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ABSTRACT

Collaborative virtual environments (CVE) enable users to collabo-
rate and interact with each other by sharing a common virtual envi-
ronment. Consistency of the virtual environment is very important
to provide an efficient collaboration between users. However, users
sharing a CVE may be scattered over different physical locations,
so CVE systems have to guarantee the consistency of the virtual
environment despite network issues such as low bandwidth or net-
work latency. Absolute consistency is nearly impossible to achieve
because it would prejudice the responsiveness of the system during
users’ interactions. So, CVE systems have to deal with a trade-off
between consistency and responsiveness of the system. This paper
presents a detailed survey of architectures and mechanisms used to
improve the consistency of a shared virtual environment. Archi-
tectures of CVE systems are studied according to their impact on
the consistency. Contrary to previous state of the art reports which
classify CVE systems according to the network connections or to
the data distributions, we choose to examine these two properties
separately. This classification enables us to deal with the increas-
ing number of hybrid architectures which mix different architec-
tural choices to meet their requirements. Consistency maintenance
mechanisms are also examined. First, a time synchronization has
to be achieved in order to enable users to have the same state of
the virtual environment at the same time. Second, the virtual envi-
ronment can be seen as a database shared by several users, so CVE
systems have to manage users’ concurrent access to the objects of
the virtual environment. Finally, we discuss the need to enable CVE
systems to adapt themselves to performance constraints induced by
the use of mainstream network such as DSL Internet access or by
security requirements of industrial users.

Index Terms: H.S5.3 [Information Interfaces and Presentation (e.g.
HCI)]: Group and Organization Interfaces—Computer-supported
cooperative work; C.2.4 [Computer-Communication Networks]:
Distributed Systems—Distributed applications; 1.3.7 [Computer
Graphics]: 3-Dimensional Graphics and Realism—Virtual reality

1 INTRODUCTION

One of the main goals of collaborative virtual environments is to
enable users to work together in a natural way and to provide them
a truly interactive experience. Generally, each user uses her own
computer in order to have individual interaction capabilities or to
meet the others if they are not located at the same geographical
place. So, this collaborative work has to be achieved over a local
area network (LAN) or a wide area network (WAN). For example,
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in the case of the French ANR project CollaViz!, remote experts
have to analyze together scientific data using an Internet connec-
tion through a secured proxy. Such network connections have a
strong impact on the consistency of the shared virtual environment
because they delay the transmission of the modifications of the vir-
tual environment. Moreover, while some users of a CVE can in-
teract through immersive devices, powerful computers, and high-
bandwidth network connections, some other users can share the
same CVE trough simple workstations and low-bandwidth network
connections. Even if some users have a slow network connection or
a not powerful computer, they must have the same state of the vir-
tual environment than the other users. Ensuring the consistency of
the CVE is the best way to enable users to have an efficient collabo-
ration, because it can avoid conflicts between several users’ actions,
or misunderstandings when users perform collaborative tasks.

To define the consistency of a CVE, Delaney et al. [5] explain
that a CVE has be considered as a distributed database with users
modifying it in real-time. The consistency maintenance is to en-
sure that this database is the same for all users, i.e. users observe
or interact with the same data. The consistency of a CVE can be
characterized by the following three criteria:

e synchronization: (1) time synchronization: an event (modifi-
cation of the state of a shared virtual environment) should hap-
pen simultaneously on all the simulation nodes (users’ com-
puters). (2) spatial synchronization: the CVE objects should
be located as precisely as possible for all users.

e causality: events order has to be the same for all users.

e concurrency: conflicts can occur when users change the
same parameter of a virtual object at the same time. These
conflicts have to be managed to avoid that users make their
own modifications and have inconsistent states of the CVE.

Consistency is directly linked to system responsiveness. Respon-
siveness can be defined as the time needed by the system to respond
to users’ actions. Responsiveness during interactions can be quan-
tified by the system latency, i.e. the time between a user’s action
and the response of the system. This latency is often due to the
transmission time over the network and to the processing delays of
the events. Improving the consistency of a CVE can increase la-
tency in interactions and vice versa. So, CVE systems must reach a
compromise between consistency and system responsiveness.

