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Abstract  

Constitutive activation of Wnt/β-catenin signaling in cancer results from mutations in 

pathway components, which frequently coexist with autocrine Wnt signaling or epigenetic 

silencing of extracellular Wnt antagonists. Among the extracellular Wnt inhibitors, the 

secreted frizzled-related proteins (SFRPs) are decoy receptors that contain soluble Wnt-

binding frizzled domains. In addition to SFRPs, other endogenous molecules harboring 

frizzled motifs bind to and inhibit Wnt signaling. One of such molecules is V3Nter, a soluble 

SFRP-like frizzled polypeptide that binds to Wnt3a and inhibits Wnt signaling and expression 

of the β-catenin target genes cyclin D1 and c-myc. V3Nter is derived from the cell surface 

extracellular matrix component collagen XVIII. Here, we used HCT116 human colon cancer 

cells carrying the ΔS45 activating mutation in one of the alleles of β-catenin to show that 

V3Nter and SFRP-1 decrease baseline and Wnt3a-induced β-catenin stabilization. 

Consequently, V3Nter reduces the growth of human colorectal cancer xenografts by 

specifically controlling cell proliferation and cell cycle progression, without affecting 

angiogenesis or apoptosis, as shown by decreased [3H] thymidine (in vitro) or BrdU (in vivo) 

incorporation, clonogenesis assays, cell cycle analysis and magnetic resonance imaging in 

living mice. Additionally, V3Nter switches off the β-catenin target gene expression signature 

in vivo. Moreover, experiments with β-catenin allele-targeted cells showed that the ΔS45 β-

catenin allele hampers, but does not abrogate inhibition of Wnt signaling by SFRP-1 or by the 

SFRP-like frizzled domain. Finally, neither SFRP-1 nor V3Nter affect β-catenin signaling in 

SW480 cells carrying non functional APC. Thus, SFRP-1 and the SFRP-like molecule 

V3Nter can inhibit tumor growth of β-catenin-activated tumor cells in vivo.  

Key words: frizzled, collagen XVIII, Wnt, β-catenin, colorectal cancer, secreted frizzled 

related proteins, tumor growth kinetics, tumor necrosis.  
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Introduction 

 

The Wnt/β-catenin pathway is a major regulator of cell proliferation, migration, 

differentiation and metabolism, controlling tissue homeostasis and tumor progression 

(MacDonald et al., 2009). In the majority of colorectal cancers (CRC), the coexistence of 

several mechanisms such as genetic defects in pathway components, autocrine Wnt signaling 

and epigenetic silencing of extracellular Wnt antagonists results in activation of Wnt/β-

catenin signaling and provides a selective advantage to tumor cells (Polakis, 2007). Pathway 

activation involves interaction of Wnt ligands with cell surface Frizzled receptors and LRP5/6 

co-receptors. This disrupts the Adenomatous polyposis coli (APC)-axin complex, thus halting 

proteasomal degradation of β-catenin, which is stabilized and interacts with T-cell factor 

(TCF) transcription factors, displacing repressors and recruiting activators of target gene 

expression.  

The activity of the Wnt/β-catenin pathway can be antagonized by several families of 

secreted proteins. Interaction of Wnts ligands with the Frizzled receptors is enhanced by 

heparan sulfate glycosaminoglycans, controlling Wnt diffusion at the cell surface (Mikels and 

Nusse, 2006), or inhibited by several families of extracellular antagonists (Bovolenta et al., 

2008; Kawano and Kypta, 2003). Members of the Dickkopf (DKK) family antagonize 

canonical signaling by binding to LRP5/6, thus disrupting the Wnt-induced Frizzled-LRP5/6 

complex (MacDonald et al., 2009). Wnt inhibitory factor-1 (WIF-1) binds directly to Wnts, 

altering their ability to interact with the receptors. Members of the family of extracellular 

decoy receptors known as secreted frizzled-related proteins (SFRPs) possess a frizzled 

cysteine-rich domain (CRD) structurally similar to the extracellular Wnt-binding domain of 

the frizzled receptors. Frizzled CRDs contain 10 cysteines at conserved positions, which form 

a highly conserved 3D structure through a precise pattern of disulfide bridges. Frizzled CRDs 
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bind Wnts and form homodimers or heterodimers (Dann et al., 2001). Thus, SFRPs can 

modulate Wnt signaling by sequestering Wnts through the CRD or by acting as dominant-

negative inhibitors, forming inactive complexes with the frizzled receptors (Bovolenta et al., 

2008). In addition, engineered SFRP-like proteins such as the soluble CRD of the receptor 

Frizzled 8 potently inhibit autocrine Wnt signaling and tumor growth in mice carrying 

teratomas (DeAlmeida et al., 2007).  

