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Abstract 

Glioblastoma (GB) is the most frequent and aggressive tumor of the central nervous system. There 

is currently growing interest in proteomic studies of GB, particularly with the aim of identifying 

new prognostic or therapeutic response markers. However, comparisons between different 

proteomic analyzes of GB have revealed few common differentiated proteins. The types of control 

samples used to identify such proteins may in part explain the different results obtained.  

We therefore tried to determine which control samples would be most suitable for GB proteomic 

studies. We used an isotope-coded protein labeling (ICPL) method followed by mass spectrometry 

to reveal and compare the protein patterns of two commonly used types of control sample: GB 

peritumoral brain zone samples (PBZ) from six patients and epilepsy surgery brain samples (EB) 

pooled from three patients. The data obtained were processed using AMEN software for network 

analysis. 

We identified 197 non-redundant proteins and 35 of them were differentially expressed. Among 

these 35 differentially expressed proteins, six were over-expressed in PBZ and 29 in EB, showing 

different proteomic patterns between the two samples. Surprisingly, EB appeared to display a 

tumoral-like expression pattern in comparison to PBZ. 

In our opinion, PBZ may be more appropriate control sample for GB proteomic analysis. 

 

Significance 

This manuscript describes an original study in which we used an isotope-coded protein labeling 

method followed by mass spectrometry to identify and compare the protein patterns in two types of 

sample commonly used as control for glioblastoma (GB) proteomic analysis: peritumoral brain 

zone and brain samples obtained during surgery for epilepsy. The choice of control samples is 

critical for identifying new pronostic and/or diagnostic markers in GB. 
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Introduction 

Glioblastoma (GB) is the most frequent and aggressive tumor of the central nervous system. 

Despite the development of new therapies, the prognosis remains poor, with a mean progression-

free survival of 7 months and an average survival of 12 to 15 months [1, 2]. Even following gross 

total resection and optimal adjuvant treatment, recurrence is extremely common, mainly from the 

margin of the resection cavity [3-5]. 

GB is a very hetererogenous groups of tumors [6], involving different zones; both genomic [7, 8] 

and proteomic [9-11] approaches have been used to study these tumors. These analyses led to the 

identification of different markers, allowing the characterization of different subtypes of GBs and 

tumoral mechanisms, and may serve as a basis for the development of new therapies focused on the 

molecular, genetic and proteomic particularities of GB. 

In one of our previous proteomic studies, we used an isotope-coded protein label (ICPL) method to 

compare three areas of GB: the tumor zone (TZ), the interface zone between the tumor and the 

parenchyma (IZ) and the peritumoral brain zone (PBZ). We successfully identified 35 proteins 

over-expressed in the core of the tumor by comparison with the periphery and showed that 23 of 

these belong to a cohesive network of physically interacting proteins linked to several cellular 

functions [10]. 

However, few of the 35 proteins that we found to be altered in TZ are the same as those identified 

by previous studies (Table 1). For example, Khalil [12] used 2DE with MALDI-TOF MS and LC-

MS/MS to analyze 30 GB samples with seven control samples obtained from epilepsy surgery for 

reference. Forty-six differentially expressed proteins were identified of which only ten proteins 

were in common with our study (β-actin, CKB, GDI1, ALDOA, 14-3-3γ, ATP5A1, ALB, GFAP, 

NEFL, ENO1). Except for β-actin, most of these proteins showed a different pattern of expression 

to that described in this previous study. Indeed, we found these proteins to be over-expressed in TZ 

versus PBZ whereas Khalil [12] observed under-expression in GB samples versus control epilepsy 

samples. To understand the apparent differences in the protein expression patterns between the two 
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studies, we conducted a bibliographical search for proteomic analyses of fresh brain tumor samples 

(reported in Table 1). This analysis revealed substantial heterogeneity in results associated with the 

different proteomic analysis techniques employed and the control tissues used. Indeed, differences 

in both the analytical methodologies and the control tissues used may explain the only weak 

similarities between proteomic patterns reported by the various studies. 

Obviously, normal live brain samples are not available to be used as control samples under all 

circumstancies, and consequently the control samples commonly used in GB proteomic studies 

include brain tissue obtained during surgery for epilepsy (EB) or from the walls of the resection 

cavity during GB surgery (PBZ), with the informed consent of the patient. 