Latency is especially a problem for applications that require lots
of interactions. Delaney et al. [5] present several values of latency
found in the literature. It seems that no consensus has been found
about these values. However, the maximum latency values fluctu-
ate between 40 and 300 ms to maintain real-time interaction, and
a maximum latency of 100 ms seems sufficient for most of the ap-
plications. These values depend also on the jitter (the variance of
the latency) of the system. Delaney et al. [5] explain that jitter has
a more significant impact on users’ performance than latency. It
would be better to have a quite high and constant latency (i.e. with
a low jitter), rather than a lower latency with a higher jitter.
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In this paper, Section 2 describes the different architectures of
CVE systems and their impact on consistency and system respon-
siveness. Then section 3 examines the consistency maintenance
mechanisms used in CVE systems. Finally, section 4 concludes
and discusses what can be improved to maintain the consistency
in CVE systems that use mainstream networks and need secured
network connections.

2 SYSTEM ARCHITECTURE

Consistency and performance of a CVE are highly correlated with
its system architecture. For example, some architectures maintain
a strong consistency of the CVE but introduce latency in interac-
tions. In contrast, other architectures accept a few inconsistencies
between each user’s state of the virtual environment, but enable
users to have a better responsiveness during interactions. Previ-
ous state of the art reports classify CVE systems according only to
how the simulation nodes (users’ computers) are connected together
[6, 10] or only how data are distributed on these nodes [13, 7]. Al-
though these two characteristics are often interrelated, we chose
to use these two criteria separately for our classification: the kind
of network architecture (part 2.1) and the kind of data distribution
(part 2.2). This classification choice is motivated by the fact that
more and more hybrid solutions mix different architectural choices
to meet their requirements. As different communication protocols
can be used to communicate information during a simulation, we
choose this third criterion to complete our classification (part 2.3).

2.1 Network Architecture

A CVE system is usually made up of several interconnected nodes
that can be geographically scattered. Each node can communicate
with the others through three main data transmission methods:

e unicast: transmission only from one node to another,

e broadcast: transmission from one node to all the others,

e mutlicast: transmission from one node to a subset of other
nodes.

Delaney et al. [6] distinguish two basic network organiza-
tions used for CVE systems: the peer-to-peer architecture and the
client/server architecture. They also introduce hybrid architectures
that combine these two solutions.

2.1.1 Peer-to-peer architecture

The peer-to-peer architecture enables fast communications between
pairs of users, because events are transmitted directly from one sim-
ulation node to another one’s (see Figure 1). So, it enables a few
users to have strong synchronization, and consequently close inter-
actions. However, when the number of users increases, the num-
ber of messages transmitted on the network becomes considerable,
especially when an unicast transmission is used (if the simulation
contains N members, a node has to send N-1 messages to transmit
one event). Consequently it is difficult to contact all the users at
the same time to transmit modifications of the virtual environment.
So, time synchronization and global consistency of the CVE can be
difficult to ensure. This kind of architecture appeared with the first
CVE systems (Reality Build for Two [2] which connects only two
computers, MR Toolkit [19]) and is used in military applications
(SIMNET [4], NPSNET [14]).

2.1.2 Client/server architecture

This kind of architecture is based on a central server. All the users
connect themselves to this server (see Figure 2). The central server
manages the communication between different users and store data.
This kind of architecture enables the server to contact all the users
at the same time. So time synchronization and consistency of the
CVE are easier to maintain than in the peer-to-peer architecture.
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Figure 1: peer-to-peer archi-
tecture

Figure 2: client/server archi-
tecture

However, when two users want to interact together, all the com-
munications have to pass through the server, which increases inter-
action latency. Moreover, when the number of users increases, a
bottleneck can occur on the server due to too many communication
requests. So all the communications can be slowed down. For ex-
ample, a client-server architecture is used in: RING [9], BrickNet
[20], and ShareX3D [11].

2.1.3 Hybrid Architecture

To overcome the previous limitations, some systems use an hybrid
network architecture that uses both peer-to-peer connections and
one or several servers. For example, it is possible to speed up
communications between users using peer-to-peer connections or
to maintain a better consistency with a server.

In SPLINE [21], several servers share up-to-date information
(messages, events, etc.) with peer-to-peer connections between
these servers (see Figure 3). At the beginning of the session, a
session manager connects users to one of these servers. Then users
only communicate with their assigned server. On the one hand,
this solution avoids the bottleneck on the server when the number
of users increases. On the other hand, it enables to easily connect
users with slower connections or secured connections. Indeed, each
server can perform additional processing such as compression or
communication with a specific protocol. However, using too many
servers can increase the latency of the system and the load of the
Servers.

