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Abstract—In abdomen computed tomography (CT), repeated radiation exposures are often
inevitable for cancer patients who receive guided surgery or radiotherapy. Low-dose scans should
thus be considered in order to avoid too high accumulative harm of radiation. Thiswork is aimed at
improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL )
based processing. Stemming from sparse representation theory, the patch-based DL approach
proposed in this paper allows effective suppression of both mottled noise and streak artifacts. The
experiments carried out on clinical data show that the proposed method brings encouraging
improvementsin abdomen low-dose CT images with tumors.

Keywords—L ow-dose CT (LDCT), abdomen tumor, dictionary lear ning, noise, artifacts

caused by cumulated radiations for the patients with abdomen
1.Introduction tumors. Among all the methods proposed so far to obtain LDCT

images, the most practical and widely used method is lowering

the X-ray tube current by modulating the mA or mAs setting, but
Since the introduction of computed tomography (CT) in thgt a cost of degraded CT image quality due to increased
1970s, a wide-spread concern on CT is the increasing risk¢afantum noise and artifacts [5-7]. In the past ten years, other
cancer induced by X-ray radiation [1-2]. The radiation dosegpproaches have been explored to improve the quality of LDCT
delivered to patients during X-ray CT examinations argnages. They can be divided into three categories:
relatively high when compared to other radiologicapre-processing approaches, reconstruction appesaehnd
examinations [3]. Based on a recent report, the overall averagist-processing approaches.
radiation dose associated with a routine abdomen/pelvis CT The first one refers to techniques that improve the CT
scan is around 10 mSv, which is roughly 5 times of head cigaging by restoring the projected raw data before
and 100 times of chest X-ray Radiography [3]. Additionally, thiltered-backprojection  (FBP)  reconstruction Adaptive
dose in CT is cumulative in lifetime, and successive ciftéring, multiscale penalized weighted least-squares and

scanning can significantly increase the lifetime radiation risk gilateral filtering _have ‘?ee” reported to suppress the egcessive
fatal cancers [3-4]. guantum noise in projected raw dd&10]. Reconstruction
CT is also frequently used to guide the surgery 0al,pproaches treat the LDCT imaging as an ill-posed inverse

radiotherapy by providing localized contrast informatio r_oblem, a.nd solve the. proplem_ via - maximizing
rﬁor-regularlzed cost function using iterative optimizations

between tumors, organs and other surrounding human tiss . . . .
g g j -19]. Many prior options have been proposed in the past
r

Patients with diagnosed or suspicious abdomen tumors wo adefor example the total-variation minimization in [14], the
be submitted to repeated CT scans over a long observing pe ggadetor € P o L
nonlocal prior reconstruction in [15-16], and the prior image

before or after surgery or theragyow dose CT (LDCT) is : . X .
therefore of major Ei]mgortance irl?)grder to allevi(ate th()e harﬁlonstramed compressed sensing (PICCS) algorithm in [17]. It
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should be noted that results of clinical value in abdomen LDQdroposed DL algorithm can be efficiently implemented by using
have been achieved by using the PICCS algorithm [17] and theglobal dictionary anda parallelization technique The
adaptive statistical iterative reconstruction (ASIR) [18-19]elevance of this DL approach is shown through experiments
However, due to the difficult access to well-formattedonducted on a large set of patiefitse structure of this paper
projection data of the main CT vendors, researches @nas follows: in Section 2, the acquisition protocol, the patient
pre-processing and reconstruction approaches are often limited and the proposed algorithm are described. Results are given
in practice. Another well-known concern forterative and discussed in Section 3. Section 4 concludes this paper with a
reconstructions is the intensive computation cost required forief description of its contributions and some open questions
reconstruction, which may delay clinical workflow andfor future work.
diagnosis. Additionally, the CT scanners equipped in most
current hospitals are based on FBP algorithms and upgradngoM aterial and methods
the latest CT scanners with iterative algorithm is often too
expensive. 2.1.Clinical data and processing environment