However, it is unclear whether PBZ or EB brain samples, commonly used as controls, can be 

considered to be “normal” brain tissue, and therefore whether they are appropriate for proteomic 

comparisons and describing the differential proteomic expression pattern of brain tumors. 

The aim of this study was to analyze and compare the protein expression patterns of these two 

control tissues (PBZ versus EB) using the ICPL proteomic method, and to determine which is the 

most suitable for use as control tissue for proteomic analyses of brain tumors. 

 

Materials and Methods 

Clinical materials 

Six patients whose diagnosis of primary GB (WHO 2007 classification) was confirmed by a central 

committee of neuropathologists and three patients undergoing epilepsy surgery were included in the 

study. This study was approved by the relevant ethics committee (CPP Ouest II, Angers, France) 

and all patients signed an informed consent form for participation in this study.  

The tumoral zone and PBZ from GB were defined on preoperative T1 gadolinium-enhanced 3D 

MRI. Stereotaxic biopsies were performed in the operating theater, by computer-assisted 

neurosurgery (BrainLab®, La Défense, France). EB was obtained from cortical resection during  
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Table 1: Overview of the GB biopsy proteomic literature and comparison of the proteins identified 

with our previous study
*
 [10] 

GB: glioblastoma; AA: anaplastic astrocytoma; AO: anaplastic oligodendroglioma; oligo: oligodendroglioma; DNET: 

Dysembryoplastic neuroepithelial tumor; 2DGE: 2D Gel electrophoresis; ICPL: isotope coded protein labelling; LC-

ESI: liquid chromatography electrospray ionization; MALDI-TOF: matrix-assisted laser desorption ionization time of 

flight; nano-LC: nanoliquid chromatography; SELDI-TOF: surface enhanced laser desorption ionization time of flight; 

PBZ: peritumoral brain zone, EB: peripheral epilepsy surgery brain zone. 

Reference Year n WHO grade Method Control 
Proteins 

Differentially 
expressed 

Proteins 
in 

common* 

[27] 2011 5 GB 2DGE, MALDI-TOF 
MS, 2D-PAGE, 
Western Blot 

EB 22 4 

[28] 2009 27 GB Western Blot Cancer genome 
atlas 

55 1 

[29] 2009 1 GB HPLC-ESI-MS/MS PBZ 15 - 

[30] 2009 3 GB 2DGE, MALDI-TOF 
MS 

PBZ 8 1 

[12] 2007 41 24 primary GBs 
4 secondary GBs 
4 grade III 
2 grade II 
7 epilepsy 

2D-PAGE, 2DGE, 
MALDI-TOF MS 

EB 91 9 

[31] 2007 20 10 GBs 
10 controls 

Nano-LC prior to 
MALDI-TOF/TOF 

Samples from 
different patients 
with a variety of 
CNS conditions 

16 0 

[32] 2005 20 10 grade IV 
10 grade II 

2DGE, 
LC−ESI−MS/MS, 
Western Blot 

PBZ 15 2 

[33] 2005 13 GBs 2DGE PBZ 19 1 

[34] 2005 127 57 GBs 
22 grade III glioma 
29 grade II glioma 

MALDI-TOF 19 patients 
undergoing surgery 
for "non-neoplastic 
diseases" 

24 0 

[35] 2005 27 10 GBs 
14 grade III 
1 grade II 
2 grade I 

2DGE, MALDI-TOF 
MS 

EB 29 4 

[36] 2004 85 52 GBs 
13 grade III 
10 grade II 
10 epilepsy 

2DGE, MALDI-TOF 
MS 

PBZ 37 2 

[37] 2004 18 4 GBs 
2 oligo II 
2 AO grade III 
2 embryonal 
carcinoma 
1 pheochromocytoma 
1 DNET 
1 gemistocytic 
astrocytoma grade II 

MALDI-MS EB Identification 
of protein 
patterns 
without 
protein 

characterizati
on 

- 

[38] 2003 5 2 GBs 
2 grade III 
1 grade I 

2DGE, MALDI-TOF 
MS 

PBZ from the same 
patient 

15 1 

[39] 2003 4 4 GBs SELDI-TOF-MS None Identification 
of protein 

profiles 
without 
protein 

characterizati
on 

- 

[40] 2001 94 56 GBs 
13 AAIII 
25 low-grade gliomas 

Western Blot 
analysis 

Lysates from 16 
week old fetuses 

14 0 
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surgery for epilepsy after identification of the epileptic cradle using per-operative 

electroencephalograms and electrostimulation. 

