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Key points

Transit times are determined by integrated features of groundwater and seepage distribution in
constant-slope convergent/divergent hillslopes

The coefficient of variation of the transit time distribution scales linearly with the mean distance
of the groundwater volume to the river

The extent and structure of seepage modify the groundwater outlet and impact the distribution

of transit time and increase its variability
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Abstract

We investigated how geomorphological structures shape Transit Time Distributions (TTDs) in
shallow aquifers. Extensive 3D simulations were performed to determine the TTDs for
synthetic convergent, straight and divergent hillslopes with a constant slope. The uniform
recharge applied on top of the aquifer is transferred to the receiving stream through steady-state
groundwater flows, return flows and saturation excess overland flows. Without seepage, TTDs
evolve from uniform- to power law-like- distributions depending on the average distance of the
groundwater volume to the river (barycenter). Remarkably, the coefficient of variation (ratio of
the standard deviation to the mean) of the TTDs scales linearly with the barycenter in agreement
with a theoretical prediction based on three analytical approximations derived for specific cases.
With seepage, the TTD has three separate modes corresponding to rapid saturation excess
overland flows, to the intermediate flow paths ending in seepage area and to the slower flow
paths going all the way to a discharge in the river. The coefficient of variation additionally
depends on the extent of the seepage area. For a natural hillslope in the crystalline basement of
Normandy (France), the same synthetic analysis demonstrates that the coefficient of variation
is not only determined by the extent of the seepage zone but also by its structure in relation to
the local and global geomorphological organization. The results suggest the possibility to assess
the variability of transit times by combining geomorphological analysis, surface soil saturation

observations and environmental tracers.
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1 Introduction

Water transit times vary over several orders of magnitude in between and within each of the
main compartments of the hydrological cycle (Sprenger et al., 2019). This distribution has
fundamental consequences for the water availability, renewal (Gleeson et al., 2016; Jasechko
et al., 2017) and quality (Appelo & Postma, 1994; Wachniew et al., 2016). This is especially
the case for shallow aquifers in direct connection to anthropogenic activities. Water ages
broadly range from some weeks to several decades. This has immediate consequences on the
transmission or buffering of recharge deficits and contamination loads (Cuthbert et al., 2019).
Being intermediary between the surface and the deeper subsurface, shallow subsurface flows
are potentially controlled by both geology and geomorphology (Bresciani et al., 2016; Fan &
Bras, 1998; Haitjema & Mitchell- Bruker, 2005). Globally, they follow the conductive
subsurface structures down topographical gradients and discharge in saturated zones (Fetter,
2000; Leray et al., 2012; Ogden & Watts, 2000). Yet, it remains largely unknown how geology
and geomorphology shape the Transit Time Distribution (TTD). Transit time is defined here as
the time needed for any parcel of water to go from its recharge in the groundwater system to its
discharge in the receiving water bodies (e.g. stream, lake). In this study, we distinguish
“geology” from “geomorphological” constraints based on the effective hydraulic parameters

and the structure of the topography respectively.

The controls of geology on flow partitioning and transit times has mainly been addressed for
global aquifer structures. For subsurface flows, the mean transit time directly scales with the
overall volume of the aquifer (Bolin & Rodhe, 1973; Cornaton & Perrochet, 2006; Eriksson,
1971) regardless the degree of its internal heterogeneity (Bethke & Johnson, 2002). In semi-
confined aquifers where geology is the dominant controlling factor through the aquifer
thickness, the shape of the TTD under uniform recharge follows the distribution of water within
the system (Leray et al., 2019). The TTD is exponential when the aquifer volume is uniformly
distributed (Haitjema, 1995) or without any marked trends (Luther & Haitjema, 1998). It
evolves to power-law like distributions with higher standard deviations when the aquifer
volume is located further away from the outlet (Etcheverry & Perrochet, 2000). It becomes
uniform with lower standard deviations when the aquifer volume is clustered close to the outlet
(Etcheverry, 2001; IAEA, 2006; Leray et al., 2019; Matoszewski & Zuber, 1982). The
variability of the distribution increases with the relative distance of the saturated volume to the

outlet. Even though the structure of the aquifer appears to be a primary driver of the shape of
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the TTD (Eberts et al., 2012; Leray et al., 2012, 2016), it has been mainly related to the hillslope
geological characteristics and much less to its geomorphological characteristics.

