
HAL Id: inserm-00515405
https://inserm.hal.science/inserm-00515405

Submitted on 8 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intraoperative ultrasonography for the correction of
brainshift based on the matching of hyperechogenic

structures
Pierrick Coupé, Pierre Hellier, Xavier Morandi, Christian Barillot

To cite this version:
Pierrick Coupé, Pierre Hellier, Xavier Morandi, Christian Barillot. Intraoperative ultrasonography
for the correction of brainshift based on the matching of hyperechogenic structures. IEEE Inter-
national Symposium on Biomedical Imaging, Apr 2010, Rotterdam, Netherlands. pp.1405 - 1408,
�10.1109/ISBI.2010.5490261�. �inserm-00515405�

https://inserm.hal.science/inserm-00515405
https://hal.archives-ouvertes.fr


INTRAOPERATIVE ULTRASONOGRAPHY FOR THE CORRECTION OF BRAINSHIFT
BASED ON THE MATCHING OF HYPERECHOGENIC STRUCTURES
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ABSTRACT
In this paper, a global approach based on 3D freehand ul-
trasound imaging is proposed to (a) correct the error of the
neuronavigation system in image-patient registration and(b)
compensate for the deformations of the cerebral structures
occurring during a neurosurgical procedure. The rigid and
non rigid multimodal registrations are achieved by matching
the hyperechogenic structures of brain. The quantitative eva-
luation of the non rigid registration was performed within a
framework based on synthetic deformation. Finally, experi-
ments were carried out on real data sets of 4 patients with
lesions such as cavernoma and low-grade glioma. Qualitative
and quantitative results on the estimated error performed by
neuronavigation system and the estimated brain deformations
are given.

Index Terms— multimodal registration, non rigid defor-
mation, neurosurgery, brainshift, freehand ultrasound

1. INTRODUCTION

In Image-Guided NeuroSurgery (IGNS), the accuracy and
usefulness of the neuronavigation system is limited due to the
presence of soft-tissue deformations. This phenomenon also
known as brainshift is the motion of cerebral structures oc-
curring after the craniotomy (up to 25 mm [1, 2, 3]). The neu-
ronavigation system rigidly matches the pre-operative images
with the surgical field. The hypothesis of a rigid registration
is no longer valid because of deformations. In order to com-
pensate for brainshift, many approaches have been investi-
gated. In this paper, we focus on methods using intraopera-
tive ultrasound imaging (iUS) to achieve image registration
[3, 4, 5, 6, 7, 8]. These methods have studied three options
to register US and MR images : the matching of homologous
features extracted from both images [7, 6], the preprocessing
of the images to make US images and MR images more si-
milar in order to use classical similarity measures [5, 3], and
the intensity-based registration based on a specific similarity
measure matching the US and MR image intensities [4, 9]. In
this paper, a global approach based on image registration of
intraoperative freehand ultrasound imaging and preoperative
MR image is proposed to (a) correct the error of the neurona-
vigation system in image-patient registration and (b) compen-

sate for the deformations of the cerebral structures occurring
during a neurosurgical procedure. To do this, a multimodal
registration of 3D iUS with preoperative MR images is ri-
gidly performed before opening the dura and non-rigidly per-
formed after opening the dura. As it is generally admitted, we
assume that no significant brainshift occurs before openingof
the dura. This paper proposes a general framework designed
for brainshift compensation built on previous works on 3D
reconstruction of freehand US [10], denoising of US images
[11] and rigid registration of US and MR images [9].

2. METHOD

2.1. Similarity function

Contrary to histogram-based approaches [4, 3], the me-
thod proposed in [9] consists in matching the informative
features present in US images which are the hyperechogenic
structures. After computing probability maps, defined for a
voxelX = (x, y, z) as the probability to be included in hyper-
echogenic from the both modalities, the rigid transformation
T̂ is estimated by maximizing the conjoint probability :

T̂ = argmax
T

∫

Ω

p(X ∈ ΦUS , T (X) ∈ ΦMR) dX (1)

wherep(X ∈ ΦUS) is the probability forX to be included
in an hyperechogenic structure of the US image andp(X ∈
ΦMR) is the probability forX to be included in an hyper-
echogenic structure (in the sense of the ultrasound image) of
the MR image. Assuming observations are independent, this
yields :