Session 3
Manager o=

Figure 3: several servers used peer-to-peer connections

Anthes et al. [1] suggest another hybrid architecture to facili-
tate collaboration between nearby users (according to their location
in the virtual environment) by reducing the latency between them
(see Figure 4). Users are connected to the CVE through a server.
When users are close in the virtual environment, temporary peer-
to-peer connections are established between these users to increase
the consistency of the virtual environment between them.
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Figure 4: temporary peer-to-peer connections between close users

The OpenMASK platform [15] architecture is also an hybrid
one. Indeed, it uses peer-to-peer connections to send updates and
events between users, but it uses also a server to manage the iden-
tification of virtual objects and to add dynamically users during a
simulation.

2.2 Data Distribution

As stated by Macedonia et al. [13], choosing the location of the vir-
tual environment data (i.e. geometric data, textures, etc.) is a crit-
ical decision when designing a CVE system. We must determine
which computers store this data, but also which computers execute
the processing related to each virtual object. We distinguish three
data distribution modes: the shared centralized world, the homo-
geneously replicated world and the partially replicated world (dis-
tributed world).

2.2.1 Shared centralized world

Some systems such as Vistel [23] use one database shared by all
users. Data in relationship with the virtual environment are stored
on a central server. Similarly, behaviors of the CVE objects are
executed on this server (see Figure 5(a)). Users simply connect
themselves to the server for participating to the simulation (this ap-
proach requires a client/server network architecture). When a user
wants to modify an object state, she sends a request to the server.
The server processes the modification request, then transmits the
up-to-date state to all users, including the one who asked for this
modification (see Figure 5(b)).
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Figure 5: (a) executions of object behaviors and (b) object modifica-
tions in shared centralized world

This method ensures consistency between all users and avoids
data replication. However, this solution has two main drawbacks:

e Interaction latency can increase when transmission delays oc-
cur between the clients and the server. Indeed, each modifica-
tion request has to pass through the server before returning to
the user (see Figure 5(b)). This lack of responsiveness during
interactions can be annoying for users.

e If the number of users is high, a bottleneck can appear on the
server because it has to send updates to all users at the same
time (especially with unicast connections).

2.2.2 Homogeneous replicated world

This kind of data distribution is used in many CVE systems (SIM-
NET [4], MR Toolkit [19]). The state of all the simulation nodes
(users’ computers) is initialized with the same database that con-
tains all the information about the virtual environment (terrain, ge-
ometric models, textures, object behaviors, etc.). Data can already
be present on the node at the user connection (such as in most of the
video games). Otherwise, data has to be replicated from a server, or
from the other nodes already present in the simulation. During the
simulation, the database evolves independently on each node and
all object behaviors are executed locally (see Figure 6(a)). Addi-
tionally, a synchronization mechanism can be used to control exe-
cutions of object behaviors on each node. To maintain consistency,
only changes of object states and some special events (collision be-
tween two objects, etc.) are transmitted on the network in order to
enable all users to update their database (see Figure 6(b)).
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Figure 6: (a) executions of object behaviors and (b) object modifica-

tions in a homogeneous replicated world

This data distribution has two main advantages:

e The number and the size of messages transmitted on the net-
work are really small because only update messages are sent.

e The latency is very low when a user interacts. In fact, mod-
ifications of the virtual objects are performed locally before
being sent to the other users using update messages.

However, data replication has also some drawbacks:

e Data replication can introduce inconsistencies between each
user’s virtual environment because of delays or losses during
the transmission of update messages.

e We need additional mechanisms to manage the concurrent ac-
cess on each node. Indeed, a user can perform a local mod-
ification of an object, but modification conflicts can only be
checked when the modification is transmitted to the other
users.

o If the amount of data is large, the database on each node will
be large. So this solution is not really appropriate for very
large data sets such as scientific data or complex CAD models.

e This approach is not really flexible, especially if users want to
add new objects that the initial database does not know.

2.2.3 Partially replicated world (or distributed world)

Some CVE systems choose hybrid solutions between totally
centralized and totally replicated data distributions in order
to avoid the drawbacks of these two solutions. These hybrid
solutions distribute the data and their treatments between the
simulation nodes. It reduces the necessary resources and eases



the consistency maintenance. In the literature, these hybrid
solutions are called partially replicated world or distributed world.
We present some hybrid solutions that seem particularly interesting.