The approach described in this paper falls into the third The protocol of this study (data collection and
category, i.e post-processing methodifey can be directly post-processing) was approved by our institutional ethical
applied on LDCT images to suppress noise and artifacts. Tiexiew board25 patientavere involved in the experiments. All
main merits of pstprocessing methods include ihdow these paients have given their written consent to the
computation cost and their easy implementation in most currgsdrticipation and received remunerationif. A non-conflict of
CT systems with no built-in low dose solutions. The objectivimterest for this work was declared. CT images were acquired on
when applying post-processing on LDCT images is to obtain multi-detector row Siemens Somatom Sensation 16 CT
images with visual appearances close to the correspondigwanner.
SDCT (standard dose CT) images without introducing structureThe patient cohort includes 11 women and 14 men with an
lost and new artifacts (or false structures). However, due to theerage age of 64 years (age range: 54-73 years). All the
fact that the back-projection process in the FBP algorithpatients suffer from cancers confirmed by biopsy examinations.
distributes the noise and artifacts non-uniformly over the wholoth LDCT and SDCT images were collected using a reduced
image, CT noise and artifacts with mottled or streak effects atehe current 50mAs and the routine tube current 260mAs under
often difficult to be removed from already reconstructed imagesdomen scan mode. 40 slices were collected for each patient
The noise and artifacts in abdomen LDCT images cannot bean. Other scan parameters include: kVp, 120; slice thickness,
modeled by Gaussian or Poisson distributions and restoratidsmm; Gantry rotation time, 0.5s; detector configuration
based on such priors lead to poor performance. This expla{dgtector rows section thickness),6 mmx 1.5 mn; table feed
why post-processing techniques rely on more heuristiger gantry rotation, 24 mm; pitch, 1:1; reconstruction method:
approaches. Furthermore, compared to other abdomiBP algorithm with convolution kernel “B20f” (“B20f” is the
pathological features such as hepatic cyst, tumor tissues msgtine smoothing kernel used in reconstructing abdomen
often of lower contrast, and it is rather challengingreserve images on Siemens CT). Here we consider the abdomen
their characteristics through image processing [7]. In [20-2hkindow (center 50HU; width, 350HU). The volume CT dose
several noise reduction filters were proposed to enhance thelex (CTDI,y) is a linear function of the tube currents [6]. We
conspicuity of lesions in abdomen LDCT images. An adaptivecorded the accumulated doses from the workstation for each
noise reduction filtering which combines smoothing andcan with 40 slices. The recorded doses are 16.38 mGy for the
edge-enhancing was reported to gad3dose reduction (tube routine 260 mAs protocol, and 3.09 mGy for the low dose 50
current reduced from 160mAs to 80mAs) without losingnAs protocol. All the CT images were exported as DICOM files
low-contrast detectability [22]. In [23], a filtering technique and then processed offline under a PC workstation (Intel Core™
named large-scale nonlocal means (LNLM), was proposed 20Quad CPU and 4096 Mb RAM, GPU (NVIDIA GTX465))
improve the quality of abdomen LDCT images with hepatigith Visual C++ as the developing language (Visual Studio
cysts. This LNLM method was further combined with 2008 software; Microsoft).
multiscale directional diffusion to suppress the streak artifact§usemm
in thoracic CT images [24].

