
HAL Id: inria-00534145
https://inria.hal.science/inria-00534145

Submitted on 8 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building Objects and Interactors for Collaborative
Interactions with GASP

Thierry Duval, David Margery

To cite this version:
Thierry Duval, David Margery. Building Objects and Interactors for Collaborative Interactions with
GASP. CVE 2000, 2000, San Francisco, United States. �inria-00534145�

https://inria.hal.science/inria-00534145
https://hal.archives-ouvertes.fr


Building Objects and Interactors for Collaborative
Interactions with GASP

Thierry Duval and David Margery
IRISA — SIAMES project

Campus de Beaulieu
F-35042 Rennes cedex

FRANCE

Thierry.Duval@irisa.fr, David.Margery@irisa.fr

ABSTRACT
Gasp (General Animation and Simulation Platform) was at
first designed to distribute the animation and simulation of
multi-agent virtual environments. In the Gasp framework,
a virtual world is composed of any number of simulation ob-
jects. These simulation objects can be autonomous agents,
interactors or user representations. We define interactors as
simulation objects which provide information on user input
readable by any simulation object. Because simulation ob-
jects can read information from any number of other simula-
tion objects, it is then quite easy to design objects on which
any number of users (or other simulation objects) can col-
laborate. As the Gasp run-time kernel can distribute the
calculations associated with those simulation objects on dif-
ferent workstations, collaborative virtual environments can
easily be built. In this paper, we explain how, in our frame-
work, interactors and interactive objects are distributed for
collaborative interactions and how it is possible to build an
interactive object from an existing object without changing
the code of that object.

Keywords
Human-Computer Interfaces, Synchronous Cooperation,
Distributed Virtual Reality, Distributed Interactions

1. INTRODUCTION
Building, calculating and displaying distributed interactive
virtual environments is a complex task because of the wide
variety of skills and techniques involved. These skills and
techniques include those of rendering and animating the vir-
tual environment, dealing with the I/O subsystem for inter-
action as well as artificial intelligence for autonomous agents
and networking for the distribution and the coherence of the
virtual world. This complexity has led to the development
of a wide variety of toolkits or frameworks for virtual reali-
ty which either provide an abstraction layer or a dedicated

framework to the designer to hide some of the complexity.
These toolkits are varied in the sense that they do not all
address the same problems.

For instance, Aviary[10] enables the sharing of a virtual
world between different applications or users whereas VR
Juggler[5] focuses on providing abstract layers for all the
components one immersive distributed virtual reality appli-
cation.

With Gasp, our focus has been to enable the construction
of worlds populated by interacting autonomous agents in a
way that would enable an easy distribution of the workload
associated with the calculations of the agents. To achieve
such a goal, we have provided [9] a framework (base classes
and programming rules in our case) to the designer of agents
of the virtual world and a run-time environment which deals
with scheduling the calculations, networking and coherence
issues, interactors and display. This framework has proven
more general than a framework tailored solely for the con-
ception of agents as it can be successfully used to abstract in-
put devices as well as output devices. Indeed, within Gasp,
the visualization as well as input devices are agents of the
same nature as the autonomous agents that populate the
world, providing us with a quite powerful paradigm. We
therefore use the term simulation object instead of agent.

1.1 Related work
As said previously, a number of toolkits and research
projects have addressed the problem of the complexity of de-
veloping virtual worlds. In this paper, we will focus on some
of those who have addressed the problem of distributing vir-
tual environments. dVise/Division [3] concentrates on col-
laborative product review whereas Massive[4], Dive[1] or
Community Place [6] focus on user interaction and on the
means of reducing network traffic based on the notion of
areas of interest. This approach is well suited for virtual
environments where the only entities perceiving the virtual
world are users or when there exists a central server that
can handle interaction between virtual entities. Npsnet’s
[7] approach is closer to ours as it’s focus is on distributed
simulation of a large number of entities, where interaction
between virtual entities is a fundamental part of the collab-
orative virtual environment. The main difference resides in
the fact that Npsnet relies on specific network protocols (ie.
Dis[8]) on wide area networks for consistence of the virtual



world, which isn’t sufficient as a basis for high interactivity
and collaboration on the same object (level 3.2 as defined in
[2]) which Gasp enables on a Local Area Network.

