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Abstract 
 

 

Object: The ability of generating reference signals is of great benefit for quantitation of the MR 

signal. The aim of the present study was to implement a dedicated experimental set-up to generate 

MR images of Virtual Phantoms (ViP MRI). 

Materials and Methods: Virtual phantoms of a given shape and signal intensity were designed and 

the k-space representation was generated. A waveform generator converted the k-space lines into 

a radiofrequency (RF) signal that was transmitted to the MR scanner bore by a dedicated RF coil. 

The k-space lines of the virtual phantom were played line-by-line in synchronization with the 

MRI data acquisition. 

Results: Virtual phantoms of complex patterns were reproduced well in MR images without the 

presence of artifacts. Time-series measurements showed a coefficient of variation below 1% for 

the signal intensity of the virtual phantoms. An excellent linearity (coefficient of determination r2 

= 0.997 as assessed by linear regression) was observed in the signal intensity of virtual phantoms. 

Conclusion: Virtual phantoms represent an attractive alternative to physical phantoms for 

providing a reference signal. MR images of virtual phantoms were here generated using a stand-

alone, independent unit that can be employed with MR scanners from different vendors. 

 

 

Keywords: Magnetic resonance imaging, ERETIC, virtual phantom, quantification, reference 

standard. 

  

in
se

rm
-0

09
21

89
1,

 v
er

si
on

 1
 - 

9 
Ja

n 
20

14



ViP MRI: virtual phantom magnetic resonance imaging. Saint-Jalmes H et al. MAGMA. 2013 Dec 15. [Epub ahead of print] 

 

 3 

Introduction 

 

Quantification of the MR signal plays a key role in both magnetic resonance spectroscopy (MRS) 

and imaging (MRI). In the last decade, with the fast technological advances in MR hardware and 

software, the field of in vivo MR has been rapidly moving towards more quantitative approaches. 

For quantification of the MR signal, a reference signal from a phantom with a known 

concentration of the metabolite/nuclei of interest is required. The reference signal could originate 

from an external phantom; alternatively, it is possible to use an ‘internal reference’, which can be 

either a substance added to the solution of interest (for in vitro measurements) or a 

metabolite/molecule already present in the tissue of interest (creatine in MRS of brain or water in 

the quantification of hepatic lipids, for instance). 

The straightforward and direct approach of using an external phantom or an internal reference has 

been superseded in a number of cases by a more sophisticated technique, the ‘Electronic 

REference To access In vivo Concentrations’ (ERETIC), introduced by Barantin et al. [1] more 

than a decade ago. In this approach, a reference signal is generated by radiofrequency (RF) 

electronics and transmitted to the receiver coil of the MR scanner during the data acquisition. 

ERETIC has found numerous applications in the field of in vitro NMR, including 2D-NMR [2], 

HR-MAS NMR [3, 4] and solid state NMR [5]. With respect to in vivo applications, the ERETIC 

approach has been implemented in MRS studies [1, 6, 7]. Overall, however, little attention has 

been paid to the applications in the MRI domain [8, 9]. 

As quantitative approaches in MRI are becoming increasingly important, it is of interest to 

investigate the full potential of the ERETIC approach for MRI. The aim of the present study was 

to implement a dedicated experimental set-up to generate MR images of virtual phantoms. This 

approach is here referred to as Virtual Phantom (ViP) MRI. 
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Materials and Methods 

 

Virtual Phantom. A schematic representation of the ViP MRI method and experimental set-up is 

illustrated in Figure 1. First, a phantom of a given shape was designed. The k-space representation 

was generated by Fourier transform and converted in a table of RF amplitudes and phases, which 

served as the input of the waveform signal generator (Redstone, Tecmag Inc., Houston, TX, 

USA).  

The waveform signal generator, a compact unit of 48cm chassis operating in the 5-500 MHz 

frequency range, provided a high flexibility with respect to programming arbitrary pulse shapes, 

so to generate virtual phantoms of different shapes and signal intensity. The waveform signal 

generator was positioned outside the scanner room.  

