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A Bayesian MAP-EM Algorithm for PET Image

Reconstruction Using Wavelet Transform
Jian Zhou, Jean-Louis Coatrieux, Fellow, IEEE, Alexandre Bousse, Huazhong Shu, Member, IEEE, and

Limin Luo, Senior Member, IEEE

Abstract—In this paper, we present a PET reconstruc-
tion method using the wavelet-based maximum a posteriori
(MAP) expectation-maximization (EM) algorithm. The proposed
method, namely WV-MAP-EM, shows several advantages over
conventional methods. It provides an adaptive way for hyperpa-
rameter determination. Since the wavelet transform allows the
use of fast algorithms, WV-MAP-EM also does not increase the
order of computational complexity. The spatial noise behavior
(bias/variance and resolution) of the proposed MAP estimator
is analyzed. Quantitative comparisons to MAP methods with
Markov Random Field (MRF) prior models point out that
our alternative method, wavelet-base method, offers competitive
performance in PET image reconstruction.

Index Terms—maximum a posteriori, wavelet transform,
expectation-maximization, image reconstruction, positron emis-
sion tomography.

I. INTRODUCTION

S
TATISTICAL methods have attracted much interest in

the positron emission tomography (PET) reconstruction.

The Bayesian maximum a posteriori (MAP) algorithm is

one of the techniques suggested to improve the quality of

reconstruction (e.g., [1]–[3]). Conventional MAP algorithms

control the noise behavior by introducing the so-called image

a priori information. Such prior plays the role of a smoothness

constraint that penalizes the roughness of image estimate and

then reduces the noise level.

Markov Random Field (MRF) approaches have been widely

used for reconstruction, where image features, such as lines

and edges, can be well modeled by means of local neighbor-

hood structures. Although the MRF-based MAP algorithms

have proven to be a powerful tool when dealing with the re-

construction problem, it is also computationally intensive. This

results from the correlation model of MRF that makes difficult

the parameter estimation. In addition, MAP models depend on
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France, and also the Centre de Recherche en Information Biomedicale Sino-
francais (CRIBs) (e-mail: jian.zhou@univ-rennes1.fr; alexandre.bousse@univ-
rennes1.fr).

Jean-Louis Coatrieux is with the INSERM U642, Rennes, F-35000, France,
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the hyperparameters that describe the a priori distribution. In

MRF, the optimal choices for these parameters are quite model

and object dependent and their setting in concrete examples

may be nontrivial [4]. To overcome this problem, Fessler

and Roger [5] proposed approximate expressions to predict

the spatial behavior of MAP estimators for a desired spatial

resolution, and left the hyperparameter setting to the users.

Similar works can be found in [6] and [7], using a MAP with

a spatial domain quadratic prior. For nonquadratic penalties

or even more complicated statistical models, approximate

expressions may bring inaccuracy.

The present paper considers a wavelet-based alternative.

Wavelets as time-scale and time-frequency analysis tools have

been widely used in signal processing, but their application

in tomographic reconstruction is recent [8]–[12], and still

growing [13]–[18]. Our method departs from previous works

by: 1) the determination of image wavelet coefficients from the

observed projection data, and 2) the image reconstruction via

the wavelet inversion. The first step is accomplished by using a

Bayesian MAP algorithm with an a priori constraint directly

imposed on the distribution of random wavelet coefficients.

It does not transform the measured PET data, and thus the

original statistics of observations can be well preserved when

performing optimal coefficient restoration. Moreover, since

wavelet coefficients are often modeled with decorrelation

property, this, compared to the MRF model, makes our method

better suited for parameter optimization.

Here, the expectation-maximization (EM) algorithm allows

deriving an efficient iterative approach to find the required

wavelet coefficients. EM provides an elegant way for pa-

rameter estimation by assuming the existence of values for

additional but hidden (or missing) parameters [19]. By using

the EM algorithm, our wavelet-based reconstruction method

can be implemented quickly and efficiently. Moreover, we

observe that the hyperparameters describing the wavelet co-

efficient prior model can also be approached in terms of the

threshold estimator. Recently, a similar heuristic solution has

been successfully applied to the study of wavelet-based image

deblurring [20][21].

