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Turning Tangent Empirical Mode Decomposition: a
framework for mono- and multivariate signals

Julien Fleureau, Jean-Claude Nunes, Amar Kachenoura, Laurent ANderaber, IEEE
and Lotfi SenhadjiSenior Member, IEEE

2) Computation of the mean envelopé (d,, x).
3) Extraction of the detaill,, x+1 = dp. 1 — M(dn.1)-

Abstract—A novel Empirical Mode Decomposition (EMD) al- 4) Incr.ementatlon of: and return to step if d,, ;1 is not
gorithm, called 2T-EMD, for both mono- and multivariate signals designated as an IMF else stop of the procedure.
is proposed in this paper. It differs from the other approaches As proposed by Huang [1], the mean envelop#d,, x) is
by its computational lightness and its algorithmic simplicity. The generally given by the half sum of the upper and the lower

method is essentially based on a redefinition of the signal mean : . : .
envelope, computed thanks to new characteristic points, which envelopes, which are obtained by interpolation between the

offers the possibility to decompose multivariate signals without l0cal m_axima points and the local minima points @&f x,

any projection. The scope of application of the novel algorithm respectively.

is specified, and a comparison of the 2T-EMD technique with  Simplicity and efficiency of the original EMD, named

classical methods is performed on various simulated mono- and Hyang hereafter, [1] is seducing but, even if we ignore

multivariate signals. The monovariate behaviour of the proposed o heoretical lacks of the classical EMD algorithm, one

method on noisy signals is then validated by decomposing a. S L . . .
important limitation lies in its strictly monovariate definition.

fractional Gaussian noise and an application to real life EEG ¢ ) ¢
data is finally presented. Indeed, even if the major part of the algorithm seems to be

Index Terms—Mono- and Multivariate Empirical Mode De- quite general, extension to multivariate signals defined from

A L o
composition, Intrinsic Mode functions, Analysis of non-linear and R to R” with D > 1 is difficult due to the definition of
non-stationary signals, Hurst exponent estimation, Extrema and the mean operataM. Some recent work tried to overcome

barycenters of oscillation, Filter bank structure, EEG denoising, this limitation. The bivariate approaches developed in [7],

Time varying representation. [8] are extensions of Huang’s solution to specifically handle
complex-valued signals whereas the algorithm proposed in [9]
. INTRODUCTION makes use of quaternion to perform trivariate decompositions.

Regarding the geometrical algorithms proposed in [10], they
low us to process bivariate signals. Indeed in [10], Rilling’s
evolution [1]. The EMD can be considered as an emergi O”‘h”.‘ corresponding to thg second scheme (gallgd Rilling2

ethod in the sequel) especially computes a bivariate mean

technique in signal processing with a very important topic | b ecting the sianal diff i | |
research and development in various fields such as biomedftal®,OP€ bY Projecting the signai on dierent angular planes
nd by performing a monovariate EMD of each signal pro-

signal analysis [2], Hurst exponent estimation [3], speech pl% )
cessing [4], texture analysis [5], etc. It decomposes adaptivéer t"i.n' Ve;erﬁce?tIy, Rehmgn et”a(lj. |[:gl 1r]] proppsiﬁ a genelr—
a given signal,s, into a sum of N AM-FM components, afization ot RIling's approach, called Renman in the sequel,

d,, (referred to as the Intrinsic Mode Functions, IMFs), pIuE) any _muItivar_iate s_ignal: the_ mean envelope is obtained by
a residueay. An IMF is defined [1] as a locally centered@Veraging multiple signal projections on a regularly sampled

function where the number of extrema and the number By_lgﬁ_rsphere. . ¢ . it tive to Reh ,
zero-crossings must differ at most by one. More precisela/r l_?hpaplelr almds "f[‘ pr_;)posmg ana e;rna I\Ilt'e 0 teErl?/l?Dm
for a given signals = ag, the EMD sequentially computes gorithm [11] and at unifying mono- and multivariate

. to process signals with values iR”? (D > 1) whatever
the N IMFs d,,, and N ding trends,,, h that ) . :
© S an corresponding renda,, stc a e dimensionD is. The proposed method, called 2T-EMD

. : . h
an—1=ay+d,. The EMD key issue is then the extraction of th . X . . )
]\7 IMFs ?in Tn practice, such a signal is obtained by stoppin urning Tan-gent El\./ID),.d.|ffers l_)y Its computatlona! lightness
a so-calledsifting processusing a Cauchy-like criterion [6]. nd its alg_or_lt_hm|c S|mpl|_C|ty. This method is essentially based
If & denotes the number of iteration in the sifting process, t ) §nae\r;(iﬁg?gggrg;:e;ﬂgabvmhiecinaergvaells(z)pgei?nrgg;ted 1thanks
so-called sifting process can be summarized as follows: 1c P ! X >drfoP 1.
itializat ith The scope of application of the novel algorithm is discussed,