A home-built 15mm-diameter RF coil (the ‘ViP coil’) was connected to the waveform generator 

with a coaxial cable that was passed through the filter panel into the scanner room. The ViP coil 

was fixed within the scanner bore at a distance of 40 cm from the scanner RF coil and was 

employed to transmit the RF signal of the virtual phantom. At 4.7 T, (wavelength of the 

electromagnetic radiation = 1.5 m) the distance of 40 cm (< 1.5 m) ensured the inductive coupling 

between the ViP coil and the scanner RF coil, so that changes in the subject environment would 

equally affect the signal of the virtual and physical phantom. A low quality factor (1 to 5) ensured 

that ViP coil did not interfere with the scanner RF coil.  

MRI experiments. MRI experiments were performed on a 4.7 T MR scanner (47/40 Biospec, 

Bruker, Wissembourg, France). A 72mm-diameter volume coil (i.e., the scanner RF coil) was 

used as a transmitter/receiver. The carrier frequency of the waveform generator was adjusted to 

the main frequency of the Biospec (200 MHz). The k-space lines of the virtual phantom were 

played line-by-line in synchronization with the MRI data acquisition, using the unblanking RF 

signal from the MR console (Figure 1). In other words, during the MR experiment the ViP signal 

was injected into the scanner bore and recorded by the scanner receiver coil at the same time as 

the signal from the physical phantom. Fine-adjustments were necessary to ensure that the signal of 

the virtual phantom was well synchronized with the analog-to-digital converter of the MR 

scanner. For each experiment, the MRI data acquisition parameters (echo time, number of 

averages, dwell time, matrix size) were programmed into the waveform generator so that the ViP 

signal would be compatible with the MRI sequence. It should be also noted that, for the sequences 

employed in the current study, all the parameters necessary to generate the ViP signal were 

available to the normal user and simply accessible on the user interface of the MR scanner. 
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A number of different experiments were performed to assess the ability to generate virtual 

phantoms and control the ViP signal. In each experiment, one or more physical phantoms (tubes 

filled with agar + gadolinium at different concentrations) were also employed. Initial pilot 

experiments were performed in single-echo mode, to verify the capability of generating phantoms 

of different shapes. Further, a multi-echo experiment was performed with a virtual phantom of a 

given T2, in order to determine whether the ViP signal intensity at different echo times could be 

precisely controlled. A Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence was employed  

with six echo times (TE = 20, 40, … 120 ms), matrix size of 256 x 256, field of view (FOV) of 5 x 

5 cm
2
 and dwell time = 20 µs.  

To determine the spatial linearity of the ViP signal within an MR image, a virtual phantom in the 

form of a ‘signal ramp’ was designed and a gradient-echo image of the virtual phantom and a tube 

filled with agar was acquired (repetition time TR = 100 ms, TE = 5 ms, matrix size of 256 x 256, 

FOV of 5 x 5 cm
2
 and dwell time = 20 µs).  

To measure the ViP signal stability, experiments repeated over the course of a few hours were 

performed. Two time series of spin-echo images of a virtual phantom and a tube filled with agar 

were acquired. Imaging acquisition parameters were: TR = 1000 ms, TE = 16.7 ms, matrix size = 

512 x 256, FOV = 8 x 8 cm
2
, slice thickness = 5 mm and dwell time = 20 µs. At each time point, 

the signal of the virtual and physical phantom was assessed in an ROI selected within the 

phantom. The mean value of the signal and its standard deviation over the time series was then 

evaluated and the coefficient of variation (defined as the standard deviation divided by the mean, 

expressed as a percentage) was used to characterize the time stability.  
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Results 

 

MR images of virtual phantoms were obtained for different types of acquisitions, including single-

slice, multi-slice, multi-echo 2D and 3D acquisitions. An example of an MR image of a physical 

phantom (three tubes filled with agar + gadolinium at different concentrations) and of the same 

physical phantom with a virtual phantom is shown in Figure 2. A multi-echo acquisition of the 

physical and virtual phantom is illustrated in Figure 3. The values of signal intensity from ROIs 

selected in the three agar phantoms and in the virtual phantom are plotted as a function of the echo 

time. The virtual phantom was designed with a transverse relaxation time of 60 ms. The measured 

transverse relaxation time was equal to 59.9 ± 1.4 ms.  

An MR image of a virtual phantom characterized by a signal ramp and of a tube filled with agar is 

shown in Figure 4, left panel. The signal intensity of the virtual and physical phantom, evaluated 

along the profile indicated by the dashed line, is plotted in Figure 4, right panel. Excellent 

linearity was observed in the ViP signal, along the frequency encoding direction, with coefficient 

of determination r
2
 = 0.9971 as determined by linear regression. To determine the time stability of 

the ViP signal, repeated measurements were performed over a few hours. The time course of the 

mean value of signal taken in an ROI of the virtual and physical phantom is illustrated in Figure 5. 