This paper is organized as follows. In Section 2, we first

define the wavelet-based PET reconstruction problem together

with the EM optimization. Section 3 compares experimentally

the designed algorithm with other conventional image domain

MRF-based MAP estimations. Finally, conclusions and direc-

tions of future work are drawn.
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II. METHOD

A. The wavelet-based measurement model

Without loss of generality, we consider in this paper the

problem of two-dimensional PET image reconstruction. Let us

suppose that the underlying radioactivity distribution function

can be discretized into M pixels array which are ordered

lexicographically in vector λ = [λ1, . . . , λM ]T where the

superscript ‘T ’ indicates the transpose operation. Considering

a PET imaging system with N measurements collected in

vector y = [y1, . . . , yN ]T , we suppose that the ensemble

average of the measurement y is related to λ by

E[y] = Hλ (1)

where H is the N ×M system matrix as well as the forward

projection operator that characterizes the response of the

imaging system.

Since we are dealing with digital images, we limit our

studies on the orthogonal dyadic discrete wavelet transform

(DWT). The DWT of a two-dimensional image λ is defined

by

c = Wl0λ (2)

where Wl0 represents the DWT matrix with a maximum de-

composition level l0, and c is the vector collecting the wavelet

coefficients. In practice, the construction of the operator Wl0

depends on the selection of wavelet bases. For example, in the

discrete case, one can use a pair of quadratic mirror filters to

approximate the required wavelet operators [22]. The wavelet

inversion operator is denoted by W−1
l0

or simply W T
l0

(due

to the orthogonality). If the coefficients c are known exactly,

then we are able to reconstruct λ perfectly by the wavelet

inversion:

λ = W T
l0

c. (3)

It has been noted that fast algorithms [23] are available for the

efficient calculation of DWT and its inversion. By substituting

(3) into (1), the imaging model can be expressed by

E[y] = HW T
l0

c. (4)

B. The MAP estimation for wavelet coefficients

Instead of solving the unknown radioactivity λ, we are

interested in recovering its wavelet coefficients c in advance.

As thus, we seek the Bayesian MAP estimation for coefficients

c. This is achieved by maximizing the posterior distribution

f(c|y), i.e.,

ĉMAP = argmax
c

f(c|y). (5)

Using the Bayes formula, we obtain

f(c|y) ∝ f(y|c)f(c) (6)

where f(c) is the prior distribution of wavelet coefficients,

and f(y|c) is the likelihood distribution which is characterized

by the imaging model (4). In this paper, the measurement

data y are assumed to be Gaussian distributed with unknown

parameter c. Then the likelihood distribution is:

f(y|c) ∝

exp

{
−1

2
(y − HW T

l0
c)T Σ−1

0 (y − HW T
l0

c)

}
(7)

where Σ0 denotes the data covariance matrix. While it is

more appropriate to use a measure of Poisson distribution,

the Gaussian distribution has been shown to be approximately

Poisson with means greater than five (see, e.g., [24]). On

the other hand, in modern PET systems that precorrect the

data, the Poisson assumption no longer holds. The exact

likelihood function describing these data is complicated and

difficult to work with. Therefore, it has been suggested that a

minimization of a weighted least squares (WLS) functional can

be used [25], which is also equivalent to consider a Gaussian

distribution like (7) in place of the complicated distribution

of raw data. However, it should be noted that the accuracy

of the Gaussian approximation decreases when the number of

random prompts is low.

The specification of the covariance matrix Σ0 is important

when the Gaussian approximation is used. As it has been

demonstrated in [25], it is sufficient to use a diagonal ma-

trix Σ0 = diag
{
σ2

1 , . . . , σ2
N

}
to capture the second-order

statistics of the measured data. Here, σ2
n, n = 1, . . . , N ,

is the variance for nth measurement data yn that can be

estimated beforehand using several useful ‘data plug-in’ tech-

niques [6][25][26].

As for the a priori coefficient distribution, it has been well

reported in the literature (e.g., [27]–[32]) that image wavelet

coefficients are characterized with sparsity (i.e., the heavy-

tailed histogram), hence, any distribution possessing the sparse

property is legitimate to model the prior distribution of wavelet

representation. The generalized Gaussian distribution is well

suited for fitting the mode and the heavy tail behavior of

wavelet coefficients distributions. The employed prior distrib-

ution in this paper is the Laplacian distribution:

f(c) ∝ exp {−β‖c‖1} (8)

where ‖ · ‖1 denotes the ℓ1-norm and β is the adjustable hy-

perparameter. It belongs to the family of generalized Gaussian

distribution and has proven to be useful for the wavelet

coefficients sparsity description [31][32].

C. EM optimization

According to the terminology accepted in the EM algorithm

literature [1],[19],[33],[34],[35], the measurement vector y is

called the incomplete data vector. Since the mean of y is linear

in c, the natural complete-data for the EM algorithm solving

(5) is also linear in c [36] (or see the section IV of [37]).

Here, we consider a complete-data x which satisfies
{

x ∼ N (W T
l0

c, Σ1),
y ∼ N (Hx, Σ2).