Recent years have withessed a growing interest in the study
sparse and redundant representations over dictionary learnir
(DL) [25-32]). Some successful applications have been explore
in medical imaging [335]. Insteadof being based ora ;
pixel-wise intensity update, patch-wise DL processing}%
inherently enables a more effective representation of
patch-shaped features such as tumors or organs. In the paper, g3
propose to apply patch-based DL processing to |mprOV\
abdomen tumor LDCT images. This method is referresgii_
algorithm. In the experiments presented below, clinical LDC;X
images of cancer patieniere used. The corresponding SDC
images were also acquired to have a ground truth refefBinee  Fig.1 (a) illustrates one typical abdomen LDCT tumor image

ig.1 A typical LDCT image (50mAs) (a) and the correspondiBg$ image
60mAs) (b).
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with multiple hepatic metastases and Fig.1 (b) is thmarching pursuit (OMP) algorithm and the SVD decomposition
corresponding SDCT image for reference. The LDCT image9]. The columns of the dictionary D are constrained to be of
and SDCT image were respectively acquired with 50mAs anghit norm to avoid scaling ambiguity in practical calculation

260mAs, as specified above, and other scanning paramef@s. Then, when dictionary D and are obtainedwe can

were both kept as routine setting. We can see that (i) the LDGtain the output imageby solving the first order derivative of
image is significantly degraded by mottled noise with stron@) with respect to each pixel i

intensity variation and (iithe patch-shaped tumor tissues 4
(pointed by arrowspresent a low contrast with the surrounding x:[l +uY RR j [yﬂlz H D, j 4)
tissues. Therefore, processing LDCT tumor images in abdomen 7 7!
scans should be targeted at improving LDCT image quality andjt was pointed out in [29] that the dictionary trained from the
obtaining an enhanced detectability of abdomen tumors.  griginal noisy image itself can lead to better noise suppression
than using a global dictionary trained from the other available
2.2.Method and parameter setting images i the database. However, in this study, we found that
The proposedL-based patch processimgs performedn the dictionary trained from a typical SDCT abdomen image
2-D slices because of the large slice thickness setting in routialvays leads to visually close LDCT images when compared to
abdomen CT scanning (>=1mm, 5mm in this work). the dictionary trained from the LDCT image itself. The reason
Assuming the patches in the target LDCT images are spars@light be that most abdomen CT images are compufssahilar
representable, DL-based patch processing can be carried oub@pan tissues in rather low number, and that the dictionary
coding each patch as a linear combination of only a few patctdiscrepancy caused by differences between different CT
in the dictionary [26-27]. This method finds the best g|obé}bdomen images onlylfe.ads to small dif‘ferenges in the sparsified
over-complete dictionary and represesshimage patch as a features For one specific LDCT abdomen imaggrgans or

linear combination of only a few dictionary vectors (atoms)gf[h?r human tISISUGS ge}n be eff|C|err1]tIy rsgresentce_(: by the
The coefficients of the linear combination are estimateditiiro ictionary atoms learned from some other abdomen Images

a sparse coding process [28]. Based on [29] and [88], tInthls study, we used the pre-calculated diction@py (the left

DL-based patch processing aimas solving the following image in Fig.2trained from one typical SDCT abdomen image
problem: (the right image in Fig)2to process all the LDCT images. One

i important merit of the approach lies in that the intensive
Qlin"X— Y||z JF#ZHR’.i X- Da, ||2 s.t. ||05 ||0 <Tvi,j (@)  computation required in training dictionary is avoided by using
o i o this pre-calculated global dictionary. Here, the size of

where,x andy denote the processed and the original LDCBverlapping patches is set ®x8 to give an effective

images respectively, and the subsafipenotes the pixel index representation of local tumor and organ tissues, and the atom

(i, j) in theimage. R represents the operator that extracts theumberK is set to 64 for it is found large enough to represent the
) o ) structures in abdomen CT images. Choosing lakgeannot
patch X, of size nxn (centered afi, j)) from imagex. The yje|d result with obvious visual improvement but will

patch-based dictionaiy is anx K matrix, which is composed significantly increase the computation load. An analysis of the
of K n-vector atoms (columns). Each-vector column parameter setting idictionary learning is provided in Section
corresponds to onexn patch.a denotes the coefficient set 3.4

a; , for all the sparse representations of patches, and each
patch x, can be approximated by a linear combinatior .
lle, |L denotes the” norm that counts the nonzero entries of

vectore;, andT is the preset parameter of sparsity level that

limits the maximum nonzero entry numberdin. Based on [29], 12;: _
solving (1) includes the following two steps (2) and (3): l;;!i.
-
mnlRx- ol sl T @ i
D ; 2 0 el
) ) wi ""--' |
min|[x— W + 43[R x- De 3) FNY ™ iFF
ij