To avoid the duplication of all the data in all nodes, data can be
distributed on the network between these nodes. So the database
can be seen as a shared and distributed memory. In DIVE [8], when
a new user connects herself to the collaborative session, she repli-
cates only the necessary objects on her node instead of downloading
the whole data of the virtual environment (see Figure 7). However,
if this user needs other objects during the simulation, she has to
re-download them dynamically.
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Figure 7: Data partially replicated on each simulation node

DIVE uses peer-to-peer connections to manage communications
between users (transmissions of messages or object data when
it is necessary). Moreover, DIVE uses a server to backup the
data present on all the nodes. It enables to save the state of the
virtual environment in case of user disconnections or to restart the
simulation where it had been left during the previous session. This
method enables to have a high number of users and a very large
amount of data without necessarily duplicate this data on each
node. However, dynamic transmission of data and consistency
maintenance induce a high cost of communications between users.
When the state of an object is changed, update messages must be
sent to all the users even if they do not own this object. Indeed, a
user cannot know who owns the modified object.

The main difficulty of this partially replicated world is to effi-
ciently replicate the missing data without disturbing the users’ in-
teractions. According to Lee et al. [12], two solutions can be used:

e The prioritized transfer: this technique consists in selecting
first the objects that are in the user field of view, and trans-
fering these objects using level of detail (LODs) or multi-
resolution techniques. This solution maximizes graphical fi-
delity of the virtual environment as well as interactive perfor-
mances by mediating graphical details and transmission over-
head of the objects.

e Caching and prefetching the data: this technique consits in
caching and prefetching the data that users will probably need.
It enables to make it immediately available when users ask for
it. However, this solution must predict efficiently which ob-
jects will interest first the users in order to define a loading
priority. Generally, the distance between users and objects is
used to determine this priority, assuming that users will be in-
terested first by the closest objects. Other solutions suggest
to add the direction of displacement of users or to use the ob-
ject type to determine the scope of interest of users. However,
when the number of objects becomes large, this prediction is
more difficult to achieve.

To reduce the cost of communications for the updates, BrickNet
[20] uses a server to keep information about the shared objects:
access rights on these objects, which users own each object, etc.
The virtual environment of each user can be different because
she can add shared, but also private objects. Object behaviors are
executed on each node. BrickNet uses a client/server architecture
in which the server manages the communications between users.
For example, if a user wants to share one of her private objects,
she has to notify the server that the object becomes now shared.
Then the server keeps a list of users who ask for this object. When
a user wants to modify an object, she must first ask the server for
the modification rights on this object (only one user can modify
an object at the same time). When her request is granted, this
object can be modified locally. Then the new state of the object is
transmitted to the users who have this object using a list of object
owners on the server. In this approach, the server enables to ease
the consistency maintenance and to manage the concurrent access.

In OpenMask [15], data of the virtual environment are replicated
on each node. However, each object behavior is executed only on
one node. To achieve this, OpenMask [7] uses a referent/proxies
paradigm. The referent is assigned to a particular node and defines
the object behavior. On the other nodes, proxies are created to rep-
resent the object. A proxy has the same interface as the remote
referent (same inputs, same outputs, etc.). However, it computes
no processing locally and it is forced to “follow” the referent be-
havior (see Figure 8(a)). The OpenMask kernel [15] maintains the
consistency between the referent and its proxies. When a user ma-
nipulates an object with the referent on her node, first the object is
modified locally, second an update is sent to all the other users (see
Figure 8(b)). However, if the referent of the manipulated object is
not on her node, the modification of the object is computed first on
the remote node which owns the referent. Then this node transmits
updates to all the users, including the user who has asked for the
modification (see Figure 8(c)). In this second scenario, transmis-
sion delays on the network can introduce latency in interactions.
However, this solution enables to combine the processing power of
all the simulation nodes. It enables also to ensure a better consis-
tency of the virtual environment and to manage implicitly the con-
current access to the objects (in a first step, only the referent can be
modified).
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Figure 8: (a) executions of object behaviors, (b) object modifications
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2.3 Communication protocols

Several protocols can be used to communicate the information nec-
essary for consistency maintenance between the simulation nodes.
A protocol describes how the nodes will communicate on the net-
work. Generally, a network connection can be decomposed in three
layers: the network layer, the transport layer, and the application
layer. Usually, protocols for CVE systems are defined either in the
application layer or in the transport layer. The most commonly used
network layer protocol is IP (Internet Protocol).