(9)

where N (µ, C) denotes the normal distribution with mean µ

and covariance matrix C. The admissible condition for this

x is that the two normal distributions are independent and

consistent with (7), i.e., HΣ1H
T + Σ2 = Σ0, as required.

The EM algorithm is an iterative procedure which produces

a sequence ĉ0, ĉ1, ĉ2,. . . , of estimations maximizing (5).

It gets ĉk+1 from ĉk, by first considering the conditional

expectation of c over the complete data set (the E-step), i.e.,

Q(c; ĉk) = E[log f(c|x)|y, ĉk] (10)
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and then choosing ĉk+1 as c which maximizes this conditional

expectation (the M-step).

Applying the Bayesian formula to f(c|x), we obtain:

Q(c; ĉk) = log f(xk|c) + log f(c)

+terms independent of c (11)

where

xk = E[x|y; ĉk]. (12)

By standard properties of joint Gaussian distributions, it can

further be shown that

xk = W T
l0

ĉk + Σ1H
T Σ−1

0 (y − HW T
l0

ĉk). (13)

Equation (11) is recognized as the log-posterior distribution

of wavelet coefficient c using the conditional mean xk as

the direct measurement data. Therefore, ĉk+1 is also a MAP

solution. When combined with the prior distribution (8), it is

not difficult to derive that

ĉk+1 =

(
sign

{
Wl0x

k
}
·

max
{∣∣Wl0x

k
∣∣ − βWl0Σ1W

T
l0

1, 0
})

(14)

where 1 denotes the unity vector. It is obvious that the update

in (14) is consistent with the well-known soft-thresholding

formula [41] with the coefficient threshold βWl0Σ1W
T
l0

1.

D. Selection of appropriate Σ1 and β values

Under the given admissible condition, there are possibly

many choices for Σ1 and Σ2. One simple but very convenient

choice for Σ1 is in the form

Σ1 = δ2I (15)

where δ2 is the assumed noise variance in xk, and I the iden-

tity matrix. For example, from the above admissible condition,

we have Σ2 = Σ0−HΣ1H
T = Σ0−δ2HHT . Since Σ2 is

known to be semi-positive definite, we are able to determine

a δ that fulfills

det |Σ0 − δ2HHT | ≥ 0. (16)

With some elementary algebra, we can deduce:

δ2 ≤ 1/ξmax (17)

where ξmax is the largest eigenvalue of Σ−1
0 HHT . Ap-

parently, the parameter δ2 should be adaptively selected by

the system properties and the statistical characteristics of

measured PET data. On the other hand, substituting (15) into

(13) yields

xk = W T
l0

ĉk + δ2HT Σ−1
0 (y − HW T

l0
ĉk). (18)

This shows that the parameter δ2 likely plays the role of

controlling the speed of iteration. Therefore, a sound choice

considers to select the upper bound of δ2, i.e., δ2 = 1/ξmax.

The simplest method for finding the largest eigenvalue of

a matrix is the Power method, also called the vector iteration

method. The power iteration algorithm starts with a nonzero

vector v0, which may be a random vector. The method is

described by the iteration

vk+1 =
Σ−1

0 HHT vk

‖Σ−1
0 HHT vk‖2

, k = 0, 1, . . . . (19)

and the sequence (ξmax)k, defined by
vkΣ

−1

0
HH

T
vk

vT

k
vk

, con-

verges to the largest eigenvalue.1 The computational cost

of this algorithm is relatively low. In our experiments, we

observed that it takes us only a few iterations to estimate the

converged largest eigenvalue. For a detailed discussion on the

power algorithm, see [38][39] for example.

Like many other MAP algorithms, the hyperparameter β
adjusts the strength of the prior constraint. It can be seen

from (14) that large β would eliminate a lot of coefficients

and thus, would lead to oversmoothed reconstructions. An

appropriate β has to be selected in order to reduce noise

effects while keeping important coefficients undestroyed. One

often used approach in EM considers the adaptive hyperpa-

rameter that maximizes the marginal distribution m(xk; β) =∫
f(xk|c)f(c; β)dc (see [33] and [40] for example). However,

in our case, this is numerically intractable. Early works on

approximate expressions have been proposed [5], [6] and

[7] to calculate the local impulse response and covariance

of MAP estimators. They help choosing β for a desired

spatial resolution. However, since our prior model is clearly

nonquadratic, a direct use of these approximations may lead

to inaccuracies.

Here, the parameter β is approached in an heuristic way.