However, geomorphology is a primary controlling factor of the dynamics of surface and
shallow subsurface flows (Beven & Wood, 1983; Rodriguez-Iturbe & Valdés, 1979). Response
functions to climatology have been and remain an active field of research at the integrated
regional scales (Condon & Maxwell, 2015), at the catchment scale (Ambroise et al., 1996;
Cudennec et al., 2004; Hrachowitz et al., 2013) and at the more local hillslope scale involving
mechanistic models of Boussinesq flows (Berne et al., 2005; Bogaart & Troch, 2006; Lyon &
Troch, 2007). Climatic conditions and topographic structures (e.g. slope, flow path distances
over flow gradients) directly impact the saturation state and condition transit times as shown
by global analyses across different geomorphic provinces (McGuire et al., 2005; Tetzlaff et al.,
2009).

Fewer studies have investigated the direct control of topography on transit times partly because
of the inherent difficulty to untangle the effects of climate and topography (Remondi et al.,
2019; Seeger & Weiler, 2014). Analyses based on mechanistic models calibrated for well-
instrumented sites have confirmed the dependence of the mean transit time on the catchment
wetness with seasonal shifts in the contribution of shallower and deeper flow paths (Remondi
et al., 2018; Yang et al., 2018). The fraction of young water increases with the mean slope
(Remondi et al., 2019) suggesting an effect of topographic structures on the TTD This link
between the distribution of groundwater, the geomorphological structures, the TDD and

associated control factors is however not clearly established.

Here, we investigate how geology and geomorphology shape Transit Time Distributions for
shallow free aquifers conditions at the hillslope scale. We define “local” as the conditions for
which flow lines dominantly end up in the closest river downhill and only marginally go below
the stream to eventually reach another outlet (Gburek & Folmar, 1999). Thus, the local scale is
typically the hydrologically defined hillslope (Kirkby, 1978). Using 3D steady-state flow and
transport simulations, as well as simplified analytical developments for a synthetic hillslope
model, we analyze the influence of the aquifer and topographic structures on the mean and
standard deviation of the TDD. The coefficient of variation (or relative standard deviation)
defined as the ratio of the standard deviation to the mean of the TTD, is used to determine the
relative dispersion and the shape of the TTD. We seek to relate it to geomorphological and
hydrological indices that may be inferred in natural hillslopes. We more specifically explore

indices related to the distribution of the effective water volume within the aquifer and its
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interaction with the surface through the characterization of the seepage area. We assess the
relevance of these indices on models of natural hillslopes in a crystalline basement area of
Normandy (France). We discuss their application in conjunction with age tracers to assess

hillslope Transit Time Distributions.

2 Hillslope structures, flow and transport models and methods

2.1 Synthetic Hillslopes

Synthetic hillslopes (Figure 1) that were modeled were classic convergent, straight and
divergent hillslopes used in several previous studies (Fan & Bras, 1998; Marcais et al., 2017;
Matonse & Kroll, 2009; Troch et al., 2003).

Hillslopes extend over a length L [L] from the river downstream (x = 0) to the water divide
upstream (x = L). Hillslopes have a constant thickness H, [L]and a constant slope @ [-]. Both
the surface and the soil-bedrock interface have the same tilt ©. Hillslope shape is defined by the

shape coefficient Cy, [-]:
Cw = Wo/W, 1)

where W, [L] is the downstream hillslope width and I/, [L] the upstream hillslope width. The

hillslope width W (x) [L] is a linear function of the distance to the river x:

Pk wy = w1+ G -1 (1-7)] @

W(x) =
Hillslopes are convergent when Cy, < 1, straight for C,, = 1 and divergent for C,, > 1. The
hydraulic conductivity K [L.T!] is constant throughout the system and the recharge rate R [L.T-

1 is uniformly distributed.

The shape coefficient Cy,, the tilt ©, the thickness to length ratio H,/L and the recharge to
hydraulic conductivity ratio R /K condition the thickness of the aquifer and its intersection with
the surface. These parameters were varied over a broad range of values (see section 3.5) to
provide a large variety of hillslope configurations: from thin hillslopes (H,/L = 1072) to thick
hillslopes (Hy/L = 10~1), from highly convergent hillslopes (C,, = 10~2) to highly divergent
hillslopes (Cy, = 102), and from flat hillslopes (© = 0%) to steep hillslopes (6 = 10%). To
study the impact of the seepage area, we simply added a topographic limit allowing the
development of the seepage area Ag [LZ]. This limit is placed in such a way that the thickness

is fixed to H, (distance between the surface and the bedrock limit).
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2.2 Natural Hillslope

