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ABSTRACT

Empirical observations of how labs conduct research indicate that the adoption rate of open

practices for transparent, reproducible, and collaborative science remains in its infancy. This

is at odds with the overwhelming evidence for the necessity of these practices and their

benefits for individual researchers, scientific progress, and society in general. To date,

information required for implementing open science practices throughout the different steps

of a research project is scattered among many different sources. Even experienced

researchers in the topic find it hard to navigate the ecosystem of tools and to make

sustainable choices. Here, we provide an integrated overview of community-developed

resources that can support collaborative, open, and reproducible neuroimaging throughout

the entire research cycle from inception to publication and across different neuroimaging

modalities. We review tools and practices supporting study inception and planning, data

acquisition, research data management, data processing and analysis, and research

dissemination. We believe it will prove helpful for researchers and institutions to make a

successful and sustainable move towards open and reproducible science and to eventually

take an active role in its future development.

Keywords: Open Science, Reproducibility, MRI, PET, MEG, EEG

Highlights:

● There is a rising interest in openness and reproducibility in neuroimaging

● Despite its clear benefits, adoption is slow and information is scattered

● We provide an integrated review of open resources covering the full research

lifecycle

● Consortium of 20+ experts across neuroimaging modalities (MRI, PET, MEG, EEG)

● List of ca. 250 resources supporting openness and reproducibility in neuroimaging
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1. Introduction

Science is an incremental progress towards creating and organizing knowledge through

theories and testable predictions. Reproducibility is a core part of science: being able to

repeat or recreate scientific results is essential for the complex process of knowledge

accumulation. Due to its relevance, different terms have been introduced (e.g.,

“reproducibility”, “replicability”, and “reliability”) to describe specific aspects of the process,

depending, for example, on whether the same or different data or analysis methods are

being used to reproduce the results (Goodman, Fanelli, and Ioannidis 2016; Plesser 2018;

Poldrack, Whitaker, and Kennedy 2020; The Turing Way Community et al. 2019). Here, we

will use “reproducibility” as an umbrella term comprising them together to refer to the ability

of recreating scientific results (Poldrack, Whitaker, and Kennedy 2020). Open science tools

and practices have been developed to advance reproducibility, as well as accessibility and

transparency at all stages of the research cycle and across all levels of society. Together,

they remove barriers to sharing and facilitate collaboration, with the goal of improving

reproducibility and, ultimately, accelerating scientific discoveries.

Empirical observations of how labs conduct research indicate that the adoption rate of open

practices and tools for reproducible and collaborative science, unfortunately, remains in its

infancy. Even when members of a specific scientific community have taken a central role in

open science advocacy and tool development, like in the neuroimaging community, the

impact on the rest of the very same community is limited. A recent survey (Paret et al. 2021)

including researchers who are senior and likely to hold a positive attitude towards open

science, indicated that 42% have never pre-registered a neuroimaging study and 34% have

never shared their raw neuroimaging data. Many of those who indicated that they

pre-registered or shared their data at least once likely did not do so in all their studies, and

thus, the actual rate of pre-registration and data sharing in neuroimaging is likely much

lower. This limited adoption is at odds with the overwhelming evidence that a lack of open

practices and tools can hinder reproducibility with costs for scientific progress and for

society. Indeed, reproducibility issues have been undermining the foundation of scientific

research in several fields, such as psychology (Open Science Collaboration 2015; Klein et

al. 2018), social sciences (Camerer et al. 2016, 2018), neuroimaging (Munafò et al. 2017;

Botvinik-Nezer et al. 2020; Li et al. 2021), preclinical cancer biology research (Errington,

Mathur, et al. 2021; Errington, Denis, et al. 2021), and more (Hutson 2018; Nissen et al.
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2016; Serra-Garcia and Gneezy 2021). As a response, there has been a rise in the

development of tools and approaches to facilitate reproducibility and open science, in the

spirit of Findability, Accessibility, Interoperability, and Reusability principles (FAIR)

(Wilkinson et al. 2016; Gorgolewski and Poldrack 2016; Nosek et al. 2018; Nosek, Spies,

and Motyl 2012; Nosek and Lakens 2014; Poldrack et al. 2017; Poldrack, Huckins, and

Varoquaux 2020; Poldrack et al. 2019; Clayson, Keil, and Larson 2022). Beyond mitigating

transparency and reproducibility issues, these practices provide important benefits for

individual researchers by increasing exposure, reputation, chances of publication, number

of citations, media attention, potential collaborations, and position and funding

opportunities (Allen and Mehler 2019; McKiernan et al. 2016; Nosek et al. 2022; Markowetz

2015; Hunt 2019). Hence, one could have expected a higher uptake for such beneficial

practices and tools.

Recently, there is a parallel top-down change of policies to further support the adoption of

open science practices and tools. For example, funding agencies are now enforcing the

implementation of certain open data practices for publicly funded research (de San Román

2021; e.g., the NIH in the U.S. and the ERC in Europe; de Jonge, Cruz, and Holst 2021), and

some require a plan for research data storage and sharing, openly accessible publication

formats and dissemination plans beyond the classical journal publication. Additionally, they

provide funding for the development of necessary software, hardware, and collaborative

infrastructure) to support the transition to open and reproducible neuroscience (e.g., the NIH

BRAIN Initiative, NIH ReproNim project (Kennedy et al. 2019), NSF CRCNS, EU Human

Brain Project, German NFDI). These efforts by funding agencies are complemented by

stakeholder institutions like the OHBM, the International Neuroinformatics Coordinating

Facility (INCF), the Chinese Open Science Network (COSN), and the OSF, who provide

platforms for the development of standards and best practices of open and FAIR

neuroscience research, assemble training material, quality control, and promote open

science practices. Moreover, journals have started changing their policies with regard to

open access options and data sharing. Together, these institutional measures aim at

fostering the benefits of open science practices, and the adoption of open and reproducible

science standards will be increasingly required for labs and individual researchers.
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Nevertheless, multiple barriers of entry to open science practices are driving the modest

rate of adoption in the general research community. Among them are lack of knowledge or

training and lack of skills or resources. A survey by Borghi and Van Gulick (2018) found that

65% of researchers reported openness and reproducibility as motivation for implementing

research data management in MRI, but between 40-50% pointed to the lack of best

practices/tools and knowledge/training as main obstacles for embracing these practices.

Likewise, a more recent survey indicated that similar percentages of researchers in

neuroimaging have never learned how to pre-register or share their data online and that

they know too little about pre-registration platforms and suitable data repositories (Paret et

al. 2021). These later challenges could be alleviated by a simplified overview of the open

resources available. However, information required for implementing open science practices

over the full research cycle is currently scattered among many different sources. Even

experienced researchers in the topic often find it hard to navigate the ecosystem of

community-developed tools and to make sustainable choices.

This manuscript provides an integrated overview of community-developed resources critical

to support open and reproducible neuroimaging throughout the entire research cycle and

across different neuroimaging modalities (particularly MRI, MEG, EEG, and PET). We believe

this overview is urgently needed to accelerate the wider adoption of open science tools and

practices by the general research community. The goal is to foster scientific reproducibility

and improve scientific quality by allowing scientists to select the best instruments offered

by open science at every step of their research workflow. We provide justification on why

each of them implements good practices and information on how to access and how to

integrate them in the research workflow. We also encourage the readers to join the

development teams and leadership of those tools, becoming an active part of the open

neuroimaging community.

The manuscript is organized following the different steps of the researchcycle: study

inception and planning, data acquisition, research data management, data processing and

analysis, and research dissemination. To further guide the readers, the manuscript is

accompanied by a detailed table containing links and pointers to the resources featured in

the text of each section (see Table S1). We believe this thorough review will prove helpful for
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researchers and institutions to make a successful and sustainable move to take an active

role in open and reproducible science.

2. Study inception, planning, and ethics

Each individual decision from the beginning of the study will contribute to facilitate or

hamper reproducibility. In the current section, we will describe practices and tools for

preparation, piloting, pre-registration, obtaining participants’ consent and ongoing quality

control and assessment.

Figure 1. Study inception and planning
Sources: Icons from the Noun Project: Registration by WEBTECHOPS LLP; Share by arjuazka; Computer warranty by Thuy
Nguyen; Logos: used with permission by the respective copyright holders.

2.1. Study Preparation and Piloting

Research projects usually begin with descriptions of general, theoretical questions in

documents such as grants or thesis proposals. Such foundations are essential but

necessarily broad. When the project moves from proposal to implementation, these

descriptions are translated into concrete protocols and stimuli, a process that can be

streamlined by the incorporation of open procedures and comprehensive piloting. The

promise is that the more preparation and piloting is conducted prior to data collection, the

more likely it is that the project will be successful: that analyses of its data can contribute to

answering its motivating ideas and questions (Strand 2021).

Standard Operating Procedures (SOPs) can take different forms, and are powerful tools for

planning, conducting, recording, and sharing projects. Ideally, SOPs describe the entire

data collection procedure (e.g., recruitment, performing the experiment, data storage,

preprocessing, quality control analyses), in sufficient detail for a reader to conduct the
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experiment themselves with minimal supervision. SOPs may begin as an outline with vague

descriptions, and then become more detailed over time. For example, if a session is lost

due to a button box signal failure, an image of its correct settings could be added to the

SOPs. At the end of the project, its SOPs should be released along with its publications and

datasets, to provide a source of answers for the detailed procedural information that may

be needed for experiment replication or dataset reuse, but are not included in typical

publications.

Many resources can assist with experiment planning and SOP creation. Documents and

experiences from similar studies conducted locally are valuable, but should not be the only

source of information during planning, since, for example, a procedure may be considered

standard in one institution but not in another. Public SOPs can serve as examples, as can

protocols published on specialized sites (e.g., Protocol Exchange, protocols.io, Nature

Protocols; see Table S1). Best practices guides are now available for many imaging

modalities (MRI: Nichols et al. 2017; MEG/EEG: Pernet, Garrido, et al. 2020; fNIRS: Yücel et

al. 2021; PET: Knudsen et al. 2020). Open resources for stimulus presentations and

behavioral data acquisition are also recommended to increase reproducibility (see section

3.5).