As pointed out by (11), the M -step is equivalent to seek

a MAP estimation for the following measurement model:

xk = W T
l0

c + n with a sparsity constraint in wavelet

coefficients c. Notice that the noise n is Gaussian with zero

mean and covariance Σ1. This is similar to a wavelet-based

linear inverse problem that is widely addressed in the area of

image denoising. Eq. (14) has shown that the MAP estimate is

equivalent to a soft-thresholding rule. Using (15), we can show

that the threshold is βδ2. Now our motivation for a choice of

β is to consider a threshold estimator. Using again (15), i.e.,

assuming that the noise in xk is white with variance δ2, we ob-

tain the universal threshold estimator [41]:
√

2δ2 log M/
√

M .

In comparison to other estimators, this estimator introduces

less unknown parameters and has the lowest computational

cost since it depends only on the image size when δ is set

in advance. The threshold is independent of data xk, which

results in coefficient estimation asymptotically optimal in the

minimax sense [42] (note that this does not mean that the

image reconstruction is near optimal). In addition, since it

does not change with iteration, so does the parameter β (see

at below). Usually, this is preferred for image reconstruction

since an iteration-adaptive β could lead to more complicated

MAP estimators (than the one with a fixed a priori β)

whose noise behavior may be difficult to predict. By letting

1The largest eigenvalue of Σ
−1

0
HHT is equal to the one of HT Σ

−1

0
H

which is known as the Fisher information matrix. Thus, another way to find
out the largest eigenvalue is to use an approximated block Toeplitz Fisher
information matrix [5] and then compute it with the Fast Fourier Transform
as suggested by [6].
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βδ2 =
√

2δ2 log M/
√

M , we have β =
√

2 log M/(δ
√

M).
Since δ2 is chosen to be 1/ξmax, we arrive at

β =
√

2ξmax log M/
√

M. (20)

Since ξmax depends on data, our β is data dependent. We

experimentally found that such β is indeed a good choice.

Of course, by considering other threshold estimators, other β
values can be found out.

E. Compensation for nonnegativity constraints

The development of wavelet-based MAP-EM method does

not account for the nonnegativity constraint typically used

in emission tomography reconstruction. This would result

in large errors in covariance estimates for low-activity re-

gions [6][43]. An improvement can be made by considering

a positive hidden image x. For example, we can assume the

truncated Gaussian random variable x in model (9). i.e., by

neglecting negative values in the hidden image x. A similar

idea was early suggested in [6] to compensate the nonneg-

ativity constraint of the conventional MAP reconstruction.

However, since the noise is non-Gaussian, we found that it

is really complicated to derive an explicit coefficient update

formulation.

To reduce this effort, it seems reasonable for us to assume

that the conditional mean of the hidden image holds the same

nonnegativity property. Under this assumption, we can easily

modify the mean xk as follows:

xk
+ ≡ max{xk, 0} (21)

which clips the negative values in vector xk. Although this

ad hoc modification can not ensure the rigorous nonnega-

tivity in reconstruction and perhaps impacts the monotonic

convergence property of the EM algorithm, as we show later,

it does improve the accuracy over a method that ignores the

nonnegativity constraint.

F. Algorithm implementation and computational complexity

We summarize our wavelet-based reconstruction algorithm

(namely WV-MAP-EM) as follows:

1) Setup Σ0 using a data plugin technique, calculate δ2

using 1/ξmax, and compute β according to (20). Choose

an initial coefficient vector ĉ0;

2) Update coefficients according to (13), (14), and (21);

3) Repeat step 2) until some specific stopping conditions are

verified;

4) Obtain image estimate λ̂ using the wavelet inversion

transform (3).

The key step of our algorithm is 2) which is illustrated in

Fig. 1. It can be seen that a full updating mainly requires

four operations: Wl0 , W T
l0

, H and HT . Here, we have

neglected the operation in the soft-thresholding (15) because

it can be performed without the need of multiplication. Either

Wl0 or W T
l0

in the worst case with levels (log2 M)/2 (M
is supposed to be a power of 2) incurs the complexity of

O(LM log M) [23] where L is the length of FIR filters

(typically small), while the forward and backward projections

k
c

0l
W

0

T
lW H

y 1
0

TH

2
1

1k+
c

2

Fig. 1. The complete programming framework for the updating of wavelet
coefficients. T1 represents the coefficient thresholding operation (14) while
T2 is the max operation (21) compensating the nonnegativity constraint.

Gray Matter

White Matter CSF

Fig. 2. The Hoffman brain phantom and the corresponding ROI regions used
in our experimental studies.

require a complexity less than O(MN). Since N ≫ L logM
holds in most cases, it gives an overall approximated complex-

ity of O(MN). In other words, although the proposed algo-

rithm does involve additional efforts to compute the wavelet

transforms, it does not increase the order of complexity.