1.2 Outline of this paper
This paper is organized in the following way: in the first
part, we give a brief overview of Gasp as it has been pre-
sented in [11] and we detail more recent results on our data
consistency mechanism. In the second part, we explain the
notion of interactors in Gasp and how they relate to users
and objects in a virtual environment before in the third part
explaining how it is possible to build object for distributed
interactions from existing simulation objects without chang-
ing one line of their code. In the fourth part, we present two
examples before we conclude on our ongoing work.

2. GASP OVERVIEW
The Gasp (General Animation and Simulation Platform)
framework [9] is an object oriented development environ-
ment allowing real-time simulation and visualization of au-
tonomous or user-driven entities evolving within complex
worlds.

2.1 GASP’s Basics
Each entity in the system is composed of one or more sim-
ulation objects. These simulation objects, which are the
basic components of Gasp, are composed of a set of named
outputs, inputs and control parameters which constitute the
public interface of the entity and of a calculus which is in
charge of their evolution. This evolution happens at the
frequency associated with each object or family of objects.

At each simulation step of an object, the calculus part will
read the inputs it needs and calculate new outputs and a
new private state for the object. The inputs are connected
to outputs of other objects at different stages in the simu-
lation by either naming the objects to connect to or asking
the controller for an object of the correct class. Objects can
also communicate by sending events and messages. In other
words, the evolution of a simulation object can be function
of the entity’s changing environment. Figure 1 shows a typ-
ical exchange between two simulation objects in the same
simulation process: for each calculation, the CB object will
ask its input for a new position value, maybe in order to
follow the SOA simulation object. The kernel is in charge of
ensuring that the value provided to the object is consistent
with the value from the output. In the current implemen-
tation of Gasp, this is done by fetching the value, but this
could change without affecting the programming framework.

Therefore, simulation objects in Gasp communicate mainly
through data connections who are initiated by the data read-
er. It is then difficult to write simulation objects who control
other objects. Indeed, an abstract 2D mouse in Gasp could
be described by a simulation objects with two outputs: one
for each axis. But to simulate selection properties such as
a click, either each object is connected to the click output
and when this output is activated they determine whether
they where activated, or a specific scheme is provided. We
will explain further on how the use of events and messages
can be used to solve this problem.

get (dt)

Calculation object CB

Input : position

Output : position

Calculation object CA

Simulation object SOA

set (value)

kernel managed 

link

Simulation object SOB

Figure 1: Typical exchange between two simulation
objects in the same process

2.2 Basic Distribution Paradigm : Referen-
tials and Mirrors

Distribution within Gasp serves two purposes. The orig-
inal purpose of distribution was to enable richer animated
multi-agent worlds by dispatching the computational weight
of calculating the animation and behavior of a great number
of agents. Indeed, Gasp has been used in big off-line trans-
port simulations (2 860 vehicules, 11 443 simulation objects)
during the DIATS research project. The second purpose is
to enable collaborative virtual environments.

In both cases, a same virtual world will be shared between
any number of workstations. Each simulation object is as-
signed to a process and processes are assigned to worksta-
tions in a configuration file. Each process owns a particular
simulation object: a controller, which schedules all the local
simulation objects. This schedule is achieved by using sev-
eral simulation frames, filled with references to the objects
to simulate, according to their frequency.

So, within each process, there is a number of simulation
objects assigned to the process: we call them referentials. If
a referential’s inputs are connected to referentials of other
processes, a mirror (aka. proxies or ghosts in the literature).
For example, if there is a referential B that needs for input
the output of a referential A located within another process,
then there will be a mirror of A within the process where B

is located.

Mirrors are linked to their referentials with a data-stream
connection: at each step of the simulation, a referential
sends up to date values to all of its mirrors.

Figure 2 shows a typical exchange between two simulation
objects owned by two different simulation process: at each
calculation step, a Gasp mechanism of “pushing” will pro-
vide new output values to the SOA mirror, in order to enable
the SOB referential to obtain its input value.

This mechanism enables the calculation of the simulation
steps of each referential without having to wait for the net-
work for a new value. Therefore, each workstation can be
considered to be in parallel updating the values of its mir-
rors and calculating a simulation step. Of course, there is



Simulation 1
Calculation : CA

Referential SOA Output : position

Input : position

Calculation : CB

Referential SOB

Output : positionMirror of SOA

"pull"

"push"

Simulation 2

Figure 2: Typical exchange between two simulation
objects in two different process

some level of synchronization to ensure a simulation step is
not calculated if the values in mirrors are older (in simu-
lated time) than a threshold because the current process is
faster than the others. This threshold is an application level
parameter thereafter called latency (because it is supposed
to compensate for network latency).