1) Initialization with d,.0 = an-1. and a comparison of the 2T-EMD technique with classical
. This work was supported by the National Research Agengy (ANR) @ethOds '_S performed on Var'o_us S'mU|at_e'd mono- and mul-
France under Grant myv-EMD BLAN07-0314-02. tivariate signals. The monovariate behavior of the proposed

J. Fleureau, J.-C. Nunes, A. Kachenoura, L. Albera and L. Senhadiji are Wifathod on noisy signals is then validated by decomposing
the INSERM, U642, Rennes F-35000, France, and the Université de Renne,

1, .. . . LT
LTSI, Rennes F-35000, France (e-mail: firstname.secondname@univ-renmf@.ct'orl1al Gaussgn nQISQS [3] and an appllcatlon to surface
fr). EEG signal denoising is finally presented.

Mpirical Mode Decomposition (EMD) was originally
introduced in the late 1990’s to study water surface wa



Il. THE 2T-EMD APPROACH FOR BOTH MONG AND frequency. Moreover, neither inflexion points nor curvature
MULTIVARIATE SIGNALS extrema are defined for multivariate signals, say signals from
In order to get a unified framework for mono- and multiR to RP with D > 1, hence our preference goes to oscillation
variate EMD [12], the signal mean trend and consequently tR&trema.
mean operato/M have to be redefined. In some words, the So an elementary oscillation of a given functienwith
signal mean trend is redefined as the signal which interpolawedues inR” (D >1) is considered in this paper as a piece of
the barycenters of particular oscillations, calletmentary s defined between two consecutive oscillation extrema.of
oscillationshereafter. Let P, = [t1, s(t1)]" and P, = [t2, s(t2)]" be two consecutive
oscillation extrema. The barycentdt,p,_,p,, of the associated

A. Elementary oscillations and barycenters elementary oscillation is given by:

An elementary oscillation of a given functienwith values .
in RP (D >1) can be viewed as a piece ofdefined between o i+t 1 /t2 (1) dt ©6)
two consecutive local extrema af But, for functions with by = 2 Tty —1 .
values in aD-dimensional 0 > 1) space, the notion of
extremum has to be defined.

Let s be a classC! function, say differentiable with a
continuous first derivative. The function tangent vectorsto
denoted byT, is defined fromR to RP+! by:

ty

The mean trendM(s) could then be redefined as the func-
tion which interpolates between oscillation barycenters.of

Nevertheless, a straightforward interpolation of all oscillation
barycenters of appears in practice to significantly emphasize

) ds v the phenomena of over-decomposition of AM-FM signals. A
Ts:t—[1,—(t)] (1) ) , ;
dt robust computation of the mean trend is preferably obtained
Now, let o, be the function given by: for 2T-EMD by averaging two envelopes: a first envelope
) interpolates the even indexed barycenters which include signal
as :t— Hm (T (t — h), Ts(t + h)) (2)  porders, and a second envelope interpolates the odd indexed

barycenters which also include signal borders. This operation
lightly increases the algorithm computational complexity (see
subsection II-D for more details) but makes its behavior
considerably more robust.

Indeed, this robustness may be roughly justified in a
monodimensional context. The spline interpolation typically
behaves as a linear filter (up to some border effects) whose
frequency responsé(f), for unit spaced knots, slowly de-
creases in the interval € [0, 1] and approximately vanishes

Vt € R, as(t) = (lim Ts(t — h), lim Ts(t +h)) (3) when f > 1 [15]. Let's consider now a narrowband AM-
h—0 h—0 . . . .
_ o FM signal whose carrier frequency j&. If the modulation
Next, sinces is in C', we get: is not too strong, the typical spacing between oscillation
d barycenters for such a signal is/(2f.). In the case of a
2 S 2 . . . N .
VtER, as(t) =[ Ts(t) *= 1+ || E(t) [ (4 direct interpolation between oscillation barycenters, the spline
: _ interpolation could then have a non-negligible content for
ngrf” -l agus"’e'y represents the E_ucl|.dean horm of bot € [0,2f.], which includesf. and therefore allows the
]ER . and R™. 1|'husi, We_defme fau]foscntl_atmn Extremlirmft interpolation to oscillate at the same frequency as the AM-FM
ulnc lon s as ad oca 1mnu|’nurn_ 0 un$ 'ﬁmfs'” rom E‘ ): . signal. On the other hand, the use of two interleaved spline
also corresponds to a local minimum of the foflowing unCt'orlnterpolations leads to a frequency content typically limited
_ _, ds 9 to f < f., which approximately guarantees that the resulting
Bo it — Bs(t) =l E(t) | ®) mean trend oscillates more slowly than the initial AM-FM