III. EXPERIMENTS

A. Data description

The Hoffman brain phantom (Fig. 2) was used to evaluate

the performance of the proposed method. The image was a

128×128 array of squared pixels with 4.7mm size. We simu-

lated a PET scan with 192 radial bins and 192 angles spaced

uniformly over 180◦. The used ray spacing is 3.3mm. We used

pseudo-random log-normal variants with a standard deviation

of 0.3 to simulate detector pairs with non-uniform detector

efficiencies and scaled so that the total number of Poisson

random prompts was 1.8×106. The factor corresponding to a

uniform field of 5% random coincidences was also considered

in our experiments. Another 40 replicate noisy sinograms were

generated in a similar way, which were used to evaluate the

noise property of the wavelet-based MAP estimate.

B. Reconstruction

In the WV-MAP-EM method, we used Qi and Leahy’s

“modified plug-in” technique [6] to compute the variance esti-

mations of the measured PET data. The Daubechies’ wavelets
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Fig. 3. Vector iteration method solving the largest eigenvalue of Σ
−1

0
HHT .

having four vanishing moments were adapted to compute the

forward and inverse wavelet transform. The discrete wavelet

transform was performed up to level 3. The largest eigenvalue

was approximated by using the vector iteration method. The

initial vector v0 was a unit vector. We stopped the iteration

by checking: |(ξmax)k+1 − (ξmax)k|/(ξmax)k < 10−6. Fig. 3

shows a sequence of (ξmax)k produced by this method. We see

that only 20 iterations are enough for convergence. Besides the

proposed method, we also investigated the conventional MRF-

based MAP methods for the purpose of comparisons. Consider

the often-used MRF based on the second-order neighborhood

system, the prior distribution can be modeled by:

f(λ) ∝ exp

{
−γ

M∑

m=1

[ ∑

j∈η1
m

V (λm − λj)+

1√
2

∑

j∈η2
m

V (λm − λj)

]}
(22)

where V (·) is called the potential function, γ is the cor-

responding hyperparameter, η1
m denotes the horizontal and

vertical neighborhood of pixel m and η2
m denotes the diagonal

neighborhood of pixel m. Two typical potential functions,

V (x) = |x| and V (x) = x2, were studied in this paper

that can be considered as nice approximations of the total-

variational (TV) and Tikhonov (or the quadratic prior) smooth-

ness constraints. For each MRF model, we used Green’s one-

step late (OSL) MAP-EM algorithm [3] to yield the required

MAP solutions. The resulting methods were named thereafter

as TV-MAP-EM and TIK-MAP-EM respectively. The OSL

algorithm is popular due to its simplicity, but it can diverge.

However we observed from our empirical results that it always

converges if the hyperparameter γ is not too large (for instance

smaller than 6)2. Since TV is not differentiable, to apply

OSL, we considered its subgradient as suggested in [45] with

2The De Pierro’s method (block sequential regularized expectation maxi-
mization (BSREM) algorithm [44] with 16 equal size blocks) has also been
implemented. The results show very little MSE difference between the OSL
and BSREM when γ is not large. It is however superior in convergence speed.

d|x|/dx = sign(x). The optimal γ values were obtained by

minimizing the mean-squared-error (MSE) criterion (defined

in the next subsection). We applied a greedy searching strategy

in which 1000 different γ values uniformly spaced in the inter-

val [10−4, 101] were used. For each γ, we carried out either

TV-MAP-EM or TIK-MAP-EM, and the lowest MSE after

each reconstruction was recorded as the quantity evaluating γ.

We safely selected the global optimal hyperparameter which

was the one generating the minimum of 1000 lowest MSE

values. Note that this procedure was quite time consuming.

Both TV-MAP-EM and TIK-MAP-EM were initialized with

the same filtered-backprojection (FBP) reconstruction where a

Ram-Lak filter (multiplied by a Hamming window) with the

cut-off frequency of 0.8 (normalized) was used. For a fair

comparison, the initial wavelet coefficients in our WV-MAP-

EM method were also calculated using the wavelet transform

of FBP. All MAP methods were stopped after 200 iterations.

To investigate which type of wavelets can better fit our

objective, three other wavelets: Haar wavelet, coiflets and

symlets were introduced (see [10] for a review). In order to

further explore the benefit of the wavelet-based MAP method,

we also attempted the use of undecimated DWT (UDWT) as

an alternatives to DWT. The UDWT is known as the linear

and shift invariant discrete wavelet transform, which simply

eliminates the down-sampling process in the implementation

of a DWT. It has been shown of relevance in many signal

processing applications [46] [47]. Hence, UDWT in this paper

was expected to yield higher visual quality reconstructions.