2.3 Ensuring data consistency
To ensure consistency between mirrors and their referentials
two techniques are combined. The first is very straightfor-
ward as it implies than when a new output value is produced
by a referential, it is stored in a buffer which is sent to the
mirror at the end of the current simulation step. Neverthe-
less, this is not sufficient for continuity in the animation.
Therefore, a simple extrapolation mechanism on the mirror
side of the simulation is able to provide extrapolated values
to any referential reading the output on the mirror.

-10

-5

0

5

10

15

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

time in milliseconds

original sinus
a discontinuous quadratic

sinus as seen trought network
quadratic as seen trought network

discontinuous signal
discontinuous signal as seen trought network

Figure 3: Comparison of real and estimated values

Indeed, it is quite safe to assume that output values of a sim-
ulation object (its position for example) are sampled values
of a continuous signal. Therefore, extrapolation (in our case
linear or quadratic based on the last 2 or 3 values) is expect-
ed to calculate a good enough value. Figure 3 shows the
values seen through a mirror and extrapolation compared
to the original values with a network latency of 100ms. We
have found that for our different applications, this extrapo-
lation enables correct calculations of the different simulation
steps and provides the user with the illusion that the sim-
ulation is locally calculated as it can be seen on with the
extrapolation of the sin x function which is very close in it’s
values to the correct values (graphs superposed in figures 3
and 4).

As it can be seen in figure 3 outputs which produce discon-
tinuous values are extrapolated with artifacts, which can be
problematic for the numeric stability of the entities popu-
lating the virtual world. But this is a problem which can be
simply solved by detecting such discontinuities and avoid-
ing extrapolations based on values from both part of the
discontinuous signal. Figure 4 shows the result of such an
algorithm. As can be observed, the signal is only delayed,
but its nature isn’t changed when it is seen through the
network.

-10

-5

0

5

10

15

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

time in milliseconds

original sinus
a discontinuous quadratic

sinus as seen trought network
quadratic as seen trought network

discontinuous signal
discontinuous signal as seen trought network

Figure 4: Comparison of real and estimated values:
discontinuities detected and corrected

Network latency cannot be avoided. Nevertheless, its im-
pact on the speed of a simulation can be avoided by using
extrapolation in a way that doesn’t impact the nature of the
signal as viewed through a mirror. Therefore, distribution
of a collaborative virtual world can be done without much
concern by the simulation object programmer.

2.4 GASP 3D Visualization
Gasp provides a 3D visualization based on the
SGI/Performer library, which is a particular simula-
tion object. This object looks for all simulation objects
which have a 3D representation and visualizes them.
Animation of these object is possible because some of their
outputs are associated by the visualization to dynamic
coordinates in their geometry. In the case of a partially or
completely distributed visualization, the visualization will



create the mirrors corresponding to the objects to visualize
and therefore update the position and orientation according
to the corresponding outputs of the object.

As our visualization is a simulation object, there can be as
many visualizations within the same simulation as needed.
These different visualizations can be dispatched on different
graphics workstations, in order to allow several users to see
the same simulation. The users can choose interactively the
viewpoint of the visualization, so several visualizations can
also be placed on the same workstation in order to allow the
end-user to see the same world with different viewpoints at
the same time.

3. INTERACTIONS WITH GASP
Using Gasp, there are several ways to interact with simula-
tion objects : all of them use inputs and inputs of simulation
objects.

3.1 Interaction Paradigm : Inputs, Outputs
Indeed, the communication between an end-user and a sim-
ulation object is only a particular case of communication
between two simulation objects.

3.1.1 Low-level Interactors
In the case of human-simulation object communication, a
particular simulation object called interactor is associated
to the end-user. So, the end user drives the interactor which
produces outputs transmitted to another simulation object.
In order to drive this interactor, the end-user needs a par-
ticular device (like a mouse for example) and a driver for
this device, which is in the calculus part of the interactor.
This part is then in charge of acquiring the low-level interac-
tions events and data from the device and to translate them
into correct Gasp outputs. This first category of interactor
could be called low-level interactors because they are simply
encapsulating a particular driver.

