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Abstract— Several studies dealing with ICA-based BCI systems signal is recorded from intracranial microelectrodes [31p
have been reported. Most of.them have only explored a limited tg now, a majority of practical BCl systems exploit EEG
number of ICA methods, mainly FastiICA and INFOMAX. The signals and ECoG signals [44] [31]. Indeed, since MEG,

aim of this paper is to help the BCI community researchers, espe- -
cially those who are not familiar with ICA techniques, to choose fMRI and PET are expensive and bulky, and as fMRI, PET

an appropriate ICA method. For this purpose, the concept of ICA and NIRS present long time constants (they do not measure
is reviewed and different measures of statistical independencear neural activity directly but rely on the hemodynamic coogli
reported. Then, the application of these measures is illustrated petween neural activity and regional changes in blood flow),
through a brief description of the widely used algorithms in the they cannot be deployed as ambulatory BCI systems. Several

ICA community, namely SOBI, COM2, JADE, ICAR, FastICA D .
and INFOMAX. The implementation of these techniques in the varieties of neurological phenomena are used by BCI systems

BClI field is also explained. Finally, a comparative study of these They include EEG rhythms such &u, Alpha Beta Event-
algorithms, conducted on simulated EEG data, shows that an Related Synchronization/Desynchronization (ERS/ERD-ph

appropriate selection of an ICA algorithm may significantly nomena, P-300 component of the Evoked-Related Potentials

improve the capabilities of BCI systems. (ERPs), Slow Cortical Potentials (SCPs), Steady-StataaVis
Evoked Potentials (SSVEPS), etc. (see [31, table 3] foiildgta
|. INTRODUCTION Fast and reliable signal processing tools for preprocgdsia

Brain Computer Interface (BCI) technology is a researdiecorded data and for extracting significant features areialr
field that has emerged and grown rapidly over the past Ib the development of practical BCl systems. Independent
years (see [44], [31] and [8] for a review). The BCI syster@omponent Analysis (ICA) [14] is one of the popular signal
is a set of sensors and signal processing components thmatcessing tools, which has been widely studied during the
allows acquiring and analyzing brain activities with theabo last twenty years. Indeed, a great number of algorithms is
of establishing a reliable communication channel directigvailable and ICA received a broad attention in various gield
between the brain and an external device such as a compwach as biomedical signal analysis and processing [33éma
neuroprosthesis, etc. More precisely, the basic design aedognition [18] and wireless communications [20]. In this
functioning of any BCI system are depicted in figure 1. The

brain activity is recorded by means of electrodes locatethen itiin Comanie? Iiere Syiem

scalp (non-invasive BCI systems) or by implanted electsode - Signal Processing
placed, in general, in the motor cortex (invasive BCI sysiem Aot on| g AFreprocesmgh| Feae L e
[8]. A preprocessing step is applied to enhance the Signal to g o
Noise Ratio (SNR) and to remove artifacts, such as power - HE
line noise, electrode movements and broken wire contagts, b ‘ Applications
also interfering physiological signals as those relatencidar, ' 7 gﬁg:{%}?{?;
muscular and cardiac activities. Then the feature extracti = —

step is conducted to detect the specific patterns in braivitgct F'9- 1+ Basic design and operation of any BCI system.