Histological analysis and protein extraction were performed for each biopsy specimen. For 

histological analysis, formalin-fixed, paraffin-embedded sections of the biopsy specimens were 

stained with hematoxylin-phloxin-saffron.  

Tissue protein extraction 

Protein extracts of tissue samples were prepared as previously described [10]. Briefly, cell pellets 

from PBZ and EB samples were resuspended in cold lysis buffer (6 M guanidine HCl, pH 8.5, 

cells/buffer: 1/2.5(v/v)) and sonicated on dry ice with an ultrasonic processor (Bioblock Scientific, 

Illkirch, France) six times for 10 sec with 30 sec pauses between using a microtip setting power 

level at 40% pulse duration. The homogenates were centrifuged (15,000 g, 30 min, 4°C) and the 

resulting supernatants were then ultracentrifuged (105,000 g, 1 h, 4°C). Protein concentrations in 

the resulting supernatants were measured with a BioRad Protein Assay Kit (BioRad, Marnes-la-

Coquette, France) according to the manufacturer’s instructions. The samples from the three patients 

undergoing epilepsy surgery were pooled.  

ICPL labeling and protein digestion 

The experimental design and the ICPL method are described in Table 2. ICPL labeling was 

performed on 50 µg of PBZ or pooled EB samples as previously described (Com et al., 2012), 

according to the experimental design described in Table 2. Labeled proteins (50 µg) were separated 

by SDS-PAGE in 12% precast gels (GeBeGel, Gene Bio Application), which was then stained with 

Coomasie blue R-350 using the EZBlue gel staining reagent (Sigma-Aldrich, Saint Quentin 

Fallavier, France). Entire gel lanes were cut into 20 sections, which were washed in different 

ACN/100 mM NH4HCO3 solutions. In-gel digestion was performed overnight at 37°C with 

modified trypsin (Promega, Charbonnières-lès-Bains, France) following a previously described 

protocol (13). Proteolytic peptides were then extracted from the gel sections by sequential 

incubation in the following solutions: ACN/H20/TFA, 70:30:0,1 (v/v/v), 100% ACN and 
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ACN/H20/TFA, 70:30:0,1 (v/v/v), and the extracts were concentrated by evaporation down to a 

final volume of 30 µL. 

 

L M H

Reaction 1 EB pool GB3-PBZ GB16-PBZ

Reaction 2 GB10-PBZ EB pool GB25-PBZ

Reaction 3 GB22-PBZ GB26-PBZ EB pool  
 
Table 2: Experimental design of the ICPL labelling for each sample 
L: light ICPL reagent, M: medium ICPL reagent, H: heavy ICPL reagent, GB-PBZ: glioblastoma-peritumoral brain 

zone, EB pool: peripheral epilepsy surgery brain samples pooled from three patients. 

 
 

GLC-MS/MS analysis and protein identification and relative quantification 

Proteolytic mixtures were analyzed on a nano-HPLC system (Ultimate 3000, Dionex, Jouy-en-

Josas, France) coupled on-line with an Esquire HCT Ultra PTM Discovery mass spectrometer 

(Bruker Daltonik GmbH, Bremen, Germany), equipped with a nanoflow ESI source and an ion trap 

analyzer (ITMS) as previously described [10]. The EsquireControl™ software (Bruker Daltonik 

GmbH) automatically alterned MS and MS-MS acquisitions and was tuned to preferentially subject 

ICPL-labeled peptides to MS-MS acquisitions. DataAnalysis™ 3.4 software (Bruker Daltonik 

GmbH) was used to create the peak lists from raw data. For each acquisition, a maximum of 700 

compounds was detected with an intensity threshold of 100,000 and the charge state of precursor 

ions was automatically determined by resolved-isotope deconvolution. ProteinScape™ 2.0 software 

(Bruker Daltonik GmbH) was used to submit MS/MS data to the Swiss-Prot database (version 70, 

November 2011, Homo Sapiens taxonomy, 20257 sequence entries) and the randomized version of 

this database (decoy) to determine the false positive rate (FPR), defined as the number of validated 

decoy hits / (number of validated targets hits + number of decoy hits) * 100, using the Mascot 

algorithm (Mascot server v2.2, http://www.matrixscience.com) as previously described (Com et al., 

2012). Given that modification of lysine residues by ICPL labeling prevents their cleavage by 

trypsin, arginine C was selected as the enzyme with one allowed miscleavage. 