Piloting should be considered an integral part of the planning process. By “piloting” we

mean the acquisition and evaluation of data prior to the collection of the actual

experimental data; verifying the feasibility of the whole research workflow. A piloting stage

before starting data collection is important, not only for ensuring that the protocol will go

smoothly when the first participant arrives, but also that the SOPs are complete and,

critically, that the planned analyses can be carried out with the actual experimental data

recorded. For example, pilot tests may be set up to confirm that the task produces the

expected behavioral patterns (e.g., faster reaction time in condition A than B), that the log

files are complete, and that image acquisition can be synchronized with stimulus

presentation. Piloting should also include testing the data storage and retrieval strategies,

which may include storing consent documents (section 2.3), questionnaire responses,

imaging data, and quality control reports. SOPs also prescribe how data will be organized,

preferably according to a schema (e.g., the Brain Imaging Data Structure, section 4.1). Data
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organization largely determines the efficient implementation of analysis pipelines and

improved reproducibility, reusability, and shareability of the data and results.

Analyses of the pilot data are very important and can take several forms. One is to test for

the effects of interest: establishing that the desired analyses can be performed and that the

data quality and effect sizes are sufficient to produce valid and reproducible results (section

2.2. and 2.4; for power estimation tools see Table S1). A second type of pilot analysis is to

establish tests for effects not of direct interest, but suitable for controls. As discussed

further in section 2.4, positive control analyses involve strong, well-understood effects that

must be present in a valid dataset. It is worth mentioning that well structured and

documented openly available datasets (see section 4) could also serve for analysis piloting

though they would lack the test for potential site specific technical issues. Simulations

could also be used to ensure that the planned analysis is doable and valid.

2.2. Pre-registration

Pre-registration is the specification of the research plan in advance, prior to data collection

or at least prior to data analysis (Nosek and Stephen Lindsay 2018). Pre-registration usually

includes the study design, the hypotheses and the analysis plan. It is submitted to a

registry, resulting in a frozen time-stamped version of the research plan. Its main aim is to

distinguish between hypothesis-testing (confirmatory) research and hypothesis-generating

(exploratory) research. While both are necessary for scientific progress, they require

different tests and the conclusions that can be inferred based on them are different (Nosek

et al. 2018).

Registered reports is a relatively novel publishing format that can be seen as advanced

pre-registration. This format is becoming very common, with a growing number of hundreds

of participating journals (Hardwicke and Ioannidis 2018; Chambers 2019). In a registered

report, a detailed pre-registration is submitted to a specific journal, including introduction,

planned methods and potentially preliminary data. Then, it goes through peer review prior to

data collection (or prior to data analysis in certain cases, for example for studies that rely on

large-scale publicly shared data). If the proposed plan is approved following peer review, it

receives an “in-principle acceptance”, indicating that if the researchers follow their accepted

plan, and their conclusions fit their findings, their paper will be published. An in-principle
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accepted registered report is sometimes required to be additionally pre-registered.

Recently, a platform for peer review of registered reports preprints was launched, named

“Peer Community in registered reports” (see Table S1).

There are many benefits to pre-registration, from the field to the individual level.

Transparency with regard to the research plan, and whether an analysis is confirmatory or

exploratory, increases the credibility of scientific findings. It helps to mitigate some of the

effects of human biases on the scientific process, and reduces analytical flexibility,

p-hacking (Simmons, Nelson, and Simonsohn 2011) and hypothesizing after the results are

known (Nosek et al. 2019; Munafò et al. 2017; Nature 2015; Kerr 1998). There is initial

evidence that the quality of pre-registered research is judged higher than in conventional

publications (Soderberg et al. 2021). Nonetheless, it should be noted that pre-registration is

not sufficient to fully protect against questionable practices (Paul, Govaart, and Schettino

2021; Devezer et al. 2021; Rubin 2020). Registered reports also mitigate publication bias by

accepting papers based on hypothesis and methods, independently of the findings, and

indeed it has been shown that pre-registration and registered reports lead to more

published null findings (Allen and Mehler 2019; Kaplan and Irvin 2015; Scheel 2020) and

report lower effect sizes (Schäfer and Schwarz 2019). For the individual researcher,

registered reports with a two-stage review are an excellent example in which authors benefit

from feedback on their methods before even starting data collection. They can help improve

the research plan and spot mistakes in time, and provide assurance that the study will be

published (Wagenmakers and Dutilh 2016; Kidwell et al. 2016).

While pre-registration is not the common practice yet, it is becoming more common over

time (Nosek and Stephen Lindsay 2018) and requirements by journals and funding agencies

are already changing. There are many available templates and forms for pre-registration,

organized by discipline or study types, for example for fMRI and EEG (see Table S1), and

published guidelines for pre-registration in EEG are also available (Paul, Govaart, and

Schettino 2021). There are different approaches with respect to what should be

pre-registered. For instance, some believe it should be an exhaustive description of the

study, including the background and justification for the research plan, while others believe

it should be short and concise, including only the necessary details to reduce the likelihood
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of p-hacking and allowing reviewers to review it properly during the peer review process

(Simmons, Nelson, and Simonsohn 2021).

Once researchers develop an idea and design a study, they can write and pre-register their

research plan (Nosek and Stephen Lindsay 2018; Paul, Govaart, and Schettino 2021).

Pre-registration could be performed following the piloting stage (section 2.1), but studies

can be pre-registered irrespective of whether they include a piloting stage or not. There are

many online registries where researchers can pre-register their study. The three most

frequently used platforms are: (1) The Open Science Framework (OSF), a platform that can

also be used to share additional information about the study/project (such as data and

code), with multiple templates and forms for different types of pre-registration, in addition to

extensive resources about pre-registration and other open science practices; (2)

Aspredicted.org, a simplified form for pre-registration (Simmons, Nelson, and Simonsohn

2021); and (3) Clinicaltrials.gov, which is used for registration of clinical trials in the U.S. (see

Table S1).

Once the pre-registration is submitted, it can remain private or become public immediately,

depending on the platform and the researcher’s preferences. Then, the researcher collects

the data and executes the research plan. When writing the manuscript to report the study,

the researcher is advised to include a link to the pre-registration, clearly and transparently

describe and justify any deviation from the pre-registered plan and also report all registered

analyses. Additional analyses to deepen some results or look into unexpected effects are

encouraged, and are part of the normal scientific investigation. The added benefit of

pre-registration is that such analyses do not need to reach pre-specified levels of

significance because they are reported as exploratory.

2.3. Ethical review and data sharing plan

The optimism of the scientific community about improving science by making all research

assets open and transparent has to take into account privacy, ethics and the associated

legal and regulatory needs for each institution and country. Whereas on the one hand

sharing data (most often collected with public funds) is critical to advance science, on the

other hand, sharing data can in some situations become infeasible to safeguard privacy.

Data governance concerns the regulatory and ethical aspects of data management and
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sharing of data files, metadata and data-processing software (see sections 6.1-3). When

data sharing crosses national borders, data governance is called International Data

Governance (IDG). IDG depends on ethical, cultural and international laws.

Data sharing is necessary for both reproducibility and the exploration and formulation of

new hypotheses. Therefore, it is important to ensure, prior to data collection, that the

collected data could be later shared. Consent forms for neuroimaging studies should

contain, or be accompanied with, a specific section to allow data sharing. Such data

sharing forms should include information about where and in what form the data will be

shared, as well as who will have access and how restrictive this access will be. Data sharing

forms should also make explicit how these factors determine to what extent a later

withdrawal or editing of the data on the repository is possible. Additional requirements

might be in place depending on the location where the research is being conducted. Given

the international nature of the majority of neuroscience projects, IDG has become a priority

(Eiss 2020). Further work will be needed to implement an IDG approach that can facilitate

research while protecting privacy and ethics. Specific recommendations on how to

implement IDG have been proposed by (Eke et al. 2022).

Open and reproducible neuroimaging thus starts by (1) planning which data would be

collected; (2) planning how these data would later be shared; (3) having ethical and legal

clearance to share data; but also (4) the infrastructural means for this sharing (for more

information about data sharing and available platforms, see section 6; for data governance

see section 4). The practice of collecting informed consent from human research

participants has developed from the Nuremberg Code which led to the Declaration of

Helsinki. The latter comprises a set of ethical principles which are now common practice

and required by many funding institutions and journals, but which are not legally binding.

The informed consent should include a statement about the research goals, inform about

the experimental procedures, its expected duration, potential risks, who can participate in a

study, and potential conflicts of interest if they exist. It should also inform participants that

participation is voluntary, and that the consent can be withdrawn at any time during the

experiment without a disadvantage for the participant. If limited intervals for consent

withdrawal exist, they should be clearly stated. Furthermore, it should also include a

statement that the participant understood the information provided and agreed to
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participate. Clinical research may require adherence to additional, country specific

regulations.

Since 2014, founded under ReproNim project umbrella, the Open Brain Consent project

(see Table S1) provides examples and templates translated to multiple languages to help

researchers prepare consent forms, including the recent development of an EU

GDPR-compliant template (The Open Brain Consent working group 2021). When planning

the recruitment procedures, it is important to aim for equity, diversity and inclusivity (Henrich,

Heine, and Norenzayan 2010; Forbes, Aneja, and Guest 2021), avoiding obtaining results

that may not generalize to larger populations and improving the quality of research (e.g.,

Baggio et al. 2013).