that encode the user’s commands or reflect the patient'srmoto

intentions [44] [31]. The last step is aimed at translating. ( paper we focus on the use of ICA in BCI systems. Several
associating) specific features into useful control sigtalbe studies dealing with ICA-based BCI systems have been re-
sent to an external device. Several existing brain momigori ported during the last decade [31]. Nevertheless, mosteskth
technologies have been tested in BCI fields for acquiring.dastudies have only explored a limited number of ICA methods,
They can be divided in two subcategories: i) non-invasivand mainly FastICA [25] and INFOMAX [30]. In addition, the
procedures such as the ElectroEncephaloGraphy (EEG), Magfformance of ICA algorithms for arbitrary electrophysg
netoEncephaloGraphy (MEG), functional Magnetic Resoeanical sources is still almost unknown. This prevents us from
Imaging (fMRI), Positron Emission Tomography (PET), andhoosing the best method for a given application, and may
Near Infrared Spectroscopy (NIRS) and ii) invasive apimit the role of these methods in BCI systems. To overcome
proaches such as the ElectroCorticoGraphy (ECoG) where these limitations, the purpose of our study is i) to show the
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interest of ICA in BCl, ii) to identify ICA techniques thater as a criterion for ICA is introduced by Erdogmus et al. [17].
appropriate to BCI, iii) to present a comparative perforogan Note that Renyi's entropy is not yet proved to be better than
analysis of six algorithms in BCI operational context, am) i Shannon’s to address the BSS problem [41].
to build a reference for BCl community researchers, espigcia The previous list of ICA methods is not exhaustive, which
for those who are not experts of ICA techniques. shows that a great deal has been written on the subject.
However, most of the ICA-based BCI systems presently use
only FastICA [25] or INFOMAX [30]. So, after a brief survey
of the concept of ICA, we propose hereafter to help the BCI
Hérault and Jutten seem to be the first (around 1983) to ussentists to choose the most appropriate ICA method among
informally the concept of ICA, especially in order to solvea class of six algorithms, namely INFOMAX [30], FastICA
the BSS problem [4]. A few years later, Comon presenfg5], COM2 [14], JADE [10], SOBI [7] and ICAR [1].
a mathematical formulation of ICA and shows how Higher
Order (HO) cumulants can be used to solve the problem Xf
ICA: the HO contrast-based method COM2 arises from this
work (see [14] and references therein). In parallel, Casdos As it Will be presented in section Ill, ICA is very useful
and Souloumiac develop the JADE algorithm [10], basdf the case of non-invasive BCI systems. Such BCI systems
on a Joint Approximate Diagonalization (JAD). While thesgenerally exploit EEG which has a high time resolution (taelo
two approaches use both Second Order (SO) and Foul#0 ms). This temporal precision allows to explore the tgnin
Order (FO) statistics, other approaches attempt to expioit Of basic neural processes at the level of cell assemblies.
statistics only. This is made possible thanks to the color More particularly, EEG consists of measurements of a set
the sources, assumed unknown but different. Fety is thedirstof IV electric potential differences between pairs of scalp
exp|0it covariance matrices at two different delay |agg,[me electrodes. The sensors may be either direCt|y glued tokihe s
complete theoretical background is given only a few yeaes [aat selected locations right above cortical regions of ger
by Comon et al. [15]. The same kind of approach is develop8§ the motor area for instance, or fitted in an elastic cap for
independently several years later by Tong [40], Beloudheain rapid attachment with near uniform coverage of the entire
al. [7] and Ziehe and Miler [49], who give rise to the so-calledscalp. Research protocols can use up to 256 electrodes. Then
AMUSE, SOBI and TDSEP methods, respectively. In 1998¢e N-dimensional set of recorded signals can be viewed as
Miller et al. propose a modified version of JADE, which usée realization of a random vector procgssm]}..c . The
the color of sources through both SO and FO statistics. MdfeA of {z[m]}nc consists in looking for an overdetermined
recently Albera et al. present an extension of SOBI to FGVxF) mixing matrix A (i.e. P is smaller than or equal o)
statistics [20], called FOBIUM, dealing with ICA especiall @hd a P-dimensional source vector procgsign]},,c whose
in underdetermined contexts (more components than obser¥@mponents are the most statistically independent astgessi
tions). Authors also propose an algebraic method [1], nam&@ that the linear observation model below holds:
ICAR, using the matrix redundancies of the FO covariance Vm, @m] = A s[m] + v[m] 1
matrix, well-known as the quadricovariance matrix. As peth ’
out by Parra and Sajda in [36], under the assumption of nomhere {v[m]},,c is N-dimensional noise vector process
Gaussian, non-white or non-stationary sources, ICA can belependent from the source process; bold faced lowercases
easily reformulated as a generalized eigenvalue problem. denote vectors, whereas bold uppercases denote matnices. |
Whereas the previous methods identify simultaneously toéher words, ICA consists of searching fof & x P) separator
independent components, Delfosse and Loubaton [16] peopasatrix W, such thaty,[m] = W, x[m] is an estimate of
to extract one component at a time, which is now referred to e source vectos[m]. It is worth noting that oncey [m] is
deflation procedures. A few years later, Hyvarinen et al- proomputed, only its components of interest for the consitlere
pose the FastICA method, which iteratively maximizes a FBCI application have to be selected. This task is dealt with i
contrast. While the first version of this algorithm is of daflat section IlI-E. Now how can one justify model (1) in practice?
type, as that of Delfosse and Loubaton [16], Hyvarinen et al. Let’s consider the instance of subjects who would learn how
[25] propose later a "simultaneous” version of FastiICA wénodo control the amplitude oMu waves by visualizing motor
joint orthonormalization step is similar to the one presdnt activities, such as smiling, chewing, or swallowing. When
by Moreau [34]. Instead of exploiting, explicitly or impility, people move their hands a brain wave called ke wave
the SO and the FO statistics to solve the problem of ICAjets blocked and disappears completely. Such a suppression
some approaches use directly the independence assuniptiolso occurs when a person watches someone else waving his
fact, Lee et al. present an information maximization appihoahand, but not if he/she watches a similar movement of an
[30] based on parameterized probability distributionst thananimate object. These people could thus learn how to drive
have sub- and super-gaussian regimes to derive a generaursor up or down on a computer screen by controlling
learning rule, which is optimized using a natural gradiebe amplitude ofMu waves. In such an example, when non-
algorithm proposed by Amari et al. [3]. Pham proposes fovasive measurements as EEG are used, the surface sensors
use non-parametric estimates of the likelihood or the mutuacord the result of thélu wave diffusion from the motor
information [37]. Another algorithm, based on a minimipati cortex towards the scalp, corrupted by artifacts such as eye
of a non-parametric estimator of Renyi’'s mutual informatiomovements. The diffusion of electromagnetic waves in the

Il. TwWO DECADES OFICA

The concept of ICA
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head is now well-known by the biomedical community andonsistent estimators of PDFs (as Parzen estimators [he]),
can be modeled as a linear static transformation [2]. Asdar mtegral computation (3) is time consuming.
the artifacts are concerned, they can be considered asvaddit The INFOMAX and FastICA methods succeed in avoiding
perturbations whose weightings depend on the physiolbgithis exact computation. On one hand, INFOMAX solves the
nature of the artifacts. Eventually for this instance, otilg ICA problem by maximizing the DE of the output of an
statistical independence between tfle wave and the other invertible non-linear transform ofy[m] = W'xz[m| with
sources is crucial since only tivu wave is of interest for this respect toW using the natural gradient algorithm [3]. In
BCI application. In fact, it can be justified by the physidloy practice, non-linearities whose derivative are sub-Gauoss
independence between thki wave and the other sources sucliresp. super-Gaussian) PDFs are sufficient for sub-Gaussia
as ocular and cardiac activities. (resp. super-Gaussian) sources [30]. On the other hand, in
its deflationary implementation, FastiCA extracts theh
(1 <p < P) source by maximizing an approximation of the
negentropy.J (w, x[m]) with respect to the i/ x 1) vector
One of the fundamental questions one should ask onesglf. This maximization is achieved using an approximate
in order to choose the most appropriate ICA method in a B®lewton iteration. To prevent all vectoss, from converging
context is how to characterize the statistical indepenel@ic to the same maximum (which would yield several times the
a set of P random signalgy,[m]}..e When one realization same source), thg-th output has to be decorrelated from the