It has been suggested that SFRPs may function as tumor suppressors in colorectal 

cancers because allelic loss or epigenetic inactivation of SFRP genes contributes to 

constitutive activation of the Wnt/β-catenin pathway (Caldwell et al., 2004; Suzuki et al., 

2004). In this context, we and others have shown that restoring expression of SFRP-1 or 

SFRP-5 inhibits Wnt/β-catenin stabilization and induces in vitro cell death in human CRC 

cells (Quelard et al., 2008; Suzuki et al., 2004). In addition to SFRPs, other endogenous 

molecules carrying frizzled CRDs bind to and inhibit Wnt signaling. We recently showed that 

a frizzled CRD derived from cell surface collagen XVIII (C18) functions in an SFRP-like 

fashion, binding to Wnt3a and inhibiting Wnt/β-catenin signaling in vitro (Quelard et al., 

2008). C18 is expressed as three alternative tissue-specific variants, differing in their N-

terminal (Nter) noncollagenous domains (Figure 1a), which are generated by two alternative 

promoters and mRNA splicing (Muragaki et al., 1995; Rehn et al., 1996). Variant 1 is a 

ubiquitous structural basement membrane component (Saarela et al., 1998). Variant 2 (V2) is 

a plasma protein produced mainly in the liver (Musso et al., 2001). Variant 3 (V3) is 

expressed at very low levels during Xenopus embryogenesis (Elamaa et al., 2002), in human 

fetal (Elamaa et al., 2003), in normal adult and tumor liver tissues (Quelard et al., 2008) and 

is not detected in metastatic CRCs (Musso et al., 2001). Proteolytic processing of V3 releases 

V3Nter, an aminoterminal glycoprotein containing a frizzled CRD, which locates at the cell 
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surface in cancer cells and matches the 3D structures of frizzled 8 and SFRP-3 CRDs 

(Quelard et al., 2008).  

These findings led us to explore the potential inhibitory effects of the frizzled module 

of C18 on tumor growth. We show here that V3Nter and SFRP-1 attenuate baseline and 

Wnt3a-induced β-catenin stabilization in HCT116 cells, reducing in vitro and in vivo tumor 

growth through slowed cell cycle progression. Moreover, V3Nter inhibits Wnt3a-induced β-

catenin signaling in allele-targeted HCT116 cells carrying either wild-type or mutant β-

catenin, confirming that V3Nter blocks tumor growth in the context of constitutively activated 

β-catenin.  
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Results 

 

HCT116 colorectal cancer cells stably expressing V3Nter or SFRP-1 show low β-catenin 

levels 

We produced HCT116 cell cultures stably expressing V3Nter (V3Nter-HCT116) or 

SFRP-1 (SFRP-1-HCT116) (Figures 1a and b). As negative controls, we prepared cells 

expressing either the homologous C18 polypeptide lacking the frizzled module (V2Nter-

HCT116) or empty pCDNA3.1 vector (Vector-HCT116, Figures 1a and b). In HCT116 cells, 

transient expression of V3Nter, SFRP-1 or SFRP-5 induces cell death (Quelard et al., 2008; 

Suzuki et al., 2004). Consistently, attempts to obtain clones by limiting dilution were 

unsuccessful, suggesting a negative selection pressure, as shown for SFRP-1 in breast cancer 

cells (Bafico et al., 2004). However, after seeding 3 cells/well, several antibiotic-resistant cell 

populations expressing the relevant epitopes (Supplementary Figure 1a) were expanded. By 

immunocytochemistry, they were composed of ~50% of cells expressing high levels of 

V3Nter or SFRP-1 and low β-catenin levels, and ~50% of cells showing low V3Nter or 

SFRP-1 content and high β-catenin levels (Figure 1c). In V3Nter (−) cells neighboring 

V3Nter (+) foci, β-catenin was restricted to cell membranes and particularly to cell contacts 

(Figure 1c, close-up), suggesting paracrine inhibition of Wnt/β-catenin signaling. Controls, 

i.e., Vector- and V2Nter-HCT116 cells, showed widespread high β-catenin levels (Figure 1c). 

These features were stably maintained at least throughout 15 passages.  

Consistently with our recent report using transient expression experiments (Quelard et 

al., 2008), β-catenin-T-cell factor-regulated transcription (CRT) and cyclin D1 promoter 

activity were significantly decreased in HCT116 cells stably expressing V3Nter or SFRP-1, in 

contrast with cells expressing V2Nter or empty vector (Supplementary Figures 1b and c). 
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Similar effects on CRT were obtained with two different stable V3Nter cell batches 

(Supplementary Figure 1d).  

 

Paracrine inhibtion of Wnt3a-induced β-catenin stabilization in HCT116 cells 

V3Nter attenuated CRT in a dose-response assay to soluble Wnt3a (Figure 2a). By 

contrast, V2Nter enhanced CRT in this context (Figure 2a). Indeed, heparan sulfates attached 

to the 47-aa stretch common to the three C18 variants (Figure 1b) may locally increase Wnt 

concentration and thus CRT, as shown for C18 (Quelard et al., 2008) and for other heparan 

sulfate proteoglycans (Mikels and Nusse, 2006). Accordingly, the slope of the Wnt3a dose-

response curve for V2Nter-HCT116 cells was steeper than that of the other cells, including 

Vector-HCT116 cells. By contrast, V3Nter-HCT116 cells reached the maximal CRT under a 

25% dilution of Wnt3a conditioned medium, further increases in Wnt3a concentration having 

no effect on CRT (Figure 2a). Immunoblot showed that basal and Wnt3a-induced levels of 

total β-catenin were lower in V3Nter- and SFRP-1-HCT116 cells than in Vector- or V2Nter-

HCT116 cells (Figure 2b). These findings suggested that cell surface V3Nter could decrease 

β-catenin stabilization and transcriptional activity in response to soluble Wnt3a. Although 

soluble V3Nter and the FZC18 domain are detected in the conditioned medium at low levels, 

the bulk of the secreted proteins remain as cell surface forms (Quelard et al., 2008). 