Note UDWT is no longer orthogonal, and thus the actual

coefficient updating process may differ from (14). However,

as it was suggested in [20], we can still use the same

updating framework (see Fig. 1). The corresponding results

were obtained by performing 200 iterations together with the

four different types of wavelet.

C. Evaluation

To quantify the quality of reconstructions, we define the

percent mean-squared-error as follows:

%MSE = ‖λ̂ − λtrue‖2
2/‖λtrue‖2

2 × 100% (23)

where λtrue represents the true phantom data and ‖·‖2 denotes

the ℓ2-norm. The vertical profiles of reconstructed images

were used to show the edge-preserving capacity of the various

wavelet-based MAP methods.

A region of interest (ROI) analysis was also carried out on

gray matter, white matter and CSF. The bias and variance over

an ROI are defined as

BIAS = (µROI − µtrue
ROI)/µtrue

ROI, (24)

VAR =
1

|ROI|
∑

j∈ROI

(λj − µROI)
2 (25)

where µtrue
ROI denotes the true value of region intensity; µROI

is the average intensity of the given ROI.

In order to evaluate the noise properties of the wavelet-

based MAP estimates, we calculated the standard deviation
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Fig. 4. The lowest MSE change curves generated by the greedy enumeration
strategy. The global minimum MSE values were marked with triangles. The
corresponding γ values were treated as the optimal hyperparameters for the
MRF prior models.

image using the following formula:

λstd =

√√√√ 1

39

40∑

i=1

‖λ̂(i) − λ̂‖2
2 (26)

where λ̂(i) is the MAP estimate for the ith noisy sinogram

and λ̂ is the average reconstruction which is given by

λ̂ =
1

40

40∑

i=1

λ̂(i). (27)

The average standard deviation (ASTD) over each pixel was

computed by

ASTD =
1

|Ω|
∑

j∈Ω

λstd
j (28)

where Ω denotes the object region.

Three local impulses (with magnitude 100 on a particular

pixel) sampling the gray matter, white matter and CSF were

also added to the replicate data sets. Reconstruction of the im-

pulses was obtained by subtracting the average reconstruction

of the impulse-free data from the average reconstruction of the

data containing the added impulses. The equivalent Gaussian

kernel with the proper full width at half maximum (FWHM)

was used to evaluate the resolution property.

In addition to the computational complexity, the CPU time

costs of different MAP methods were recorded throughout

the whole iterative procedure. The average costs for every 5
iterations were plotted in curves.

IV. RESULTS

Fig. 4 plots the lowest MSE changes according to γ. As

we can see, in this particular experiment, the optimal γ for

TV-MAP-EM is obtained from 10−0.6 ≈ 0.25 while for TIK-

MAP-EM it is close to 100.0 = 1.0. It also can be viewed that

TIK-MAP-EM leads to smaller MSE than TV-MAP-EM. This

FBP TV-MAP-EM

TIK-MAP-EM WV-MAP-EM

Fig. 5. Reconstructions of FBP, TV-MAP-EM (γ = 0.25), TIK-MAP-EM
(γ = 1.0) and WV-MAP-EM (β = 1.497). Here, β is adaptively selected by
the noise variance δ2 = 5.289 × 10−4. Note that all images are scaled to
the same gray levels.

Fig. 6. Reconstructions of WV-MAP-EM with (top-right) and without
(top-left) the compensation of nonnegativity constraint. The black spots in
images of the second row indicate negative values of the corresponding
reconstructions of the first row. Notice the significant decrease of negative
values when using our nonnegativity constrained WV-MAP-EM.

may indicate that the Tikhonov prior model can be superior

to TV in terms of mean squared error.

Fig. 5 shows reconstructions using different methods. The

FBP reconstruction clearly suffers from the “spike” noise

artifacts that, however, can be successfully suppressed using

MAP methods (note that the MAP reconstructions exhibit very

different noise characteristics). It is clear from Fig. 5 that

the TV-MAP-EM method can provide a piecewise smoothed

image with distinct regions and sharp boundaries. This comes

from the strong edge-preserving property of TV prior model

in which the high amplitude would be interpreted as an edge

and thus can be well preserved. In spite of this advantage, TV-

MAP-EM produces an overall homogenous image in contrast

to a real tomographic image. Both TIK-MAP-EM and WV-

MAP-EM provide smoothed images that differ noticeably

from the reconstruction obtained with TV-MAP-EM. The WV-

MAP-EM method offers slightly better visual quality.