Two series of measurements, one short (n = 6) and the other longer (n = 15), were performed with 

a time interval of 16 hours. The coefficient of variation of the signal intensity calculated for the 

long series was equal to 0.29% and 0.28% in the virtual and physical phantom, respectively. 

When calculated over the two series (i.e., using all the measurements), the coefficient of variation 

was equal to 0.93% and 0.49% in the virtual and physical phantom, respectively.  

Figure 6 illustrates an example of the flexibility of the ViP MRI method for generating phantoms 

of complex shapes. An MR image of the quality-control phantom and a very unique virtual 

phantom (the logo of the European Society for Magnetic Resonance in Medicine and Biology -

ESMRMB-) is shown in Figure 6 (TR = 500 ms, TE = 16.7 ms, matrix size of 512 x 256 and 

dwell time = 20 µs). The ESMRMB logo was purposely designed to overlap with the physical 

phantom. In regions where the virtual and physical phantoms overlap, as in one part of the letter 

‘S’ or of the ring-shaped curve, it could be noted that the signal intensity of the virtual phantom is 

added to that of the physical phantom.  
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Discussion 

 

Quantitative MRI is becoming increasingly important in both clinical and research settings. 

Traditionally, the diagnosis based on clinical MRI examinations has relied on assessing 

differences in signal intensity between healthy and diseased tissues rather than on absolute 

measurements of tissue parameters/characteristics. In the last decade, on the other hand, there has 

been a rapid shift towards more quantitative approaches. As a matter of fact, nowadays in many 

important clinical scenarios (cancer, neurological disorders, etc.) quantification of the relaxation 

times and apparent diffusion coefficient of water molecules is employed for improving diagnosis 

and therapy monitoring by MRI. Similar situation occurs in MRS, where precise quantification of 

metabolites in brain, prostate and liver is of primary importance. For quantification purposes, a 

reference signal is required. In this context, virtual phantoms represent an attractive alternative to 

physical phantoms for providing a reference signal. The results of this study show the flexibility 

and performances of virtual phantoms as implemented in the ViP MRI approach. Virtual 

phantoms of complex patterns can be reproduced well in an MR image without the presence of 

artifacts, provided that the details of MRI data acquisition (timings, k-space trajectory, etc.) are 

known.  A given signal value can be well represented, as shown by the multi-echo decay data. 

Furthermore, the preliminary validations carried out in the current study show excellent stability 

over the short-term and linearity of the ViP signal. 

Different hardware implementations and variants of the original ERETIC method have been 

proposed recently [7, 9]. These include the use of the second RF channel of the MR scanner, or 

the use of a single RF channel for non-simultaneous measurements, for instance. One of the 

advantages of the ViP MRI approach is that it can be performed on different MR scanners, since 

the ViP hardware is an independent, self-contained unit. No hardware or software components of 

the MR scanner are used for generating the signal of the virtual phantom with the exception of a 

trigger signal, which nowadays is readily available and accessible on basically all pre-clinical and 

clinical scanners. Thus, overall there is no need to access the MR scanner programming 

environment, which in some cases might not be available to the user. 

With respect to the evaluation of MR scanner performances, the ViP MRI can be used for quality 

control measurements of the MR scanner receiver chain. It should be stressed here that with ViP 

MRI, as with all the other methods based on the ERETIC concept, it is not possible to assess MR 

pulse sequence flaws or mis-adjustments (imperfect refocusing 180º pulses, for instance) or MR 

scanner specifications (such as gradient non-linearity). This is due to the fact that the ViP signal is 

transparent to all RF pulses and magnetic gradient pulses of the MR sequence. In the current 

in
se

rm
-0

09
21

89
1,

 v
er

si
on

 1
 - 

9 
Ja

n 
20

14



ViP MRI: virtual phantom magnetic resonance imaging. Saint-Jalmes H et al. MAGMA. 2013 Dec 15. [Epub ahead of print] 

 

 8 

study, the ViP MRI method was tested on phantoms and the ViP RF coil was positioned at a 

distance of 40 cm from the scanner RF coil. For in vivo applications, an investigation of the 

optimal ViP RF coil positioning would be necessary in order to minimize radiation effects. 