Clearly, the definition of oscillation extremum does not deperfgnal- Therefore, the use of two envelopes prevents from
on the output space dimensidd, which makes it suitable in Over-decomposition phenomena and also has the advantage to
multivariate EMD contexts. Fob = 1, the reader can checkPring the frequency resolution of the proposed method on a par
that the oscillation extrema computed from functign (5) With the traditional EMD approaches (for signals with simple
include the classical scalar extrema used in Huang's solutiggveforms). It finally approximately guarantees that the local
[1], but also the saddle points (stationary points which are nfsgdquency of successive IMFs decreases. Those remarks seem
local extrema) ofs and the inflexion points corresponding td® be also empirically verified (see section 2) in a multivariate
positive and negative maxima of the derivativesoft is note- COntext.

worthy that oscillation extrema are different of inflexion [13] Consequently, the resulting mean operafot enjoys a

and curvature [14] extrema. In addition, curvature extrema mégquency property similar to that of the classical one but can
require the computation of the second and third derivatives applied to both mono- and multivariate signals without any
of s, respectively, which may be more sensitive to samplirdjmension restriction.

For everyt in R, the valuea,(t) can be interpreted as the
Euclidean inner product dRP”+!, denoted by(-, - ), between
the tangents t& just before and after pointt In fact, a is
maximum at point when both vectord’s (¢t —h) andTs(t+h)
are collinear and it vanishes at pointvhen both vectors are
orthogonal. In other words, functiam, is an indicator of the
local oscillation ofs at every point ofR. Moreover, due to
the continuity of the inner product, we have:



B. Implementation of the 2T-EMD technique Method D Numerical complexityF(dy, ;+1)

Several important points have to be considered to achieve a Huang [11 1 18L +15Myu(n, k) o
robust and efficient implementation of the 2T-EMD algorithm, ~ Riling2 [10] =2 L{LP +2) +1530, 2, Mr(n, k,p)
First, the derivative necessary to the computation\fs) is ?f_ré”;ﬂag (11 [NZ* 3?1(925 Ig%;l(i%%:iﬁifézg’p )
calculated by means of a centered finite difference scheme-
However, in practice the resulting numerical derivative may TABLE |
have more local minima than the theoretical one. Minima a@MPUTATIONAL COMPLEXITY FOR ONE SIFTING ITERATION OF2T-EMD
. .. —15 : AND THREE CLASSICAL METHODS
thus detected using anprecision equal td0~'° in our code.
More precisely, theé-th time indext; will be a minimum of 3,
if Bs(t;) +e<ps(ti—1) and fs(t;) + e < Bs(ti+1). Therefore,
this £ precision limits the influence of numerical artifacts foglassical methods. For a given EMD algorithm, I§t K,,,
the extrema detection but one should be careful and adjust the, be the number of extracted IMFs, the number of sifting
¢ value in the case of very high sampling frequency to avoigerations performed to extract theth IMF and then-th IMF
the miss of legitimate extrema. The integral involved in theomputed at theé-th iteration of the sifting process, respec-
computation of barycenters is then calculated using a simpigely. In addition, My (n, k), Mg (n, k,p), Mgy (n, k,p), and
rectangle method. Second, the interpolation is performed usihg(d,, ;) will denote the number of extrema detected in
cubic splines with classical boundary conditions as for thg, , by Huang [1], the number of extrema detected in the
classical EMD, where the signal borders are directly addedah projection ofd,, , by Rilling2 [10] when P projection
the list of estimated oscillation barycenters. In other wordglanes are used, the number of extrema detected irpthe
there is no complex management of boundary conditioni. projection ofd,, , by Rehman [11] whenP projection
Third, the sifting process is stopped using a modified Cauchyirections are used, and the number of barycenters detected
like criterion. More especially, the following normalized Euin d,, , by 2T-EMD. Then the numbeF'(d,, ;+1) of multi-
clidean norm||d, r+1(t) — dn.x(t)||/||dn,x(t)|| is computed plications and divisions (usually called number of flops) of
at each point. If a given percentage of the latter norms, fobne sifting iteration necessary to obtaify 1 from d,, x
instance90%, is below a certain threshold fixed =2 in is given in table | for the four methods. These results were
our code, then the sifting process is stopped. The normalizsistained by considering a standard tridiagonal implementation
Euclidean norm could be obviously not defineddqr, () = 0 of the spline interpolation and a signal froR to R” of
but the set of points where this zero value is reached is likely samples. The total computational coét(s), of the four
to have a zero Lebesgue measure which justifies in practig@thods can be obtained straightforwardly by summing the
the use of such a criterion. elementary complexitied’(d,, ), given in table | over both
the number of iterations and the number of IMFs.