B. A class of statistical tools to perform ICA

of each signal is available. previously estimated sources after every iteration. A &mp
Entropy and information. First, recall that a random vec-way to do this is a deflation scheme based on a Gram-Schmidt
tor y = [y1,--- ,yp]" has mutually independent componentsrthogonalization.

if and only if its Probability Density Function (PDR), can Another way to avoid the exact computation of the negen-
be decomposed as the product of themarginal PDFsp, , tropy consists in using another measure of statisticaldade
wherep, denotes the PDF of thg-th componenty, of y. dence less natural but easier to compute. ddgrastfunction
Then a natural way of checking whethgrhas independent [14, definition 5] built from the data cumulants satisfiessthi
components is to measure a pseudo-distance betwg@md condition. Let's recall the definition of cumulants and det’
[I, py,- Such a measure can be chosen among the large clgissw why they are so attractive tools in the ICA framework.
of f-divergences. If the Kullback divergence is used, we get Cumulants. Let ®,(u)=E[exp(iu’x)] be the first charac-
the Mutual Information (Ml) ofy: teristic function of a random vectar. Since®,(0)=1 and®,,
is continuous, then there exists an open neighborhood of the
Mi(py) — / py () log< Ppy(u) ) du (2) origin, inwhich W, (u)=log(®s(u)) can be defined. Remind
N [1=1 Py, (w) that ther-th order moments are the coefficients of the Taylor

It can be shown that the MI vanishes if and only if the expansion ofb,, about the origin; similarly cumulants, denoted

: g by C, ;.. 0., are the coefficients of the second characteristic
components ofy are mutually independent, and is Stmtlyfunction U,. For a N-dimensional random vectog, SO

positive otherwise. . . S
: . . cumulants can be arranged in AX/V) matrix, which is the
E ,?nothe[r)rgeafsu.re based on the PDFyofs the Differential o)\ ynown covariance matrix denoted byR.. In the same
ntropy (DE) ofy: way, it is possible to store the FO cumulantsroih a (NV?<V?)
matrix, Q,,, called thequadricovariance matrix
S(y) =— /N py(u)log(py(u)) du = —Eflog(py)]  (3) gyt why are cumulants useful to build a good optimization

. L criterion dedicated to the extraction of independent compo
sometimes referred to as Shannon’s joint entropy, wWiigfe ,onts2 Why are they more appropriate than moments? This

denotes the mathematical expectation. This entropy IS NQfneq essentially from two important properties: i) if @se
invariant by an invertible change of coordinates, but only B, components or groups of componentsecre statistically
orthogopal transforms. A fundamental result in 'nform'at'oindependent, then all cumulants involving these companent
theory_ 'S that the DE can be used as a measure O_f NAe null. For instance, if all components sf are mutually
gaussianity. Indeed, among the random vectors having iﬂﬁependent, thew, ;... ¢o = Oli, 5.+ ] C.i i.wr Where
invertible covariance matrix, the Gaussian vector is the og, o Kroneckers|i j’- 4 equals1 when all its érguments
. 1 JY )
that has the largest entropy. Then, to obtain a measure of NgR, eqyal and is null otherwise. And i) # is Gaussian,
gaussianity ofy that is i) zero only for a Gaussian vectory,an o jts HO cumulants are null. So HO cumulants may

li) always positive and iii) invariant by any linear invéste o qeen a5 4 distance to normality. Note that moments do not
transformation, one ofte_n uses .a normalized version of tae Denjoy these two key properties. On the other hand, moments
callednegentropyand given by: and cumulants share two other useful properties. iii) They
J(y) = S(z) — S(y) (4) are both symmetric arrays, since thg _valge of their entries
does not change by permutation of their indices. Consetylent
where z stands for the Gaussian vector with the same me#), and @, are necessarily symmetric matrices. Lastly, iv)
and covariance matrix ag. Since Ml and negentropy aremoments and cumulants satisfy the multi-linearity propert
simply related to each other [14], estimating the negentrof32]. To illustrate this, letx be a random vector satisfying

allows to estimate the MI. However, even if we have at hand= As, where A is a (N x P) matrix ands a random vector
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with statistically independent components. We know that tltonvergence. However, such an assumption is very rarely
(Px P) covariance matrix ok, R, is diagonal, and that the fulfilled in biomedical contexts and a consistence analisis
covariance matrix oft may be written as: difficult in the presence of such complex biomedical signals

R —AR.A" ) But the good behavior of FastiICA, COM2 and JADE give_'n

® s by recent computer results [29] shows that the stationnarit

Actually, this is nothing else but the expression of the multergodicity assumption is not absolutely necessary. As $ar a
linearity property at order 2. Similarly at order 4, one ca@OM2 and JADE are concerned, even if the sample statistics
define a P x P) diagonal matrix, containing marginal source do not estimate accurately the cumulants of the data, tliey st
cumulantsC,, ,, » ».s- Then, from properties i), iii) and iv), one satisfy reasonably well the above mentioned basic pragerti
can deduce thaf), has the following algebraic structure: i) to iv).