2.4. Looking at the data early and often: monitoring quality

Inevitably, unexpected events and errors will occur during every experiment and in every

part of the research workflow. These can take many forms, including dozing participants,

hardware malfunction, data transfer errors, and mislabeled results files. The impact of such

surprises can range from the trivial and easily corrected to the catastrophic, rendering the

collected data unusable or conclusions drawn from it invalid. Identifying issues and errors

as early as possible is important to enable adding corrective measures to the protocol, but

also because some issues are much easier to detect when the data are in a less-processed

form. For example, a number of typical artifacts in anatomical MRI are known to be easier to

identify in the background of the image and regions of no-interest (Mortamet et al. 2009),

therefore, they can easily remain undetected if the first quality control check is set up after,

e.g., brain extraction, which masks out non brain tissue. As data progresses through the

workflow, issues are likely to cascade and amplify, perhaps masking or mediating

experimental effects, thereby damaging the reliability of the results. Therefore, it is

fundamental to pre-establish within the SOPs (section 2.1) the mechanisms set in place to

ensure the reliability of the study. There are several mechanisms available that help to

ensure that all required data are being recorded with sufficient quality and in a way that

makes them analyzable.

Quality control checkpoints. Establishing quality control (QC) checkpoints (Strother 2006)

is necessary for every project: which data are usable for analyses, and which are not? At

these key points in the preprocessing or analysis workflow the data’s quality is checked,
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and if insufficient, it does not move on to the next stage. Critically, the exclusion criteria of

each checkpoint must be defined in advance (preferably stated in the SOPs and the

pre-registration document, see sections 2.1 and 2.2) to preempt unintentional

cherry-picking (i.e., excluding data points to reinforce the results). Some criteria are widely

accepted and applicable, for example, that all neuroimaging data should be screened to

eliminate clear artifacts, such as data corrupted by incidental electromagnetic interference

or participants movements. A similarly well-established checkpoint of the workflow is

visualizing and inspecting the outputs of surface reconstruction methods in MRI, checking

time activity curves in high binding regions for PET or power spectral content in MEG and

EEG; these fundamental QC checkpoints and their implementation are heavily dependent

on the immediately previous processing step. Such QC may be conducted manually by

experts using software aids, like visual summary reports or visualization software such as

MRIQC (Esteban et al. 2017). More objective, automatic exclusion criteria, are currently an

open and active line of work in neuroimaging. Some QC checkpoints, such as for

acceptable task performance or participant movement, are often defined for individual

tasks, experiments and hypotheses.

Quality assurance (QA). Tracking QC decisions will also enable identifying structured

failures and artifacts that require not just dropping affected datasets, but rather taking

corrective actions to preempt propagation to additional datasets. When a mishap occurs,

the experimenters should investigate its cause, and if possible, change the SOPs (section

2.1) and related materials to reduce the chance of it happening again. For example, if many

participants report confusion about task instructions, the training procedure and

experimenter script could be altered. Automated checks and reports can be very effective,

such as real-time monitoring of participant motion during data collection (Heunis et al.

2020), or validating that image parameters are as expected before storage (e.g., with XNAT

(Marcus et al. 2007) or ReproNim tools (Kennedy et al. 2019)).

Positive control analyses. A final aspect of ensuring high-standards of the research

workflow is the incorporation of positive control analyses: analyses included not because

they are of interest for the scientific questions, but because they provide evidence that the

dataset is of sufficient quality to conduct the analyses of interest, and that the analysis is

valid. Ideally, positive control analyses focus on strong, well-established effects that must
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be present if the dataset is valid. For example, with task fMRI designs, button pressing,

which should be associated with contralateral motor activation, is often a convenient target

for positive control analysis. In MEG and EEG, participants can be asked to blink their eyes,

open their mouths, or clench their jaws, and the recordings checked for the associated

artifacts. Positive control analyses should also be carried out during piloting, when changes

to the protocol are still possible (see section 2.1). For example, if button presses are not

clearly detectable during piloting, the acquisition sequence may not have sufficient SNR for

the planned analyses and so need modification.

3. Data acquisition

Data acquisition is largely carried out with vendored systems. Manufacturers typically keep

their software and hardware closed or semi-open at most. As a result, researchers often

receive highly processed (e.g., reconstructed) data as ‘raw’ data from the devices. The lack

of transparency in the acquisition details and downstream proprietary processing prevents

end-to-end reproducible neuroimaging workflows. Reproducibility is endangered, for

instance, by heterogeneity in data formats, definition of critical experimental parameters,

and technological differences that are translated into the data as spurious, non-biological

differences between acquisition devices.

A central issue is the proprietary nature of acquisition protocols. Many imaging device

manufacturers require developers to use building blocks from vendor-exclusive toolboxes.

This closes the door on open-source development and hampers multi-center consensus for

modern imaging methods, especially in research. These shortcomings of mostly closed

solutions have triggered a growing interest in open-source acquisition hardware and

software (Winter et al. 2016), Here, we provide a brief review of these developments and

accompanying solutions aimed at fostering open and collaborative acquisition method

development across imaging modalities.
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Figure 2. Data acquisition
Sources: Icons from the Noun Project: Brain by parkjisun; Computer Screen by Icon Solid (adapted with a star); Logos: used
with permission by the copyright holders.

3.1. Brain data acquisition

A common approach advocated by MRI researchers is establishing consensus protocols to

standardize data acquisition. One of the flagship applications of this strategy is the Human

Connectome Project (HCP) protocol, which achieved this within the confines of a single

vendor (Smith et al. 2013). The HCP acquisition sequences and reconstruction software are

compiled for different MRI scanner versions of a single vendor, openly distributed and

maintained for fMRI applications (Uğurbil et al. 2013). However, it is generally difficult to

achieve good inter vendor agreement using off the shelf software even for widely used

protocols, such as apparent diffusion coefficient and longitudinal relaxation time (Sasaki et

al. 2008; Lee et al. 2019). In addition, not all software options are available from all vendors

(for example, compressed sensing (Lustig et al. 2008) and frequency-domain based parallel

imaging methods (Breuer et al. 2005; Griswold et al. 2002)). Moreover, even seemingly

simple image enhancement protocols, such as image inhomogeneity corrections, are often

scarcely documented and validated but can affect inferences drawn from an experiment

(Schmitt and Rieger 2021; e.g., Jellús and Kannengiesser 2014). Users typically have

access to key parameters of pulse sequences, which are at the center of data acquisition.

The exact pulse sequence descriptions are vendor-specific and may even change between

software upgrades of a single vendor. This makes it difficult to evaluate multi-center validity

of new acquisition methods or to acquire longitudinal data with confidence.

Fortunately, in the last decade, several vendor-neutral data acquisition pulse sequences

and reconstruction frameworks have been developed to mitigate this problem: Pulseq
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(Layton et al. 2017), PyPulseq (Ravi, Geethanath, and Vaughan 2019), GammaStar (Cordes

et al. 2020), TOPPE (Nielsen and Noll 2018), ODIN (Jochimsen and von Mengershausen

2004), and SequenceTree (Magland et al. 2016) (see Table S1). Although these tools vary in

vendor compatibility and the flexibility of their acquisition runtime, they enable

vendor-neutral deployment of pulse sequences with transparent access to all the details

needed. Nevertheless, vendor-neutral raw data (k-space) collection is half the battle.

To complete the puzzle of MR image acquisition, interoperable and open-source

reconstruction frameworks are essential. Thanks to ISMRM-RD (Inati et al. 2017), a k-space

data standard, community-developed reconstruction tools can have a unified way to run

advanced reconstruction algorithms against undersampled raw data (Maier et al. 2021).

Some of these tools include Gadgetron (Hansen and Sørensen 2013), BART (Uecker et al.

2015), MRIReco.Jl (Knopp and Grosser 2021) (see Table S1 for further tools and details). By

streamlining these acquisition and reconstruction tools using data standards at multiple

levels (Karakuzu, Appelhoff, et al. 2021; Inati et al. 2017) on a data-driven and

container-mediated workflow engine (Di Tommaso et al. 2017), end-to-end reproducible

MRI workflows can be developed. A recent study has shown that this approach can

significantly reduce inter-vendor variability of quantitative MRI measurements (Karakuzu,

Biswas, et al. 2021; Karakuzu et al. 2020). Given the growing open-source MRI acquisition

ecosystem, a variety of end-to-end workflows are possible. Therefore, community-driven

validation frameworks have a key importance for interoperable solutions (Tong et al. 2021).

Facilitated by these standards, effective and open communication methods development

sets the future direction for reproducible MRI research (Stikov, Trzasko, and Bernstein

2019).

In PET, the variety between different scanners is even larger than in MRI. An overview over

different scanner types based on their usage for a specific radiotracer targeting the

serotonin transporter, namely [11C]DASB, is given in (Nørgaard, Ganz, et al. 2019). Different

PET scanners export images in slightly different data formats with little overlap in the Digital

Imaging and Communications in Medicine (DICOM) PET specific tags. As with MRI,

reconstruction is vendor/machine specific but open source solutions to image

reconstruction are being developed, for instance the OMEGA toolbox (Wettenhovi,

Vauhkonen, and Kolehmainen 2021). Data acquisition for PET is further complicated by the

17

https://paperpile.com/c/JrhvYA/5RukT
https://paperpile.com/c/JrhvYA/95mN8
https://paperpile.com/c/JrhvYA/8TRF2
https://paperpile.com/c/JrhvYA/8TRF2
https://paperpile.com/c/JrhvYA/yYJih
https://paperpile.com/c/JrhvYA/GgfIB
https://paperpile.com/c/JrhvYA/GgfIB
https://paperpile.com/c/JrhvYA/bHEP1
https://paperpile.com/c/JrhvYA/CUydR
https://paperpile.com/c/JrhvYA/wfJZX
https://paperpile.com/c/JrhvYA/8ot6E
https://paperpile.com/c/JrhvYA/aaXBx
https://paperpile.com/c/JrhvYA/aaXBx
https://paperpile.com/c/JrhvYA/iDuxM
https://paperpile.com/c/JrhvYA/KDsaC+CUydR
https://paperpile.com/c/JrhvYA/iJMSk
https://paperpile.com/c/JrhvYA/YDSjA+ZtVaH
https://paperpile.com/c/JrhvYA/YDSjA+ZtVaH
https://paperpile.com/c/JrhvYA/LQNZJ
https://paperpile.com/c/JrhvYA/jstGd
https://paperpile.com/c/JrhvYA/jstGd
https://paperpile.com/c/JrhvYA/9PjhI
https://paperpile.com/c/JrhvYA/0sHXp
https://paperpile.com/c/JrhvYA/0sHXp


use of different PET tracers, injection methods, scan duration and scan framing or injected

radioactivity dose.