Carbamidomethylation of cysteines was set as a fixed modification, and labeling of lysine residues 
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by light (L), medium (M) or heavy (H) ICPL reagents, and methionine oxidation were considered as 

variable modifications. The mass tolerance for parent and fragment ions was set to 0.25 and 0.5 Da, 

respectively. Peptide identifications were accepted if the individual ion Mascot scores were above 

30 or above the identity threshold (the ion score is -10*log (p), where p is the probability that the 

observed match is a random event, p-value <0.05). The ProteinExtractor algorithm (14) was used to 

compile identified peptides to proteins as previously described [10]. Every protein reported was 

identified by at least one peptide with significant ion Mascot score (above the identity threshold) 

and which cannot be mapped to a higher-ranking protein already in the result list, and protein 

identifications were accepted if the FPR of the search was lower than 1%. 

WarpLC 1.2 software (Bruker Daltonik GmbH) was used for relative protein quantification; this 

software automatically calculates H/L, M/L and H/M ratios by comparing the relative intensities of 

m/z ratios corresponding to the labeled peptides observed on MS spectra using DataAnalysis 3.4 

software using previously described parameters [10]. The minimum differences in H/L, M/L, and 

H/M ratios associated with significant differences in protein expression were determined by 

calculating the technical variability of our system as previously described [10] and the significant 

threshold was fixed at 2 standard deviations from the normalized median of each H/L, M/L and 

H/M ratio; this gavethresholds od 1.41 for over-expressed proteins and 0.71 for under-expressed 

proteins (data not shown). 

Gene ontology term enrichment and network analysis 

The Annotation, Mapping, Expression end Network (AMEN) suite of software tools (16) was used 

to assess biological process GO term enrichment in the GB-PBZ / EB differential protein group 

using the International Protein Index human proteome for reference (release 3.8) (20). To be 

significantly over-represented in a group of genes, a GO term should have a p-value (adjusted with 

FDR by the Benjamin-Hochberg Method) lower than 0.01 and at least three proteins had to be 

associated with the annotation involved. A high Ontology Specific Information Rate (OSIR) cut-

off, ≥ 0.4, was selected to avoid redundancy between closely related terms. 
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The network representation was drawn using AMEN and seven protein interaction databases: 

IntAct (release 2010-03, http://www.ebi.ac.uk/intact), MINT (release 2010-03, 

http://160.80.34.4/mint/Welcome.do), BioGRID (release 2010-03, http://thebiogrid.org), DIP 

(release 2010-04, http://dip.doe-mbi.ucla.edu), HPRD (release 2010-04, http://www.hprd.org), 

CORUM (release 2010-04, http://mips.helmholtz-muenchen.de/genre/proj/corum), and MatrixDB 

(release 2010-04, http://matrixdb.ibcp.fr).  

 

Results and discussion 

This study is, to our knowledge, the first to compare the proteomic profiles of peritumoral brain 

zone tissue from GB and brain tissue samples obtained after epilepsy surgery to assess which is the 

most suitable for use as control samples for proteomic studies of GB.  

Macroscopically, PBZ samples are composed of a mixture of grey and white matters but the 

proportion of white matter is greater because of the usual localization of GB in the brain.. As GB is 

an highly infiltrative tumor, histological analysis of PBZ can show microsatelite tumors or isolated 

infiltrated GB cells. For all the samples included in this study, histological analysis indicated an 

infiltration of tumor cells in two PBZ samples only  (between 5-10%) (data not shown). However, 

this infiltration was too low to alter the genomic and proteomic profiles of PBZ. In fact, while array 

CGH analysis of TZ indicated gain of chromosome 7 and loss of chromosome 9 and 10, no such 

genomic aberrations were observed in corresponding PBZ (data not shown). As epileptic zone are 

usually cortical, EB samples are principally composed of grey matter with a small contingent of 

white matter. Consequently, these two types of brain tissue sample are divergent, with different 

cytoarchitectural organizations and containing different types of neural cells. 