2.3.1 Classical Protocols

TCP (Transport Control Protocol) and UDP (User Datagram Pro-
tocol) are the most commonly used transport layer protocols. TCP
ensures reliable transmissions between two nodes using a system of
acknowledgment and retransmission. TCP can achieve only unicast
transmissions. On the contrary, UDP sends data in a non-connected
mode: there is no way to verify if packets are correctly received
and in which order. However, it can be useful to quickly send data
to several users (using broadcast or multicast transmissions). In-
deed, a new packet can be sent without having to wait that all the
previous packets have been received by all the concerned users. To
solve the reliability problems of UDP, SPLINE [21] and SIMNET
[4] send update messages with the whole state of the object (not
only the modifications). If some messages are lost, an up-to-date
object state can be restored when a new message arrives. So there
is no need of retransmission.

According to Delaney et al. [6], the choice of the transport layer
protocol depends of the kind of interactions in the CVE. For punc-
tual interactions which involve a transmission of a small amount of
information or an irregular transmission, it is better to choose UDP.
On the contrary, for persistent interactions which require a trans-
mission of a large amount of information or a regular transmission,
the TCP protocol is most commonly used.

2.3.2 Multicast oriented Protocols

The first works on CVE have chosen to use transmissions based
on unicast or broadcast. For example, MR Toolkit [19] uses uni-
cast transmissions between nodes widely distributed on the Inter-
net. However, these solutions are not efficient for a very large num-
ber of users. Moreover, as in SIMNET [4], broadcast transmis-
sions may be problematic in the case of lots of network connected
nodes because it will submerge the network with unwanted data.
For all these reasons, researchers have proposed several solutions
using multicast protocols.

To achieve multicast transmissions, a solution is to use the mul-
ticast IP network layer, which enables to send messages simultane-
ously to many recipients (on a non-reliable way). However, accord-
ing to Delaney et al. [6], this solution has several drawbacks:

e it can be difficult to implement efficiently on a point-to-point
medium,

e many Internet routers are not able to support multicast,

e the number of user groups can be limited because of various
issues such as addressing, congestion control, or administra-
tion.

To overcome these problems, network overlays have been devel-
oped to provide IP multicast capability over networks that do not
offer multicast capability at the network layer. DIVE [8] and
NPSNET [14] use the “MBone” (multicast backbone) which cre-
ates a virtual network providing multicast with encapsulations of
multicast packets in normal IP packets.

2.3.3 Virtual Reality dedicated Protocols

Some other application layer protocols use the transport and net-
work layer to optimize the transmissions of application-specific
data. El Zammar [7] lists some application layer protocols dedi-
cated to virtual reality applications:

Real-Time Protocol (RTP) provides network transport func-
tionalities for applications transmitting real-time data such as
streaming video, audio, or simulation data, both in unicast or in
multicast. Mauve et al. [17] propose a new protocol RTP\I which
adapts RTP for interactive applications. RTP\I uses four types of
packets to manage event communications, objects states transmis-
sions, state changes, state queries.

Virtual Reality Transfer Protocol (VRTP) is designed to be
a support for the VRML (Virtual Reality Modeling Language) in
the same way that HTTP is the HTML support. In other words,
VRTP can be seen as an extension of the HTTP protocol to meet the
requirements of CVE, because HTTP is not sufficient to manage 3D
interactive objects. The VRTP approach proposes that a node can
take the role of a client, a server, or a peer if needed. This node can
be seen as a client examining databases of other users, as a server
responding to requests from other users, and as a peer participating
in a simulation with groups of users who speak through multicast
channels.

Distributed Worlds Transfer Protocol (DWTP [3]) is a spe-
cific application protocol for sharing virtual environments over the
Internet. It is based on standard protocols such as TCP/IP and
UDP/IP. It enables to transport several types of data: events, mes-
sages, files and data streams. Events are used to ensure the consis-
tency of the virtual environment between the users. The messages
are predefined events such as join or leave the virtual environment.
A file can be a 3D scene description, an avatar or an object geom-
etry. It requires a reliable transport. Data streaming transmits a
continuous data stream such as audio or video. This data type does
not require a reliable transmission. The DWTP concept is based
on daemons and participants. The role of the daemon is to provide
services to the participants:

o the reliability daemon: detects transmission failures (for un-
reliable protocols like UDP).

e the retransmission daemon: transfers the lost data by using
unicast connections.

e the world daemon: transmits the virtual environment content
to the new participants.

o the unicast daemon: extends the architecture for participants
who do not have a multicast channel.