L . ) o Fig.2 The left picture is the trained, normatizglobal dictionary used in this
The objective of Eq. (2) is to train the coefficiemtsand sidy withn = 64 (8x 8 patch size) ant = 64. The right image corresponds
dictionary D from a set of image patches. It can be efficienttythe abdomen SDCT image from which the global dictipistrained

solved by k-means singular value decomposition (K-SVD) with With the pre-calculated dictionarPp (obtained via (2))

the r_eplacement_o_f(_ by t_h‘? known observed_ |mage[29]._ used as the global dictionary, the whole DL processing can be
Starting froman initial dictionary (e.g. the Discrete Coslnedefined by the followingwo steps:

Transform dictionary, DCT dictionary), this K-SVD operation
estimatesx and D by alternativg applying the orthogonal
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(sD) minZ"aI " s.t."R x- Dpa |2 <eVi| (5) Years male patient.o be_more prepisE_ig.S(a) and Fig.4(a) are
a S J ' respectively two LDCT images with live tumors, and Fig.5(a) is
. 2 2 a LDCT image with hepatic metastases. (b) and (d) in
(S2), “Q”ﬂx_ W, + #2[IR x- Doy [ (6)  Fig.3-Fig.5 show the corresponding SDCT images andthe
. processed LDCT imageBig.3(c), Fig.4(c) and Fig.5(c) show
the LNLM processed images. In Fig.3-Fig(B)-(h) illustrate
the zoomed regions of interest (ROI) identified by squiarés).
We should note here that, for the SDCT images, the ROIs with
the closest visual match with the LDCT images are selecte
rt?é‘icause of the unavoidable displacements between the two
ifferent scans. From all (a) in Fig.3-Fig.5, we observe that,
nder low dose CT scanning condition, mottled noise and streak
artifacts severely degrade the image quality and lead to unclear

Here, the sparse coefficient setand the imagex can be
calculated by solving (5) and (6) usi@MP and the solution
given in (4) In (5), £ denotes the tolerance parameter used
calculatinger by OMP method.

For evaluation purpose, we compared the proposed met
with the LNLM method, which is a pixel-wise weighted
intensity summation with weights determined by patc
similarities [23]. The intensive pixel-wise operations in LNLM
method was accelerated using GPU (Graphics Processing U or boundariedith the SDCT images as referenae can

techniques based on [23The parameters involved in the - in Fia.3-Fia.5 that the LNLM meth
LNLM and proposed DL methods were specified under tqsgee in (€) in Fig.3-Fig.5 that the method can suppress

id ¢ diological doctor (X.D.Y. with 15 oise and artifacts but tends to introduce some strange striped
guidance ot one radiological doctor (X.D.Y. wi years c’élrtifacts and so leads to lower perceptive detectability of
experience) to provide the best visual results. Practically,

Whhall lesiongarrows in Fig.5(¢). In particular, referring to the

If_osjgt_jrt_hat the sz‘;_\tr;]"ntahparameter settmgt canl ]the l:;ecti to protches zﬁlggof multiple hepatic metastases in Fig.5, we can note that the
Images wi € Same scan protocol for the two metho oposed DL processed image allows a better discrimination of