We additionally analyzed a natural hillslope structure in the western part of Normandy (France).
The hillslope is defined on the basis of the hydrological catchment and extracted by defining
all surface flow paths to a limited section of a downstream perennial river close to the Atlantic
coast. The extraction was performed using TopoToolbox (Schwanghart & Scherler, 2014). The
hillslope is approximately 3 km by 1 km. The elevation range varies between 5 m and 70 m. It
is almost straight (C, = 2.43) with a cliff at the limit between relatively flat upstream and
downstream sections (Figure 2). Such cliffs are common in this area. They are mainly due to a
transition between an overlying crystalline basement with permeable upper layer dipping below
a sedimentary prism composed of sands, both resting on the same impermeable bedrock (Doré
et al., 1988; Dupret et al., 1987). In spite of some degree of heterogeneity, the hydraulic
conductivity and porosity are assumed to be homogeneous so as to focus on the sole effect of
the morphology of the aquifer. The aquifer is mostly shallow with typical depths much smaller
than its lateral extents, similar to the synthetic hillslopes. The recharge is assumed uniform,
considering the moderate relief of the area. Natural and synthetic cases differ by the roughness
of the topography and of the soil-bedrock interface. In the synthetic case, the topography is
gently increasing with a constant slope from the river to the hillslope divide. In the natural case,
the slope varies along the major cliff structure and has smaller scale local depressions. To
investigate the relative effects of the local and global scale structures, we use the DTM at a
resolution of 5m (IGN, 2018) and smoothed topographies obtained by using the moving average
function “filter” of TopoToolbox (Schwanghart & Scherler, 2014) parameterized by a
smoothing scale (Figure 2c-d). The studied topographies thus range from the one with “natural”

roughness to the synthetic one where only the larger wavelengths are maintained.
2.3 Flow model

Hydrodynamic flow and transport models were applied both to the synthetic and natural
hillslopes. Flows were modeled by the Laplace equation (Bear, 1972; Bresciani et al., 2014;
Neuman & Witherspoon, 1970):

V.(KVh) =0in Q 3)

where h [L] is the hydraulic head and K [L.T™] is the hydraulic conductivity. K is assumed to
be homogeneous and isotropic. The Laplace equation is defined for the saturated domain Q

limited upstream by the groundwater divide (I'y), which is a no flow boundary condition:
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oh
_ 4
Koy =0atly 4)

where the derivative operator is taken with respect to the exterior normal N. Downstream, at

the river (Ty), the head is fixed at a constant value H,:
h = HO at FR' (5)
At the top, the free surface ( I'z) and the seepage area ( I's) of the aquifer are represented by:

h =z atTg and I, (6)
dh
— = 7
K- =RatTy. )

The recharge R is uniform over the hillslope. All water infiltrates in the section where the
aquifer remains below the surface. The recharge that does not infiltrate becomes a saturation
excess overland flow that is directed to the downslope river. The distribution of saturation in
the hillslope depends on both the hillslope structure and the recharge to hydraulic conductivity
ratio R/K. Larger R/K ratios, flatter, more convergent and thinner hillslopes promote the
development of large saturated zones, which area As will be compared to the hillslope area A
as the ratio of saturated area As/A. Below the surface, the aquifer structure is characterized by
its volume V [L®] given by the integration of the cross-sectional volume V(x) [L?] and its
distribution within the hillslope relative to the river measured by the barycenter & expressed in

a dimensionless form as:

LX
EZL T V(x)dx ®)
L fvede

2.4 Transit times

The volume V has been previously related to the mean transit time. The organization of the
volume within the hillslope characterized by &/L will be tested as a proxy of the variability of
the transit times in the aquifer. The mean transit time (t) over the porosity is directly given by
the renewal rate expressed by the aquifer volume V over the hillslope area A multiplied by the

recharge R:

(t) 4
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This equation holds regardless of the distribution of the aquifer volume within the hillslope and
of the distribution of flows between the surface and the subsurface flows. Knowing the mean
transit time, the coefficient of variation CV is considered as a normalized expression of the

transit time variability. It is expressed by:

CV = % — 1. (10)

To determine the transit times and their distribution, we solved the advection equation
expressed in the Lagrangian framework with a classical particle tracking (Kinzelbach, 1988):

dX(ty, t
ch (to, t)

Fr KVh(x,y,z)
Xo (12)
[ X(t =ty = ( Yo >
k zy = h(x0,y0)

where ¢[T] is the transit time, # [T] is the initial time, X[L] is the trajectory vector and xo, yo
and zo [L] are the initial position of the particle. The injection is carried out on the water table
Zo = h(xq,y,). The porosity @ [-] is assumed uniform over the hillslope. As transit time t
directly scales with @, it will be handled through its ratio to the porosity t/®. The transport
equation is made up of a sole advection term without diffusive nor dispersive terms as transit

times characterize parcels of water rather than tracers.