Q.=(A0A)( (Ao A) (6)

where denotes the column-wise Kronecker product [1] This section aims at giving some insights into the numerical
Now, r-th order cumulants can be related to moments ef

. ; lexity of the six ICA algorith ied in thi
order smaller than or equal to using the Leonov-Shiryaev omplexity of the six ICA algorithms studied in this paper,

; la 1321 For inst f d tfor given values ofN, P and data length\/. The numerical
ormula [ _]‘ or Instance, for any zero-mean random vec %mplexity of methods is calculated in terms of number of
x symmetrically distributed, we have:

floating point operations (flops). A flop is defined as a mukipl

C. Numerical complexity

Cijo = Elziaj] cation followed by an addition; according to the usual pcagt
Cijktae = Elxizjayas— Elx;x;]Elxy ] (7) only multiplies are counted, which does not affect the ofer
—E[z; xk|E[z; x¢] — E[z; x¢]E[z; x4] magnitude of the computational complexity. Now denote by

Now r-th order moments of a stationary-ergodic process Jé(P) = P(P+1)(P+2)(P+3)/24 the nu_mber_of free_ en_tnes
not depend on time and can be easily estimated using sam |@ fourth prder cumulant tensor of d|menS|fEh enjoying.
statistics [32]. The SOBI, COM2, JADE ans ICAR method& SYmmetries/t the number of sweeps required by a joint
perform ICA from the cumulants of the data. More preciselg'agqnahzat!or? process (S.OBI’ JADE, ICAR) or by contrast
SOBI uses the SO cumulants while COM2 and JADE udunction optimization algorithms (COM2)I" the number of

both the SO and FO cumulants. As far as ICAR is concerndtf'@y 1ags used in SOBY the maximal number of iterations

it uses only the FO cumulants of the data. Next, SOB?,o'nsidered in iterative algorithms (FastlCA, INFOMAX),

JADE and ICAR take advantage of the algebraic structup%e complexity r.equired to c.ompute.the roots of a real 4th
of the covariance (5) and/or quadricovariance matrices ( egﬂree ponr&oBmlaI l?y T\erifa;'s te:zk\lfrglque évﬁﬂ?aﬁ%(f
they consider the problem of ICA as a generalized eigenvalgié I0PS); andB = min{MN=/2+4N"/3+ f,2MN"}
problem [36], while COM2 explicitly maximizes a contras € ”“mbeT of flops required to perform spatial whitening.
function based on the FO cumulants of the data by rootiﬁ%‘en for_glven values_q’rN, P, M It.’ T, J and B t_hg
successive polynomials. Finally, SOBI, JADE and ICAR use mputational complexities are given in table I. It is difflic
the JAD method to extract the independent components. TABLE |

To anCIUder:h:js SeCtionvhlet Lrj]s comparehthef Six preViolusw NUMERICAL COMPLEXITY OF THE SIX ANALYZED ICA METHODS
seen ICA methods to each other. First, the four cumulant-

based algorithms constitute a semi-algebraic solutiorhéo { Algorithms || Flops |
ICA problem, in the sense that they terminate within a finite SOBI TMN?/2+4N3/3 + (T — 1)N3/2+
number of iterations. On the contrary, INFOMAX and FastICA ItP?[4P(T — 1) + 17(T — 1) + 4P + 75]/2
are iterative methods, whose convergence to local optimg is COM2 B +min{121¢fs(P)P? + 21tP°+

3M f4(P) + MP2,13[tM P2 /2} + ItP%2Q/2
JADE B+ min{4P%/3,8P3(P? + 3)}+
3M f4(P) + ItP%(75 + 21P + 4P?) /2 + M P?

possible. Moreover, all these methods except ICAR can &xtra
components whose FO marginal cumulants have different

signs. The latter scenario may occur in biomedical contexts—car 3Mf1(P)12N®/3+ P2(3N2—P)/31 N2Py
Another difference is the need for a spatial whitening (also P2N34+7P2N24[tP2(4N*—8N3+25N2)/2
called standardization) [14, section 2.2]. This prepreces FastICA B+ J2P(P + M) + 5M P? /2]
based on SO cumulants, is mandatory for FastiCA, COM2INFOMAX B+ J[P3 + P? 4+ P(5M +4)]