Therefore, FZC18-expressing cells might impact on the microenvironment of adjacent cells, 

thereby modulating their response to Wnt stimuli. To check this hypothesis, we co-cultured 

HEK293 cells stably expressing the frizzled domain of C18 (FZC18-HEK cells) with parental 

HCT116 cells expressing the CRT reporters. Co-cultures were established at different ratios 

of FZC18 (+) cells to a constant number of HCT116 reporter cells in the presence of 50% 

Wnt3a conditioned medium. Thus, the CRT response of HCT116 cells to soluble Wnt3a was 



 9

inversely proportional to the number of FZC18 (+) cells (Figure 2c). These findings confirm 

that V3Nter exerts its biological effects in the extracellular space.  

 

V3Nter and SFRP-1 do not affect CRT in cells carrying non functional APC  

Although V3Nter could inhibit baseline and Wnt3a-induced β-catenin stabilization in 

HCT116 cells carrying mutated β-catenin in one of the alleles, it was unable to modify CRT 

in the APC-mutated colorectal cancer cell line SW480 (Supplementary Figure 2a). As 

described (Morin et al., 1997), CRT was dramatically reduced by expression of wild-type 

APC in SW480 cells. Since APC is required for β-catenin degradation (Yang et al., 2006), 

these findings suggest that the effects of V3Nter are specific to the β-catenin pathway. 

Similarly, V3Nter did not induce significant effects on basal level CRT in cell lines carrying 

wild-type β-catenin such as human liver cancer Huh-7 and human cervical cancer HeLa cells. 

By contrast, both cell lines showed the expected CRT response to soluble Wnt3a, which was 

efficiently inhibited by V3Nter (Supplementary Figure 2b). 

 

V3Nter and SFRP-1 inhibit Wnt signaling in cancer cells expressing either wild-type or 

mutant β-catenin  

Extracellular Wnts provide a selective growth advantage to cancer cells containing 

heterozygous β-catenin mutations. This notion led us to ask whether this response relied 

solely on the wild-type β-catenin allele. Using HCT116 cell clones carrying either mutant 

(CTNNB1−/ΔS45) or wild-type (CTNNB1WT/−) β-catenin (Chan et al., 2002), we show that 

V3Nter and SFRP-1 expression decreased basal CRT by 50% and 30%, respectively, both in 

parental HCT116 cells and in the clone carrying only mutant β-catenin (Figure 3a). As 

previously described (Chan et al., 2002), cells carrying only the wild-type allele showed no 

measurable CRT (Figure 3a). V3Nter inhibited Wnt3a-induced β-catenin signaling in allele-
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targeted HCT116 cells carrying either wild-type or mutant β-catenin. As expected, inhibition 

was most efficient in cells carrying only the wild-type allele (Figures 3b and c). Similarly, 

SFRP-1 expression attenuated the CRT response to soluble Wnt3a in cells expressing either 

wild-type or mutant β-catenin (Supplementary Figure 2c). Negative controls confirmed the 

specificity of these findings (Supplementary Figure 2d). Taken together, these data show that 

expression of V3Nter inhibits soluble Wnt3a-induced β-catenin signaling in parental HCT116 

cells (ΔS45/WT β-catenin), as well as in allele-targeted cells carrying either wild-type or 

mutant β-catenin. Inhibition is, however, most efficient in cells carrying only the wild-type 

allele, suggesting that, in parental HCT116 cells, the decrease in Wnt signaling results from 

the additive effects on both alleles of β-catenin. Consistently, in human CRC cells, 

phosphorylation of β-catenin at S45 seems not required for subsequent phosphorylation at 

residues S33, S37, or T41, in contrast to the prevailing models in normal cells (Wang et al., 

2003). However, S33 and S37 are essential for interaction with β-TrCP and subsequent β-

catenin ubiquitination and degradation (Hart et al., 1999). Therefore, as expected, in 

HEK293T cells transiently expressing S37A β-catenin or a dominant negative form of β-

catenin lacking the S33, S37, T41 and S45 residues (Δ29-48 β-catenin), neither V3Nter nor 

SFRP-1 could inhibit CRT (not shown). Further experiments using FZC18 or SFRP-5 

confirmed these findings (not shown).  

V3Nter or SFRP-1 cDNAs inhibited the CRT increase induced by transiently 

expressed wild-type, S33Y or S37A β-catenins in Huh-7 human liver cancer cells carrying 

endogenous wild-type β-catenin (Figure 3d and Supplementary Figure 2e), suggesting that, in 

tumor cells, V3Nter and SFRP-1 may destabilize β-catenin through GSK3β and β-TrCP-

independent pathways.  

 

V3Nter reduces tumor cell proliferation in vitro through slowed cell cycle progression 
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Time course of [3H] thymidine incorporation into newly synthesized DNA in response 

to serum stimulation showed a two-fold decrease in DNA synthesis in V3Nter- and in SFRP-

1-HCT116 cells (Figure 4a). A different batch of V3Nter cells confirmed these data 

(Supplementary Figure 3a). These findings were further confirmed by analysis of 

mitochondrial succinate deshydrogenase activity (MTT assay) in a 96h time-course. In 

addition, this test showed no differences in cell survival 24h after plating (Supplementary 

Figure 3b). Consistently, a low apoptotic rate over a 72h time course was observed in 

HCT116 cells stably expressing V3Nter, SFRP-1 or V2Nter, as assessed by quantification of 

the subG1 population of cells by flow cytometry (Supplementary Figure 3c). Cell cycle 

analysis indicated that expression of V3Nter and SFRP-1 resulted in accumulation of cells in 

G0/G1 phase and a decrease in S-phase cells (Figure 4b).  