C. Scope of application
P PP IIl. SIMULATION RESULTS

The aim of this section is to analyze the performance of 2T-
MD on several classes of simulated mono- and multivariate

Let's now specify in more details the set of signals that 2T-
EMD can decompose successfully. As previously mentioneéi
_the con5|dered_ signals h_ave to be n cléSs or at least, .signals satisfying the conditions given in subsection II-C. First
in the case of irregular signals (especially real and/or nmﬁ;g stability and the convergence speed of 2T-EMD sifting
signals), an appropriate numerical estimation of the derivati ocess are studied and compared with three classical methods:
has then to be proposed (see section 1I-B). Note that so '?—|uang [1] for monovariate signalsX = 1), i) Rilling2 '
existing methods based on inflexion [13] or curvature [1 0] using P = 8 projection planes for b’ivariate signals
extrema require more regularity. In addition, {ifl,, }1<n<n

represents the theoretical set of IMFs composing the si nal(f) = 2) and i) Rehman [L1] for trivariate and quadrivariate
P o . . mposing 9 sgnals usingP = 2D projection directions on the associated
analyze, it is obvious that any,, with a piecewise constant

. . - : hypersphere. From an implementation point of view, the sifting
funcuoq @‘?" (5) is pot .VIS'.bIe by 2T_EMD. (assumm_g that rocess termination criterion and the border management of
the definition of derivative is extended to irregular signal

: : . . Rose classical techniques are identical to the ones used in
mentioned before). Indeed a piecewise constant function g

local mini Th ional in clagd havi -EMD (see subsection II-B for more details). Secondly,
no c-local Minimum. - Thus, any signal in cla aving 5 penchmark involving those classical EMD algorithms is

gne IMF Vlv'th da p|eceW|ze t::onzs_f_aEtM(éenl\:atlve. r:orm cannBtesented to evaluate and compare the 2T-EMD performance
€ properly decomposed by < 1- - It mainly CONCeMNy o context of a full decomposition. Finally, an example

monovan:_;\te signals \.Nlth piecewise linear IMFs, and blvar|ag,=f quadrivariate decomposition illustrates the ability of 2T-
signals with purely circular rotating IMFs. Nevertheless, a MD to work for a signal dimension greater than First

glvarlate rotgtll)ng Z?QEGIDW'th a sufficient eccentricity can b%t’s introduce the signal selection and the performance criteria
ecomposed by <1- ' used in this section.

D. Note on computational complexity A. Signals selection

The computational complexity of the 2T-EMD algorithm The test signals are mono-, bi-, tri- and quadrivariate signals
can be precisely evaluated and compared with the onevath various AM-FM behaviors, defined on the time interval



T = [-1,2] and sampled af, = 10 kHz. The fourth signalsy, = d§24) + d§24) + d§24) is given by:
Monovariate signals. Four monovariate signals of the form d§24) (t) = [0.3cos(4007t),0.8sin(5007t)]"
S1=y, d%h) are used in this st;;d)y wh(ezgé}” is then-th d§24) (t) = [4cos(1007t), 7sin(1007t)]"

- : _ 41 11) . : . ’
IMF of s1;. The first signals;; = dy ' +d;  is defined by: d§24) (£) = [5exp(0.23 — 0.46) cos(m(2.24¢ + 4.47)2),
di™ (t) = 2sin(207t + 1.5) dS"™ (1) = sin(107t) 2exp(0.23t — 0.46) sin(r(2.24¢ + 4.47))]"

In fact, signalsso;, so3 and sy are globally rotating signals
with various AM and FM modulations. Regarding the con-
d§12) (t) = 0.3exp(0.23(1+ t))sin(1007t) ditions addressed in _Sl_Jbsection II-C the latter signals have a
large enough eccentricity to be processe®ByEMD. As far

as signakss is concerned, it is the result of planar components
after a rotation around the temporal axis.