JADE and SOBI. It is not necessary but recommended in

INFOMAX, in order to improve its speed of convergencéo compare computational complexities because the input
[25, Chapter 9]. Regarding ICAR, it uses only FO cumulanigarameters are different. But one can say that for a comigarab
without any standardization. Consequently, it is asynigatly performance, SOBI requires a smaller amount of calculation
insensitive to the presence of a Gaussian noise with a ndgwhen the requested assumptions are satisfied), the veerati
diagonal covariance matrix. In addition, contrary to thee fivalgorithms INFOMAX and FastICA require generally a larger
other methods, SOBI needs that all sources are not teamount of calculations, whereas COM2, ICAR, and JADE
porally white, which is generally satisfied by BCI systemsappear close to each other in the picture. See [13] [48] for
Eventually, these six methods, namely INFOMAX, FastICAnore details. The number of electrodes used in BCI systems
COM2, JADE, SOBI and ICAR, require the stationarity€an vary for example from one electrode [27] to 41 electrodes
ergodicity assumption to ensure an asymptotical mean squfa4]. However, in the perspective of using BCI systems in
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ambulatory conditions, a reduction of the number of sensd@A to P-300-based BCI systems is two-fold: i) to denoise
N is necessary. Regarding the number of sampgléswe the EEG signal in order to enhance the SNR of the P-300 and
can say thatM is generally low (between 300 snapshots) to separate ERP responses to target and non-target ones.
to 5000 snapshots). Most BCI systems exploit four types of The first point was considered by Bayliss and al. in [5].
neurophysiological signals, namely P-300 ERP, SSVEP aaAdthors described an experiment demonstrating the existen
EEG rhythm. These signals have generally a short time stippof a P-300 wave when facing red stoplights and the absence of
(a few seconds) with a sampling rate that generally varidsis signal when facing yellow stoplights in a virtual drigi
between 100 Hz and 1000 Hz. As an example, the numeriesvironment. The P-300 wave occurs if the red stoplights are
complexity of the six studied algorithms is calculated im odess frequent than the yellow stoplights and the subjectkisd
experiment (described in section 1V), where the ICA techgiq to stop his virtual car at the red light. The data were readbrde
is used to extract and denoise thu activity. The input from eight electrodes (Fz, Cz, CPz, Pz, P3, P4 as well as
parameters of table | ar& = 6, P = 3, M = 5120 (trial two vertical EOG channels). Bayliss et al. pointed out that
duration equal t@0s with sampling rate of 256 Hz)[" = 5, most of artifacts were due to eye movements. They showed
@ = 30, It = 6 for SOBI, It = 4 for COM2, It = 7 for that an ICA technique was able to separate the background
JADE, It = 11 for ICAR, J = 60 for FastlCA, J = 31 for EEG signal and eye movements from the P-300 signal. Indeed,
INFOMAX, f4(P) =15 and B = 184608. These parametersafter training the mixing matrixA of equation (1) on the first
have been chosen so as to allow each algorithm to perfosaven trials, matrixA was then used to find sources of the red
reasonably well. Thus the numerical complexity of SOBRr yellow lights. Note that the decision whether the obtdine
COM2, JADE, ICAR, FastICA and INFOMAX is aboit10°, source represents a P-300 ERP or not was set by correlation
5.10°%, 5.10°, 5.10°, 3.10° and 3.10°, respectively. Clearly, with the red and yellow light signal references obtainedpfr
for this specific example, SOBI, COM2, JADE, and ICARprior controlled experiment, by averaging the EEG recolided
require a smaller amount of calculations, whereas INFOMAPed light and yellow light trials, respectively (when thebfact
and FastICA need a larger amount of calculations. ran a red light, the trial was canceled). Authors showed that
the ICA performance was similar to that obtained by a robust

[1l. WHY ICA-BASED BCI SYSTEMS A BIBLIOGRAPHICAL Kalman filter.

SURVEY In [45], Xu et al. dealt with the second point and proposed

Promising results have been reported in biomedical sigrfdl €nhance the P-300 wave detection in the P-300 speller
processing using ICA techniques. They include fetal ECBRradigm (described in [19]) used to record the databasef I1b
extraction, Evoked Potentials (EP) enhancement, categgbri _BCI_Competltlon 2003 [_9]. Brlefl_y,_the experiment consisted
brain signals detection, spindles detection and estimagiod N displaying a(G x 6) grid containing letters on a computer
EEG/MEG artifacts reduction. Therefore, it appears natiora monitor. The user was asked to select a letter in an alphabet
consider ICA techniques as a potential tool for building BG}Nd to count the number of times that a row or column
systems. Four types of neurophysiological signals have pdPntaining thg letter flashes. Flash'es qccurred at aboutz10 H
mainly investigated in this context: the P-300 ERP, the SgvEANd the desired letter flashed twice in every set of twelve
the EEG oscillation rhythms and the ERS/ERD phenomendck’.‘Shes' As classical met_hods for en_hancmg the detection of
The aim of this section is to provide an overview of icaP-300 componenfcs are time consuming, authors proposed to
based BCI systems, to show how the ICA technique can H§€ @n ICA technique in the training phase . The 64-raw EEG

applied and how the informative independent components cZiipnnels were first filtered through a 2-8 Hz bandpass filter,
be automatically chosen. the data dimension was reduced from 64 to 22 by means of

PCA, then ICA was applied on the dimension reduced data
, to derive a(22 x 22) mixing matrix, A. Thus the trained
A. P-300 evoked potentials matrix A was used in the testing phase in order to identify
P-300 is a positive ERP, which occurs over the pariette target P-300 responses. The key issue of this study is the
cortex with a latency of abous00 ms after rare or task- selection of the meaningful Independent Components (ICs).
relevant stimuli. The P-300 can be obtained in all stimuluadeed, according to tha priori physiological knowledge,
modalities (auditory as well as visual and somatosensaiythors proposed two additional post-processing stepselya
modalities) and can even be produced by the omission the temporal manipulation of ICs and the spatial manipoitati
a stimulus in a regular train of stimuli [35]. The P-300 hasf ICs (see [45, section Il] for details). They showed that th
useful properties, which make it very interesting for BCproposed algorithm for P-300 detection based on ICA pravide
applications. For example: i) the P-300 is parietally madim a perfect accuracyl00%) in the competition.
with amplitude inversely related to the relative probabpibf
the evoking stimulus, and directly related to its task rafee,
and ii) the latency of the P-300 correlates to some exterit w
categorization or evaluation of the stimulus and consetlijyen The Auditory Event-Related Potential (AERP) is the brain
is related to the task-difficulty [35]. Due to the poor SNR asesponse time-locked to an auditory stimulus. AERPs arg ver
well as to the presence of artifacts (such as ocular, muscusanall electrical potentials [35] (2-1Qv for cortical AERPs
and cardiac activities), the P-300 wave can be buried in th® much less than 1uv to the deeper structures). Their
signal collection. Hence, the main objective when applyingw voltage combined with relatively high background EEG