TABLE | lists this parameter settinfor the LNLM method, Il lesi in Eia.5(h)) wh d to the original
the parametdn, the patch sizblp and the neighborhood sikia igé.r ?;ISSZ ;réotvr\]lz ICNR/.I érg)c\évsseendﬁ?nrgzzre o the ongina

were setto 27x 7 and 8_1X 81’ respectlye!y. For the proposed Fig.6 provides the processing results of another five patients
DL method, as shown in Fig. 3, the dictionary size was set\igh abdomen tumors. The first, second and third columns
64> 64 for 8x 8 patch (1= 64) ands4 atom numbers{(=64).  correspond to the original LDCT images (a-, b-l, c-l, d-I, e-l),
Sparsity levell was setto 3 atoms, and 20 iteraghern=20) the original SDCT images (a-s, b-s, c-s, d-s, e-s) and the DL
wereusedin the K-SVD calculation to update the diction&ry Processed LDCT images (a-p, b-p, c-p, d-p, e-p). To béfispec
and the sparse coefficient. The initial dictionary for K-SVD in Fig.6, the first row depicts images with liver metastdads

is the DCT dictionary obtained by sampling the cosine wawsS: ap); the second row displays imagesf uterine
functions in different frequencies. The tolerance parameter Malignanciegb-l, b-s, bp); the third row illustrates images with

and 4 in (5) and (6) wee set to 21 and 0.8. gastric cancer and liver metastagek c-s, cp); the fourth row
shows images with kidney cancer and liver metastasksl-s,
TABLE | d-p); the fifth raw, images with pelvic malignanci¢s|, e-s, ep)

THE PARAMETER SETTINGS AND COMPUTATION COS(IN SECOND) FOR THE
LNLM METHOD IN[23] AND THE PROPOSED MEFOD

LNLM method DL method

are given. We can clearly stt a significant improvement of
image quality can be obtained by processing the original LDCT
images using the proposed DL algorithm. In the processed
Parameter | h=4, No=7x 7, | K=64,n=8, T=3, Itern=20, LDCT images, both noise and artifacts are -effectively
settings Nn=81x 81 £=21,14=0.8 suppressed, which leads to better visibility of tumor tissues.

By comparing the processed LDCT images with the origina
SDCT images in Fig.3-Fig.6, we can observe that the proposed
3. Results DL method can produce LDCT image with textures visually

' closer to those of the original SDCT images. Howgewethe
3.1.Visual assessment DL processed LDCT images we can still notice that some

Here the complete images are displayed using the standartiginal high contrast artifacts still remain (se®ows in Fig.6
abdomen window and in full size in order to facilitate an overadl-p, b-p and e-p). The DL algorithm might be not effective in
quality evaluatio. Fig.2 shows the trained dictionari€¥) Used suppressing such high contrast singular artifacts.
in the implementation of the proposbd method

The low dose CT data in Fig.3-Fig.5 are respectively from a
61 years female patient, a 53 years female patient, &&l a
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(@) LDCT image (b) SDCT image

(d) DL processed LDCT image

Fig.3 Results for a 61 years female patient with live turfgr the original LDCT image; (b), the SDCT image; (o LNLM-processed LDCT image; (d), tbé&
processed LDCT image; (e)-(h) show the zoomed regions mukirif(a).
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(a) LDCT image (b) SDCT image

(c) LNLM processed LDCT image

Fig.4 Results for a 53 years female patient with livedu (a), the original LDCT image; (b), the SDCT ima@gg, the LNLM-processed LDCT image; (d), the
processed LDCT image; (e)-(h) show the zoomed regions mukirif(a).
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(a) LDCT image (b) SDCT image

(c) LNLM processed LDCT image (d) DL processed LDCT image

Fig.5 Results for a 56 years male patient with multigleatic metastases. (a), the original LDCT image; (b)S€T image; (c), the LNLM-processed LDCT
image; (d), thédL processed LDCT image; (e)-(h) show the zoomed regiongiggeidi (a).
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Fig.6 Five patients (in rows) with abdomen tumors. fits¢, second and third columns correspond to thermaldiDCT imagega, b-l, c-l, d-1, e}), the original
SDCT imagegas, b-s, c-s, d-s, e-s) and the DL processed LDCT imaged-p, c-p, d-p, e-p)The first row illustrates the images with liver metastésiesles)
the second row, textures of uterine malignancibe third row, images corresponding to gastric cafobeles) and liver metastases (arrowtje fourth row,

CT images with liver metastases (arrows) from kidney cartberfifth row; CT images with pelvic malignancies (circles) .Note thatarrows in the first, second
and third rows point out some remaining artifacts in tlegssed images.