In MEG and EEG, the problem of standardized data acquisition starts even earlier: unlike

the common DICOM data format used across vendors in MRI or PET, MEG and EEG

manufacturers do not use a common data format, and format specifications are rarely made

public. More importantly, equipment implementation significantly differs between vendors.

MEG systems contain various sensor types (e.g., magnetometers, gradiometers) with

different spatial configurations, which pick up different features of magnetic fields and

varying signal-to-noise ratios from different depths and brain extensions (Taulu et al. 2014).

Furthermore, some of them require daily adjustments of sensor tuning, not typically

reported anywhere. Vendors supply hardware (e.g., reference sensors, internal/external

active shielding) and software noise suppression techniques (e.g., higher-order gradients,

signal space separation), which may affect the signal differently, for example depending on

the choice of free parameters. Some of these techniques can introduce new artifacts that

require additional proprietary software compensation tools (e.g., active shielding requires

signal space separation). In some installations, these tools are even necessary to enhance

the signal-to-noise ratio to a level where MEG measurements are possible at all. Similarly,

EEG equipment differs among the multitude of manufacturers, in terms of amplifiers and

electrodes (e.g., active versus passive; number and spacing on the scalp; preparation

method: dry, with gel, with saline solution; single electrodes or “nets”, etc.). Moreover, there

have been some efforts on developing open versions of some proprietary tools, for

example, the Maxwell filtering for signal space separation by the MNE-python team

(Gramfort et al. 2014). Additionally, initiatives, such as the OpenBCI, offer open EEG

hardware and tools for biosensing and brain computer interfacing through continuous

community driven development. As we have mentioned, very little is known on how the

variability of data acquisition parameters affect downstream comparability of results. The

EEGManyLabs project (Pavlov et al. 2021) will provide a comprehensive dataset in this

regard, as many labs with different equipment try to replicate the same studies.

Given the large variations across different vendors for all neuroimaging modalities, which

often cannot be overcome, it is crucial to report all data acquisition parameters in a

comprehensive and standardized manner to make potential differences in data acquisition
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across studies and sites transparent (for a discussion of reporting guidelines see section

6.4).

3.2. Stimulus presentation and behavior

Several actively maintained programs for stimulus presentation and response logging are

available. Open source software includes PsychoPy (Peirce et al. 2019) in Python and

Psychtoolbox (Brainard 1997; Pelli 1997; Kleiner, Brainard, and Pelli 2007) in MATLAB. Both

have many users, making it possible to get assistance and perhaps find an

already-implemented task protocol (e.g., on Pavlovia for Psychopy). Modality specific

resources also exist, for instance the ERP CORE (Compendium of Open Resources and

Experiments; Kappenman et al. 2021) openly provides optimized paradigms for several

widely used ERP components, along with scripts, data processing pipelines, and sample

data.

Using open stimuli and presentation software generally increases the likelihood a dataset

will be useful to others, and its results reproducible. Although desirable, it is not always

possible to use fully open stimuli, particularly in the case of commercial movies, audio

plays, and image databases. This should also be considered when planning studies.

Stimuli, presentation scripts, behavioral tests and related material should be shared

whenever possible (see DuPre, Hanke, and Poline 2019 for a list of datasets sharing

naturalistic stimuli and section 6). To facilitate stimuli feature analysis and exact

reproducibility of the experimental paradigms, such projects as ReproNim’s ReproStim

(Connolly and Halchenko 2022) could automate recording and archival of the delivered to

audio-video stimulation. When specific stimuli or material can not be released, they should

be described as unambiguously as possible and, if possible, providing the source, such as

identification number (e.g., a GTIN), and scripts to (re)produce used stimuli from the

commercial media.

4. Research Data Management

Good research data management (RDM), i.e. how data are organized, maintained,

annotated, tracked, stored, and accessed throughout a research project, forms the basic

foundations of result reproducibility, data reusability, and research efficiency (Wilkinson et
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al. 2016; Gorgolewski and Poldrack 2016; Nosek et al. 2018; Nosek, Spies, and Motyl 2012;

Nosek and Lakens 2014; Poldrack et al. 2017; Poldrack, Huckins, and Varoquaux 2020;

Poldrack et al. 2019; Borghi and Van Gulick 2021a; Poline et al. 2022). Consequently, it is

widely required by funders (e.g., NIH and NSF in the U.S., ERC in Europe), increasingly

expected by scientific peers, and holds considerable benefits for individual researchers.

While specific RDM requirements vary across subdisciplines, this section highlights RDM

standards and tools applicable across neuroimaging, ranging from data organization to

annotation and publication.

Figure 3. Research data management
Sources: Icons from the Noun Project: Structure by Adam Baihaqi from NounProject.com; Metadata by M. Oki Orlando; Data
Management by ProSymbols; Logos: used with permission by the copyright holders.

4.1. Data organization and standards

Neuroimaging experiments result in complicated data that can be arranged in many

different ways. Historically, data were organized differently between institutions and even

within a lab. This lack of consensus (or a standard) could lead to misunderstandings and

suboptimal usage of various resources: human (e.g., time wasted on rearranging data or

rewriting scripts expecting certain structure), infrastructure (e.g., data storage space,

duplicates), and financial (e.g., disorganized data has limited longevity and value after first

publication). Finally, and most importantly, it produces poor reproducibility of results, even

within the lab where data were collected. Therefore, the need for a data standard in the

neuroimaging community became essential.
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The Brain Imaging Data Structure (BIDS) is a community-led standard for organizing,

describing, and sharing neuroimaging data [RRID:SCR_016124]. BIDS is an evolving

standard, which supports multiple neuroimaging modalities including MRI (Gorgolewski et

al. 2016), MEG (Niso et al. 2018), EEG (Pernet et al. 2019), intracranial EEG (Holdgraf et al.

2019), PET (Nørgaard, Ganz, et al. 2019), Microscopy (Bourget et al. 2022), and imaging

genetics (C. A. Moreau et al. 2020). Many more extensions are under active development,

for example, fNIRS, motion capture, and animal neurophysiology. The BIDS specification

documents how to organize the data, generally based on simple file formats (such as NIfTI

for tomographic data (Cox et al. 2004), and JSON for metadata) and folder structures. This

specification can be extended through community-driven processes to incorporate new

neuroimaging modalities or sets of data types.

Multiple applications and tools have been released to make it easy for researchers to

incorporate BIDS into their current workflows, maximizing reproducibility, enabling effective

data sharing, and supporting good data management practices. For example, BIDS

converters make it easier to convert data into BIDS format (e.g., MNE-BIDS (Appelhoff,

Sanderson, et al. 2019) for MEG and EEG, dcm2bids, ReproNim’s HeuDiConv (Halchenko,

Goncalves, et al. 2021) and ReproIn (Visconti di Oleggio Castello et al. 2020) for MRI and

PET2BIDS for PET; see many more on Table S1). The BIDS validator can help researchers

make sure their dataset is BIDS-valid following conversion.

Once data are in BIDS, users need tools that ease interaction with the data. Two commonly

used software packages are PyBIDS (Yarkoni et al. 2019), and BIDS-Matlab (Gau et al.

2022) (ref). These tools facilitate useful dataset queries—such as how many participants are

part of a dataset or what tasks were performed— as well as programmatically retrieving

specific files—such as all functional runs for a specific subject. Finally, BIDS apps are

containerized analysis pipelines that use full BIDS datasets as their input and produce

derivative data (Gorgolewski et al. 2017). Examples of BIDS apps include MRIQC (Esteban

et al. 2017), for MRI quality control, fMRIPrep (Esteban et al. 2019) for fMRI preprocessing,

and PyMVPA (Hanke et al. 2009) for statistical learning analyses of large datasets (see more

at Table S1).

21

https://paperpile.com/c/JrhvYA/sWlk3
https://paperpile.com/c/JrhvYA/sWlk3
https://paperpile.com/c/JrhvYA/wG6s4
https://paperpile.com/c/JrhvYA/YDoVe
https://paperpile.com/c/JrhvYA/1wQww
https://paperpile.com/c/JrhvYA/1wQww
https://paperpile.com/c/JrhvYA/9PjhI
https://paperpile.com/c/JrhvYA/aZUIR
https://paperpile.com/c/JrhvYA/FNbQz
https://paperpile.com/c/JrhvYA/6jaO9
https://paperpile.com/c/JrhvYA/6jaO9
https://paperpile.com/c/JrhvYA/qGLch
https://paperpile.com/c/JrhvYA/qGLch
https://paperpile.com/c/JrhvYA/PxTgK
https://paperpile.com/c/JrhvYA/cQ240
https://paperpile.com/c/JrhvYA/Foe3B
https://paperpile.com/c/JrhvYA/Foe3B
https://paperpile.com/c/JrhvYA/OwWIO
https://paperpile.com/c/JrhvYA/YbapC
https://paperpile.com/c/JrhvYA/YbapC
https://paperpile.com/c/JrhvYA/3rFoX
https://paperpile.com/c/JrhvYA/oAg6u


BIDS is a community-led standard and thus, open and inclusive. The BIDS specification is

the result of the ongoing collaboration, shared knowledge, discussion, and consensus

through the email discussion list, shared Google docs, and GitHub. Questions are also

answered on the Neurostars forum and the Brainhack Mattermost channel. BIDS has a

well-specified governance structure where everybody is welcome to participate, and the

BIDS Starter Kit is a growing resource intended to simplify the learning process for

newcomers.

4.2. Metadata and Data annotation

Metadata and data annotation induce consistency and facilitate data replication and reuse.