Clonogenesis assays showed no difference in colony number between V3Nter or SFRP-

1 and Vector HCT116 cells (Figure 4c, Supplementary Figure 4a), but V2Nter plates 

contained ~20% more colonies than Vector or V3Nter plates (Supplementary Figure 4a). This 

finding is consistent with the enhanced CRT in V2Nter cells shown above (Figure 2c) and 

with the 20% increase in clonogenesis that we previously showed in HCT116 cells expressing 

V2Nter (Quelard et al., 2008). Interestingly, V3Nter-HCT116 cells showed reduced colony 

size with respect to Vector- and V2Nter-HCT116 cells (Figures 4c and d, Supplementary 

Figure 4b). Small colonies (1 to 1.5 mm in diameter) represented 65% of V3Nter- and 35% of 

SFRP-1-HCT116 colonies, but only 25% of Vector-HCT116 ones. Conversely, large colonies 

(3 to 4 mm in diameter) represented 30% of Vector- and 2% V3Nter- or 10% of SFRP-1-

HCT116 ones. In V3Nter-HCT116 plates, small colonies arose more frequently than in 

V2Nter-HCT116 plates. Together with the above observations, i.e., reduced cyclin D1 

promoter activity and reduced DNA synthesis, but good cell viability; these findings suggest 

an inhibition on tumor cell proliferation rather than an effect on plating efficiency or viability. 
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A similar profile was described in HCT116 cells after inhibition of cyclin D1 expression by a 

dominant-negative TCF (Tetsu and McCormick, 1999).  

 

V3Nter inhibits in vivo tumor growth through decreased cell proliferation 

Xenografts of V3Nter-HCT116 cells in nude mice showed that V3Nter delayed tumor 

onset. More than 90% of the mice injected with Vector-HCT116 cells developed a solid tumor 

at day 13 whereas only 60% of the V3Nter-HCT116 cell-injected mice had a tumor on day 25 

(Figure 5a). In addition, growth of V3Nter expressing tumors was significantly reduced. On 

day 22, the mean volume of these tumors was 7 folds smaller than that of the Vector-HCT116 

tumors (Figures 5b and c, Supplementary Figure 5a). Two batches of V3Nter-HCT116 cells 

showed a similar growth pattern (Supplementary Figure 5b). SFRP-1 delayed tumor onset to a 

lesser extent. Indeed, 70% of the SFRP-1-HCT116 cell injected mice had a tumor on day 17, 

and 100% on day 25. On day 22, SFRP-1 reduced tumor growth by 2.2 fold, with respect to 

empty-vector expressing HCT116 cells. Tumor onset and growth of V2Nter- and Vector-

HCT116 cells were not significantly different (Figures 5a-c, Supplementary Figure 5a). 

Throughout the experiment, V3Nter-HCT116 tumors expressed V3Nter, as shown by 

immunostaining at day 20 post subcutaneous injection (Supplementary Figure 6a). 

Magnetic Resonance Imaging (MRI) in representative living mice revealed that the 

rapid growth curve of Vector-HCT116 tumors was associated with important hemorrhagic 

necrosis, which was not observed in V3Nter-HCT116 tumors (Figure 5d). T2-weighted signal 

showed large necrohemorrhagic foci in Vector- (day 14) but a very small focus in V3Nter- 

(day 18) HCT116 tumors (Figure 5d), which was confirmed by anatomic pathology tumor 

analysis after sacrifice of mice (data not shown).  

We assessed cell proliferation, microvessel density and apoptosis in situ in V3Nter-

HCT116 tumors by immunostaining with anti-BrdU, anti-CD31 or by the TUNEL assay. 
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Because in vivo labeling of S-phase cells with BrdU is influenced by tissue perfusion (Kyle et 

al., 2003), we intravenously administered carbocyanine as a marker of functional blood 

vessels and searched for S-phase cells at any point ≤ 200 µm from a carbocyanine positive 

vessel.  

As the growth kinetics of V3Nter-HCT116 cell tumors was different from that of 

control groups (Figure 5c), resulting in dramatically different final tumor sizes, we analyzed 

tumors of similar sizes (Mean±SD, Vector=148±152; V3Nter=146±96 mm3, n=5 per group), 

representative of small, growing-phase tumors from both groups. The number of BrdU-

labeled cells was significantly reduced in V3Nter- with respect to Vector-HCT116 cell tumors 

(Figure 6). To confirm these data, we immunostained cryosections derived from 6 additional 

tumors (Vector- or V3Nter-HCT116 tumors) with Ki67, a marker expressed on all 

proliferating cells during late G1, S, M and G2 phases of the cell cycle (Supplementary 

Figures 6b and c). Consistently, the number of Ki67-positive cells was reduced in V3Nter-

HCT116 tumors compared to control ones. TUNEL assay, assessing DNA fragmentation, 

revealed no significant differences between the number of apoptotic cells in control and 

V3Nter-expressing tumors (Figure 6). Similarly, we observed no variation in microvessel 

density between Vector- and V3Nter-expressing tumors (Figure 6).  