T̂ = argmax
T

∫

Ω

p(X ∈ ΦUS).p(T (X) ∈ ΦMR) dX (2)

The construction of the probability maps from both modali-
ties are based on different approaches. For intraoperativeUS
images, a normalization of the intensities is performed during
surgery to obtainp(X ∈ ΦUS) ∈ [0, 1]. For preoperative MR
image, the probability for a voxelX to be included in an hy-
perechogenic structure is based both on theMLvv operator
[12] (Ridge Seeking operator) and the manual segmentation
of the pathological tissue performed by the neurosurgeon. The



Fig. 1. Left : the denoised MR images. Middle : the probability map
based onMlvv and tumor segmentation. Right : the corresponding
US images obtained with the registration provided by the neurona-
vigation system.

probability p(X ∈ ΦMR) is computed before surgery on a
T1-weighted MR image as follows :

p(X ∈ ΦMR) =







MLvv(I(X)) if X ∈M1

Ψ(X) if X ∈M2

0 otherwise
(3)

whereI is the intensity function,M1 represents the positive
values ofMLvv map (i.e. the sulci and the cerebral falx) nor-
malized between[0, 1] and computed on the brain tissue wi-
thout the pathological tissue segmentationM2 (see Fig. 1 and
[9] for details).Ψ(X) is the probability given toX in the
segmentation of pathological tissueM2 andΨ(.) is used to
incorporatea priori on pathology. For hyperechogenic patho-
logical tissue such as cavernoma or low-grade gliomaΨ(X)
is high (close to 1).

2.2. Non rigid transformation

In this paper, the registration method is extended to non
rigid transformations. The non rigid transformation is projec-
ted on cosine basis functions defined by their pulsationωf

(i.e. frequency) [13]. During the procedure, the magnitudepa-
rameters ({αf

i , β
f
i , γ

f
i ; i ∈ [1, 2, 3]}) and phases parameters

({φf
i , ψ

f
i , ρ

f
i ; i ∈ [1, 2, 3]}) are estimated for each cosine ba-

sis function. The set of pulsationsW of the basis functions is
defined asW : {ω1, ..., ωF } and is fixeda priori. This set has
been empirically established thanks to the experiment on syn-
thetic deformation. Finally, the parametrization can be written
as :

uF1 (x, y, z) =
PF
f=1(α

f
1 cos(ω

fx + φ
f
1 ) + β

f
1 cos(ω

fy + ψ
f
1 ) + γ

f
1 cos(ω

fz + ρ
f
1 ))

uF2 (x, y, z) =
PF
f=1(α

f
2 cos(ω

fx + φ
f
2 ) + β

f
2 cos(ω

fy + ψ
f
2 ) + γ

f
2 cos(ω

fy + ρ
f
2 ))

uF3 (x, y, z) =
PF
f=1(α

f
3 cos(ω

fx + φ
f
3 ) + β

f
3 cos(ω

fy + ψ
f
3 ) + γ

f
3 cos(ω

fz + ρ
f
3 ))

(4)

whereX = (x, y, z) are the coordinates of the voxel in the
reference image (i.e. the probability map extract from MR
image) andUF (X) = (uF

1 (x, y, z), uF
2 (x, y, z), uF

3 (x, y, z))
are the coordinates of the homologous points in the floating
image (i.e. the normalized US image). The registration proce-
dure can be written as :

argmax
P

∫

Ω

p(X ∈ ΦMR).p(UF (X) ∈ ΦUS) dX (5)

whereP : {αf
i , β

f
i , γ

f
i , φ

f
i , ψ

f
i , ρ

f
i ; i ∈ [1, 2, 3]; f ∈ [1, ..., F ]}

represents the set of basis function parameters.

2.3. Optimization

These parameters are iteratively estimated from the lowest
frequency to the highest frequency. First, the Simplex optimi-
zer is used to estimate the 18 parameters forω1. Then, these
parameters are fixed and the 18 parameters forω2 are then
estimated. This procedure is repeated untilf = F . In the ex-
periments, the same setW was used for all the patients. This
set is composed of 10 pulsations (i.e.F = 10) regularly dis-
tributed between[ω1, ω10] such asωf = π

2
.f.d with d = 0.1.

