-distributed 

numerical model is out of reach, Lumped Parameters Models (LPMs) can be used as an 

alternative to fill up the gaps between and beyond tracers (McCallum et al., 2015; Underwood 

et al., 2018; Zuber et al., 2011). In such cases, LPMs must be chosen externally –independently 

of the tracers – with mostly qualitative information. They are used to approach the TTD (IAEA, 

2006; Małoszewski & Zuber, 1982; Visser et al., 2013; Zuber et al., 1986) and constrain part 

of the physical determinism of geochemical and ecological processes (Abbott et al., 2016; 

Green et al., 2016; Koh et al., 2018; Pinay et al., 2015).  
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The TTDs characterized here provide reference LPMs for the investigated category of hillslopes 

with uniform slopes. They are parameterized by the mean and their coefficient of variation of 

the TDD. They include several models including first the exponential, uniform and bimodal 

models on which they rely. They are consistent with several other analytical solutions 

developed for sloping aquifers where the aquifer thickness evolves with the distance to its outlet 

(Etcheverry, 2001; Kirchner et al., 2000; Leray et al., 2016, 2019; Małoszewski & Zuber, 1982; 

McGuire & McDonnell, 2006). When the aquifer volume decreases towards the stream, the 

TTD broadens and becomes similar to the Gamma distribution models with a shape factor near 

0.5 (Kirchner et al., 2000; McGuire & McDonnell, 2006). This is typically the case of incised 

hillslopes where the river limits the depth of the weathered zone (Leray et al., 2018). On the 

other end of the spectrum, when the aquifer volume increases towards the outlet, as for some 

alluvial aquifers, the TTD becomes more uniform (IAEA, 2006; Małoszewski & Zuber, 1982; 

Zuber et al., 1986). 

Characterizing the TTD moments from indices like  and AS might additionally be used to 

assess transit time properties at large scale for shallow aquifer systems. What has been done on 

mean transit times from flow simulations (Basu et al., 2012) might be extended to assess transit 

time variability from hillslope to catchment and regional scales (Troldborg et al., 2007, 2008). 

To further improve the representation of the transit time variability, more general hillslope 

structures might be analyzed to account for slope variations, like in concave or convex 

hillslopes (Evans, 1980; Sabzevari et al., 2010) or in even more complex sigmoidal shapes like 

the natural hillslope example. With the rapidly evolving hybrid modeling approaches involving 

physical models and statistical learning methods (Reichstein et al., 2019), the generic 

correlations might be further used and refined in combination with extensive numerical 

simulations to regionalize TTDs from mappable physical features (Fienen et al., 2018; Starn & 

Belitz, 2018).  
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6 Conclusions 

We have investigated how the distribution of groundwater volume affects the transit time under 

steady state recharge at the hillslope scale. Our analysis was based on synthetic uniform 

convergent, straight and divergent hillslope, with a constant slope and a uniform recharge. 

Subsurface flows were modeled by the classic diffusion equation. When the flow exfiltrates at 

the saturated discharge area, water is directly transferred over the stream with a time considered 

much smaller than the characteristic transport time in the subsurface. The hillslope model is 

characterized by four dimensionless parameters, which are its convergence/divergence ratio, its 

slope, the ratio of the applied recharge to hydraulic conductivity and the ratio of its depth to its 

characteristic length. Flows and transit times were determined numerically in 3D using the 

MODFLOW and MODPATH software suite. The variability of the TTD described by its 

coefficient of variation (ratio of the standard deviation to the mean) is controlled by the mean 

distance of the groundwater volume to the river normalized by the hillslope length (/L) and by 

the proportion of seepage area relative to the total area (AS/A) for any convergent or divergent 

ratio (CW).  

In the absence of seepage, the coefficient of variation scales linearly with /L in agreement with 

analytical developments of the specific cases of (1) thin aquifers in flat straight hillslopes, (2) 

thick aquifers in flat convergent and divergent hillslopes, (3) aquifers in steep convergent and 

divergent hillslopes. This remarkable result might offer simple ways to assess the variability of 

transit times at large scales and for remote areas. However, it should be confirmed on a broader 

range of synthetic and naturel hillslope structures and extended to heterogeneous aquifers. 