3.1.2 Composed Interactors
Furthermore, we can create more complex interactor by
combining existing interactors with other simulation ob-
jects. For example, an interactor could also have its own
inputs in order to assist the end-user during the interaction.
To let an end-user direct a camera that should stay in front
of a car (to share the car driver point of view), it is possible
to design a 6 Degrees of Freedom (DoF) composed inter-
actor, using a 3 orientation DoF low-level interactor to let
the end-user pilot the orientation, and using as inputs the 3
translation coordinates outputs of the car. The 3 orientation
coordinates outputs of the 3 DoF interactor could even be a
combination of the inputs from the user and of 3 other ori-
entation coordinates inputs, which could be plugged to the
corresponding outputs of the car. Even with such higher-
lever interactors, we are always very near from the notion of
encapsulating drivers.

3.1.3 Dynamic Interactors
For us, what is specific to an interactor is that it can be
used to dynamically choose the simulation objects you want
to interact with, and even which part of these objects. To
realize such interactors is a little bit more difficult than re-
alizing static ones, particularly in a distributed context :

it requires message communication between simulation ob-
jects. We are going to describe in the next section how we
have implemented such dynamic interactors within Gasp
and how this concept can be extended to add interaction
capabilities to any simulation object.

3.2 Dynamical Interactions
3.2.1 Within a non-distributed universe
As we have just said, it can be very interesting to allow
the end-user to dynamically choose the simulation object he
wants to interact with. Typically, such an interaction can
occur with a 3D visualization and a particular device such as
a mouse. The first stage consists in selecting interactively
the object to interact with, in order to obtain its name.
Then, assuming that we can find a particular simulation
object of the universe from its name, we only have to explain
to it, by method invocation, than some of its inputs have to
be plugged to some of the outputs of a particular interactor,
in order to perform a particular interaction.

It seems quite easy, but it is not possible to realize it as
simply with our referential/mirror distribution paradigm.

3.2.2 Within a distributed universe
The difficulty is here to access the referential we want to
interact with, because as we did not chose a CORBA-like
paradigm to perform the distribution of the simulation ob-
jects, we can not invoke methods so easily upon a simulation
object. Indeed, this object may only be available in the cur-
rent process through its mirror.

3.2.3 Interaction Paradigm Extended to Referentials
and Mirrors

So as we chose a referential/mirror with data-flow paradigm,
all we can do is to send a message to the communicating
object associated to the picked geometry (which is either a
referential or a mirror). If this object is a referential, it will
be able to interpret the message, if it is a mirror, it will
send the message to its associated referential. Finally, the
referential will receive it, and will be able to plug some of
its inputs to the outputs of the interactor. The problem is
then that if the referential and the interactor are not in the
same process, the message will not be received at the same
simulation step it has been sent, but at the next one, which
induces latency.

As the simulation object can refuse the interaction, it can
then send a message to the interactor that will be received
yet at another simulation step.

If the simulation object accepts the interaction, it is then
going to plug its inputs to the corresponding outputs of the
interactor. Doing this, it is going to try to obtain these
inputs in order to make a new calculation. At this stage,
the new values of the interactor mirror outputs may not be
present. The simulation object must wait these outputs to
be initialized. So the interacted object will ignore the in-
teractor until its mirror is initialized. We can minimize this
delay if the outputs of the interactor have been correctly ini-
tialized. This last step assumes that it is possible to obtain,
within the visualization object, the geometrical outputs (po-



Figure 5: Different visualizations with 2 workstations and 3 viewpoints

sition, orientation, . . . ) of the simulation object you want
to interact with.

3.2.4 Dynamical Interaction with our Visualization
At the first stage of the interaction, we have the following
dynamical pick of a simulation object in order to obtain its
name :

• within a Performer window, the end-user clicks with
the mouse “upon” the 3D visualization of a simulation
object,

• then a Performer picking is done with the mouse co-
ordinates,

• thus a Performer node subtree owning the 3D visual-
ization of our simulation object is determined,

• assuming the name of the simulation object is the same
as the name of the higher level DCS (Dynamic Coor-
dinate System) node of the subtree, we have obtained
this very name.

Then, as presented in a previous section, a message can be
sent to the corresponding object, which will answer if it ac-
cepts the interaction. To quickly initialize the outputs of the
interactor, the interactor’s referential is initialized with the
coordinates of the DCS node associated with the simulation
object geometry. This mechanism avoid a flicking move of
the simulation object visualization toward an absurd posi-
tion.