We used the ICPL technique to compare the proteomes of these two types of brain tissue sample 

because it allows high-throughput, quantitative proteome profiling in an acurate and reproducible 

manner for up to four different samples [13]. Unlike other MS-based differential proteomic 

approaches, this technique can be applied both to cell cultures and to tissue samples and provides 
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information about protein isoforms [14, 15]. The ICPL technique is is also informative about non-

differential proteins thanks to the simultaneous quantification and identification. 

By querying the human Swiss-Prot database, we identified 197 non-redundant proteins with a score 

above the identity threshold and with a FDR < 1% (supplementary table 1). The numbers of 

identified and quantified proteins per patient are reported in Table 3. 

 

    PBZ/EB  

  
# identified 
proteins

b
  

# quantified 
proteins

c
 

< 0.71
d
 >0.71 and <1.41

e
 >1.41

f
 

 

GB3
a
 145 72 42 19 11  

GB10
a
 123 58 36 10 12  

GB16
a
 145 72 22 40 10  

GB22
a
 116 55 36 11 8  

GB25
a
 123 58 34 12 12  

GB26
a
 116 55 46 6 3  

 
Table 3: Number of identified and quantified proteins for each patient 
a
 The anonymous designation of each patient is reported in the first column, 

b
 Number of unique identified 

proteins, 
c
 Number of unique quantified proteins, 

d
 Number of unique quantified proteins with a ratio < 0.71 

(expression decrease above 41%), 
e
 Number of unique quantified proteins with a ratio > 0.71 and <1.41 (non 

modulated expression), 
f
 Number of unique quantified proteins with a ratio > 1.41 (expression increase 

above 41%) 
 

To assess the differential expression of proteins between PBZ and EB samples, we selected proteins 

with an average ratio, in six analyzed patients, of > 1.41 or < 0.71, with individual ratios > 1.41 or < 

0.71 in at least 3/6 patients with a minimum of two peptides in at least 50% of the patients. On this 

basis, we identified 35 proteins the expression of which differed between PBZ and EB. Most of 

these proteins (29/35 proteins, or 83%) were more weakly expressed in PBZ than EB, and only six 

were more strongly expressed (Table 4). 

AMEN software was used to evaluate GO term enrichment. The over-represented biological 

functions (p-value < 0.01) in EB are associated with energy metabolism, nervous sytem 

development, synaptic transmission, cellular transport and protein folding and processing (Figure 

1). We previously observed these biological functions as being up-regulated in GB biopsies by 
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comparison with PBZ samples used for reference [10]. Furthermore, we identified a functional 

network including 21 of the 35 proteins differentially expressed between PBZ and EB (Figure 2). 

 

 
Figure 1: Biological processes involving the differentially expressed proteins 

The color scale represents the down (in blue) or up-regulation (in red) with their respective corrected p-value for each 

GO term. Bold characters display a significant enrichment. 

 

An analysis of the literature revealed that some of the six proteins up-regulated in GB-PBZ are 

ubiquitous, components of basic cellular pathways like DNA folding for histones (HIST1H2AC and 

HIST1H4A) or involved in the regulation of the osmotic pressure of blood, such as albumin. We 

will not consider these proteins further. The up-regulation of the myelin basic protein (MBP) and 

the glial fibrillary acidic protein (GFAP) observed in PBZ may be related to the fact that this zone 

contain more white matter than EB. . Note, however, that two of the up-regulated proteins, the 

crystallin B -chain (CRYAB) and the histone H3F3A have known oncogenic roles.  

The histone H3F3A was not considered to be an oncogene until recently when two publications 

reported that it is a specific and reproducible marker of pontine GB [16, 17]. These articles 

document two mutations, K27M and G64V, in a large cohort of children with pediatric GB. They 

also report that the K27M mutation is preferentially associated with cases with older onset, during 
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teenage, and a hemispheric localization [16]. Therefore, the histone H3F3A up-regulation in GB-

PBZ/EB we observed is of interest. Possibly, this up-regulation could be the result of one of these 

mutations. Unfortunately, the tryptic peptides which would be mutated were not detected in our 

experiments. 

 
Figure 2: Interaction network representation of the differentially expressed proteins using the 

AMEN software 

 

CRYAB is the major protein of the eye lens and also a chaperone belonging to the small heat shock 

protein family. In the CNS, CRYAB has a protective role in autoimmune demyelination [18]. 