Heterogeneities in the aquifer thickness induced by changes in hydraulic conductivity or the 

bedrock structure, are known to be important factors controlling transit times and their 

variability. They modify the distribution of head and saturation in the aquifer. Smaller hydraulic 

conductivities let travel times increase through thicker aquifers. The results obtained here might 

first be extended to some bounded heterogeneities considering the hillslope as an effective 

model with adapted parameters. It follows the same rationale as that of Luther and Haitjema 

(1998) according to which the renewal time (volume over areal recharge) remains relevant as 

long as the ratio of depth over local recharge does not display any marked trend.  

When seepage occurs, the TTD is significantly modified. Additionally, to the rapid transfer of 

overland flows, the groundwater contribution to the TTD becomes bimodal. The first mode 

comes from rapid circulations close to the seepage zone. The second mode represents deeper 
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circulations going from a recharge area more uphill to the river below the seepage zone. The 

groundwater contribution to the distribution cannot be deduced from the results obtained in the 

absence of seepage. The coefficient of variation of the TTD however remains a simple function 

of the relative seepage extent (AS/A). A complementary analysis performed on a natural 

hillslope structure coming from a crystalline basement in Normandy (France) shows that the 

TTD depends both on the seepage extent and on its organization in the hillslope, including both 

local and global topographic structures.  
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Figure 1 – Synthetic hillslope models with their parameters. 
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Figure 2 - Hillslope location (b) in the Normandy catchment (a). 3D visualizations for a real 

topography at a resolution of 5m (c) and the smoothed topography obtained with a smoothing 

scale of 500 m (d).  
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Figure 3 - Sketches of systems for which TTDs are derived analytically: (a) thin flat aquifers, (b) 

thick flat aquifers, (c) steep aquifers and (d) aquifers with a seepage area. (e) Corresponding 

coefficient of variations CV as a function of the barycenter of the aquifer volume 𝝃 normalized by 

the hillslope length L derived for straight aquifers (𝑪𝑾 = 𝟏).  
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Figure 4 - (a) 𝑪𝑽 as a function of 𝝃 𝑳⁄  for divergent synthetic hillslopes (𝑪𝒘 = 𝟏𝟎). (b), (d) and (f): 

cross-sections of the hillslope with the hydraulic head in blue and the bedrock boundary in black. 

(c), (e) and (g): TTDs in red solid lines compared to the exponential model (black dashed line) for 

3 models with high CV (top line), low 𝑪𝑽 (bottom line) and with a CV value close to 1. 
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Figure 5 - (a) 𝑪𝑽 versus 𝝃 𝑳⁄  for the synthetic hillslope models without seepage. Colors refer to 

different values of 𝑪𝑾 (scale given on the right). Diagonal dashed lines come from equations (28) 

and (29) with numerical estimates of 𝝃𝑼. (b) The insert on the top shows the agreement between 

analytical and numerical results (x- and y-axes). 
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Figure 6. (a) TTDs scaled by the mean transit time τ for three values of 𝑪𝑾 (solid line for 𝑪𝑾 =

𝟎. 𝟏, dashed line for 𝑪𝑾 = 𝟏 and dotted dashed line for 𝑪𝑾 = 𝟏𝟎) as compared to the exponential 

model (black dash line). The colorbar represents the coefficient of variation CV of the TTD. The 

three figures on the right show the normalized mean hydraulic head 𝐇̅(𝐱/𝐋)/𝐋 and the location 

of the normalized barycenter of the aquifer volume 𝝃/𝑳 for three different slopes: 1% for (b), 5% 

for (c) and 10% for (d). The black line represents the limit of the bedrock.  
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Figure 7. (a) 𝑪𝑽 against 𝝃 𝑳⁄  for convergent hillslopes with an upper topographic limit generating 

seepage (𝑪𝑾 = 𝟎. 𝟏). (b) Cross-section with hydraulic head profiles in blue, bedrock limit and 

topographic boundary in black where the normalized positions of the volume barycenter (/L) 

and of the limit of the seepage zone (AS) are marked by the dashed vertical blue and green lines. 