B. Auditory event-related potentials
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activity and other artifacts requires the use of highly games from 9 Hz to 17 Hz. One-minute-long data were recorded,
amplifiers and robust signal processing techniques foridendn each test with different simulation frequencies, from 13
ing and for extracting significant features. The use of AERR&annels located between Pz and Oz (electrodes positioned
in BCI systems is motivated by some particular problenwver visual cortex). ICA was then applied to EEG signals
encountered in communication with patients suffering fromnd 13 ICs were derived, and the associated mixing matrix
severe motor disabilities. In some severe cases, the egesveas then estimated. The power spectrum of each IC was
completely immobile and the pyramidal cells of the motoanalyzed and the four most significant powers at stimulation
cortex are degenerated. Thus, the BCI paradigms using fhequency were supposed to be related to SSVEP signals and
visual modality or the imagined-movements signals becorttee remaining powers were considered as the contribution of
too limited. Hill et al. presented in [24] an experiment omackground noise. Two groups of EEG signals were then
healthy subjects, based on AERPSs, to develop BCI systemsrécgonstructed from the source mixture and these two kinds
their study, two auditory stimuli were presented to 15 Healt of sources , namely the SSVEP and background activity
untrained subjects: i) the right-ear sequence consistetgbf groups, respectively. Thus, one bipolar derivation witfhleir
beeps (pure frequencies) at 1500 Hz (non-target) and 1650 ¢derelation of background activity and lower correlatioh o
(target) and i) the left-ear sequence consisted of sevepsheSSVEP signal was selected as thgtimal derivation. Authors
at 800 Hz (non-target) and 880 Hz (target), starfiigns after also showed that their method had been successfully applied
the onset of the right-ear sequence. EEG signals were redortb a BCl-based environmental controller presented in [22].
using 39 electrodes and eye movements were recorded by
means of an electrode positioned on the side and sligh
below the left eye. All trials were first visually inspecteadl t
reject those corrupted by large artifacts. The retainealstri EEG contains a fairly wide frequency spectrum. Never-
were then classified using a Support Vector Machine (SVM)eless, the relevant frequency range from the psychophys-
technique. To evaluate the performance of the classifier, tiological viewpoint lies between 0.1 Hz and 100 Hz [35].
retained trials from a single subject were split up into tefix important waves are categorized by their frequency band
non-overlapping partitions of equal size: each partitiomsw or their location:Alpha (8-13 Hz), Beta (14-30 Hz), Theta
used in turn as a test set for evaluating the performanceeof (#-7.5 Hz), Delta (0.1-3.5 Hz), Gamma(above 30 Hz), and
classifier trained on the oth86% of the trials. Before starting Mu, which is in the same frequency band Afpha (the
the SVM classifier, ICA was applied to the training set anghost common frequency of thilu rhythm is 10 Hz), but
a (40 x 40) mixing matrix A was obtained. This matrix wasMu wave has a spacial distribution essentially confined to
used to extract ICs of both the training set and the testitige precentral-postcentral region (activity focused awetor
set. The SVM classifier was then trained and tested. Autha@srtex). Several factors suggest that the EEG rhythms could
compared the performance of the classifier with and withobe good signal features for BCI systems. Indeed, all waves
ICA. They reported that ICA generally improves the result upre usually associated with specific activity. For example,
to 14 %. Betarhythm is associated with active thinking and attention,
the Thetarhythm is associated with emotional processes, the
posteriorAlpharhythm is temporally blocked by an influx of
light (opening the eye) and other mental activities ( [35])la
The visual system can be studied non-invasively by recortilu is affected by movements or movement imagery. The reac-
ing scalp EEG overlying the visual cortex. These potentialiyity of EEG by short-term attenuation and intensification
constitute the Visual Evoked Potentials (VEPs) and refleet tpower in particular frequency bands is labeled Event-Rdlat
output features of the entire visual pathway [35]. The SSVHPesynchronization (ERD) and Event-Related Synchrororati
is the response of a continuous rapid visual stimulus [3HERS), respectively. Several studies using ICA to extra o
Typically, the visual stimulus is generated using a fregyenspecific feature or feature subsets, have been conducted. We
of 9 Hz to 17 Hz Fs) flashing lights. This high simulation decided to present in detail two studies.
rate allows saving time and thereby makes SSVEP attractiveThe first one [39] is a pilot study aimed at classifying
for BCI applications. The Fourier analysis is one of thenotor imagery for BCI systems, using ICA as a spatio-
conventional methods used for studying the SSVEP. Indeg¢eimporal filter. More precisely, the study was focused on the
a typical power spectrum of SSVEP wave, introducedHsy Mu rhythm which decreases or desynchronizes with movement
Hz stimulation, presents fundamental harmonics and secamdmovement imagery (an ERD appears in contralateral brain
harmonics atFs and Fs, respectively. However, due to theregion). Authors conduct an experiment where the subject
small amplitude of SSVEPs these harmonics can be drowneds asked to imagine right or left-hand movement according
in background EEG rhythm. To accurately detect the frequento a timetable. EEG were recorded using 59 electrodes but
of occurrence of SSVEP, an appropriate bipolar derivatianly those located around sensorimotor cortex were used
should be selected. Wang et al. proposed, using ICA, a methindthe study. After a preprocessing step, ICA was used to
for selecting both the signal channel and the reference [48jtract ICs related to the left and the right motor imagery
which enhances the SNR. In their experiment, a blinkinigask. The estimated mixing matrix was then sorted based on
Light-Emitting Diode (LED) modulated by a square waveéhe norm of columns in ascending order. Authors applied
was used as the stimulator with stimulation frequencigngis two source analysis methods to reconstruct equivalentaheur