3. OVERALL WORKFLOW

The presented rigid and non-rigid registrations are inte-
grated into a global workflow in order to (a) correct the error
performed by the neuronavigation system and (b) compensate
for the cerebral deformation occurring after opening the dura.
Preoperative stage :first, the T1-w MR image is denoised
with a Non-Local (NL) means filter [14] in order to avoid
false detections of hyperechogenic structures by theMLvv

operator (see left in Fig. 1). Then, the lession is manually
segmented by the neurosurgeon. Finally, theMLvv is com-
puted on the brain tissues. The probability maps from T1-w
MR image is obtained by normalizing and fusing the posi-
tive values of theMLvv with the lesion segmentation (see
middle in Fig. 1).Intraoperative stage : Before opening the
dura the first 3D freehand US sequence acquired on the dura
was reconstructed [10] and denoised [11]. Then, the preope-
rative MR image was re-sliced into the US coordinate system
thanks to the transformation matrix provided by the neurona-
vigation system (see top-left in Fig. 4 and Fig. 5). Finally,the
rigid registration of the corresponding probability maps was
performed in order to correct the error of the neuronavigation
system (localization + initial rigid registration) and US probe
calibration errors (see top-right in Fig. 5 and Fig. 4).After
opening the durathe second freehand US sequence acquired
on the cortical surface was reconstructed, denoised and pro-
jected into the coordinate system of the first US volume (see
bottom-left in Fig. 4 and Fig. 5). By this way, the second US
volume and the rigidly registered MR image can be overlayed
in the same coordinate system. Then, the non rigid registra-
tion of the corresponding probability maps was performed in
order to compensate for the brainshift (see bottom-right in
Fig. 4 and Fig. 5).

3.1. Material

The preoperative T1-w MR image was acquired on a 3T
Philips Gyroscan scanner. During the IGNS procedure, the
US probe (Sonosite cranial7−4MHz probe) was tracked by
the Polaris cameras of the Stealth Station TREON (Medtro-
nic Inc). The 3D freehand ultrasound sequences were acqui-
red by the Sononav software installed on neuronavigator. The
probe has been calibrated using a Z-wire phantom. The coor-
dinate system of the preoperative MR image and the coordi-



nate system of the intraoperative field are related by a rigid
registration performed by the neuronavigator at the beginning
of the neurosurgical procedure. This rigid registration isba-
sed on surface matching between preoperative MR image and
the position of points acquired on the patient’s head. All re-
sults presented in experiments on synthetic deformation and
real data sets were obtained with the same parameters at each
step of the workflow. At present, except the lesion segmenta-
tion during the preoperative stage, the processing workflowis
fully-automatic. The computational times obtained on a Dual-
Core Intel(R) Pentium(R) D CPU 3.40GHz for reconstructed
US volumes with voxel size of (0.3,0.3,0.5) mm were : less
than one minute for the reconstruction, around one minute for
the US denoising and for the rigid registration, and less than
3 minutes for the non rigid registration.

4. EXPERIMENTS ON SYNTHETIC DEFORMATION

4.1. Evaluation framework

The quantitative evaluation of the proposed non rigid
registration is based on simulated brain deformations. This
simulation builds on properties of real brain deformations
occurring during neurosurgery before lesion resection : the
mean magnitude of the deformation (quantified around3 and
4 mm in [3, 1]), the location of the maximal deformation
(usually located under the craniotomy) and the cerebral falx
stability. First, a neurosurgeon manually defined a realistic
displacement for ten control points according to the mentio-
ned properties of real brain deformations. The movement of
the control points near the lesion under the craniotomy were
chosen around 5.25 mm and the movement of the control
points near the cerebral falx inferior to 1 mm. Then, the
movement of the control points was extrapolated over all
the volume thanks to thin plate spline functions (see Fig.
2). The parametrization of the extrapolation differs from the
proposed parametrization in order to perform fair evaluation.
Magnitude of the applied deformation is shown at bottom

Fig. 2. Synthetic deformation. Left : Initial images used for the
experiment. Right : Images warped with the simulated deformation.

left of figure 3. The magnitude was computed as the mean
Euclidean distance between the original image and the de-
formed image over all voxels with intensities different to0
and on the control points. The mean displacement over all the
volume was2.84±1.11 mm with a maximal of5.25 mm near
the lesion. The mean displacement of the control points was
4.07 ± 1.17 mm with a maximum of5.26 mm.