It improves the clarity of the dataset, the ability for collaborators to understand the

conditions in which the data were collected, and the ability to effectively share and reuse

them. Commonly, metadata files are data dictionaries that map key terms from an

agreed-upon vocabulary to data values that contain detailed and standardized information

about the key terms. For example, a key called “SampleFrequency” might map to a

numerical value, or a key “TaskDescription” might map to a free-form text that describes the

task used in a specific experiment. The BIDS standard has proposed a consistent metadata

structure in its specification along with a set of specification terms and tags.

Data annotation is also crucial for most data analyses in neuroimaging. For example, when

analyzing task-based data, an experiment's reproducibility is largely determined by the

extent to which events are clearly documented. Beyond reproducing previous findings,

exhaustively annotated events can allow researchers to re-use the data for means that were

originally not thought of at data collection time (Bigdely-Shamlo et al. 2020). However, even

if each study is fully annotated, without a standard to consistently describe facets of events,

all annotations will remain cumbersome and error-prone to work with, and achieving a state

of machine readability will require effortful labor.

To address this problem, the Hierarchical Event Descriptor (HED) standard has been

continuously developed over the past years (Robbins, Truong, Jones, et al. 2021; Robbins,

Truong, Appelhoff, et al. 2021). Drawing on a set of hierarchical vocabulary structures (the

HED base schema) and application rules, the HED standard allows for both human- and

machine readability, validation, and search of annotations across studies. HED is
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furthermore fully integrated with the BIDS standard (see section 4.1), and can be extended

by researcher supplied schemas.

Additionally, the Neuroimaging Data Model (Maumet et al. 2016; NIDM; Keator et al. 2013)

effort aims to build a core structure for neuroscience datasets to improve searching across

publicly-available datasets. The initiative also provides tools to create and use NIDM

documents from BIDS datasets (Appelhoff, Bates, et al. 2019). To effectively describe

neuroscience data, well-developed community-driven vocabularies are needed. NIDM is

built using semantic web techniques and builds off the PROV (provenance) vocabulary (L.

Moreau et al. 2015). Moreover, the NIDM-Terms effort has begun to collect and extend sets

of community-developed controlled vocabularies and techniques for associating concepts

with selected study variables of publicly-available neuroimaging datasets (i.e., OpenNeuro,

ABIDE, ADHD200, and CoRR). This keeps a registry of the domain-relevant vocabularies

and concepts used to annotate datasets, further facilitating concept reuse, and improved

inter-dataset search. The NIDM team has developed a JavaScript web application, as well

as Python-based command line annotation tools, that allow researchers to annotate their

BIDS structured datasets and single tabular files (e.g., csv and tsv spreadsheets), and

export both BIDS sidecar file JSON-formatted data dictionaries, NIDM JSON-LD data

dictionaries, and NIDM semantic web documents. Currently, the NIDM-Terms annotation

tools allow researchers to associate their study variables with concepts available in the

Cognitive Atlas (Poldrack et al. 2011), the InterLex information resource, and those in the

canonical NIDM terminology/ontology as well as encourage them to add descriptive

information to improve the clarity of their variables. Such an effort harmonizes and improves

the consistency of neuroimaging data and thus makes querying across neuroimaging

datasets more efficient.

4.3. Data management and tracking

Raw data and derivatives (outputs from processed data) form the basis for scientific

analyses and insights. Being able to efficiently store, retrieve, and update data, derivatives,

and metadata across a variety of available storage options is crucial to enable further

research (Borghi and Van Gulick 2021b). As files change and evolve over the course of a

project, there is a need to identify which data have been used in the generation of a result,

and, in case the data were subject to change or updates, which exact version of the data
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has been used. The ability to manage data and metadata and track the data-analysis

process provides a basis for rigor and reproducibility.

DataLad (Halchenko, Meyer, et al. 2021) is an open-source, community-developed, general

purpose tool for managing and version controlling digital files in a decentralized manner. It

tracks data of any type or size in a scalable, Git-repository-based overlay structure, called

the dataset (practically, a structure of folders and files). DataLad allows tracking data and

metadata files stored on local devices as well as remote or cloud infrastructure. DataLad

can retrieve public data from major providers such as OpenNeuro, the Canadian Open

Neuroscience Platform, the International Neuroimaging Data-sharing Initiative, the Healthy

Brain Network Serial Scanning Initiative, Data sharing for Collaborative Research in

Computational Neuroscience, the Human Connectome Project's open access dataset (Van

Essen et al. 2013), and many more. Beyond public data, with appropriate permissions or

authentication, it can retrieve data from web-based storage providers including major cloud

storage services, and local and remote paths (Halchenko, Meyer, et al. 2021; Hanke et al.

2021). DataLad implements this decentralized data management functionality in order to

ensure streamlined access to tracked data regardless of hosting service, and to expose

datasets for easy access on repository hosting structure. It separates management of file

content from lean metadata management by tracking pointers to the services that host

managed files (i.e., local infrastructure, remote hosting services, or multiple storage

solutions at once). Using these pointers, it enables streamlined on-demand file retrieval in

uniquely identified versions from the registered source. Importantly, data retrieval works via

streamlined commands regardless of where the data are hosted. Information about DataLad

can be found in the DataLad Handbook (Wagner et al. 2021, see Table S1). Entire

computing environments could be efficiently managed in DataLad using datalad-container

extension (K. Meyer et al. 2021) developed in collaboration between DataLad and ReproNim

projects.

Brainlife.io is another open science project that allows data management. Brainlife.io is a

free and open community-oriented, non-commercial cloud platform that provides web

services to support reproducible data management and analysis. Brainlife.io tracks data

provenance automatically for the users. As data are analyzed using the Graphical User

Interfaces (GUI) and the platform’s data processing applications, provenance metadata
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information is automatically generated and stored associated with the data derivatives. The

users do not have to manually save data versions, the platform does that automatically and

it allows visualizing data provenance graphs.

DataLad and Brainlife.io are synergistic but not overlapping projects that address different

user bases and needs. Indeed, DataLad and Brainlife.io interact nicely with one another and

all published datasets retrieved by DataLad are readily accessible at brainlife.io/datasets.

5. Data processing and analysis

Researchers typically execute a set of signal pre-processing steps prior to advanced data

analysis, to, for instance, identify and remove noise, align data spatially and temporally,

segment spatio-temporal regions of interest, identify patterns and latent signal structures

(e.g., clustering), integrate the information from several modalities, introduce prior

knowledge about the device or the physiology of the specimen, etc. The combination of the

operations that take the unprocessed data as the input, prepare the data for analysis, and

finally, perform advanced analysis, comprise a full analysis pipeline or workflow. In

implementing such analysis workflows, software has emerged as a critical research

instrument greatly relevant to ensure the reproducibility of studies.

Figure 4. Data processing and analysis
Sources: Icons from the Noun Project: Software by Adrien Coquet; Workflow by D. Sahua; Statistics by Creative Stall; Chaos
Sigil by Avana Vana; Logos: used with permission by the copyright holders.

5.1. Software as a research instrument

Digitization has stimulated a massive increase in the net amounts of daily acquired data,

placing software as a central instrument of the neuroimaging research workflow. As a result,
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many toolboxes containing utilities ranging from early steps of preprocessing to statistical

analysis and visualization of results have emerged, and some have largely shaped the

software development in the field, e.g., AFNI (Cox 1996; Cox and Hyde 1997), FSL

(Jenkinson et al. 2012; only free for academic use), SPM (Penny et al. 2011; Litvak et al.

2011; Flandin and Friston 2008), FreeSurfer (Dale, Fischl, and Sereno 1999; Dale and

Sereno 1993), Brainstorm (Tadel et al. 2011, 2019), EEGLAB (Delorme and Makeig 2004;

Delorme et al. 2021), MNE-Python (Gramfort et al. 2013, 2014), FieldTrip (Oostenveld et al.

2011) (see Table S1). More recently, some software packages have been developed to

cover additional aspects of the neuroimaging workflow. For instance, nibabel (Brett et al.

2020) to read and write images in many formats, the Advanced Normalization Tools (ANTs)

for image registration and segmentation, or Nilearn (Abraham et al. 2014) for statistical

analysis and visualization. Workflow engines conveniently connect between the building

blocks and determine how the steps are executed in the computational environment.

Solutions range from general-purpose scripting (e.g., Bash or Python) to

neuroimaging-specific libraries (e.g., NiPype; Gorgolewski et al. 2011). Researchers have all

these tools (and others) at their disposal to “mix-and-match” in their workflow. Therefore,

ensuring the proper development and operation of the software engine is critical to ensure

the reproducibility of results (Tustison et al. 2013).

Relatedly, the variety of software implementations is an additional motive of concern. As

remarked by Carp (2012a, [b] 2012) based on the analysis of thousands of fMRI pipelines,

analytical flexibility in combination with incomplete reporting precludes the reproducibility of

the results. A recent comprehensive investigation, the Neuroimaging Analysis Replication

and Prediction Study (NARPS; Botvinik-Nezer et al. 2020) found that when 70 different

teams were asked to analyze the same fMRI data to test the same hypotheses, each team

chose a distinct pipeline and results were highly variable. Other studies suggest similar

problems in EEG (Šoškić et al. 2021; Clayson et al. 2021), PET (Nørgaard et al. 2020) and

diffusion MRI (Schilling et al. 2021).

There are two crucial aspects of the high analytical variability and its effect on results in

neuroimaging. First, when high analytical variability (that potentially affects results) is

combined with partial reporting or with incentives to find significant effects, it can alarmingly

undermine the reliability and reproducibility of results. Second, even in the apparently ideal
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scenario in which the researcher performs a single pre-registered valid analysis and reports

it fully and transparently, it is still likely that the results are not robust to arbitrary analytical

choices. Therefore, new tools are needed to allow researchers to perform a “multiverse

analysis” (section 5.4), where multiple data workflows are used on the same dataset and all

the results are reported and their agreement or convergence discussed. Community-led

efforts to develop high-quality “gold standard” data workflows may also reduce

researchers’ degrees of freedom as well as accelerate data analysis, although different

pipelines are optimal for different research questions and data.