The second signal;s = d§12> + délz) is given by:

d$' () = exp(0.23(1 + 1)) sin(50mt)

The third signals;s = d\"® + d{' + a1 (a(13) represents
a residue) is defined by: Trivariate signal. One trivariate signaks; = d§3l> + dégl) +
d§31) is used for comparison and is defined by:

d™ () = sin(200m(1+1)2)/2 -
d§13) (1) = 2(1+8)sin(1007t +1.5) a3 () = 52 di(t) = [sin(5407t), 2sin(5607t), 1.5 sin(5407t)]
d$V () = [exp (0.14(1 + 1)) cos(2007t), 2 cos(200mt),
- (14) | (14) | (14) 2
Evenfcually, thg fogrth signadiy = dy 7 +dy 7 +dy 7 with 2sin(2007t + 1.2)] 7
a residues!® is given by: (31) )
dy(t) = [3exp(0.16¢ + 1.07) cos(m(1.83t + 7.30)?),
d"™ ) = 2sin(250mt)  dS"V(t) = 3cos(n (1.7t + 7.3)%) 2 cos(m(1.83t + 7.30)2),
d{"(t) = exp(0.23(1 + 1)) cos(m(2.58t + 21.95)%) 4exp (0.16¢ + 1.07) sin(r(1.83 + 7.30)%)] T
a(t) = 3t

More particularly, signals;; is the sum of two sinusoidal Wh?red?l)' ds*) and " denote the three AM-FM IMFs
components. Next;» is the sum of two sinusoidal component:@‘c signal sz;.

modulated in _amplitude (from to 2 on _intervaI.T) with Quadrivariate signal. The quadrivariate signal;, — d§41)+
extrema of o_scnlatlon that QO_ not match with classical extremag41) " d§41) used to show the efficiency of the approach in
As far assi3 is concerned, it is the sum of one FM componerf,]tfgher dimensions is given by:

(from 200 to 400 Hz on interval [0,1]), one linear AM '

component and a quadratic residue. Eventuallyis the sum dg‘“)(t) = [3sin(5007t + 2), 3.5sin(5007t), 2 cos(5007t),

of one sinusoidal component, one FM component (fidhto exp(0.23t — 0.46) sin(5007t)] "

20 Hz on intervalT’), one AM (from 1 to 2 on intervall) - 4,

FM (from 50 to 70 Hz on intervalT’) component and a linear %2 (t) = [0.5cos(120mt + 1.2),

residue. 5exp (0.23(1 + t)) cos(m(3.16t + 25.3)?),

. 2
Bivariate signals. Four bivariate signals of the formy; = 2exp(0.23(1 + 1)) sin((3.16¢ + 25.3)%),

5= d¢" are used in this analysis whei&" is then-th IMF 0.5sin(130m¢ +1.2)]"
of s;. The first signalsy; = d\*") + d$*") is given by: d'M (1) = [7cos(64nt), 4sin(607t), 2 cos(500mt),
(21) , i 6 sin(647t + 1.5)] "
dy"’(t) = [0.9cos(2007t), 1.3 sin(2007t)] D) 4 (@)
déﬂ)(t) —  [1.4cos(40mt), 1.7sin(4074)]" whered; "/, d; ’ andds; ’ denote the three AM-FM IMFs

of signal s4;.
The second signalss = d§22) + dém) is defined by:
(22) . B. Performance criteria
di(t) = lexp(t) cos(m/4) sm.(807rt + 1.'5)’ The different EMD algorithms analyzed in this section have
exp(t)sin(m/4) sin(807wt + 1.5)]"  peen evaluated and compared in terms of performance and
d?(t) = [cos(m/4)sin(2m(2.5(1 +1))?), numerical complexity. Giverd a subinterval ofl’ = [—1,2],
sin(m/4) sin(21(2.5(1 + ))2)]" let's define the following quadratic errors:

dn (t) — dy (8)] |24t N

The third signals,s = d\** + d*®) is given by: er(dy) = Jplln(® 5 Il cer(s) = er(d) (7)
Ji lldn(2)]|2dt =

d®)(t) = [exp(0.23t — 0.46)(0.3 cos(m(2.58¢ + 14.2)2),

i oot Wherecin denotes the estimate of theth IMF d,, of signals.
0.9sin(m(2.58¢ + 14.2)7))] The latter errors allow us to evaluate the ability of the EMD
d§23) (t) = [0.4sin(207t), 0.7 cos(24mt)]" algorithms to accurately extract one or all expected IMFs. By



consideringl = [0, 1] where border effects should be low, bott ; 1P Sifting Results (2T-EMD) 1D Sifting Results (Huang)
errors allow us to compute a performance independent of a ,
border effects. On the contrary, with= [—1, 0] U [1, 2], both o
errors permit to evaluate the ability of a given algorithm tc:
minimize border effects (all algorithms have the same bord
management in our study). Indeed, such effects are often ¢/ «
ical especially in real life data and their minimization shoul
facilitate the practical exploitation of the IMFs. Eventually, the y
numerical complexity of an EMD method is evaluated usin O e o e 6080 100 UMy of St ot