CRYAB has been found in various types of solid tumor as a novel protein and may serve as a 

prognostic marker [19, 20]. CRYAB is also modulated by hypoxia [21, 22] and regulates tumor 

angiogenesis [23]. 
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Our analysis of the literature for the 29 proteins up-regulted in EB versus PBZ indicated that only a 

few have a role in the pathogenesis of some forms of epilepsy: solute carrier family 25 member 6 

(SCL25A6), Ras-related C3 botulinum toxin substrate 3 (Rac3), TUBA1A, spectrin alpha chain 

(SPTAN1) and GAPDH. 

Surprisingly, we observed that several proteins over-expressed in EB have been implicated in the 

oncogenesis and in the pathophysological mechanisms of brain tumors; these proteins included 14-

3-3 proteins β and γ, the ATPase Na+/K+ transporting alpha-1 and alpha-2 polypeptides (ATP1A1 

and ATP1A2), GAPDH, the heat shock 70 kDa protein 8 (HSPA8), phosphatidylethanolamine 

binding protein 1 (PEBP1/RKIP) and the tubulin subtypes identified (TUBA1A, TUBA1B, 

TUBA4A, TUBAL3, TUBB, TUBB2A, TUBB3 and TUBB4). 

These various findings demonstrate that the proteomes of PBZ and EB differ, but that EB has a 

more “tumoral” protein expression pattern, whereas PBZ seemed to have a more conventional 

proteomic profile. The up-regulation of oncogenic proteins such as Fos and Jun has already been 

observed in the dendate gyrus of animal models of epilepsy [24, 25]. Therefore, in our opinion, 

PBZ appears to be a more suitable control tissue than EB for proteomic studies of GB. However, 

considering PBZ as a “normal” tissue is likely to be erroneous. GB generally recurs at the resection 

margin, strongly suggesting that the PBZ is not “normal” [3-5]. Furthermore, we have isolated a 

new cell population from PBZ; these cells, named GB-associated stromal cells (GASCs), have 

properties similar to those of cancer-associated fibroblasts (CAFs). Like CAFs, GASCs express 

mesenchymal markers and have tumor-promoting effects [26]. 

Post-mortem brain tissue obtained from autopsy is a potential alternative source of brain control 

samples. However, Skold and collaborators [27] showed that several highly abundant proteins are 

enzymatically degraded in the brain within minute of death, such that the proteome rapidly differs 

from that normally present in vivo. 
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Accessiona Protein Nameb # ratioc
geometric 

meand CVe

ratio > 1.41 

or < 0,71 / # 

patientf

% ratio 

quantified 

with 1 

peptideg

Up-regulated proteins

CRYAB_HUMAN Alpha-crystallin B chain OS=Homo sapiens GN=CRYAB PE=1 SV=2 4 2,45 0,34 4/6 50%

H2A1C_HUMAN Histone H2A type 1-C OS=Homo sapiens GN=HIST1H2AC PE=1 SV=3 4 2,43 0,35 3/6 50%

H33_HUMAN Histone H3.3 OS=Homo sapiens GN=H3F3A PE=1 SV=2 6 2,13 1,13 4/6 0%

H4_HUMAN Histone H4 OS=Homo sapiens GN=HIST1H4A PE=1 SV=2 6 2,05 0,81 4/6 0%

ALBU_HUMAN Serum albumin precursor - Homo sapiens (Human) 6 2,04 1,01 4/6 0%

GFAP_HUMAN Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 6 1,70 0,87 4/6 0%

MBP_HUMAN Myelin basic protein OS=Homo sapiens GN=MBP PE=1 SV=3 6 1,27 0,61 3/6 0%

Down-regulated proteins

PRDX2_HUMAN Peroxiredoxin-2 OS=Homo sapiens GN=PRDX2 PE=1 SV=5 6 0,81 0,56 3/6 0%

ENOA_HUMAN Alpha-enolase - Homo sapiens (Human) 6 0,71 0,41 3/6 0%

CLH1_HUMAN Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 6 0,66 0,26 3/6 33%

DYN1_HUMAN Dynamin-1 OS=Homo sapiens GN=DNM1 PE=1 SV=2 4 0,66 0,43 3/6 0%

1433B_HUMAN 14-3-3 protein beta/alpha OS=Homo sapiens GN=YWHAB PE=1 SV=3 4 0,58 0,50 3/6 0%