Nevertheless, neuroimaging researchers frequently encounter gaps that readily available

toolboxes do not cover. These gaps, amongst a number of other reasons (e.g., deploying a

data workflow on a high-performance computer), pushes researchers into creating their

own software implementations. However, most neuroimaging researchers are not formally

trained in related fields of computer science, data science, or software engineering. This

mismatch often results in undocumented, hard to maintain, and disorganized code; largely

as a consequence of unawareness of software development practices. It also increases the

likelihood of undetected errors that may remain even after running tests on the code.

The first and foremost strategy available to maximize the transparency of research methods

is openly sharing the code with the minimal restrictions possible (see section 6.2; Barnes

2010; Gorgolewski and Poldrack 2016). Complementarily, version control systems, such as

Git (Blischak, Davenport, and Wilson 2016, see Table S1), are the most basic and effective

tool to track how software is developed, and to collaboratively produce code. Beyond

open-sourcing the code, software tools implement further transparency strategies by

thoroughly documenting their tools and by supporting implementations with scientific

publications (Barnes 2010; Gorgolewski and Poldrack 2016).

5.2. Standardizing preprocessing and workflows

Although the diversity in methodological alternatives has been key to extracting scientific

insights from neuroimaging data, appropriately combining heterogeneous tools into

complete workflows requires substantial expertise. Traditionally, researchers used default

workflows distributed along with individual software packages, or alternatively, individual

laboratories have developed in-house analysis workflows that resulted in highly specialized
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pipelines. Such pipelines are often not thoroughly validated and difficult to reuse due to lack

of documentation or accessibility to outside labs. In response, several community-led

efforts have spearheaded the development of robust, standardized workflows.

An early effort towards workflow standardization was the Configurable Pipeline for the

Analysis of Connectomes (C-PAC; Craddock et al. 2013), which is a “nose-to-tail”

preprocessing and analysis pipeline for resting state fMRI. C-PAC offers a comprehensive

configuration file, editable directly with a text editor or through C-PAC’s graphical

user-interface, prescribing all the tools and parameters to be executed, and thereby making

strides towards keeping methodological decisions closely traced. Similarly, large-scale

acquisition initiatives released workflows tailored for their official imaging protocols (e.g.,

the HCP Pipelines (Glasser et al. 2013) and the UK Biobank (Alfaro-Almagro et al. 2016)).

Conversely, fMRIPrep (Esteban et al. 2019) proposed the alternative approach of restricting

the pipeline goals to the preprocessing step, while accepting the maximum diversity

possible of the input data (i.e., not tailored to a particular experimental design or

analysis-agnosticity). This approach has recently been proposed for additional modalities

(e.g., dMRI, ASL, PET) and population/species of interest (e.g., fMRIPrep-rodents,

fMRIPrep-infants) under a common framework called NiPreps (NeuroImaging

PREProcessing toolS). NiPreps is a community-led endeavor with the goal of ensuring the

generalization of the building blocks of preprocessing across modalities (e.g., the alignment

of fMRI and dMRI with the same participant / animal’s anatomical image) and specimens

(e.g., using the same brain extraction from anatomical data using the same algorithm and

implementation on both human adults and rodents). Similar standardization efforts are

starting to be adopted for EEG (Desjardins et al. 2021) and MEG (e.g., MNE-BIDS pipeline;

Jas et al. 2018). Further examples of standardized workflows are found in Table S1.

An additional and relevant premise of standardized workflows is transparency — tools must

be transparent not only in their implementation, but also in their reporting. For example,

fMRIPrep produces visual reports with the double goal of assessing the quality of results,

and also providing the researcher with a resource to comprehensively understand every

step of the workflow. In addition, the report includes a text description which

comprehensively describes each major step in the pipeline, including the exact software

version and principle citation. This text, referred to as the “citation boilerplate”, is released
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under a public domain license, and therefore can be included verbatim in researcher’s

manuscripts, facilitating accurate reporting and proper referencing of academic software. A

final relevant aspect towards transparency is the comprehensive documentation of

pipelines.

In most cases, standardized workflows preprocess datasets in a fully automated manner,

taking a BIDS dataset as input and outputting data that is ready for subsequent analysis

with little manual intervention. Importantly, such workflows are typically designed to be as

robust as possible to diverse input data (e.g., with varying parameters or sampling distant

populations), a challenge that is facilitated by data standardization (i.e., BIDS). Additionally,

workflows must be portable, enabling users to execute them in a wide variety of

environments. A key technology in this endeavor is containers—such as Docker and

Apptainer/Singularity—which facilitate packaging specific versions of heterogeneous

dependencies while ensuring cross-platform compatibility (e.g., high-performance

computing clusters, desktop, or cloud services). The BIDS apps framework (section 4.1)

leverages containers by standardizing input parameters to make it trivially easy to execute a

wide variety of standardized workflows on BIDS datasets. An example of a higher-level

combination of workflows is found in Esteban et al. (2020), which describes an MRI

research protocol using MRIQC and fMRIPrep. Finally, recent efforts to standardize the

outputs of workflows (BIDS Derivatives), further enhances the interoperability of workflows,

by ensuring their outputs are compatible with subsequent analysis.

5.3. Statistical modeling and advanced analysis

Analysis of neuroimaging data is particularly heterogeneous and prone to excessive

analytical flexibility and underspecified reporting. Whereas preprocessing is ideally

performed once per dataset, there is often a large number of types of analyses that may be

used with the preprocessed data. In MRI and fNIRS, for example, analyses range from

multi-stage general linear models (GLMs), multivariable decoding analyses, to anatomical

and functional connectivity, and more. In PET, analyses consist of region-wise averaging,

although voxel-wise approaches are gaining popularity, followed by kinetic modeling and

subsequent statistical analyses, which can be GLM or more advanced, such as latent

variable models. In MEG and EEG, the broad variety includes analyses such as evoked

response potentials, power spectral density, source reconstructions, time-frequency,
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connectivity, advanced statistics and more. Each type of analysis also has a wide variety of

subtypes, parameters, and statistical models that can be specified, and the form of that

specification varies across the dozens of analysis packages that implement each type of

analysis.

Data analysis reporting is made more transparent when sharing code that relies on

open-source software. A prime example is SPM (Flandin and Friston 2008), which has been

open source since its inception in 1991. Additional widely used open-source tools for data

analysis are FSL and AFNI for MRI, and some examples of reproducible pipelines for MEG

and EEG developed based on each of the following software: EEGLAB (Pernet,

Martinez-Cancino, et al. 2020) Fieldtrip (Andersen 2018b; M. Meyer et al. 2021; Popov,

Oostenveld, and Schoffelen 2018), Brainstorm (Niso et al. 2019; Tadel et al. 2019), SPM

(Henson et al. 2019) and MNE-Python (Andersen 2018a; van Vliet et al. 2018; Jas et al.

2018) (see Niso et al. (2022) for a detailed review on main EEG and MEG open toolboxes

and reproducible pipelines). Reproducibility is also improved when relying on modular and

well-documented software such as Nilearn, which offers versatile methods to perform

advanced analyses of fMRI data, from GLM to connectomic and machine learning

(Abraham et al., 2014). Ideally, a single analysis script is made creating a report, from signal

extraction, data analysis, and reproducing all figures.

An additional challenge for the reproducibility of analysis workflows is the representation of

statistical models across distinct implementations of analysis software. For example, GLM

approaches to analyze fMRI time series are prevalent and supported by all of the major

statistical packages (e.g., AFNI, SPM, FSL, Nilearn). However, specifying equivalent models

across packages is non-trivial and requires time consuming package specific model

specification (Pernet 2014), which obfuscates details of the statistical model, exacerbates

variability across pipelines, and makes it difficult to perform multiverse analyses (see

section 5.4). The BIDS Stats Model (BIDS-SM, see Table S1) specification has been

proposed as a implementation-independent representation of fMRI GLM models; BIDS-SM

describes the inputs, steps, and specification details of GLM-type analyses, and encodes

them in a machine readable JSON format. The PyBIDS library provides tooling to facilitate

reading BIDS-SM, and FitLins (Markiewicz, De La Vega, et al. 2021) is a reference workflow

that fits BIDS-SM using AFNI or Nilearn. The transformative potential of BIDS-SM is
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showcased by Neuroscout (de la Vega et al. 2022), a turnkey platform for fast and flexible

neuroimaging analysis. Neuroscout provides a user-friendly web application for creating

BIDS-SM on a curated set of public neuroimaging datasets, and leverages FitLins to fit

statistical models in a fully reproducible and portable workflow. By standardizing the entire

process of statistical modeling, users can formally specify a hypothesis and produce

statistical results in a matter of minutes, while simultaneously ensuring a fully reproducible

and transparent analysis that can be readily disseminated to the scientific community.

5.4. Multiverse analysis

The variety of data workflows reflects the enormous interest and the need for novel

software instruments, but it also poses an important risk to reproducibility. The multitude of

possible combinations of methods and parameters in each of the analysis steps creates an

extremely large number of combinations to select from. This problem is often referred to as

“researcher degrees of freedom” or “the garden of forking paths” (Gelman and Loken 2013).

Importantly, analytical choices affect results. This has been shown for preprocessing of

fMRI data already back in 2004 (Strother et al. 2004). More work in this direction followed in

2012 (Churchill, Oder, et al. 2012; Churchill, Yourganov, et al. 2012). While this work focused

mainly on the aspect of tailoring preprocessing to e.g. maximize predictive models, recent

efforts in fMRI (task fMRI: (Botvinik-Nezer et al. 2020; Carp 2012a); preprocessing of

resting-state fMRI: (Li et al. 2021)) and PET (specifically for preprocessing: Nørgaard et al.