Fig. 6 shows the reconstructions of WV-MAP-EM with
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TABLE I
ROI BIAS AND VARIANCE ANALYSIS (BIAS ± VAR). THE VALUES IN

BRACKET SHOW THE BIAS AND VARIANCE OF RECONSTRUCTION

WITHOUT THE NONNEGATIVITY CONSTRAINT.

gray matter white matter CSF

0.25 ± 3.96TV-MAP-EM

TIK-MAP-EM

WV-MAP-EM

0.05 ± 5.94 0.41 ± 2.49

0.56 ± 4.02 -0.16 ± 4.91 0.32 ± 2.29

0.43 ± 3.89

(0.39 ± 9.76)
-0.16 ± 4.56

(-0.16 ± 4.76)

0.18 ± 2.55

(-0.23 ± 3.76)

TABLE II
MSE(%) AND ASTD (IN BRACKETS) COMPARISONS FOR DIFFERENT

MAP METHODS.

TV-MAP-EM TIK-MAP-EM

WV-MAP-EM

DWT

UDWT

Haar Daubechies Coiflet Symlet

1.928

2.604

1.829

1.723

1.783

1.506

1.795

1.716

1.969 1.788

(0.1572) (0.1368)

(0.1520) (0.1394) (0.1385) (0.1406)

(0.1075) (0.1071) (0.1154) (0.1030)

and without the compensation of nonnegativity constraint. The

improvement in accuracy can be clearly found out by checking

the negative values of the second row. Similar conclusions can

be drawn from the ROI analysis as it has been shown in Tab. I.

Notice the improvement in the bias and variance performance

after using the nonnegativity compensation.

Images in the first row of Fig. 7 are produced by WV-

MAP-EM combined with DWT. It can be seen that the recon-

struction with Haar wavelet shows piecewise smooth effects

like those produced by TV-MAP-EM, while reconstructions

using the other three wavelets are too similar to be visually

distinguished. The second row of Fig. 7 illustrates the WV-

MAP-EM reconstructions using UDWT. Clearly the images

generated by this method present much higher visual quality

(by comparison with those in the first row). The Haar wavelet-

based WV-MAP-EM also depicts a piecewise smoothing com-

parable to TV-MAP-EM (as shown on Fig. 5). When the other

wavelets (Daubechies, coiflet and symlet) are used, the WV-

MAP-EM also provides quite visually similar images but their

qualities are surprisingly higher than those in the first row. This

is consistent with the theoretical studies on UDWT reported

in the signal processing literature [46][47].

The MSE’s corresponding to different MAP-EM methods

are gathered in Tab. II. WV-MAP-EM with DWT is close to

TIK-MAP-EM, while it is superior to other MAP-EM methods

when UDWT is used (except for the Haar wavelet). Moreover,

the coiflet seems more suitable for PET reconstruction since

in this case WV-MAP-EM shows the smallest MSE.

Fig. 8 compares the vertical profile of the reference phantom

data with the same profiles throughout the reconstructions

as given in Fig. 7. The agreement between the reference

and the MAP reconstruction is shown by a good overlap of

the symbols over the reference lines. These results suggest

that WV-MAP-EM also provide an edge-preserving image
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Fig. 8. Vertical profiles through WV-MAP-EM reconstructions (shown in Fig.
7) with wavelets of Haar (circles), Daubechies (diamond), Coiflet (squares)
and Symlet (triangles) compared to the reference image (solid line). (a): DWT;
(b): UDWT.

reconstruction.

Fig. 9 illustrates the noise properties of the WV-MAP-EM

reconstruction with different types of wavelet. The images

show the standard deviation at each pixel computed from the

40 replicate reconstructions. Using the Haar wavelet transform,

the standard deviation of the noise appears spatially correlated.

This becomes more noticeable when the undecimated Haar

wavelet transform was used. Conversely, the standard deviation

becomes uniform when other wavelets are used (an interesting

noise texture can also be observed when using DWT-based

WV-MAP-EM). To sum up, DWT (the top row of Fig. 9)

presents slightly higher deviation values than UDWT (the

bottom row of Fig. 9). Taking the symlet based reconstructions

(the third column of Fig. 9) as an example, the ASTD with

DWT was on average 25% greater than with UDWT (see Tab.

II).

Fig. 10 shows horizontal profiles crossing each impulse
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Haar Daubechies Coiflet Symlet

Fig. 7. WV-MAP-EM reconstructions using DWT (the top row) and UDWT (the bottom row) with β = 1.497. All wavelets have four moments equal to
zero except the Haar wavelet. Note that all images are scaled to the same gray levels.