1433G_HUMAN 14-3-3 protein gamma OS=Homo sapiens GN=YWHAG PE=1 SV=2 6 0,58 0,37 4/6 0%

TBA4A_HUMAN Tubulin alpha-4A chain OS=Homo sapiens GN=TUBA4A PE=1 SV=1 6 0,57 0,57 4/6 0%

TBB3_HUMAN Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 6 0,56 0,40 5/6 0%

PEBP1_HUMAN Phosphatidylethanolamine-binding protein 1 - Homo sapiens (Human) 4 0,56 0,24 3/6 50%

TBB4_HUMAN Tubulin beta-4 chain OS=Homo sapiens GN=TUBB4 PE=1 SV=2 6 0,56 0,36 5/6 0%

ADT3_HUMAN ADP/ATP translocase 3 OS=Homo sapiens GN=SLC25A6 PE=1 SV=4 4 0,55 0,35 3/6 50%

RAC3_HUMAN Ras-related C3 botulinum toxin substrate 3 OS=Homo sapiens GN=RAC3 PE=1 SV=1 4 0,54 0,42 3/6 50%

TBB5_HUMAN Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2 4 0,54 0,39 3/6 0%

TBA1A_HUMAN Tubulin alpha-1A chain OS=Homo sapiens GN=TUBA1A PE=1 SV=1 6 0,53 0,54 5/6 0%

TBA1B_HUMAN Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 6 0,53 0,54 5/6 0%

TBB2A_HUMAN Tubulin beta-2A chain OS=Homo sapiens GN=TUBB2A PE=1 SV=1 6 0,51 0,39 5/6 0%

GBB2_HUMAN Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 OS=Homo sapiens GN=GNB2 PE=1 SV=3 4 0,50 0,39 4/6 50%

AT1A3_HUMAN Sodium/potassium-transporting ATPase subunit alpha-3 OS=Homo sapiens GN=ATP1A3 PE=1 SV=3 6 0,50 0,27 6/6 0%

TBAL3_HUMAN Tubulin alpha chain-like 3 OS=Homo sapiens GN=TUBAL3 PE=1 SV=2 4 0,48 0,29 4/6 50%

G3P_HUMAN Glyceraldehyde-3-phosphate dehydrogenase - Homo sapiens (Human) 4 0,48 0,42 4/6 0%

AT1A2_HUMAN Sodium/potassium-transporting ATPase subunit alpha-2 OS=Homo sapiens GN=ATP1A2 PE=1 SV=1 4 0,47 0,32 4/6 50%

ATPA_HUMAN ATP synthase subunit alpha, mitochondrial precursor - Homo sapiens (Human) 6 0,46 0,39 5/6 33%

HSP7C_HUMAN Heat shock cognate 71 kDa protein OS=Homo sapiens GN=HSPA8 PE=1 SV=1 4 0,46 0,29 4/6 0%

SPTA2_HUMAN Spectrin alpha chain, brain - Homo sapiens (Human) 4 0,45 0,24 4/6 0%

AT1A1_HUMAN Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 SV=1 6 0,44 0,31 6/6 0%

GBB1_HUMAN Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 OS=Homo sapiens GN=GNB1 PE=1 SV=3 6 0,43 0,41 6/6 0%

KCRB_HUMAN Creatine kinase B-type OS=Homo sapiens GN=CKB PE=1 SV=1 4 0,42 0,24 4/6 0%

AT1B1_HUMAN Sodium/potassium-transporting ATPase subunit beta-1 OS=Homo sapiens GN=ATP1B1 PE=1 SV=1 4 0,30 0,42 4/6 0%

PBZ/EB
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Table 4: Selection of proteins differentially expressed between PBZ and EB samples. 
a
 Swiss-Prot accession number, 

b
 Protein name, 

c
 Number of observed ratios, 

d
 Geometric mean of the observed ratios, 

e
 Coefficient of variation of the observed ratios, 

f
 Number of 

patient ratio > 1.41 or < 0,71  compared to the total number of analyzed patient, 
g
 Percentage of ratio quantified with more than one peptide
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Conclusion 

The PBZ and EB have each a specific protein expression pattern. This has consequences for the 

interpretation of proteomic data obtained using these types of tissues as control samples. In our 

opinion, PBZ may be more suitable control tissue for differential proteomic analysis. However, this 

tissue should not be considered to be “normal” tissue and other alternatives should be sought. 
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