The most direct application of ViP MRI would be to provide a reference signal for ‘proton 

density’ in 
1
H MRI. More interestingly, this application can be extended to MRI of nuclei other 

than 
1
H, such as 

19
F and 

23
Na [9]. As matter of fact, to determine the concentration of the total 

sodium in tissues, physical phantoms are routinely used [10]; in this case also, virtual phantoms 

could be used to provide a reference signal, so to replace the physical phantoms. Furthermore it 

should be also noted that, in analogy to the approach of Hanson et al. [11] where physiological 

recording were encoded in real time on the MRI images, other applications of ViP MRI could 

include the encoding of additional data such as text and graphs, for instance. Finally, as analytical 

phantoms are increasingly being used to test and validate MR algorithms, such as reconstruction 

algorithms for instance [12], the ViP MRI could be also used for generating images of complex 

analytical phantoms with realistic noise characteristics. 
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Conclusion 

 

In conclusion, MR images of virtual phantoms that could provide a reference signal for 

quantification were obtained using a stand-alone, independent unit. Thus, ViP MRI can be 

performed on MR scanners from different vendors.  
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Figures 

 

 

 

 

Figure 1. Schematics of the experimental apparatus for Virtual Phantom (ViP) MRI. The first step 

consists in designing the phantom shape and generating the k-space representation. The waveform 

generator of the ViP hardware converts the simulated k-space lines into RF signal that is 

transmitted by a dedicated RF coil, positioned in the scanner bore in proximity of the scanner RF 

coil. The ViP RF signal is synchronized with the MR scanner data acquisition by the RF unblank 

signal from the MR console. An oscilloscope was also part of the ViP hardware, in order to verify 

that the timings were properly implemented. 
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Figure 2. Proof of concept of Virtual Phantom (ViP) MRI. The MR image of three tubes filled  

with agar + gadolinium at different concentrations (physical phantom) is shown in panel A. The 

same acquisition was repeated with the ViP signal (panel B). The ViP tube is well represented and 

can provide a reference value for the MR signal intensity. Imaging acquisition parameters were: 

repetition time = 500 ms, echo time = 20 ms, matrix size of 256x256 and dwell time = 20 µs.  
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Figure 3. Multi-echo MR imaging of virtual and physical phantoms. The physical phantom 

consists of three tubes filled with agar + gadolinium at different concentrations. Signal intensities 

from ROIs selected in the virtual and physical phantoms are plotted as a function of TE. The 

monoexponential fit to the data is represented by the continuous line. The virtual phantom was 

designed with a transverse relaxation time equal to 60 ms. The transverse relaxation time obtained 

from data fitting was 59.9 ± 1.4 ms. 

 

  

in
se

rm
-0

09
21

89
1,

 v
er

si
on

 1
 - 

9 
Ja

n 
20

14



ViP MRI: virtual phantom magnetic resonance imaging. Saint-Jalmes H et al. MAGMA. 2013 Dec 15. [Epub ahead of print] 

 

 14 

 

 

 
 

Figure 4. The MR image (left panel) and the plot of the signal intensity (right panel) of a virtual 

and physical phantom. The signal intensity illustrated on the plot is taken along the profiles 

represented by the dashed lines on the image. The virtual phantom was designed in the shape of a 

ramp, with linear signal intensity. For the virtual phantom, the continuous line on the plot 

represents the linear regression of the signal intensity values. For the real phantom, the continuous 

line is the connecting line of the signal intensity values.  
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Figure 5. A spin-echo MR image (left panel) and the plot of the signal intensity at different times 

(right panel) of a virtual (symbols ‘●’) and physical phantom (symbols ‘○’). MR images were 

acquired every two minutes and an interval of 16 hours was taken between the two series of 

measurements. The signal stability of the virtual phantom is comparable to that of the physical 

phantom, with a coefficient of variation below 1%. 
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Figure 6. The MR image of a quality-control phantom and a virtual phantom (the logo of the 

European Society for Magnetic Resonance in Medicine and Biology, ESMRMB). The ESMRMB 

logo was purposely designed to overlap with the physical phantom. The elaborate shape of the 

ESMRMB logo (the letters and the incomplete ring-shaped curve) is well reproduced. 
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