Taken together, these findings indicate that V3Nter expression delays tumor growth, 

profoundly changing the growth kinetics of HCT116 CRC cells in vivo.  

 

V3Nter expressing tumors exhibit a switched off Wnt/β-catenin gene expression signature. 

To determine whether V3Nter affected the expression of Wnt/β-catenin target genes, 

we obtained genome-wide expression profiles of Vector and V3Nter tumors and tested their 

enrichment in Wnt signaling gene expression signatures using Gene Set Enrichment Analysis 

(GSEA). GSEA evaluates microarray data focusing on previously published gene sets sharing 
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common biological function (Subramanian et al., 2005). Gene sets were derived from two 

independent and curated Wnt activation signatures: loss of APC in vivo in the mouse intestine 

(Sansom et al., 2004) and expression of a constitutively active mutant β-catenin by mammary 

cells (Kenny et al., 2005). GSEA demonstrated that Vector and V3Nter gene expression 

profiles were respectively enriched in up- and down-regulated Wnt/β-catenin targets (Figure 

7a, p<0.05). Consistently, microarray analysis revealed that V3Nter significantly reduced the 

expression of the β-catenin targets Survivin, EpCAM, MMP-9, c-myc and Wnt3 among other 

genes (Figure 7b).  
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Discussion  

The development of extracellular Wnt inhibitors working in the context of β-catenin pathway 

mutations is a promising therapeutic strategy. Enhanced autocrine Wnt signaling (Bafico et 

al., 2004) and epigenetic silencing of genes encoding endogenous extracellular Wnt inhibitors 

(Suzuki et al., 2004) provide a positive selection advantage to cells carrying β-catenin 

pathway mutations (Barker and Clevers, 2006; MacDonald et al., 2009; Polakis, 2007). In this 

setting, frizzled receptor activation and enhanced Wnt expression drive positive cancer cell 

selection (Dimitriadis et al., 2001; Holcombe et al., 2002; Smith et al., 1999; Ueno et al., 

2008; Vider et al., 1996). Consequently, extracellular Wnt inhibitors such as SFRPs (Taketo, 

2004), WIF1 (Hu et al., 2009) or anti-Wnt1 antibodies (He et al., 2005) block tumor cell 

growth in cells carrying mutant β-catenin.  

In this work, we show that expression of a collagen-derived frizzled domain inhibits 

Wnt3a-induced β-catenin stabilization in HCT116 cells. V3Nter (−) cells neighboring V3Nter 

(+) foci showed low cytoplasmic and nuclear β-catenin content, suggesting that V3Nter could 

impact on the cell microenvironment. This notion was supported by paracrine inhibition of 

Wnt3a-induced CRT in cocultures of FZC18-expressing normal cells with parental HCT116 

cells, indicating that the frizzled domain of C18 can inhibit Wnt signaling in the extracellular 

space.  

V3Nter was unable to affect CRT in SW480 cells, which cannot degrade β-catenin as 

they lack functional APC (Yang et al., 2006). Similarly, neither V3Nter nor SFRP-1 affected 

CRT in cancer cell lines carrying wild-type β-catenin. These findings suggest that the effects 

of V3Nter are specific to the Wnt/β-catenin pathway. 

A previous report showed that SFRP-1 had no effect on growth of HCT116 cells in 

vivo (Bafico et al., 2004). In that work, the authors used allele-targeted HCT116 cells carrying 

only wild-type β-catenin that exhibited elevated basal-level CRT as well as higher response to 
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serum growth factors and tumor growth than parental cells (Sekine et al., 2002). By contrast, 

the wild-type β-catenin clone used here showed no measurable CRT and the in vivo growth of 

parental, mutant and wild-type HCT116 cells were not significantly different (Chan et al., 

2002), which probably explain the contrasting results.  

We show that ΔS5 β-catenin does not completely abrogate inhibition of Wnt signaling 

by SFRP-like frizzled domains. Indeed, in colon cancer cells, priming phosphorylation at S45 

of β-catenin does not seem required for subsequent phosphorylation of upstream residues S33, 

S37 and T41 (Wang et al., 2003). Therefore, in parental HCT116 cells, inhibition of Wnt 

signaling results from the additive effects on both wild-type and mutant β-catenin alleles. As 

serines 33 and 37 of β-catenin are essential for β-TrCP-dependant β-catenin degradation (Hart 

et al., 1999), neither V3Nter nor SFRP-1 inhibited CRT in HEK293T cells expressing mutant 

S33 or S37 β-catenins, implying a GSK3β and β-TrCP-dependent pathway. By contrast, in 

human liver cancer cells expressing either S37A or S33Y β-catenins, SFRP-1 and V3Nter did 

inhibit CRT, suggesting a GSK3β and β-TrCP-independent pathway.  

An increasing body of evidence (He et al., 2005; Suzuki et al., 2004; Wang et al., 

2003) indicates that the mechanism of β-catenin degradation may be different in cancer cells 

with respect to normal cells (Liu et al., 2002), supporting the notion that β-TrCP-independent 

pathways could be alternatively involved. Indeed, the ubiquitination of β-catenin by different 

E3 ligases that can bypass β-catenin phosphorylation occurs in specific contexts. For example, 

β-catenin can be degraded by Jade-1 (Chitalia et al., 2008), Siah-1 or other ubiquitin ligases 

(Dimitrova et al.). Therefore, although the major mechanism of regulation of β-catenin 

activity is phosphorylation, the Wnt pathway may use multiple ways to regulate the 

concentration of β-catenin (Salahshor and Woodgett, 2005; Tolwinski and Wieschaus, 2004).  