tl i .
[9./ Mu rhythm and other activities from sensorimotor cortex

C. Steady-state visual evoked potentials
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sources corresponding to the motor imagery (see [39, secttbe vertex region and iii) to use the correlation between the
2.3] for details). Note that only the first IC, correspondingemplate and each column of the inverse unmixing matrix. In
to the first column of the ordered matrix, was used in thihe second algorithm, authors show tha ipriori knowledge
source analysis step. Authors showed that mixing ICA plagbout the spatial projections of some sources is available,
an important role in extracting a useful feature that id@#i then it can be incorporated into the ICA model by means
the imagined hand movement. A promising classification rabé constraints on some columns of the mixing matrix; this
(about 80%) of left or right-hand movement imagery wasprovides an assistance to the component selection (see [26]
obtained on human subject studies, based only on a sinfge details).
trial and without any training procedure. Another method allowing to select the components of inter-
The second study [27] is interesting because ICA wast consists in exploiting the spectral information of joattr
applied to only one recording channel. The 2003 internatiorsources. As in the case of BCI systems using the EEG rhythm,
BCI competition database Il [9] was exploited by authors toe have some ideas about the spectral information on the
show that a rhythmic activity between 8 Hz and 12 Hz carelevant components we wish to extract. For example, in,[27]
be extracted in the case of hand imagined movements. Tdghors select the source of interest by using a mere FT of
goal of the study was to control a feedback bar by meamach column of the obtained mixing matrix. All components
of imagined left or right-hand movements. ICA was thenorresponding to columns with a peak in the 8-12 Hz fre-
applied, as above-mentioned, on each EEG signal recordpency band are selected and projected to the measurement
from three electrodes C3, Cz and C4. Authors calculated thpace.
Fourier Transformation (FT) of each column of the obtained
mixing matrix and extracted all components corresponding t |V. COMPARATIVE PERFORMANCE ANALYSIS INBCI
columns exhibiting a peak in the 8-12 Hz frequency band. The CONTEXT
chosen ICs were then projected to th_e mef_isureme_nt space/g_n(é)ata generation
summed. Authors showed, by applying this technique on the

EEG recorded from C3, Cz and C4 electrodes, that an ERD! '€ main goal of this subsection is to explain how to
of activity in the 8-12 Hz band can be clearly identified. obtain realistic data for comparing ICA methods in the crinte

of BCI systems based on théu rhythm (see section llI-
D) when seven surface electrodes are used to achieve EEG
E. How to select the informative independent components?ecordings (see figure 2(a)). In such a context, as depiocted i
One of the challenging tasks in BCI is to reliably detecEeCtiO” [I-A, the surface observations can be considereal as

enhance, and localize very weak brain activities corrujaed N0ISy mixture of one source of interest, namely Me wave,
noise and various interfering artifacts of physiologicaida and artifact sources such as the ocular and cardiac aesiviti

non-physiological origin. The applications presentedobef The mtracer_ebrgMu wave, _Iocated in the motor cortex (see
show that ICA is a promising approach for improving BCI sysigure 2(0)), is simulated using the parametric model of dans
tems. In fact, for these applications, ICA has been sucalgsf [28] whose parametgrs are selecteq to deriMudike activity.
applied for providing feature subsets with high classifaat '€ ocular and cardiac signals are issued from our polysemno
accuracy. However, one important problem that arises whefgPhic database [38]. Concerning the additive noise, it is
ICA is used in practical BCI systems, is to automaticallj’odeled as the sum of the instrumental and physiological
select and classify independent sources of interest. Sleval0iSes. A Gaussian vector process is used to simulate the
experimental advances in BCI select manually the relevgRftrumental noise while a brain volume conduction of 200
ICs or estimate the cross-correlation between ICs and #idependent EEG sources, generated using the Jansen model
reference signals corresponding to the specific features. [£8; is simulated in order to produce a surface background
transform these experimental advances into viable BCI sysEC activity. Finally, the mixing matrix is defined as the
tems, an automatic on-line selection of the relevant ICs §9ncatenation of a two column matrix, modeling the head
necessary. The solution to these problems can be decompo@fime conduction [2] of thevlu and ocular sources, and a
into two stages. In a first step, the recorded brain signa{8it Weighting vector associated with the cardiac sour¢ectw

are decomposed into useful signal and noise subspaces uliyies that the surface electrodes are uniformly corrjie
standard techniques like PCA, Factor Analysis (FA), Siagulth€ cardiac activity.