4. BUILDING INTERACTIVE OBJECTS
As we have discussed before, interactors and simulation ob-
jects have to communicate by messages. So, in order to be
interactive, a simulation object has to be able to respond
correctly to messages from interactors. This is not very dif-
ficult, but it is sometimes quite repetitive when you want
many simulation objects to be able to interact with the same

interactor, and it leads to code duplication, which should be
avoided. Another problem is the complexity of implement-
ing an object able to communicate with several interactors :
you have to mix the code allowing communication with each
interactor involved.

4.1 Inheritance from an Interactive Simula-
tion Object

A first solution would be to offer a particular simulation ob-
ject class from which interactive simulation objects should
inherit in order to be interactive. The main problem is that
one class would not be enough, so that we should provide
several such classes, one for each category of interactor. As
our aim is to ease the task of the programmers by hiding
most of the complexity of interaction mechanisms, we should
ask them to inherit from one of these new classes in order to
obtain an interactive simulation object. Then, there could
be problems if we wanted an object to be able to commu-
nicate with another category of interactor than the one its
inherited class is able to communicate with.

4.1.1 What About Older Simulation Objects ?
Furthermore, our platform has now been operational for 8
years, and many simulation objects have been written dur-
ing all this time, and they have not been designed for inter-
action. First, we whould have to modify their code, which
is quite dangerous, because it could damage existing and
well-functioning simulations. Second, there could be a lot of
work to do to rewrite the code of all these objects in order
to make them interactive, because there could be some in-
compatibilities between the old simulation objects and the
new classes they would have to inherit from. So, we have to
propose a solution that will not modify the existing code of
simulation objects.

4.2 Interactive Simulation Objects Inherit
from the Initial Ones

In order to not modify the existing code, we have decided
to make the interactive simulation objects inherit from the



initial simulation objects. We found two ways to realize it.

4.2.1 A First Solution: Multiple Inheritance
So we have decided to provide several classes able to com-
municate with our interactors, without talking to the pro-
grammers about the interaction possibilities, in order to let
them design, implement and use their simulation objects as
usual, always with the aim not to disturb them.

The classes that we provide that way are called interactive
objects. As they must be able to communicate with other
simulation objects in the same way as them, these classes
have to inherit from the common simulation object ancestor
class.

To obtain interactive simulation objects, we first proposed
the following way to use our classes: by creating new simu-
lation objects by multiple inheritance from the initial sim-
ulation object and from one or several interactive objects.
As all our simulation objects, the corresponding classes in-
herit from the same ancestor class, there is diamond inheri-
tance. We solve this problem with C++ virtual inheritance
mechanism, which allows diamond inheritance but which is
sometimes quite cumbersome to use.

We obtain this way new simulation objects without modi-
fying their initial code, which leads to two very interesting
results :

• the interactions can be provided by a Human-
Computer Interaction specialist, without annoying the
programmer of the initial simulation objects with such
complex details as interaction or C++ multiple inher-
itance,

• therefore this programmer can focus on his simulation
problems, and he can easily make its initial simulation
objects evolve, as with the inheritance mechanism all
the modifications will be transmitted to the inherited
simulation objects.

The main drawback of this method is that we have to repeat
the same work if many different classes of simulation objects
have to be made interactive.

So, we are now focusing on the possibility to use C++
template inheritance to ease this inheritance mechanism
and then to obtain interactive simulation objects from non-
interactive ones in a more generic way.

4.2.2 Template Inheritance for Interactive Simulation
Objects

As we said previously, C++ multiple inheritance is the hard
way to offer interaction to our simulation objects because
of the complexity of the mechanism involved, particularly
when diamond inheritance can occur and when C++ virtual
inheritance must be used. Of course, it is not a problem for
an Object Oriented Language or C++ specialist, but most
of Gasp users are not, because they focus first on physical
or behavioral simulation, as they are experts about these
simulation fields.

So we have try to simplify this approach and to replace it by
genericity with C++ template inheritance. An interactive
object class is now a C++ template class parameterized by
the initial simulation object class you want to make interac-
tive.

4.2.3 Examples
For example suppose that Follower is the class of simula-
tion objects able to follow another simulation object (and
FollowerC its associated calculus class). We provide an in-
teractive object template class MFollower (and MFollowerC

its associated calculus class) which enables an object to be
selected and then to follow the position of the mouse until
it is deselected. It is then immediate to obtain a simulation
object that will follow another object until it will be selected
by the end-user. It will then follow the mouse, and at last
when it will be deselected, it will go on following its initial
target. This is obtained with a particular instantiation of
our Follower class as shown figure 6.