. i X X Number of Sifting Iterations Number of Sifting Ilterations
the Cl’lterIOI’]C(s) presented in section |I-D. 2D Sifting Results (2T-EMD) , 2D Sifting Results (Rilling2)

(1l))
(2i)
1)

—

4@

[

e[o. 1 (d
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C. Sifting process analysis o

In this first experiment, 2T-EMD’s sifting process is studie :
and compared to that of Huang, Rilling2 and Rehman in tern
of convergence. To do so, the sifting process is launcht o
for 100 iterations to extract the first IMF of all monovariate -
and multivariate signals presented in section Ill-A. Figure

(1'))

N
o 10

3@

107"

o
(Li)
o, @

displays Cl‘itel’iOI’E[O_rl] (dl) at the output of 2T-EMD, Huang, ’ 0Numlztxoer of4SOiftingeTteratiagns * ) 0Numlzzuoer ofgiftings?terat?gns *
Rilling2 and Rehman as a function of the number of iteratior . "

of theg sifting process. On each curve, a circular-shaped marl m§?/4D Siting Restlts (2T7EVD) 1 D140 Siting Results (Refmar)
indicates the iteration for which the Cauchy-like sifting stoj m,,} R S ol s s
criterion would have in practice interrupted the sifting proces | |* " _ . “

First, one can observe that the sifting process of 2T-EM S~ : SRR

converges for almost all monovariate and bivariate test sign: vg IR N e vg 0

with precision and speed very similar to those obtained t ° e Lrjl

the considered classical algorithms. The proposed algoritr O N
even succeeds in extracting the first component of sign D a e e s
s12 Whereas the standard Huang algorithm failed in such Number of Sifting Iterations Number of Sifting Iterations

decomposition. Except for the multivariate signals and Fig 1. 21-EMD quadratic error on first IMF as a function of thenber of
s41, this simulation tends to show the stability of the proposeg@rations during the sifting process.

algorithm during a sifting process. The sigrnal, with four

IMFs including especially two FM components seems to suffer

from over-decomposition. It is noteworthy that this sensitivit

is also observed in Rilling2 and may especially suggest th%?ndard extrema, is better decomposed by our approach.

the first componen'dg%) 's not considered as an IMF bysener;hsetg (E)r:rg(ra)t/t'e:herosclgrs]ilg bWItI:ugnflrS;[nf?flS; tl:ii\/ﬂar:zl\aﬂtg case
both algorithms. Regarding the signal, Rehman seems to P y g '

I . illing2 seems to offer a better performance on the nearly pure
be less sensitive to over-decomposition phenomenon than 5{11 g P yp

EMD. However, for all proposed signals, including signals rotating signalss; but 2T-EMD is more eff|C|en_t on signal
D o s92 made of rotated planar components. For signglsand
and s41, the sifting stop criterion prevents from any over-

o . s s41, the behaviors of 2T-EMD and Rehman are quasi-similar.
decomposition phenomenon by stopping the sifting proc % arding border effects on performance, 2T-EMD generall
at an appropriate optimal iteration. In addition, note that th 9 g P ' g y

) Lo . offers slightly more efficient results and seems to provide a
quadratic errorey, ;1(dy) at marker points is satisfactory for

. o . .~ more accurate management of border effects than reference
all studied signals (the maximum error encountered in this

. S . approaches. When focusing on the computational complexity,
simulation is equal td).02) and is, globally, comparable tof.pp g P . plexity
. ) : igure 2 clearly shows that fab = 1 the computational com-
the one obtained by the classical algorithms.