3.2. Quantitative assessment

The LDCT and the corresponding SDCT images always h
no exact spatial correspondence to each other because o
displacements caused by patient breath and movements in s
This makesit impossible to quantitatively evaluate imag
quality using some Euclidean distance metrics (e.g. the m
squared error (MSE)). We thus chose to compare the stan
deviation (STD) of the regions of interest (R@1)both the
original and processedDCT images with respect to those o
the SDCT images. The ROIs (denoted®y for Figures 3to 5
include both tumor regions and backgrounds specified b
radiological doctor (X.D.Y. with 15 years of experience). Fig.
illustrates the ROIs for tumor regions (surrounded by red circl
and backgrounds (dark circles) for the original SDCT a

LDCT images. The standard deviatidBTD, for Q is

|

Fig.7 The three columns from left to right illustrabe tselected ROIQ ) for

calculated via (\: tumor regions (tumor region-1, tumor region-2, tumoiiaee, red circles)
and background regions (background-1, backgrourtsh@kground-3plack
1 P —p 2 circles)in the abdomen CT images corresponding to Fig.3, FigdFR5
STDQ = \/— Z X.,- - X (7) respectively. In each column, the upper and lower imagmote the SDCT
|Q| “lie image and the corresponding LDCT image, respectively.
where, xlip and X! denote each pixel intensity and the averaged
intensity within Q , respectively|Q)| is the pixel number i . TABLE Il
TABLE Il depicts the calculated STDSf tumor and  grd i SDCThAGES  ADTHE PROCESSEADCT Icke
background regions specified in the images in Fig.7. Tulnor- LNLM DL
and background-1 correspond to the specified regions inthe JT ~ ROl LDCT SDCT | processed | processed
imagesof the first columrin Fig.7; tumor-2 and backgrourfi- LDCT LDCT
to the regions indicateth the second columnuinor-3 and Tumor-1 235.02 | 46.06 95.50 62.31
background-3 to the regions defined in the third colofrffig.7. Background-1 | 27299 | 78.03 102.27 82.86
We can note in TABLE Il that the DL processed LDCT imageg __ Tumor-2 108.18 | 23..80 47.20 25.04
have closer STDs to those of the SDCT images than the LDC[[Background-2 | 106.63 | 21.94 55.80 25.32
images and also the LNLM processed LDCT images. Tumor-3 219.09 | 29.41 84.45 26.28
Background-3 | 314.98 51.74 95.56 65.84
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400

(b) W 007 e image scores were reported means: SDs(averaged scores of
I SDCT image

350

the 3 radiologists standard deviatior). The subjective quality
parameters of the original LDCT images and the processed
LDCT images were compared with those of the original SDCT
images and the differences between each two groups were
evaluated by the Studentest (Excel; Microsoft) witHP<0.05
considered as statistically significant difference.