The MFollower class main features are the creation of its
associated calculus (templated by the initial calculus class),
and the explanation of how it manages the events in order
to communicate with an interactor.

The MFollowerC calculation class will be able to plug the
inputs of its associated MFollower class to the outputs of an
interactor. The most interesting method of this class is the
calculate one, which calls its inherited calculate method
(which calculate the position of the object, and maybe many
other things) and then try to follow the interactor by up-
dating the position of the object.

What is interesting with our approach is that it is now very
easy, to a Gasp’user point of view, to make his simula-
tion objects interactive. Another important thing is that
it is easy to provide the same way many categories of in-
teractive objects, here again with C++ template inheri-
tance. Suppose for example that we do not want an in-
teractive object to go to far from the position it would
have if it was not interactive. To obtain such an inter-
active behavior, we should have to modify the calculate

method of the MFollower class. It can be done easily here
again with C++ template inheritance, with two new class-
es: LMFollower and LMFollowerC (the “L” stands for “lim-
ited”). The important thing here is to ensure that this new
calculate method makes a call to the ICalculus corre-
sponding method, then stores the position obtained, then
obtains the position reached with the interactor, and then
calculates if this position can be reached. If not, a new po-
sition must be calculated and set to the position field of
the associated simulation object as shown figure 7.

We can notice that the instantiation of such an interactive
object is always as simple as in the previous case with no
constraint about the position.

4.2.4 Drawback of our method
Our template inheritance method relies upon the existence
of a particular field in the inherited class : position in
the case of the exemple used to illustrate the method as
in figure 7. This method of interaction with the inherited
class by direct access to the particular attribute you want



template <class IObject,
class ICalculus>

class MFollower : public IObject {
public :
MFollower () ;
virtual ~MFollower () ;
virtual Calculus * createCalculus () {

return new MFollowerC <ICalculus> () ;
}
virtual void manageEvt () ;
... // other methods ...

} ;

template <class ICalculus>
class MFollowerC : public ICalculus {

public :
MFollowerC () ;
virtual ~MFollowerC () ;
virtual void calculate () {

ICalculus::calculate () ;
interactorFollow () ;

}
virtual void interactorFollow () ;
virtual void plugInteractor (...) ;
virtual void unplugInteractor () ;

protected :
Position proposedPosition ;

} ;

...
SO so = new MFollower <Follower, FollowerC> ;
...

Figure 6: C++ Instantiation of an Interactive
Follower

to control within the new template subclass is not a very
good one. Indeed, in order to control another attribute of
the same type, you have to create another C++ template
class, very similar to this first class : this clearly leads to
code duplication.

5. EXAMPLES OF INTERACTIONS
Here are some examples of interaction within GASP.

5.1 Visualization Driven Interactions
All the interactions driven by a device managed by a 3D vi-
sualization are similar to the mouse driven interaction pre-
viously discussed. In these cases, the calculus part of the
visualization simulation object has to manage the device in
order to provide the corresponding outputs. The concerned
devices are the mouse, the keyboard, dial boxes, and every
particular device the 3D visualization is able to manage.

5.2 Interactions with other devices
A dedicated simulation object must be provided for the
other devices. The associated calculus object is then in
charge of acquiring the data from the device and of updat-
ing the outputs of the simulation object. We are going to
present here such an interaction.

The device we are interested in is a 3D LEDs motion capture
device SM3D 1000 from SAGEIS. It is composed of 3 linear
cameras tracking a set of LEDs in a 3D bounded volume.
In our case, this system is able to provide the 3D position

template <class IObject,
class ICalculus>

class LMFollower : public MFollower <IObject,
ICalculus> {

public :
LMFollower () ;
virtual ~LMFollower () ;
virtual Calculus * createCalculus () {

return new LMFollowerC <ICalculus> () ;
}

} ;

template <class ICalculus>
class LMFollowerC : public ICalculus {

public :
LMFollowerC () ;
virtual ~LMFollowerC () ;
virtual void calculate () {

ICalculus::calculate () ;
initialPosition = position ;
interactorFollow () ;
proposedPosition = position ;
... // calculation of the
... // final position
position->set (finalPosition) ;

}
virtual void interactorFollow () ;

protected :
Position initialPosition ;
Position finalPosition ;

} ;

...
SO so = new LMFollower <Follower,

FollowerC> ;
...