Haar Daubechies Coiflet Symlet

Fig. 9. Standard deviation images computed from reconstruction of 40 replicate noise projection data. Top row: WV-MAP-EM reconstruction with DWT.
Bottom row: WV-MAP-EM reconstruction with UDWT. The object mask (not shown) was used to display the valid region only. Note that all images are
scaled to the same gray levels.

TABLE III
THE APPROXIMATED FWHM VALUES (UNIT IN PIXEL) AT DIFFERENT

LOCATIONS IN WV-MAP-EM RECONSTRUCTIONS WITH DWT AND

UDWT.

gray matter white matter CSF

DWT

UDWT 2.15 2.212.19

1.98 2.07 2.03

drawn in the image of Fig. 10. Three profiles have been

concatenated and the approximated FWHM values are listed

in Tab. III. As we can see, a slight loss of resolution has been

observed using UDWT-based WV-MAP-EM when compared

with the DWT-based method. Note also that the resolution of

the wavelet-based reconstruction was not perfectly uniform:

the amount of smoothing was inversely proportional to the

distance to the center.

Fig. 11 shows the average CPU costs. These results were

obtained by averaging the CPU time costs for every 5 itera-

TABLE IV
THE AVERAGE CPU TIME COST (UNIT IN SECOND).

TV-MAP-EM TIK-MAP-EM WV-MAP-EM (DWT) WV-MAP-EM (UDWT)

0.662 0.659 0.594 0.668

tions. The overall average CPU costs (i.e., the average value

for the total 200 iterations) are listed in Tab. IV. As we can

see, two image-domain MAP-EM methods, TV-MAP-EM and

TIK-MAP-EM, have similar computational costs. WV-MAP-

EM using DWT costs less CPU time than the other MAP-EM

methods. These are inherited from fast algorithms for wavelet

transform and inversion. The UDWT-based WV-MAP-EM

requires more computational load than the DWT-based one.

This is because the elimination of the down-sampling process

increases at the same time the computational complexity of

UDWT. However, the actual time consumption of the UDWT-

based WV-MAP-EM is only slightly larger than those needed

by the other two image-domain MAP-EM methods. Note that

all computations are done with a desktop PC (Intel processor,
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Fig. 10. Concatenated horizontal profiles of three small impulses obtained
from WV-MAP-EM reconstructions with DWT (circles) and UDWT (squares).
The solid and dot lines are the approximated Gaussian kernels. The center of
circles added to the image indicate the locations of the impulses. A, B and C
represent the white matter, the CSF, and the gray matter respectively.
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Fig. 11. The average CPU time costs as the function of iteration. Here, the
Daubechies wavelets were used in WV-EM-MAP. Each point represents an
average value after every 5 iterations.

2.4-GHz CPU and 1GB RAM) using Matlab 7.1.

V. CONCLUSION AND DISCUSSION

Statistical iterative methods are used to improve the noise

properties of PET reconstructions. In order to control the noise

level inherent to tomographic reconstruction from noisy pro-

jections, MAP is introduced. However, the conventional MAP

using MRF prior model has proven difficult to set the intrinsic

hyperparameters. Although in this paper this was overcome

using the greedy searching method, the computational load

remains high and can not be used in clinical routine.

In the present work, we have proposed a wavelet-based

MAP-EM reconstruction algorithm. Rather than reconstructing

the unknown radioactivity distribution image, we were inter-

ested in recovering its wavelet coefficients beforehand. As it

has been pointed out, the resulting WV-MAP-EM method has

strong relations with the image domain MAP methods but

it indeed offers better performance by at least the following

two aspects: 1) The hyperparameters describing the wavelet

domain prior model are relatively easy to deal with, and

moreover they can be adaptively selected from the system

properties and the noise characteristics of measurement data;

2) The implementation of WV-MAP-EM shows computa-

tional advantages due to the availability of fast algorithms

(all algorithms were implemented without any acceleration

technique). Of course, this latter point is partially due to the

choice of Laplacian prior distribution which led to a closed-

form coefficient updating formula. Finally, the use of UDWT

provided even better visual quality but with a slightly higher

computation and lower resolution.

Further work is needed to combine other choices of

wavelet threshold estimator, to discuss further the optimality

of wavelet-based MAP reconstruction method. Fast EM opti-

mization is also highly desired to speed up the convergence

rate. Approximations describing either the covariance or the

resolution property of our specific wavelet-based MAP algo-

rithm are worth deriving. Our ongoing works are devoted to

these topics, and improvements are expected to meet further

clinical demands.
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