plexities of 2T-EMD and Huang are quasi-equivalent. On the
contrary, forD = 2, 2T-EMD generally requires less sifting
D. Performance study of the full process iterations and less computational operations than Rilling2. For
This subsection aims at comparing the full process of 21 > 2, the results clearly show the computational efficiency
EMD for D € {1,2,3,4} with Huang, Rilling2 and Rehman of 2T-EMD, which is about three times cheaper than Rehman.
using criteriaejo 1j(s) ande;_y gup,2(s) and C(s). Results From a more illustrative point of view, figure 3 (a) represents
are depicted in figure 2: the left, middle and right columns detlle quadrivariate signat,; (dark line) and the associated
with the monovariate, bivariate and multivariate € {3,4}) local mean (gray line) on the restricted.50;0.52] time
cases, respectively. It appears that for no border effects batterval projected on the three framé®/, X,Y), (X,Y, 2)
performance and computational complexity of 2T-EMD arend(Y, Z, W). The local mean seems to nicely go through the
globally equivalent to those of the reference methods. Moeeiginal signal on the three frames. Figure 3 (b) presents the
finely and as specified previously, in the monovariate casxpected and computed decompositions of sigpaprojected
signal s1o with extrema of oscillation which differ from the on the four main axis (from left to right), namely W, X, Y
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crossings: the (base 2) logarithm of the average number of zero-crossings
is plotted as a function of the IMF number, for 3 different values of the
Hurst exponent (H: 0.2 (circles), 0.5 (crosses), and 0.8 (stars)). At the right,
IMF variance and estimation of the Hurst exponent H: the IMF log-variance
slope plotted as a function of the Hurst exponent H and the associated linear
regression ovef.5 < H < 0.9.

each value offf, 1000 independent sample paths of fGn are
generated via the algorithm described in [17] and decomposed
using 2T-EMD on a limited number of IMFs (it should

be mentioned that the sifting process is stopped wWiEhR

of values ||d, k+1(t) — dnix(t)||/||dn.k(t)]| are lower than
1072, see section II-B). For each value &, the number

of zero-crossingsy([n] in the n-th mode { < n < 7)is
firstly evaluated. A linear regression of the mean log number

u HI HI

S31 S41

b

of zero-crossingsog(zx[n]) on the mode number is then
computed. The good fithess of such a regression, represented
in the left column of figure 4 for each value @éf, strongly
suggests that the number of zero-crossing$n|, which is

a rough indication of the mean frequency of each made

is a decreasing exponential function of the mode number,
i.e., zg[n] o< py" with py close to2 . These results are
very similar to those obtained in [3, figure 2] and suggest the
hierarchical structure of an equivalent filter bank as shown in
_ . [3] and [16] for the classical EMD. For all IMFd,, (with

and Z. The three IMFs and the corresponding residue g€ )" 5 self.similarity in this filter-bank could also be
displayed from the top to the bottom of the f|gure.. Note that ther checked showing that 2T-EMD approximately acts on
only a central zoom of the IMFs on the temporal axis has beg, 55 a dyadic filter bank of constant-Q bandpass filters
represented for the sake of clarity. A good behavior of thg, high values ofH (H > 0.5). Assuming this filter bank
algorithm can be observed and the low residue highlights tlgﬁ’ucture, and as shown in [3] for the classical EMD, it

efficiency of the proposed method. This result shows clealycomes possible to get access to the Hurst exponent via the
that, for signals,;, the sifting stop criterion prevents from anY,ariance progression across IMFs ty(d,,) (a=1)n i

. X Py
over-decomposition phenomenon. the specific choicec = 2H — 1. When plotted as a function of

In conclusion, "?‘” these_ results eﬂ)égbit the ab_ility O_f 2Tihe Hurst exponent/, the IMF log-variance slope is almost
EMD to process signals with values for any dimension linear whenH > 0.5, in accordance with the simplified model

D>1. They glso show the adyan'Fage of the use of OSCI||atI(1)erH) — 2log(p)(H — 1) as depicted in the right column of
barycenters in a general multivariate context.

figure 4. Those results consequently highlight the very similar
properties shared by 2T-EMD and Huang ([3, figure 4]), and
IV. DECOMPOSITION OF FRACTIONALGAUSSIAN NOISE may validate the use of the proposed algorithm on irregular
One important property, enjoyed by the classical Huanggnals.
algorithm, is the filter bank property observed when decom-
posing a fractional Gaussian noise (fGn). This section aims
at demonstrating how the 2T-EMD algorithm also enjoys this
filter bank property by reproducing simulations and results Surface ElectroEncephaloGraphy (EEG) is a popular neu-
already obtained in previous works with the standard Huang@imaging technique used for exploring human brain activity.
algorithm [16], [3]. Note that computing 2T-EMD on such aVhile this technique is simple and low cost, the obtained
noisy signal may be feasible using an adapted definition sifjnals suffer from noise and artifacts, such as broken wire
the derivative (see 1I-B). As in [3], extensive simulations areontacts, ocular movements (ElectroOculoGram, EOG), mus-
carried out on fGn’s, with Hurst coefficiedt varying from cular activity, etc. Thus, one of the challenging tasks in signal
0.1 to 0.9. The data length is typically set t612 and for processing is to detect and extract very weak non-stationary