Value Decomposition (SVD), nonlinear adaptive filterintg.e

Since the methods used in the first step always contain tBe Performance criterion

risk of including ICs that do not represent the components of 1o separatorsW'" and W' can be compared with the
interest (other physiological artifacts, such as eye m@&w@s) pe|p of the criterion introduced by Chevalier [12]. The dtyal
cardiac activities,...), a second step allowing to autesly of the extracted component is directly related to its Signal
select only the component of interest is needed. For this Interference-plus-Noise Ratio (SINR). More preciséhe
purpose, Wang et al. [42] develop two algorithms. In th§|NR of the p-th source at the-th output of the separator

first one, in order to assist the user in choosing the relatggt — (,,(1) . «(P)] is defined by:

P300 components, they propose: i) to increase the target and ° ° )

non-target ratio in the training data, ii) to create a ternla SINR,[w®] = 7 |wo(z)Tap\2 8)
PL%o -

as a topography which presents maximal signal intensity at pwo(")TR,,pwo(i)
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Reference Supplementary ] effective to reconstruct thiglu source and needs more samples
Premotor ety to converge to the optimal solution. One of the reasons could
cortex . .

be the fact that ICAR require that all sources are non-Gaunssi
But the estimated PDF of the simulathtii source is close to
the Gaussian PDF, especially when the number of snapshots
is low. Another reason is the fact that the sign of the FO
marginal cumulant of th&lu source is different from the sign
of the two other FO marginal source cumulants, which is not
supported a priori by ICAR. Finally, whereas INFOMAX
Fig. 2. (a) The international 10-20 electrode placemenesysind (b) surface S€ems to require a very large amont of samples to converge,
of left cerebral hemisphere, viewed from the side. the separator estimated by SOBI appears to be biased for this

simulation scenario.
2) Influence of the SNRin this section we study the

where Tp represents the power of thgth SOUI’CG,’wO(i) the behavior of the six ICA methods as a function of the SNR,
i-th column of the separatd?, and R, is the total noise which is assumed to be the same for each source. The number

covariance matrix for the-th source, corresponding to thedf samples is set to 5120, which correlates to 20 secondes.
estimated data covariance matrR, in the absence of the Figure 3(b) illustrates that, when varying the SNR from -20
componenp. On the basis of these definitions, the restitutiolp 14 dB, COM2, JADE and FastICA exhibit quasi-optimal
quality of thep-th source at the output of the separal®} is Performance. Regarding SOBI and ICAR algorithms, they are
evaluated by computing the maximum SINRp[wO(“] with less effective in comparison to the three previous methods
respect tai wherei (1 < i < P). This quantity is denoted by for all values of SNR. Moreover, ICAR seems to be a little
SINRM,,. The performance of a source separdi is then effective than SOBI beyond -2 dB and the inverse appears to
defined by the following line vectd8INRM (W,): be true below -2 dB (see figure 3(c) which is the zoom in of
the figure 3(b)). The INFOMAX algorithm behaves like the
SINRM(W,,) = (SINRM; [W,], ..., SINRMp[W,]) (9) cOM2, JADE and FastiCA for SNR values lower than -6 dB
In a given context, a separatdfvf)l) is better than an- Put as depicted in figure 3(c), its performance is similahwi
other oneW? for retrieving the sourcey, provided that SOBI beyond -6 dB.
SINRM, [W{"] > SINRM,,[W'?]. The criterion given by
(9) allows for a quantification of the component analysis pe
formed by ICA algorithms. However, the use of this criteriot
requires to know its upper bound, which is achieved by tF

(@) ®)

(a) Mu source with SNR=5 dB

3

optimal source separatpin order to completely evaluate the x Ogtn'f"}a' [l 202 |
performance of a given ICA method. It is shown in [12 z 17 T
that the optimal source separator corresponds to the gepar: 8 " car  SOBI
W,(SMF) whose columns are the Spatial Matched Filtel A
(SMF) associated with the different sources. It is defined - fNFONAX coma, sane
within a diagonal matrix and a permutation By,(SMF)= 5000 10000 15000
R_'A where A is the the true mixture. Samples
(b) Mu source with M = 5120 (c) Mu source with M = 5120
15 COM2, JADE ‘ COM2, JADE 9
C. Computer results 10 FaslICA 4 FastiCA
To conduct a comparative performance study of the s 5foptima z Opimeal
ICA algorithms presented in section II-B, two experiment £ o S\* o8l Z _, ¢
are envisaged from the data described in section IV-A. W & -5 %_4 ,x' ICAR

just focus on the ability of the six algorithms to extract the 19
Mu source which is considered as the informative compone ™%
in the case of theMu rhythm based BCI application. All 9 ICAR
results reported hereafter are obtained by averaging d@r :  ° "
realizations. Moreover, INFOMAX is implemented with a
prior spatial whitening step.

1) Influence of the data length for a fixed SNR: this Fig. 3. Evolution (in dB) of SINRM of sources as: (a) a funatiof data
experiment, we set the SNR to 5 dB for each source. T gngth with a SNR equal to S dB (b) as a function ?f SNR. Figup (

resents the zoom in of figure (b)) for SNR between -5 dB ad&.5

SINRM,, (1 < p < 3) at the output of the six ICA methods,
namely SOBI, COM2, JADE, ICAR, FastICA and INFOMAX,
is computed as a function of the number of samples (with a
sampling rate of 256 Hz). Figure 3(a) displays the obtained V. CONCLUSION
results corresponding to thdu source. We observe the good BCI allows a person to control external devices using
behavior of COM2, JADE and FastICA. ICAR is slightly lesslectrophysiological phenomena such as evoked or sponta-

68 ¢ INFOmAX
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0 0 0
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neous EEG features (P300, EEG rhythm, SSVEP, etc.). EEG REFERENCES
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