Distributed Interactive Simulation (DIS) comes from the
SIMNET military simulation platform [4]. The DIS standard (IEEE
1278) defines specific messages called PDU (Protocol Data Units)
which communicate specific information between the simulation
nodes. A few PDU are dedicated to users’ interactions with the vir-
tual environment and the others are used to transmit various data
and actions on the virtual environment such as the apparitions of
objects, the use of weapons, explosions, etc. However, DIS is very
specific to the military simulation context because the message for-
mat is fixed in the protocol for specific military simulation objects.
In order to extend this protocol for non-military applications, a new
protocol version called High Level Architecture (HLA) has been
proposed.

Interactive Sharing Transfer Protocol (ISTP [22]) has been
developed in the context of SPLINE [21]. However, ISTP can be
used with other CVE systems. Each ISTP process acts as a client
and a server at once. To communicate information about virtual
objects, ISTP is based on sub-protocols:



e the connection protocol: used to establish TCP connections
between two ISTP processes.

e the object state transmission protocol: used to transmit the
state of the virtual object using unicast or multicast UDP con-
nections.

e the data streaming protocol: used for the communication data
streams such as audio (based on RTP).

2.3.4 Industrial Environment Specific Protocols

For some industrial uses, classical or VR dedicated protocols are
not well adapted to modern security constraints. For example,
ShareX3D [11] has to deal with firewalls that support only the
HTTP protocol. So ShareX3D proposes to use the “long polling”
technique for server-to-client and client-to-server-to-client commu-
nications (ShareX3D uses a client/server architecture). This tech-
nique is used to overcome the fact that HTTP does not allow re-
quests from the server to the client. The “long polling” can be di-
vided in four steps:

e The client sends a connection request to the server.

e As long as the server has no event to send to the client, the
connection is kept open.

e Once the server has an event to send to the client, it transmits
it with the open connection. Then the connection is automati-
cally closed.

e The client immediately re-sends a new connection request to
the server and so on.

Time and processing power necessary to establish a new connection
after sending each message can introduce latency in users’ interac-
tions, when events need to be sent with an high frequency rates.

3 CONSISTENCY MAINTENANCE MECHANISMS

In addition to the system architecture and the communication pro-
tocol, some mechanisms can be used to improve the consistency
of the virtual environment. First, we present time synchronization
mechanisms which enable each user to process modifications of the
CVE at the same time. Second, we examine the different solutions
used to manage the concurrent access to virtual objects.

3.1 Synchronization

Time is a fundamental element of a CVE. However, the notion of
time can differ from one application to another. Delaney et al. [5]
distinguish two different notions of time in the CVE:

e Absolute time: the time of a CVE can be based on a clock pe-
riodically synchronized between each node based on the co-
ordinated universal time (UTC).

e Logical or causal time: the time of a CVE can be based on
a logical clock which is not precisely synchronized between
each node. This time can be seen as an ordered event se-
quence. When no new event occurs, it stays the same.

The relationship between time and consistency is very important.
In a perfectly consistent CVE, all users have the same global state
at the same absolute time. However, this perfect case can never ap-
pend because of network latency. Delaney et al. [5] list different
solutions to improve consistency over time according to the inter-
action responsiveness required.

3.1.1 Lockstep Synchronization

The lockstep synchronization used in RING [9] or OpenMask [15]
is the easiest way to ensure consistency of a CVE. It consists in
stopping users until all of them have processed the current simula-
tion step. So each user does not increment her logical clock until all
the other users have acknowledged that they are ready for the next
simulation step. This solution imposes that events are processed in
the correct order and avoids roll-backs. However, it guarantees con-
sistency but not real-time consistency. If there are delays or losses
during transmissions, the waiting time of users increases and the
system responsiveness is reduced. Moreover, the simulation step
are not necessarily constant and so the system jitter can be substan-
tial.

3.1.2 Imposed Global Consistency

This technique consists in delaying the processing of both local and
remote events with a fixed time in all nodes. This time is usually
defined according to the maximum values of the network latency.
This delay enables to increase the probability that the remote events
are received before processing all the events of a simulation step.
This method enables to have a strong global consistency between
all the users with an absolute clock. However, this solution intro-
duces interaction latency which value varies according to the net-
work characteristics. However, this latency is constant during all
the simulation.