[ 2T-EMD with 1=[0,1]

I 2T-EMD with 1=[-1,0] U[1,2]

Huang/Rilling2/Rehman
with I=[0,1]

Huang/Rilling2/Rehman
with I=[-1,0] U[1,2]

Fig. 2. Comparative study of 2T-EMD versus Huang (1D), Ryin(2D)
and Rehman (3D, 4D) reference methods.

I Huang/Rilling2/Rehman
[ 21-EMD

V. APPLICATION TO SURFACEEEGDENOISING
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Fig. 3. 2T-EMD quadrivariate decomposition of the sigaal: (a) original signal (dark) and its 2T-EMD local mean (gray), and (b) exact (dashed line) and
estimated (plain line) IMFs projected on the four main axis W, X, Y and Z.

brain source signals corrupted by noise and artifacts from EEEEG data and EOGLp and EOGRp in the case of EOG data
data. Such issues are of great interest when EEG features(§poé stands for projected). In order to identify the projected
used for diagnosis and assistance [18]. Some recent studMEs related to the EOG artifacts in the bivariate EEG
show that the use of classical EMD [1] in order to denoisgbservation [F7m,F8m], we firstly compute the Fourier trans-
EEG data [19], [20] and/or to detect some EEG patterfierm of all projected IMFs extracted from the two bivariate
[21], give interesting results. In this section, we propose tbservations ([F7m,F8m] and [EOGR,EOGL]) [19]. Then, for
remove EOG artifacts from contaminated EEG data by usiegch bivariate method and each brain hemisphere (F7p/EOGLp
the proposed 2T-EMD algorithm. Note that, the goal here @ the left side and F8p/EOGRp on the right side), i) one-
not to propose a new method in order to denoise the surfan@us-correlation distance is computed for between projected
EEG data, but to show the behavior of 2T-EMD, in comparisdiMFs in order to evaluate any spectral similarity between the
to that of the existing EMD method, in the case of redMFs issued from EEG signals [F7m,F8m] and EOG reference
world signals. The used EEG signals are issued from osignals [EOGR,EOGL], and ii) the distances are hierarchi-
polysomnographic database [22]. More precisely, EEG signaklly clustered using the single linkage algorithm [21]. It is
(figure 5, line 1) are acquired from two temporal electrodespteworthy that, the clustering procedure first treats the power
in front of the higher part of the ears, denoted by F7mpectrum vector of each projected IMF as a singleton cluster
and F8m (where "m” stands for modified, see [22] for morand then successively aggregates both most similar clusters,
details). Additionally, EOG reference recordings (figure 5, linentil all clusters merge into a single cluster that contains
6) are taken from two temporal sensors located near each #ye power spectrum vectors of all projected IMFs. For each
(EOGL and EOGR), slightly moved toward the median plamethod and for each projected plan, the set of IMFs for which
in order to simultaneously observe horizontal and vertical eylee distances (one-minus-correlation) belo® are considered
movements. as similar and originate from EOG artifacts. The sum of those
IMFs [F7p3R Snp F8P3T “mmn: F7PR g F8PRiNingo] are

Rilling2 and the bivariate 2T-EMD method are then appliethen compared in figure 5 to the EOG reference recordings
with a limited number of10 IMFs, for each bivariate ob- [EOGL, EOGR]. The channels of the EOG signal estimated
servation [F7m,F8m] and [EOGL,EOGR], respectively. Thby 2T-EMD (line3) and Rilling2 (line 5) are quasi-identical
obtained bivariate results are then projected on two main asisd they are strongly correlated to EOGL and EOGR (corre-
(left head side and right head side), namely F7p and F8p for
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Comparison between the bivariate 2T-EMD approach Ritithg2

in the context of EOG artifacts removing from EEG.

with classical EMD algorithms and demonstrate the interest of
2T-EMD in practical situations. Conditions that signals should
verify to be successfully decomposed by 2T-EMD have been
precisely enumerated in order to help the user. It would be
now more particularly interesting to evaluate the performance
of 2T-EMD in other real life contexts for which classical EMD
approaches have already demonstrated interesting properties
and to compare it with that of other techniques [18].
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