Figure 7: C++ Instantiation of an Interactive Lim-
ited Follower

of four LEDs on a RS232 PC serial port. So, in order to
provide these four 3D positions to simulation objects that
would be interested in them, we have developed a particular
simulation object with the four appropriate outputs, and
with a calculus object able to read data from a RS232 SGI
serial port.

Such a device is very interesting for immersive interaction
within 3D worlds. For example, figures 8, 9, 10 and 11 are
snapshots of a particular interaction with this device (the
displays are using stereovision, explaining the poor quality
of the visuals). Here only two LEDs are used in order to
simulate a 3D mouse. One LED is used in order to move the
3D mouse cursor, represented by a star. We can see Figure
8 the end-user approaching this cursor from a 3D simulation
object : a sphere. When this cursor is near enough from a
simulation object, the end-user can approach the second led
from the first one in order to “click”, and then, in this very
case, to assign the position of the simulation object to the
position of the LED. This click has been done between figure
8 and figure 9. The end-user can then move the selected
object to a particular position, and after that he can release
it by doing another click as shown figure 10. The end user
can then click upon another simulation object to move it as
shown figure 11.



Figure 8: Interaction with 2 LEDs to obtain a 3D
mouse : the beginning

Figure 9: Interaction with 2 LEDs to obtain a 3D
mouse : just after the first click to grasp the object

5.3 Multi-User Distributed Interactions
With our input/output paradigm for simulation objects, it is
quite natural to allow several simulation objects outputs to
be plugged to some inputs of a particular simulation object,
and then to allow them to cooperate in the driving of this
object, assuming it is able to merge all the inputs to obtain
a pertinent resulting input.

As an interactor is a particular simulation object, sever-
al end-users can collaborate this way in the driving of any
simulation object :

• from a high level, when each end-user drives only its
own simulation object : only the global simulation is
affected by the cooperation,

• to a very low level, when several users provides outputs
for the inputs of a thus shared simulation object.

A classical mouse driven cooperation example is shown fig-
ure 12.

Figure 10: Interaction with 2 LEDs to obtain a 3D
mouse : the second click to release the object

Figure 11: Interaction with 2 LEDs to obtain a 3D
mouse : going on with another object

The LEDs driven cooperation application is sharable be-
tween several users with LEDs and other users in front of
their own workstations, as shown figure 13.

6. ONGOING WORK

6.1 Template Inheritance
Rather than allowing to take control of an inherited field
directly in the derivated template class (cf 4.2.4), it would
be better to use an appropriate structure.

Therefore we have worked on a way to offer to the template
subclass the possibility to act upon a particular category
of attributes, which can be selected using their name (as a
string). This way, it is possible to act upon restricted param-
eters of a simulation object instance of the inherited class,
for example only its inputs, outputs or control parameters.

We now have to provide a new category of parameters that
could be dedicated to the storing of the internal state of a
simulation object: we think for exemple about the notion of
state parameter.



Figure 12: Mouse driven cooperation between two different users

Figure 13: Cooperation between several users

6.2 Multi-User Interactions
We have said that when several (distributed or not) users
wanted to interact with the same object, this object could
have to be able to merge all of the inputs to obtain a perti-
nent resulting input, for example in the case of several users
wanting to act on the same inputs of a simulation object. If
this object is not able to do this, it is quite easy to plug its
inputs to the outputs of a merging simulation object which
will be able to provide the adapted outputs. We can imag-
ine this way some useful merging objects as min, max, mean,
. . .

We now have to provide all these “of the shelf” merging
simulation objects in order to ease the programmers task for
simultaneous multi-user interaction upon the same object.

6.3 Higher Level Interactions
As shown in this paper, Gasp is now able not only to accept
any particular device with its adapted driver in order to
interact with a simulation object, but also to offer higher

level interactors allowing us to think about new interaction
paradigms, such as the 3D mouse interactor made with only
two LEDs.

So we now have to focus on those new interaction paradigms
in order to create new 3D “lightweight” logical interactive
devices, which could be obtained either with physical devices
such as LEDs, or with a combination of already existing de-
vices. The main interest of such devices would be that they
could be software configured, without having any trouble
with the physical drivers, assuming such drivers would have
been provided once.