2020) focused more on the variability of outcomes in general when analysis pipelines were

varied. In addition, recent studies showed high variability in diffusion-based tractography

dissection (Schilling et al. 2021) and event-related potentials in EEG preprocessing (Šoškić

et al. 2021; Clayson et al. 2021). Another large-scale attempt to estimate the analytical

variability for EEG,  EEGManyPipelines (see Table S1), is currently ongoing.

The converging findings of these studies across modalities suggest that it is important to

test the robustness of reported results to specific analytical choices. One proposed solution

to tackle the analytical variability, where many different analytical approaches are

compared, is multiverse analysis (Hall et al. 2022). There are two broad types of multiverse

tools. In a “numerical instabilities” approach, different setups and numerical errors or

uncertainties in computational tools are evaluated, analyses are rerun several times, and

variability, robustness, and “mean answer” are estimated (Gregory Kiar et al. 2020). One

tool of this type that is being developed is “Fuzzy” (Greg Kiar et al. 2021). Alternatively, in a
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“classic multiverse analysis”, multiple pipelines are used with the same data and the results

are compared across pipelines. Such an analysis could be conducted by a single or by

multiple researchers (Aczel et al. 2021). Although multiverse analysis was suggested before

in other fields (Steegen et al. 2016; Simonsohn, Simmons, and Nelson 2015; Patel, Burford,

and Ioannidis 2015), there are not yet mature “classic multiverse analysis” tools for

high-dimensional data like in neuroimaging. Explorable Multiverse Analyses is an R-tool that

allows the readers to explore different statistical approaches in a paper (Dragicevic et al.

2019). Other tools, such as the Python-based Boba (Liu et al. 2021), aim to facilitate

multiverse analyses by allowing users to specify the shared and the varying parts of the

code only once and by providing useful visualizations of the pipelines and results. However,

these tools currently fit simpler analyses and datasets compared to the ones common in

neuroimaging.

In neuroimaging, recent progress has been made in creating infrastructure for multiverse

analysis in fMRI, based on the C-PAC tool (see section 5.2; Li et al. 2021). Ongoing efforts

to formalize machine-readable standards for statistical models (BIDS-SM) and pipelines to

estimate them (e.g., FitLins; Markiewicz, De La Vega, et al. 2021), and their integration with

datasets using platforms such as brainlife.io (Avesani et al., 2019), could facilitate the

development of multiverse tools. In order to make sense of a multiverse analysis, one needs

methods to test for convergence across results of diverse analysis pipelines with the same

data. Such a method for fMRI image-based meta-analysis was recently used in NARPS

(Botvinik-Nezer et al. 2020) as well as in subsequent projects (Bowring, Nichols, and

Maumet 2021). Another simple statistical approach to a multiverse analysis was presented

with PET data (Nørgaard, Ozenne, et al. 2019), although it lacks statistical power, due to

the use of a very conservative statistic. A different approach is to use active learning to

approximate the whole multiverse space (Dafflon et al. 2020). Moreover, Boos et al. (2021)

provided an online application to explore the effects of the choice of parameters on the

results (data-driven auditory encoding, see Table S1). Progress is still needed until such

tools are mature enough to allow scalable multiverse analysis in neuroimaging.
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6. Research dissemination

Through the whole research cycle a range of outputs far beyond publications are produced,

and each of them can have different levels of reproducibility and openness. For shared

resources to be useful, they need to follow the FAIR principles (Wilkinson et al. 2016), to

ensure they are: Findable (e.g., using persistent identifiers, such as Digital Object Identifiers

(DOI) or Research Resource Identifiers (RRIDs), and described with rich metadata indexed

in a searchable resource), Accessible (e.g., shared in public repositories, under open access

or controlled access depending on regulations, so they can be retrievable by their identifier

using standardized communication protocols), Interoperable (e.g., following a common

standard for organization and vocabulary), and Reusable (e.g., richly described, with

detailed provenance and an appropriate license). Indeed, without a license, materials (data,

code, etc.) become unusable by the community due to the lack of permission and

conditions for reuse, copy, modification, or distribution. Therefore, consenting through a

license is essential for any material to be publicly shared.

A useful general purpose resource, beyond neuroimaging, to find practical guidelines on

reproducible research, project design, communication, collaboration, and ethics is The

Turing Way (TTW, The Turing Way Community et al. 2019, see Table S1). TTW is an open

collaborative community-driven project, aiming to make data science accessible and

comprehensible to ensure more reproducible and reusable projects.

Figure 5. Dissemination
Sources: Icons from the Noun Project: Data Sharing by Design Circle; Share Code by Danil Polshin; Data by Nirbhay;
Publication by Adrien Coquet; Broadcast by Amy Chiang; Logos: used with permission by the copyright holders.

6.1. Data sharing

Making data available to the community is important for reproducibility, allows more

scientific knowledge to be obtained from the same number of participants (animal or
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human), and also enables scientists to learn and teach others to reuse data, develop new

analysis techniques, advance scientific hypotheses, and combine data in mega- or

meta-analyses (Poldrack and Gorgolewski 2014; Laird 2021; Madan 2021). Moreover, the

willingness to share has been shown to be positively related to the quality of the study

(Wicherts, Bakker, and Molenaar 2011). Because of the many advantages data sharing

brings to the scientific community (Milham et al. 2018), more and more journals and funding

agencies are requiring scientists to make their data public (curated and archived with a

public record, but controlled access) or open (public data with uncontrolled access) upon

the completion of the study (see section 7).

For data to be interoperable and reusable, it should be organized following an accepted

standard, such as BIDS (section 4.1) and with at least a minimal set of metadata. Free

data-sharing platforms are available for publicly sharing neuroimaging data, such as

OpenNeuro (Markiewicz, Gorgolewski, et al. 2021), brainlife (Avesani et al. 2019), GIN

(G-Node Infrastructure), Distributed Archives for Neurophysiology Data Integration (DANDI),

International Neuroimaging Data-Sharing Initiative (INDI), NeuroImaging Tools & Resources

Collaborator (NITRC), etc. (see Table S1). Data could also be shared on institutional and

funder archives such as the National Institute of Mental Health Data Archive (NDA); on

dedicated repositories, such as the the Cambridge Centre for Ageing and Neuroscience,

Cam-CAN (Shafto et al. 2014; Taylor et al. 2017) or The Open MEG Archive, OMEGA (Niso

et al. 2016); or on generic archives that are not neuroscience or neuroimaging specific, such

as figshare, GitHub, the Open Science Framework, and Zenodo. If allowed by the law and

participants’ consent (see section 2.3), data sharing can be made open, or at least public.

Once curated and archived, data can further benefit the individual researcher, for example

by adding them to the scientific literature in the form of data descriptors. Such an article

type is not intended to communicate findings or interpretations but rather to provide

detailed information about how the dataset was collected, what it includes and how it could

be used, along with the shared data. In addition, an “open science badge” for data sharing

is available in an increasing number of scientific journals (Kidwell et al. 2016) and some

prizes are also available as a recognition for such efforts (e.g., OHBM’s Data Sharing prize).
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6.2. Methodological transparency

Documenting performed analysis steps is key for reproducing studies’ results. For studies

containing a small number of procedures, the methods section of an article could detail them

in full length. This is, however, often not the case in current neuroimaging studies, where

authors may need to summarize content in order to fit into the designated space, probably

omitting relevant details. Therefore, the programming code itself becomes the most accurate

source of the exact analysis steps performed on the data, and is anyway needed for

reproducibility. Thus, it needs to be organized and clear (see recommendations suggested

by Sandve et al. 2013; van Vliet 2020; Wilson et al. 2017), otherwise, results may not be

reproducible, or even correct (Casadevall and Fang 2014; Pavlov et al. 2021). It should be

noted that sharing an imperfect code is still much better than not sharing at all (Barnes

2010; Gorgolewski and Poldrack 2016).

While GUIs are a great and interactive way to learn to analyze data, one has to pay special

attention to properly report the steps followed, as clicks are more difficult to be reported

and reproduced than code (Pernet and Poline 2015). Some toolboxes using GUIs keep track

of data ‘history’ and ‘provenance’ (e.g., Brainlife, Brainstorm, EEGLAB, FSL’s Feat tool)

facilitating this task. Efforts are being put to improve these features.

To ensure long-term preservation of the shared code, we suggest using version control

systems such as Git, and social coding platforms such as GitHub in combination with an

archival database for assigning permanent DOI to code served for research, for instance,

Zenodo (Troupin et al. 2018), brainlife.io/apps (Avesani et al. 2019) or Software Heritage (Di

Cosmo 2018). These platforms help keep a snapshot of the version of the code used for the

paper published, allowing exact reproduction in case of later code updates.

6.3. Derived data sharing

Sharing data derivatives is perhaps the most critical yet most challenging aspect of data

sharing in support of reproducible science. The BIDS standard provides a general

description of derivative data (i.e. common derivatives) and is actively working towards

extending advanced specific derivatives for the different neuroimaging modalities. Yet as of

today, standards for the description of advanced derivatives (such as activation or

connectivity maps, or diffusion measures) are not available or mature for wide use. As a

result, to date, the community lacks clear guidance and tools on how derived data should
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be organized to maximize its reuse and to encompass its provenance, and where such data

could be shared.

Solutions for sharing derivatives comprise a mixture of in-house and semi-standardized

data-tracking and representation methods. Examples of data-derivative sharing are the

high-profile, centralized projects, such as the Human Connectome Projects (Van Essen et

al. 2012), Ebrains of the Human Brain Project (Amunts et al. 2019, 2016), the UK-Biobank

(Alfaro-Almagro et al. 2016), the NKI-Rockland sample (Nooner et al. 2012), and the

Adolescent Brain Cognitive Development (ABCD; Feldstein Ewing and Luciana 2018) to

name a few (see Table S1). These projects have developed project-specific solutions and in

doing so also have provided a first-level implementation of what could be considered a data

derivative standard. Yet, these projects are far from being open or community-developed as

they must be centrally governed and mandated by the directives of the research plan.