3.1.3 Delayed Global Consistency

Contrary to the imposed global consistency, the goal of this tech-
nique is to maintain an asynchronous consistency. Users perceive
the same state of the virtual environment, but at different time. Each
event is marked with a “timestamp” (using a logical clock). The
logical clock is maintained on each node. So the state of a CVE
can be rebuilt locally with the good order of events. However, this
delayed consistency can disturb the collaboration tasks (users may
not have the same virtual environment at the same time).

3.1.4 Time Warp Synchronization

“Time Warp” synchronization is an optimist technique, which con-
sists in processing each event as soon as it arrives. The events are
also marked with a “timestamp”. When an event is received with
a older “timestamp” than the event which has just been executed,
the mechanism must cancel the processing of all events which have
a most recent “timestamp” (roll-back). Then it run again all these
events to catch up with the current time. Moreover, it must also
send messages to cancel incorrect messages sent during the wrong
execution (roll-back propagation).

This synchronization method enables users to have low latency
interactions. However, it can only be used when roll-backs happen
rarely, because their are extremely annoying for users. Some sys-
tems propose to quickly display several key-frames during the re-
execution of events to facilitate the users’ understanding. Finally,
this method requires to store the received events to re-execute them
in case of roll-back.

3.1.5 Predictive Time Management

This method proposes to predict events and to send them on the net-
work before they occur. This concept was first proposed by Roberts
et al. [18] in the PARADE system to manage the consistency when
users collaborate through a network with inherent latency. Obvi-
ously, this mechanism can not be applied to all the objects of the
virtual environment because some objects are not predictable. Par-
ticularly, user’s actions are difficult to predict. For example, PA-
RADE uses this method for the collision detection.

Events are predicted locally, marked with a “timestamp”” and sent
to other nodes, where these events will be executed at the appropri-
ate time (defined by the “timestamp”). This predictive manage-



ment is interesting only if the time between the sending of the pre-
dicted event and its processing is higher than the network latency.
Otherwise the message will arrive too late to be processed. If the
prediction is false, the system needs to make roll-backs to resolve
mistakes. To minimize roll-backs, PARADE proposes to send pre-
dicted events just-in-time by using estimations of network delays.
To achieve this, PARADE determines the network delays by study-
ing the RTT (Round-Trip Time) of the network using specific mes-
sages.

3.1.6 Server Synchronization

In client/server architectures, the server can be used to manage an
event synchronization using a logical clock. In ShareX3D [11],
the server maintains a “state number” for each object of the CVE.
When the server receives a modification for an object, it increases
the “state number” of this object. Users maintain also a “state num-
ber” for each object corresponding to the last update messages re-
ceived for this object. When a user asks the server for new modifi-
cations about an object (see “long polling” in 2.3.4), she sends the
local ““state number” for this object. If the user’s “state number” is
the same than the server one, the user is up-to-date and her request
stays in standy. However, if the user’s “state number” is older than
the server one, the server sends to her an update message for the
object and the new “state number” value.

This solution provides a simple way to ensure that users have the
most recent state of an object. However, it does not ensure that all
events will be received and processed by users. This is not an issue
in ShareX3D because the server sends the whole state of objects,
so users can restore teh state of an object with only one update
message.

3.2 Concurrency control

The centralized data distribution ensures an implicit control of con-
current access to the CVE objects, because this data can be changed
only on the server. It is the same for systems which use a refer-
ent/proxies paradigm as OpenMask [15], because only the refer-
ent of an object can be modified by users. However, when data
is distributed on each node (homogeneous or partially replicated
worlds), the users can access and modify objects locally before
these changes are transmitted to other users. So it is necessary
to manage explicitly the users’ concurrent access to these objects
to avoid inconsistencies in the virtual environment. When an ob-
ject can be modified by only one user at the same time (non-
collaborative interactions), Lee et al. [12] distinguish three kinds
of mechanisms to manage the concurrent access:

e pessimistic mode, as in BrickNet [20]: This mode ensures
that only one user can modify an object at the same time with
a lock system. When a user wants to manipulate an object,
she asks to become its owner. An object have only one owner.
So if the object have already an owner, the user have to wait
until this owner releases the ownership of this object. Only
the current owner of an object can modified its parameters. In
this way, no concurrent access to an object can occur. How-
ever, when the network latency or the number of users are
high, the necessary time to acquire an object ownership can be
long and therefore introduces latency in interactions. Brick-
Net [20] uses the server to save which user is the owner of
each object. However, this mode is difficult to set up in the
case of a peer-to-peer architecture. Indeed, when a user re-
quests the ownership of an object, she must ask all the other
users if they own this object.

e optimistic mode: This mode enables users to modify objects
without checking the potential concurrent access on these ob-
jects. So users can have low latency interactions with these
objects. However, when a conflict occurs, it is necessary to

make a correction. It can be complex and requires also that
users perform again their actions.

e prediction based mode, as in PARADE [18] or ATLAS [12]:
This mode consists in predicting for each object which users
may manipulate this object and prioritizing these potential
owners. If the prediction is false for a user (she do not in-
teract with the object), it gives the “ownership” of the object
to the next user on the list of potential owners. Generally, this
prediction is based on the position and the behavior of users
(where they move, where they look, etc.).