Transit time variability is also expected to come from the relative rate of the saturation excess
overland flow to the groundwater and return flows. This relative rate is typically characterized
by the ratio of saturated area Ag/A. We will thus rely on ¢/L and Ag/A to describe, in a first

approach, the aquifer and topographic controls of the Transit Time Distribution.
2.5 Numerical methods

Apart from the specific cases where analytical developments are proposed (see in section 3),
the flow and transport models are solved numerically. All numerical methods are fully 3D and
do not introduce any other approximations, other than errors of the numerical schemes. The
MODFLOW and MODPATH software suite was used to solve the flow and transport equations
(Harbaugh, 2005; Niswonger et al., 2011; Pollock, 2016). For the flow solution, hillslopes are
discretized in 1 m by 1 m regular mesh cells, resulting in 275 by 1,000 mesh cells for each of
the 10 layers of the model. A drainage boundary conditions is implemented at the surface. It is

active when and where the saturated zone reaches the surface. The TTDs are obtained from
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particles injected on the aquifer surface, regularly spaced, weighted proportionally to the
recharge magnitude, and transported forward in time to the river. The transit time of the
particles injected over the outflow zone of the seepage area is considered much shorter than
that of any other particles transported underground and is considered null, the particle reaching
instantaneously the stream. The transit time of the particles injected over the recharge area are
obtained from equation (11) Error! Reference source not found.. The FloPy Python package

is used to generate and handle simulations (Bakker et al., 2016).
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3 Analytical derivation of TTDs for specific hillslope structures

Four analytical developments are proposed to explore the relation between the coefficient of
variation of the transit times and the barycenter (i.e., center of mass) of the aquifer volume for
the specific cases of (a) thin aquifers in flat straight hillslopes, (b) thick aquifers in flat
convergent and divergent hillslopes, (c) aquifers in steep convergent and divergent (d)
hillslopes and aquifers with a seepage area (Figure 3 a-d). The impact of saturation excess

overland flow is explored for the exponential model.
3.1 Thin aquifers in flat straight hillslopes

The first analytical solution is developed for flat and straight hillslopes (6 = 0%, Cy, = 1)
(Figure 3a). Assuming that head variations with depth are much smaller than in the horizontal
direction, the hydraulic head H(x) is integrated over the vertical, as given by the equation of
Dupuit-Forchheimer (Dupuit, 1863):

H(az/L)= \/é\/ZL_X_G)Z_HAZ (12)

where

- ey

Solving the transport equation, the transit time can be expressed as a function of the distance to

the river x as (Chesnaux et al., 2005):

() = 4L, 1_%—(1) (14)
V=T )G

where f is the function defined by:

fuw) = In %+ /%—1 —/1—u? (15)

Apart from the normalization factor for time ®L/+KR, transit times depend only on the
dimensionless parameter 1. The moments of the transit time and the coefficient of variation are
obtained by numerically integrating equation (14) using the quadrature methods of the SciPy
Python package based on the Fortran library QUADPACK (Piessens et al., 1983; Virtanen et
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al., 2020). Because it is dimensionless, the coefficient of variation only depends on A according

to the following expression:

CcV = 0 - 1. (16)

Lo
The barycenter of the aquifer volume is expressed analytically as:
1 3/2
xH(x/L) ,(x Al 1V
£ fo —1—4(7) T|(1-7) -1
L™ [THG/L) =t 1 A 1 a7)
X X A
fon(z) 2=z 75 (=7)

The results (Figure 3e) show that CV depends linearly on ¢&:

CV(Cy =1,6/L) =1 +a (% - %) (18)

with the slope a approximatively equal to 2.59. This linear dependence is a compelling result.
It cannot be explained by the broad difference of expressions of the coefficient of variation CV
and of the barycenter of the aquifer volume & (Equations (16) and (17)). It reveals that, in this
specific configuration, the distribution of the aquifer volume in the hillslope as characterized
by its barycenter is an excellent proxy of the transit time variability described by CV. CV
evolves linearly from 1 to 1.2 with & /L ranging from 0.5 to 0.58. The minimal value is obtained
for a constant thickness aquifer case with a marginally varying head corresponding to an
exponential distribution (CV = 1) and a barycenter of the aquifer volume exactly at mid-slope