4.2. Quantitative results on synthetic deformation

The quantitative evaluation was performed by computing
residual error after non rigid registration of the deformedUS
image and the preoperative MR image. The residual error was
estimated as the mean Euclidean distance between the ap-
plied simulated deformation and the deformation estimated
by the proposed non rigid registration procedure. After non
rigid registration, the residual error over the volume decrea-
sed from2.84±1.11 mm up to1.48±0.56 mm. The residual
error on the control points decreased from4.07± 1.17 mm to
1.49 ± 0.66 mm. Figure 3 shows the result of the non rigid
registration.

Before non rigid registration After non rigid registration

Fig. 3. Synthetic deformation. Top : Overlay of the denoised US
and the resliced MR images before and after non rigid registration.
Bottom : Distance norm between the US and MR images before and
after non rigid registration.

5. RESULTS ON INTRAOPERATIVE DATA

The proposed approach was evaluated on 4 patient data-
sets.The accuracy of the registration was visually checkedby
the neurosurgeon over the volumes. According to the neuro-
surgeon, the overlay of the modalities was improved after ri-
gid and non rigid registration procedures in all cases. Table

Table 1. Result of the overall workflow for 4 patients.
Patient Rigid registration Non rigid registration

Estimated error Estimated deformation
1 5.72 mm 2.71± 1.03 mm
2 4.94 mm 3.74± 1.19 mm
3 6.50 mm 1.81± 1.02 mm
4 7.63 mm 0.09± 0.11 mm

1 shows the quantitative results obtained for the four patients
after rigid and non rigid registration. These estimations were
computed as the mean Euclidean distance over all the voxels
before and after registration. The estimated errors produced
by the neuronavigator were significantly higher than the er-
rors reported in the literature (< 3 mm [6]). This difference



may be due to the clinical context of our study where the
constrains differ from phantom studies. The magnitude of the
estimated non rigid deformations was close to the deforma-
tion reported by others studies [3, 1, 2]. According to the neu-
rosurgeron, in all cases, the rigid registration greatly improved
the registration of the US and MR images performed by the
neuronavigation system. Figures 4 and 5 show the result of
the registration for patients 1 and 3.

Before opening the dura
Estimated error :5.72 mm

Before rigid registration After rigid registration
After opening the dura

Estimated deformation :2.71± 1.03 mm (max = 5.54 mm)

Before non rigid registration After non rigid registration

Fig. 4. Patient 1 with a cavernoma in prefrontal area. Top : result of
the rigid registration before opening the dura. Bottom : result of the
non-rigid registration after opening of the dura.

Before opening the dura
Estimated error :6.50 mm

Before rigid registration After rigid registration
After opening the dura

Estimated deformation :1.81± 1.02 mm (max = 4.26 mm)

Before non rigid registration After non rigid registration

Fig. 5. Patient 3 with a cavernoma in central area. Top : result of
the rigid registration before opening the dura. Bottom : result of the
non-rigid registration after opening of the dura.

6. CONCLUSION

This paper presented a global framework designed for
brainshift compensation. The proposed workflow is based on
3D freehand ultrasound imaging and 3D multimodal regis-
tration of US and MR maps at each step of the neurosurgi-
cal procedure. The multimodal registration is performed by
matching the hyperechogenic structures of the brain. Quanti-
tative evaluation with synthetic deformation was proposedto
quantify the accuracy of the non rigid registration. The mean
accuracy is estimated around1.5±0.5 mm over the registered
volumes. Experiments on 4 patients with various pathologies
show that our approach efficiently corrects the error perfor-
med by the neuronavigation system and fully-automatically
compensates for the brainshift during intraoperative stage.
The mean error of the neuronavigation system is estima-
ted around6.19 mm on the four studied cases. The mean
deformations after opening the dura are estimated around
2.75 ± 1.08 mm when brainshift occurred. Further inves-
tigations need to be pursued on quantitative validation for
the estimated deformations on real data sets. The proposed
workflow takes around 2 minutes 30 seconds to correct the
error of the neuronavigator system and around 4 minutes to
compensate the brain deformations.
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