In some applications, it may be useful to enable several users to
manipulate a same object at the same time. Margery et al. [16]
classify collaborative interactions into three categories:

e Only one user can manipulate an object at the same time. So
the previous modes of concurrency control can be used.

e Several users can modify simultaneously independent param-
eters of a same object. So the previous modes of concurrency
control can be adapted to each parameter of the objects.

e Several users can modify simultaneously co-dependent pa-
rameters of a same object. So another mechanisms has to be
used to combine the users’ actions and to modify appropri-
ately the object.

4 CONCLUSION

We have presented a state of the art of architectures and mech-
anisms used in the CVE systems to maintain consistency of the
virtual environment without disturbing the users’ interactions. We
have seen that the network architecture, but also the data distribu-
tion (i.e. where data is stored and executed on the network) have
a strong impact on this consistency. Moreover, we have presented
mechanisms which enables CVE systems to achieve a time syn-
chronization between users or to manage the concurrent access to
the data of the CVE. Table 1 presents a synthesis of the solutions
used in some CVE systems to efficiently maintain consistency.

This state of the art report can help to determine the most adapted
system architecture in order to address the requirements specific to
anew CVE. However, this state of the art report shows also that the
universal solution, which meets the requirements of all the CVE
systems, does not exist yet.

We are currently involved in the French ANR project CollaViz
and we are designing a new system architecture dedicated to collab-
orative scientific visualization.The requirements of this project im-
pose several constraints about network architecture, security, and
communications protocols. Indeed, we have to deal with a large
amount of scientific data computed on a cluster, secured connec-
tions, standard networks, and mainstream hardware. So, this state
of the art report may help us to find a good trade-off between the
consistency of a CVE and the system responsiveness according to
these requirements.

The large field of applications of this project encourages us to
design flexible solutions. About data distribution, we expect to en-
able users to dynamically choose which model must be used. This
choice will be made at the object level rather than at the application
level because all the objects of the virtual environment have not the
same need of consistency. About consistency maintenance, we ex-
pect to manage several groups of synchronization to enable all users
to interact in the CVE event if they have hardware limitations such
as low processing power and low network capabilities.
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Network

CVE © v‘jor Data Distribution Communication Protocols Synchronization Concurrency control

architecture

VISTEL [23] client/server centralized unspecified unspecified none

RING [9] client/server homogenous replicated UDP (multicast) delayed global consistency none (no concurrent access)

BrickNet [20] client/server partially replicated UDP (multicast) server synchronization pessimistic

ShareX3D [11] client/server homogenous replicated HTTP server synchronization pessimistic

SIMNET [4] peer-to-peer homogenous replicated UDP (broadcast) + DIS unspecified none

peer-to-peer (+

DIVE [8] a server saves partially replicated “MBone” (multicast) time warp synchronization none

the CVE state)

OpenMask [15] || hybrid S| P MASK3 and MPI for Open- | o0 81002 P P paradigm .
paradigm for the execu- Maskd) ity to specify the tolerated latency enables users to achieve
tion of object behaviors) or to release the synchronization) simultaneous interactions)

. . . unicast or multicast UDP, . TR
SPLINE [21] hybrid partially replicated TCP, HTTP, RTP unspecified pessimistic
PaRADE [18] hybrid homogenous replicated Unreliable mulicast and re- imposed global consistenc; rediction based

Y & S rep liable multicast using TCP posec & sistency P )
Iticast (based on a s specified (i sed global con-
Anthes et al. [1] hybrid homogenous replicated m,u ticast (based on a server u‘n specified (imposed global con unspecified
hierarchy) sistency ?)

. o . . . - pessimistic, optimistic, and

ATLAS [12] hybrid partially replicated unicast or multicast unspecified prediction based

Table 1: Synthesis of architectures and mechanisms used by some CVE systems for consistency maintenance
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