By Gene Set Enrichment Analysis, V3Nter-expressing tumors presented a switched 

off Wnt/β-catenin gene expression signature, further confirming inhibition of Wnt/β-catenin 
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signaling and downstream gene expression. Among the switched off genes, MMP-9 is 

involved in local invasion and metastasis (Takeuchi et al., 2004), being secreted by 

macrophages and tumor infiltrating lymphocytes, as well as by CRC cells (Ahmed et al., 

2003). Survivin and c-myc are key regulators of cell growth in most human cancers and 

unfavorable prognostic markers, inhibiting cell death induced by several anticancer agents 

(Albihn et al., ; Mita et al., 2008). The epithelial cell adhesion molecule EpCAM is involved 

in a positive regulatory loop of Wnt signaling (Munz et al., 2009).  

We present compelling in vitro and in vivo data showing that a collagen-derived 

frizzled domain specifically blocks tumor cell growth through decreased cell proliferation and 

slowed cell cycle progression. V3Nter had a major impact on the growth kinetics of tumors. 

Likewise, MRI in living mice revealed that V3Nter-expressing tumors had minimal tumor 

necrosis with respect to the massive central necrosis seen in control HCT116 tumors. 

Spontaneous tumor necrosis is a hallmark of CRC, resulting in ominous clinical 

complications (Treanor and Quirke, 2007). It is the consequence of an insufficient vascular 

support to cope with rapid cell proliferation in fast growing tumors (Ramanujan et al., 2000). 

Since inhibition of Wnt signaling slowed tumor growth, it restored the appropriate ratio of 

vascular support to tumor burden, thereby dramatically reducing necrosis. In conclusion, we 

show that an SFRP-like frizzled domain inhibits tumor growth in colorectal cancers. Its 

potential to attenuate cell growth and to sensitize to apoptosis may contribute to the 

development of new combined and personalized therapies that take into account the status of 

downstream β-catenin pathway components.  
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Materials and methods 

 

cDNAs 

V2Nter, V3Nter and SFRP-1 cDNAs, the Super8•TOP and Super8•FOP Flash reporters, the 

Cyclin D1 promoter reporter D1Δ-944pXP2, wild-type β-catenin and the normalization 

Renilla luciferase vector pGL4.70[hRluc] were previously described (Quelard et al., 2008). 

S37A and Δ29-48 β-catenins were kindly provided by Y. Yang (Topol et al., 2003). Vectors 

pcDNA3-S33Y β-catenin ((Kolligs et al., 1999); Addgene plasmid 19286) and pCMV-Neo-

Bam APC ((Morin et al., 1997); Addgene plasmid 16507) were provided by E. Fearon and K 

Kinzler, respectively.  

 

Mice and Tumors 

Female athymic nude (nu/nu) mice were obtained from Iffa Credo (Charles River, France), 

housed under specific pathogen-free conditions and used for experiments at 6 weeks of age. 

All animal experimental procedures were carried out using Institutional Animal Care–

approved protocols. Mice received 3x106 tumor cells by subcutaneous injection in both hind 

legs in 100 μl FCS-free medium. Tumor size was measured three times a week with a digital 

caliper, and tumor volume was estimated from the following formula: width x length x (width 

+ length)/2. Mice were sacrificed when the tumor volume reached ~1200 mm3 or as indicated. 

Tumors were excised, snap frozen in liquid-nitrogen-cooled isopentane and stored at -80°C.  

The BrdU incorporation assay was performed as described (Kyle et al., 2003). Briefly, 

20 days after tumor injection, BrdU (Sigma) was administered intraperitoneally 2h before 

sacrifice as a 50 mg/mL solution in saline at 1500 mg/kg. As a marker of tissue perfusion, 

mice were intravenously administered ∼75 μl 0.6 mg/mL carbocyanine (Invitrogen) in 75% 

DMSO solution 5 min before sacrifice.  
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Gene expression profiling and Gene Set Enrichment Analysis (GSEA) 

After histological analysis and homogeneization of ~400 mm3 of representative tumor tissue, 

RNA was extracted from Vector (n=3 tumors from 3 inoculation points from 3 mice) and 

V3Nter (n=6 tumors from 6 inoculation points from 3 mice). V3Nter tumors excised from the 

same mice were pooled. Total RNA was isolated by the Guanidinium Thiocyanate/Cesium 

Chloride method followed by a second extraction of the CsCl pellet with the NucleoSpin 

RNA II kit (Macherey-Nagel). In vitro transcription and labeling of 150ng total RNA was 

carried out using an Agilent Low-Input QuickAmp Labeling kit (Agilent Technologies) in the 

presence of Cy3-CTP following the manufacturer's protocol. After purification using a 

RNeasy mini kit (Qiagen), cRNA yield and specific activity were determined using a 

NanoDrop Spectrophotometer (yield, 9.2±0.5 µg cRNA ; specific activity, 20.0±0.4 pmol 

Cy3/µg cRNA). Equal amount (1.65 µg) of Cy3-labeled cRNA was subjected to 

fragmentation followed by 18h hybridization onto Agilent human 4x44K v2 pangenomic 

microarrays, washing, and scanning according to the manufacturer’s instructions (Agilent 