300

250

200

150

100

50

TABLE I
% IMAGE QUALITY SCORES( mearnt SD9)
400 400 LNLM DL
30 © 350 (d) ’W LDCT SDCT processed processed
LDCT LDCT
300 300 NO'% r*
250 - Suppression 2.14+ 0.37 | 3.48£ 0.2€| 3.18%f 0.2€ | 3.50% 0.2%
Artifact |y 744 037 | 352+ 0.27| 2,36+ 0.3¢ | 334+ 0.37
150 150 S'lppron
Contrast * - _
100 100 Preservation 2.21+ 0.2¢ | 3.19+ 0.24| 2.76+ 0.2¢ 3.02+ 0.27
B . Tumor | 884 037 | 312+ 0.2¢| 2,67+ 0.4¢ | 298+ 0.2
7 T Discrimination
-40 -20 0 20 . 40 60 80 100 -40 -20 i} 20 - 40 60 80 100 Over a” r* ’ " .
Fig.8 The histogram maps (black) of the tumor region {Epddn Fig.4 (a)) Image Quality 194+ 0.3t | 3261 0.2¢| 278+ 0.3¢ | 313t 0.2
for the original LDCT image, the LNLM processed and Die processed * Significantly (P<0.05 means different from the mean scores for {
LDCT images. The histogram may the corresponding tumor regidm the original SDCT images.

original SDCT image is overldin red color.

Fig.8 (b), (c) and (d) plot the histogram maps (in black) of the As iII_ustrated in TABLE llI, for a_II the Swmres, the. original
specified tumor region (the red frame in Fig.8 (a)) for theDCT images are of lower quality than the original SDCT

original LDCT image, the LNLM processed and the pilmages and the processed LDCT images. The DL processed

processed LDCT images. The images were chosen from {fCT images obtaied quality scores substantially higher than
case reported in Fig.4. We also provide the reference histogrjlfj LNLM processed LDCT images. Statistically significant
map (in red) for the corresponding tumor region in théllferences B<0.05) with respect to the original SDCT are
corresponding SDCT image (selected from the set of slicesiced in all the subjective scores for the LDCT images, and in
the best anatomical match, the regions being of equal size)2Athe subjective scores except noise suppression for the LNLM
larger difference in the histogram maps for the original LDCProcessed LDCT images. The differences between the DL

and the SDCT images can be observed in Fig.8 (b). We can d1gcessed LDCT images and the original SDCT images for the
see that, in comparison with the LNLM processing, the DP Subjective scores are not statistically signific&0.05).

processed image histogram is rather similar to the original L . . .
SDCT image one. 3.4. Sensitivity analysis for dictionary training

o In this section, we analyze the sensitivity of the proposed DL

3.3. Qualitative assessment approach to different dictionary options and also to the atom
For qualitative assessment, 50 original images (including Zfamberk of dictionary.The LDCT image in Fig.3 is used for

LDCT and 25 SDCT images), 50 processed images (includifis analysis. Fig.9 (a) illustrates the DL processed image using
25 LNLM processed LDCT and 25 DL processed LDCThe dictionary trained from the LDCT image itself. The same
images) were considered. 5 subjective featuresicise parameters, as shown in TABLE I, are used in DL processing.
suppression, artifact suppression, contrast preservation, Fig.9 (b) displays the difference image between Fig.9 (a) and
tumor discrimination and overall image quality - were Fig.3 (d) (the DL processed image using the global dictionary).
evaluaed using a five-point subjective scale (1=unacceptablghe visual as well as the quantitative differefegery small
2=substandard, 3=acceptable, 4=above average, 5=excellefiss than 54U). We can thus validate that a global dictionary
Here, we define artifacts as any tissue region having a passi¢ lead to almost the same result as the dictionary trained from
effect on subjective diagnosis. Three radiological readefise LDCT image itself.
(X.D.Y. with 15 years of experience, X.H.Y. with 8 years of
experience, Y.M.D. with 5 years of experience.) independently
evaluated the randomized set of LDCT images, SDCT images,
the LNLM processed LDCT images and tbe processed
LDCT images in a digital DICOM archiving/assessing
workstation YiewDEX 2.0[36]). So, the 5 subjective features
were assessed for all the 100 images (50 original CT images,
and 50 processed CT images). This resnlt§500 parameter
ratings in total (5 image quality parameters together and the 3
readersi.e. 100x 5x 3= 150(). For each subset of images, the 5
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Fig.10 The RMSD with respect to the largest atom numbers REqgprocessed
images using global dictionary.