6.4 A Second Distribution Paradigm : Repli-
cated Objects

While distribution of virtual entities or interactors is natu-
ral and effective with the mirror/referential paradigm, dis-
tributing a world database so that entities can find out about
their surroundings has proven difficult. The reason is that it
is difficult to encapsulate a world database in a simulation
object because either the outputs of such an object would
have to be adapted to their reader or a complex event and
message protocol would have to be adopted to be able to
get to pertinent information in the database with very poor
performance when distributed.

Therefore, a new class of objects has been introduced in
Gasp: replicated objects. These objects aren’t owned by
a process of the simulation but are created in any process
which owns referentials that need the information they pro-
duce. Because their are created in the same process, method
invocations of member functions can be used to interact with
those objects. Nevertheless, replicated objects can still in-
teract with other objects through the general mechanism
used by other objects.

At the writing of this paper, no specific mechanism as been
provided to help the programmer keep the different copies
of a replicated object coherent. We anticipate they aren’t
needed in many cases. Indeed, the reason replicated ob-



jects where introduced was to provide a more convenient
and efficient way of reading the data they produced. Data
collection and update by the replicated objects should still
be performed by reading the inputs of the object. Therefore,
all copies of the replicated object will update their database
by reading the same data, thus ensuring data coherence be-
tween the copies.

7. CONCLUSION
In this paper, we have presented how interactors are inte-
grated in Gasp and how that introduction enables multi-
ple configurations for multi-user interaction. We have also
presented a generic approach to build interactive objects
from existing objects. Furthermore, as Gasp was at first
designed to distribute the calculation weight of animating
autonomous agents, multiple users can collaborate in these
interactions. We believe that the concepts involved to build
collaborative virtual environments with Gasp are simple e-
nough to enable a great number of programmers to partic-
ipate in the construction of virtual worlds where possible
collaboration is compatible with complexity, at the geome-
try level as well as at the animation level.

8. REFERENCES
[1] C. Carlsson and O. Hagsand. DIVE — A platform for

multi-user virtual environments. Computers and
Graphics, 17(6):663–669, Nov.–Dec. 1993.

[2] D. Margery, B. Arnaldi, and N. Plouzeau. A general
framework for cooperative manipulation in virtual
environments. In M. Gervautz, A. Hildebrand, and D.
Schmaltsieg, editors, Virtual Environments ’99, pages
169–178. Eurographics, Springer, 1999.

[3] S. Ghee and J. Naughton-Green. Programming virtual
worlds. SIGGRAPH’94 Course, (17), 1994.

[4] C. Greenhalgh and S. Benford. MASSIVE: A
distributed virtual reality system incorporating spatial
trading.

In Proceedings of the 15th International Conference on
Distributed Computing Systems (ICDCS’95), pages
27–35, Los Alamitos, CA, USA, May30 June–2 1995.
IEEE Computer Society Press.

[5] C. Just, A. Bierbaum, A. Baker, and C. Cruz-Neira.
Vr juggler: A framework for virtual reality
development. In Proceedings of the 2nd International
Immersive Projection Technology Workshop, 1998.

[6] R. Lea, Y. Honda, K. Matsuda, and S. Matsuda.
Community place: Architecture and performance. In
R. Carey and P. Strauss, editors, VRML 97: Second
Symposium on the Virtual Reality Modeling Language,
New York City, NY, Feb. 1997. ACM SIGGRAPH /
ACM SIGCOMM, ACM Press. ISBN 0-89791-886-x.

[7] M. Macedonia. A Network software Architecture For
Large Scale Virtual Environnements. PhD thesis,
Naval Postgraduate School, Monterey, California,
1995.

[8] M. Macedonia, M. Zyda, D. Pratt, P. Barham, and S.
Zeswitz. Npsnet: A network software architecture for
large scale virtual environments. Presence,
3(4):265–287, 1994.

[9] S. Donikian, A. Chauffaut, T. Duval, and R. Kulpa.
Gasp: from modular programming to distributed
execution. In Computer Animation’98, IEEE,
Philadelphia, USA, pages 79–87, june 1998.

[10] D. Snowdon and A. West. AVIARY: Design issues for
future large-scale virtual environments. Presence,
3(4):288–308, 1994.

[11] T. Duval and D. Margery. Using gasp for collaborative
interactions within 3d virtual worlds. In Proceedings of
the Second International Conference on Virtual
Worlds (VW’2000), Paris, France, july 2000. Springer
LNCS/AI.