(¢/L = 1/2). CV increases when the volume tends to be located some more uphill.
3.2 Thick aquifers in flat convergent and divergent hillslopes

In such a case (Figure 3b), the variations of the hydraulic head H are limited because of the
high transmissivity (thick highly conductive aquifer). As the aquifer thickness is relatively
constant, we assume that the TTD is exponential (Haitjema, 1995). The assumption holds for
convergent, straight and divergent hillslopes. Within the analytical development (Leray et al.,

2019), this is straightforwardly related to the evolution of the surface of recharge from the river
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to the hillslope divide exactly compensated by the surface of filtration orthogonal to the flow
direction within the aquifer. The standard deviation being equal to the mean, the coefficient of
variation is equal to 1. The barycenter of the aquifer volume is given by the convergence or
divergence ratio of the hillslope (Cw):

&  Cw+2

- _wre 1
L 3Cy+3’ (19)

the subscript E standing for exponential. The barycenter of the aquifer volume varies from 2/3
for highly convergent hillslope (small Cy,) to 1/3 for highly divergent hillslopes (large Cy,).
This approximation indicates that the convergence-divergence ratio Cy, controls independently
from & but not CV. With the previous analytical solution, it indicates that CV depends both on
& and Cy,.

3.3 Agquifers in steep convergent and divergent hillslopes

The third analytical development is obtained for steep hillslopes (Figure 3c). The aquifer shape
is assumed to be trapezoidal, on the basis of the linear model (IAEA, 2006; Maloszewski &
Zuber, 1982) with a saturated thickness H linearly evolving with x following the kinematic
wave approximation :

H(x) = Ho (1~ %) (20)

The flow rate Q(x) is expressed thanks to the kinematic wave approximation of Darcy’s
equation (Sabzevari et al., 2010; Troch et al., 2002):

Q(x) = -K S((Tx)g—i = —K%tun@ (21)

where z is the elevation of the bedrock. In this case, we consider a constant slope along the

model: dz/0x = tan®.The saturated thickness of the aquifer S(x) is defined as:

S(x) = PH(x)W(x) (22)

. The derivative of the transit time is obtained with respect to the ratio of the soil moisture
storage to the flow rate:

dt  S(x) d

dx  Q(x) K tan® 23)
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The transit time t(x) does no longer depend on the hillslope convergence/divergence. It is

expressed after integration of equation (23) by:

t(x) = (24)

X.
K tan®

With the assumption of a uniform recharge, the TTD is uniform between 0 and ®L/(K tan®).
By further integrating equation (24), the k™ moment is given by:

DL \© [k
<th>= (K tan@) fo (%) d(%) (29)

1/12 1
v «} 1/4 V3 )

In this case, similar to the previous exponential distribution case, the coefficient of variation

leading to:

has a fixed value whatever the convergence/divergence structure of the hillslope. The
barycenter of the aquifer volume however changes and can be computed using equations (2)
and (20):

Cpy + 1
Su_ ) (27)
L 4Cy +2

the subscript U standing for uniform. The barycenter ranges from 1/4 to 1/2 for convergent to

divergent hillslopes.
3.4 Generalized expression for the coefficient of variation without seepage

Based on the three analytical solutions (18), (19) and (27), a general formulation of CV can be

proposed for any hillslope without seepage area:

CVy(Co E/L) =1 + (@) (28)
with
L
V3 (29)

a

T & (Cw)/L = & (C)/L

o is approximatively equal to 2.53 when €, = 1 in close agreement with « = 2.59 obtained
in the case of the thin aquifer in flat straight hillslopes (section 3.1). Both values are similar

despite the strong differences between the assumptions of the three analytical solutions.
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Equation (28) assumes a linear control of CV by & generalized from the first analytical solution
(Equation (18)), an assumption that will be extensively tested on the general hillslope structures

in section 4.
3.5 Hillslopes with a seepage area

The last case (Figure 3d) is obtained for a water table intersecting the surface over an area Ag
where recharge is transferred to the river as saturation excess overland flow. The TTD is made
up of two modes. The first one corresponds to the surface excess overland flow with a
characteristic time essentially controlled by surface flows that much faster than any transfer
underground. It will be approximated by a transit time of O resulting in 0 mean and variance
((t); = 0; a2 = 0). It counts for a proportion Ag/A of the overall flow with the reasonable
approximation that the seepage area is mostly an outflow zone (Bresciani et al., 2014). The
second mode corresponds to the times required for transfer through the aquifer. It accounts for
1 — Ag/A of the recharge. Its mean (t), is derived from the expression of the mean of a binary
distribution, knowing that the mean transit time of the full distribution (t) is given by equation
(9)Error! Reference source not found.:

(t)

(t), = 1= A4 (30)

Two assumptions can be tested to derive the variance 2. In the first one, o2 is assumed equal
to the variance of the TTD for hillslopes without a seepage area (As/A = 0) obtained with the
same other parameters. It is a strong assumption underpinned by the shift of the underground
distribution in the presence of a seepage zone. The assumption is expected to break down for
wide seepage zones. In this case, the variance of the full dispersion o2 can be expressed as:

Ag/A

0% = o07(1—As/A) +<t>2m

(31)

and the coefficient of variation is derived using equations (10)Error! Reference source not
found., (30) and (31) as:

Ag/A

1—Ag/A (32)

CV1(Cw, E/L'AS/A) = \/(1 - AS/A)[CVU(CW’Sz/L)]Z +

where CVy,(Cy, &/L) is the coefficient of variation obtained for the same parameters without
any seepage area. This formulation extends the approximation of the coefficient of variation

from the case without any seepage to cases with seepage on the basis of the binary distribution
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and the conservation of variability of the subsurface mode. The relation between Ag/A and
R/K can be related through the characterization of the distance L, from the river over which
the aquifer is outcropping (seepage zone) (Figure 3e). At the onset of the seepage zone, the flux
recharged uphill in the aquifer is equal to the flux through the aquifer at x = L,  (Bresciani et
al., 2014):

W (Lag)HoKO = R(A — As) (33)

assuming that the thickness of the aquifer is similar to that of the river. Using equation (2) to

express W(LAS), Ag/A can be expressed as a function of R/K:

As ) K 2W(Lag) Hob
A RwW, +w, L

(34)
It can alternatively be assumed that the coefficient of variation of the underground contribution
with seepage is equal to the coefficient of variation without seepage. Following the same type

of developments as in the previous case, the coefficient of variation can be derived as:

Ag/A

1—Ag/A (35)

CVZ (CWJ f/l" AS/A) = \/ [CVU(CW' f/l‘)]z +

(1-A45/4)

Equations (32) and (35) rely on the previous assumptions, and namely, the linear dependency
of CV and ¢ in the absence of seepage, the validity of the head profiles for the exponential and
uniform distributions, and the conservation of the variance or of the coefficient of variation of
the subsurface contribution in the presence of seepage. Equations (32) and (35) organize the
effect of the parameters Cy,, &€ and Ag/A on the coefficient of variation CV assuming implicitly
that the other parameters K/R,H,/L and ® only affect CV through ¢ and Ag/A and not
independently.
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4 Numerical determination of TTDs for the general synthetic

and natural hillslopes

We assessed the relevance of the analytical developments of the previous section to describe
the coefficient of variation, specifically the relevance of equations (28), (32) and (35). Based
on 378 synthetic hillslopes we explore a wide range of hillslope configurations by changing the
values of the model parameters C,,, K/R,H,/L and © (Table 1). We successively evaluated
189 cases without and with seepage to assess both the analytical expressions and the
assumptions on which they rely. The objective was also to determine to which extent the
location of the center of mass of the aquifer and the proportion of seepage control the coefficient
of variation and, more generally, the shape of the TTD. We eventually scale up our study to the

natural shallow aquifer example (in section 4.3).

4.1 Control of the coefficient of variation CV by the barycenter of the aquifer

volume £ in the absence of seepage.

The barycenter of the aquifer £ and the coefficient of variation CV are represented with respect
to the normalized head profile and the probability distribution function for three of divergent
hillslopes (Figure 4a). As for the analytical development in Figure 3e, CV is linearly
proportional to . In the first case (top row) obtained for small values of H,/L and ©, the
hydraulic head has a marked parabolic profile, similar of the flat straight hillslope with small
Hy/L (Figure 4b). The barycenter of the aquifer volume is close to the river (¢/L = 0.41)
because of the diverging shape of the hillslope. The TTD has higher quantities for the smallest
and largest times than the exponential distribution (red curve above the dashed black curve,
Figure 4c). The parabol