(c) TTDs of the underground contribution in red compared to the exponential model in dashed 

black lines shown for 3 models with maximal and median values of 𝑨𝑺 𝑨⁄  (top and middle lines) 

and the closest model to 𝑪𝑽 = 𝟏 (bottom line). 
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Figure 8. Relation of the TTD (a) to the pathline structure for a convergent hillslope with seepage 

(b). The color of the pathlines represents the normalized time. The model parameters are 

𝑪𝑾 = 𝟎. 𝟏, 𝑹 𝑲 = 𝟎. 𝟎𝟎𝟐⁄ ,𝑯𝟎 𝑳⁄ = 𝟎. 𝟎𝟓, 𝚯 = 𝟎.𝟎𝟓 and 𝑨𝑺 𝑨⁄ = 𝟎. 𝟏𝟖.  
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Figure 9. Coefficient of Variation CV against /L for convergent, straight and divergent hillslopes 

for increasingly bigger seepage areas. Insert: comparison of the analytical estimates of CV given 

by equation (32) and the numerical values.  
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Figure 10. Illustration of some of the flow lines for the real (a) and smoothed (b) natural hillslope 

cases (see Figure 2). Smoothing scale in (b) is set 500 m. Colors represent the transit time along 

the flow lines. The blue transparent surface indicates the elevation of the water table. The black 

surface delineates the seepage areas. Results are shown for 𝑹 𝑲⁄ = 𝟐. 𝟏𝟎−𝟑 and 𝑯𝟎 = 𝟓𝟎 𝒎. 
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Figure 11. Coefficient of variation CV against the seepage ratio 𝑨𝑺/𝑨 for the synthetic hillslopes 

(gray crosses), the straight (𝑪𝑾 = 𝟏) synthetic hillslopes (blue crosses), the natural hillslopes 

(black squares), the smoothed natural hillslopes with evolving smoothing scale (colored disks). 

Equations (32) and (35) (respectively black dashed and solid lines) are generated using the 𝑪𝑾 

and 𝝃 𝑳⁄  values of the natural hillslope model. 
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Figure 12. TTDs compared to the exponential model (black dashed line) for the synthetic hillslope 

(𝑪𝑽 = 𝟏. 𝟏𝟒 ; gray line), the synthetic hillslope with seepage (𝑪𝑽 = 𝟏. 𝟗𝟔 ; gray dash-line), the 

natural hillslope (𝑪𝑽 = 𝟏. 𝟑𝟗 ; red line) and the smoothed natural hillslope with the maximal 

smoothing scale of 500 m (𝑪𝑽 = 𝟏. 𝟒𝟔 ; blue line). Results are shown for 𝑯𝟎 = 𝟓𝟎 𝐦, 𝑪𝑾 = 𝟏 and 

𝑹 𝑲⁄ = 𝟎. 𝟎𝟎𝟐. 
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Figure 13. CV as a function of 𝑪𝑾 and 𝝃 𝑳⁄  according to equation (28). Hillslope cases without 

seepage have been placed on the graph with TDDs evolving from the uniform model (purple color) 

to the exponential model (pink color) and gamma like model (orange/yellow colors). 
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PARAMETERS VALUES 

𝐂𝐰 = 𝐖𝟎 𝐖𝐋⁄  0.01 – 0.1 – 0.5 – 1 – 5 – 10 – 100 

𝑯𝟎 𝑳⁄  0.01 – 0.05 – 0.1 

𝚯 0.01 – 0.05 – 0.1 

𝑹 𝑲⁄  0.0005 – 0.001 – 0.002 

Table 1. Parameters and values investigated for the synthetic hillslope model.  

 