3.5. Computation costs

TABLE |V lists the computation costs (in seconds) required
in implementing different methods for the studies in Fig.3-Fig.5
For brevity, we use D-step, O-step, and I-step to represent the
K-SVD step ((2) dictionary training), OMP step ((5) sparse
coefficient estimation) and the image update step (6) iDthe
processing. We can see that the dictionary learning in D-step is
much more computatiotia intensivethanthe O-step and I-step
and the O-step cost varies a little for different data. TABLE IV
shows that, with the D-stepvoided by using a pre-trained
dictionary (such as the one shown in Fig.2), the proposed
methodis computationally much more efficient than the GPU
accelerated LNLM method.

Differenceimage between Fig.9 (a) and Fig.3(d)

TABLE IV
THE COMPUTATION COST(IN CPUSECONDS FOR THELNLM METHOD IN[23]
AND THE PROPOSED MEROD

DL method
LNLM method
D-stepg O-step| I-step
Fig.3 study 1.76
Computatiq _. i
n cost Fig.4 study|454.41 1.83 | 0.96 8.07
Fig.5 study 1.69

Fig.9 (a). The DL processed LDCT image using the diatiptrained from the
LDCT image itself; (b). The difference image betweend-{g@) and Fig.3 (d).

4. Conclusion

With respect to the processed LDCT images using global
dictionary with larger values ofK (from 4 to 441)

the root-mean-square deviation (RMSD) is calculated using (

This paper proposes to improve abdomen tumor LDCT
images by applying a patch-based DL processing. The
xperiments have shown thaefproposed method is clinically
1 , effective (5 mm slice thickness) and preserves patch-shaped
RMSD K = —Z X0, = X, (8)  tumor features with less than 1/5 routine tube current values (or
m radiation doses). Also, this approach can be of interest for other

where, x;, denotes each pixel intensity in the DL processedPCT abdomen applicaticn
With no access to well-formatted raw data, the proposed

LDCT images using the global dictionary with atom number 5 cessing can be easily appliedalmost all the existing CT
We can see in Fig.10 that the RMSD decreases sharplyp 10 gy siems. It can also be efficiently implemented by using GPU
50 before going stable. Though not obeying the redundagi qjiglization and a pre-calculated global dictionary. In
constraint 64 =n <K given in [29], the moderate atom sifé  qgition, the inter-patient similarity of abdomen CT images
(=64) works well in this study. The reason can be ascribed t0 s a higher acceleration by using dictionary with moderate
fact that abdomen CT images can always be decomposesl intgom numbers such as 64 in this study. It has been found in our
limited number of tissues with quite similar properties. experiments that the same parameter setting is applicable to
LDCT images with the same scan protocols, thus offeaing
tractable strategy for parameter determination. It is expected
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that the proposed DL approach can also be well used in fA@] J. B. Thibault, K. Sauer, C. Bouman, and J. Hsieh, “A three-dimensional
processing of other LDCT abdomen data.

Nonethelesswe also found that some artifacts with Str0n914] E. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed
contrastwere hard to be suppressed without blurring tumor

structures. This effect is expected to be more severe in the ¢
of thinner slices The reason might be that only limited

similarity information within a small neighboring region is used
in the proposed DL algorithm. Also, the whole computation coB!]
of theDL processingtill needs a further acceleration to fulfill
practical clinical requirements (less than 0.5 second {a@r 2-
slice). Currently, some parameters (e.g. the sparsity level atid]
tolerance parameter) still need to be empirically Beture
work will thus be devoted to improvements by incorporating g
some artifact-suppressing constraints trained from available
SDCT imagesextending the application to 3D in order to dea{lg]
with cases with thin slice thicknességrther accelerating the
OMP computation irDL processing by using parallelization
techniques and also developing more robust estimation fol?0l
parameters

[21]
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