Technologies). Gene expression data were further processed using Feature Extraction (version 

10.7) and GeneSpring (version 11.0) software (Agilent Technologies). Filtration of array data 

resulted in the selection of 17,902 non-flag positive and significant gene features. Inter-arrays 

normalization was performed by using the 75th percentile signal value. GSEA was performed 

by using the web-based tool developed at the Broad Institute (Subramanian et al., 2005) as 

previously described (Coulouarn et al., 2009). Specific Wnt signatures (Kenny et al., 2005; 

Sansom et al., 2004) were retrieved using the curated collection C2 of Molecular Signatures 

Database (MSigDB).   
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Cell culture, transfection, reporter assays, cell growth assays, immunological methods, image 

acquisition and analysis, in vivo magnetic resonance imaging and statistical analysis were 

performed using standard methods. A detailed description is given in the Supplemental 

Materials and Methods section.  
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Figure legends  
 

Figure 1. HCT116 colorectal cancer cells stably expressing a C18-derived frizzled 

module or SFRP-1 show low β-catenin levels. (a) Schematic structure of the three variants 

of full length C18 differing by their specific aminoterminal noncollagenous (Nter NC) 

domains. Both V2 and V3 contain the 192 aa Domain of Unknown Function-959 (DUF-959) 

at their N-termini. V3 has a 235 aa module containing a 117 aa frizzled cysteine-rich domain 

(CRD). The three variants share common C-terminal sequences, including the 

thrombospondin-1 (Tsp-1) module, heparan sulfate attachment sites (HS), a highly interrupted 

collagenous sequence, and the endostatin (ES) module. (b) V3Nter, SFRP-1 and V2Nter 

expression vectors. Thick horizontal lines indicate the antibodies used. Grey box, 47-aa 

stretch from the Tsp-1 module. V5, V5 tag. NTR, netrin module. (c) HCT116 cells stably 

expressing V3Nter or SFRP-1 show low β-catenin levels. Immunofluorescent detection of β-

catenin in HCT116 cells stably expressing V3Nter, V2Nter or SFRP-1 (top). Antibodies are 

indicated on the left. Anti-DUF-959 detects an epitope common to V2Nter and V3Nter. Cells 

expressing V3Nter or SFRP-1 show low β-catenin levels (arrows), but cells expressing low 

V3Nter or SFRP-1 levels show high β-catenin (arrowheads). Images were acquired by 

automatic tiling of adjacent fields at original magnification x200. Close-up shows that 

V3Nter-expressing cells contain low nuclear and cytoplasmic β-catenin levels.  

 

Figure 2. V3Nter and SFRP-1 attenuate baseline and Wnt3a-induced β-catenin 

stabilization in HCT116 cells. Gene assays using the CRT reporter Super8•TOP Flash in 

HCT116 cells. (a) Relative CRT in the HCT116 cells. Twenty-four hours after transfection 

with the CRT reporter, cells were incubated with either control-CM (conditioned medium) or 

Wnt3a-CM at the indicated dilutions for 16h. Below, aliquots from Wnt3a-conditioned media 

were immunoblotted with anti-Wnt3a. (b) HCT116 cells stably transfected with the indicated 
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expression vectors (top) were incubated with 100% control-CM (−) or 50% Wnt3a-CM (+). 

Total protein extracts from these cells were analyzed by western blotting detecting anti-β-

catenin. The same blot was probed with anti-GAPDH as a loading standard. (c) Relative CRT 

in parental HCT116 cells transfected with Super8•TOP or FOP Flash reporters and co-

cultured with HEK293T cells stably expressing FZC18 or empty vector at different ratios, as 

indicated in the presence of 50% Wnt3a-CM. Below, total protein extracts from these cells 

were immunoblotted with anti-myc epitope tag detecting FZC18. The same blot was probed 

with anti-GAPDH as a loading standard.  

 

Figure 3. V3Nter inhibits Wnt signaling in cancer cells carrying either wild-type or 

mutant β-catenin. (a) V3Nter and SFRP-1 attenuate CRT in parental HCT116 cells 

(CTNNB1WT/ΔS45) and in cells containing only mutant β-catenin. HCT116 cells lacking 

mutant β-catenin (CTNNB1WT/−) have no measurable CRT. (b) V3Nter inhibits the CRT 

response to soluble Wnt3a in cells containing either wild-type or mutant β-catenin. After 

transient transfection with the indicated vectors, cells were challenged with Wnt3a-CM in a 

dose-response assay for 16h. Super8•TOP Flash data show mean±SD from three replications. 

Super8•FOP Flash data are shown in Figure S2d. The slopes of the dose-response curves 

indicate that V3Nter inhibits CRT most efficiently in cells containing only wild-type β-

catenin. (c) Inhibition of β-catenin stabilization by V3Nter in response to soluble Wnt3a in 

CTNNB1WT/− and −/ΔS45 HCT116 cell clones. After transient transfection with the indicated 

vectors, cells were incubated with either 100% control-CM (−) or 100% Wnt3a-CM (+) for 

16h and total protein was analyzed by immunoblot. Hsc-70 is a loading standard. (d) Relative 

CRT in Huh-7 human liver cancer cells (endogenous wild-type β-catenin (de La Coste et al., 

1998)) transiently transfected with the Super8•TOP Flash reporter and the indicated β-catenin 
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expression vectors. CRT is shown relative to cells expressing empty vector. Super8•FOP 

Flash data are shown in Figure S2e.  