As a result of the paucity of community-oriented standards, archives and software methods,

sharing highly-processed neuroimaging data is still the frontier of reproducible science. One

community-open archive for highly processed neuroimaging data derivatives is NeuroVault

(Gorgolewski et al. 2015). The archive accepts brain statistical maps derived from fMRI with

the goal of being reused for meta-analytic studies. Data upload is open to researchers

world-wide and the archive can accept brain maps submitted using most major formats but

preferably using the NeuroImaging Data Model (NIDM; see section 4.2). Another interesting

example for automated and standardized composition and sharing of derived data is

TemplateFlow (Ciric et al. 2021), which provides an open and distributed framework for

establishment, access, management, and vetting of reference anatomies and atlases.

Another general neuroimaging platform, which allows lowering the barrier to sharing highly

processed data derivatives, is Brainlife. Brainlife provides methods for publishing derivatives

integrated with the data-processing applications used for generating results from the data

via easy-to-use web interfaces for data-upload, processing, and publishing. Different

licenses can be selected when publishing a record, allowing reuse of data and derivatives to

other researchers (see sources that support the selection of an appropriate license listed in

Table S1).
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Sharing lighter-weight data products such tables and figures is easier using generic

repositories under, for example, CC-BY license. This allows authors to retain rights on the

figures they created, and others to re-use their figures freely, either in other publications or

for educational purposes. Additional material, such as slide presentations, or supporting

content, should be shared using accessible formats (e.g., image files, pdf, PowerPoint

slides, Markdown, jupyter notebooks, etc) via online repositories (e.g., GitHub or Bitbucket),

or shareable links (e.g., Google Drive, Dropbox) or institutional platforms, with appropriate

licenses to indicate how the work could be reused. Whenever possible, using platforms that

ensure long-term preservation is recommended (e.g., Zenodo, FigShare, OSF).

6.4. Publication of scientific results

Scientific papers are currently the most important means for disseminating research results.

However, they should also be written with reproducibility in mind. Guidelines to improve

reproducibility can support the writing. The OHBM Committee on Best Practices in Data

Analysis and Sharing (COBIDAS), has been promoting best practices, including open

science. Recommendations from the committees for MRI (Nichols et al. 2017) and MEG and

EEG (Pernet, Garrido, et al. 2020) provide guidance on what to report. Other recent

community efforts also led to guidelines for PET (Knudsen et al. 2020) and EEG reporting

(e.g., Agreed Reporting Template for EEG Methodology - International Standard (ARTEM-IS)

(Styles et al. 2021)). One tool that could help authors follow these guidelines while writing

their report are their web-based apps (see Table S1). For the data description and

preprocessing aspects, some tools (pyBIDS, bids-matlab) or pipelines (fMRIPrep) can also

generate reports automatically, and/or method templates are provided (see section 5.2).

Exact description of methods is mandatory for reproducibility alongside detailed

quantitative reporting of results, and reporting of all results is necessary for replicability.

In recent years, it has become very common in neuroimaging to publish papers as

preprints, on servers such as bioRxiv, medRxiv, PsyArXiv or OSF (see Table S1), prior to

peer review in scientific journals. Preprints are publicly available, expedite the process of

releasing new findings, and also, importantly, allow authors to get feedback on their paper

from a broader audience prior to final publication (Moshontz et al. 2021). There are also

initiatives for open community reviews of preprints, such as PREreview. Other initiatives

have emerged to adapt to this paradigm shift, such as the recently launched Open Europe
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Research platform for publication and open peer review, which also includes the different

outputs obtained throughout the research cycle (e.g., study protocol, data, methods and

brief reports through the process) for research stemming from Horizon 2020 and Horizon

Europe funding. In addition, novel publication formats have been developed, like

NeuroLibre, a preprint server to publish hybrid research objects including text, code, data,

and runtime environment (DuPre et al. 2022). More traditional publishers have successfully

partnered with companies such as CodeOcean (Cheifet 2021) to provide similar services.

Crucially, papers should be accessible to others, preferably to everyone. Many scientific

publications are hidden behind paywalls, practically denying access from many people who

could have gained from them. This is now slowly changing (Piwowar et al. 2018), with both

researchers and funding agencies pushing towards open access, meaning that papers are

fully open to all. Although the adoption of the concept of open access by major publishers

is in itself a positive development, the way it was adopted could be considered arguable.

For example, several journals considerably increased article processing charges (Khoo

2019; Budzinski et al. 2020) and some publishers implement massive tracking technology

with the argument to protect their rights and offer the data or derivatives of them for sale, as

a recent report published by the German Research Foundation criticizes (DFG 2021). This

raises many questions, related, for example, to the influence publishers and their algorithms

will have in the future on strategic decisions of science institutions and freedom of science.

6.5. Beyond publication

The research lifecycle continues beyond paper publication. Disseminating scientific results

to the broader scientific community and to the society in general is of utmost importance, to

translate the newly acquired knowledge and give back to society. Oral and poster

presentations at conferences contribute to the dissemination of results (including

preliminary or intermediate results) within the scientific community, and also provide

opportunities for feedback prior to publication. Workshops and other educational events

contribute to expand the knowledge further and induce new communities. Popular and

social media (e.g., press releases, interviews, podcasts, blog posts, twitter, facebook,

linkedin, youtube, etc.) may outreach an even wider and more heterogeneous audience.

Different types of audiences may have different degrees of expertise and scientific

knowledge, hence, for an effective communication, each of the outreach events should
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adapt accordingly (e.g., avoiding jargon and over interpretation, identifying your audience,

promoting accessibility in content and language (Amano et al. 2021), and considering

disabilities). See the TTW Guide for Communication for recommendations (Table S1). Slides

presentations, and further outreach content should be shared FAIRly for higher impact (see

section 6.3).

Hackathons - such as the Brainhacks in the neuroimaging community (Gau et al. 2021) -

typically offer times for “unconferences'' in which attendees can propose a short talk to

present some work-in-progress, an open question, or any other topic they wish to discuss

with other participants. This deviates from more typical conferences in which only

well-polished, finalized results can be presented. Other initiatives, such as Neuromatch

Academy, Neurohackademy, OHBM Open Science Room, and Brainhack school MLT

facilitate open science and provide opportunities for researchers to learn and get hands-on

experience with open science practices, and also to engage with other researchers in the

community. Those hackathons and the related online communities are also well-known as

kick-starters for the development of community tools and standards in which researchers

and engineers from different labs join forces. As those tools and standards get shaped,

typically in multi-lab collaborations, researchers get the chance to exchange their views and

practices. Overall, open science practices, slowly but surely, help shape a research culture

that is driven by open collaborative communities rather than single groups of researchers.

6.6. Towards inclusive, diverse and community driven research

Taken to the next level, the described developments and introduced tools provide an

opportunity for a paradigm shift: rather than carrying out a study from inception to results

and only then disseminating the findings to the community, researchers now get multiple

opportunities to share their ideas and results as they are being developed. Scientific

research can now become more transparent, inclusive and collaborative throughout the

research cycle.

In collaborative projects, having a well defined Code of Conduct is critical to ensure a

welcoming and inclusive space for everyone regardless of background or identity. Initiatives

such as TTW or the OHBM Conference have detailed Code of Conducts that can be of

inspiration to adapt and use in new collaborative projects.
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Community efforts should aim for equity, diversity and inclusivity. Unfortunately, as a

reflection of our societies and cultures, the lack of these values is also prevalent in research

and academia, contributing to gender bias, marginalization, and underrepresentation of

racial, ethnic, and cultural minorities (Leslie et al. 2015; Dworkin et al. 2020; Hofstra et al.

2020). These inequalities are produced at all stages, even at the time of recruiting participant

samples for experiments (Henrich, Heine, and Norenzayan 2010; Laird 2021; Forbes, Aneja,

and Guest 2021) (see examples in section 2). Importantly, observing equity, diversity, and

inclusivity in the recruitment of study participants can also improve the quality of research

results (e.g., Baggio et al. 2013). Over the past years, the awareness and number of

initiatives to mitigate bias and inequity at individual and institutional levels are growing

(Llorens et al. 2021; Levitis et al. 2021; Malkinson et al. 2021; Schreiweis et al. 2019). These

aim to produce better research powered by a broader range of perspectives and ideas and

to reduce the negative impact on the careers, work-life balance, and mental health of

underrepresented groups. By providing open resources and promoting welcoming and

inclusive spaces, we are also contributing to empower minoritized communities to conduct

high quality research and to take an active role in the development and leadership of

neuroimaging, which will accelerate discoveries, and ultimately, advance science.

7. Conclusions

Recent years have marked the rise of “open science”, producing numerous tools and

practices that enhance the reproducibility, transparency, inclusivity and diversity of research

in general and in neuroimaging specifically. These tools and practices yield profits at

multiple levels ranging from the individual researcher to the society. At the societal level,

they can increase transparency and credibility of research, foster the public understanding

of scientific findings, and promote participation. Higher credibility of research results in the

public can support decision-makers in basing their decisions on scientific knowledge. For

the scientific community, such practices increase the quality and validity of scientific

products. They also increase the cost-effectiveness of invested resources (money, time,

personnel, etc.), by, for example, enabling reuse of collected data and developed methods

and tools. For individual researchers, the application of open science practices can improve

their chances for funding and recognition in the community by meeting related requirements

from funding institutions, agencies, and scientific journals. Furthermore, the use of open
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science tools and practices can ease the use of novel analysis techniques and open the

researcher new opportunities for collaborations and contributions.

The abundance of tools and practices for open and reproducible neuroimaging is both

promising and challenging. This review was written to assist neuroimaging researchers to

make informed and sustainable choices with regard to their implementation in their own

research, by understanding the purpose of each tool, how they interact together, how to use

them and where to look for further information. We believe it will prove helpful for

researchers and institutions to make a successful and sustainable move towards open and

reproducible science, contributing to improving scientific research and, ultimately,

accelerating scientific discoveries.
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