 

Figure 4. V3Nter reduces in vitro tumor cell proliferation. (a and b) Analysis of DNA 

synthesis and cell cycle distribution in HCT116 cells stably expressing the indicated vectors, 

shown as mean±SD from three replications. (a) [3H] thymidine incorporation. Cell cycle 

synchronized cells were stimulated with 10% FCS in a 72h time course. At the indicated time 

points, cells were pulsed with [3H] thymidine for 90 min, lyzed and [3H] thymidine measured 

using a scintillation counter. (b) Cell cycle distribution. At the indicated time points after 

seeding, cells were stripped from dishes and analyzed by flow cytometry after propidium 

iodide staining. A total of 1 x 104 cells were analyzed in each triplicate. Asterisks indicate 

statistic significance of the differences between Vector’s and other groups’ means at 72h 

(Student “t” test, p< 0.005). (c) HCT116 cells stably transfected with the indicated expression 

vectors were seeded at low density and cultured for 14 days. After paraformaldehyde fixing 

and hematoxylin staining, colonies (seen as dark spots) were digitized using a video camera. 

(d) After printing photographs of colony-containing dishes, colonies were measured, assigned 

to size categories and blindly counted using a grid. Histograms represent distribution of cells 

in each category of colony size (mean±SD from three replications). V3Nter-HCT116 colonies 

are significantly smaller than Vector- or V2Nter-HCT116 colonies. Statistical analysis is 

shown in Supplementary Figure 4b.  

 

Figure 5. V3Nter inhibits the growth of HCT116 tumor xenografts in vivo. Athymic nude 

mice received subcutaneous injections of HCT116 cells stably expressing the indicated 

vectors. (a) Six mice per group received cells in both hind legs. At each time point, the 

percentage of tumor-free mice is indicated. (b) Representative photographs of mice carrying 
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subcutaneous tumors 20 days after injection (arrows). (c) Analysis of tumor volume [width x 

length x (width + length)/2] in a 22-day time course. Statistical analysis is shown in 

Supplementary Figure 5a. (d) Representative T1- and T2-weighted resonance magnetic 

images of Vector- or V3Nter-HCT116 tumor xenografts. Vector-HCT116 tumor shows 

important necro-hemorrhagic foci in contrast to V3Nter-HCT116 tumor (arrows). “D” 

indicates day post subcutaneous injection. Images were acquired on living mice placed in a 

supine position using a 4.7 Tesla horizontal Biospec Imaging System. 

 

Figure 6. V3Nter reduces tumor cell proliferation in vivo. Mice carrying Vector- or 

V3Nter-HCT116 tumors were pulsed by intraperitoneal injection of BrdU and intravenous 

injection of carbocyanine 120 and 5 min before sacrifice, respectively. (a) Cell proliferation, 

angiogenesis and apoptosis were assessed in tumor cryosections by immunostaining with anti-

BrdU, anti-CD31 or by the TUNEL assay, respectively. BrdU (+) S-phase cells (brown) are 

shown relative to non S-phase cells (hematoxylin, light blue) and to functional blood vessels 

(carbocyanine, green). Fluorescent images of carbocyanine-labeled vessels were acquired 

from fresh cryosections and overlaid on subsequent bright-field images after immunostaining 

with anti-BrdU and counterstaining with hematoxylin. Apoptotic TUNEL-labeled cells 

(green, arrows) or CD31 (+) blood vessels (red, arrows) are shown relative to nuclear 

staining with the fluorescent dye DAPI (blue). (b) To quantify S-phase cells, images were 

acquired from whole mount tissue sections in well perfused carbocyanine (+) areas, using a 

Micro Imager M1 microscope (Zeiss) and Zeiss AxioVision Software. BrdU (+) cells were 

counted with Image J (NIH). TUNEL and CD31 signals were quantified with Simple PCI 

6.1.2. Bar graphs show mean±SD from five tumors. NS, non significant; *, p<0.05 (Mann-

Whitney U-test).  

 



 30

Figure 7. V3Nter expressing tumors exhibit a switched off Wnt/β-catenin gene 

expression signature. Tumors derived from Vector- and V3Nter-overexpressing HCT116 

cells were profiled using pangenomic microarrays. (a) Gene Set Enrichment Analysis (GSEA) 

was performed using two independent and curated Wnt activation signatures: upper panels, 

gene expression signature from cells expressing a constitutively active β-catenin mutant; 

lower panels, in vivo APC loss gene signature. Top portion of the plots displays the running 

Enrichment Score for the gene signatures along the ranked gene expression dataset (left side, 

V3Nter; right side, Vector). Bar codes indicate the position of members of the specific gene 

signatures in the ranked-ordered gene dataset. Vector and V3Nter gene expression profiles 

were respectively enriched in up- and down-regulated Wnt/β-catenin targets (p<0.05). (b) 

Relative expression of well-known Wnt/β-catenin target genes in Vector- and V3Nter-

overexpressing HCT116 cells. V3Nter significantly reduced the expression of Survivin, 

EpCAM, MMP-9, c-myc and Wnt3 (two-tailed Student’s t-test: * p<.05, ** p<.01, *** 

p<.001). Data are expressed as mean±SD (n=3).  
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