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Accelerating HMMER on FPGA using Parallel

Pre�xes and Reductions

Résumé : HMMER est un outil basé sur la notion pro�ls à base modèles de
Markov cachés, qui est très largement utilisé en bio-informatique. Les parties
critiques de lâalgorithme (fonctions MSV et P7Viterbi) utilisées dans HMMER
sont très consommatrices en temps de calcul et réputées très di�ciles à paralléliser.
Dans cet article, nous proposons un schéma de parallélisation original pour
HMMER, basé sur une reformulation mathématique de lâalgorithme qui permet
de découvrir de nouvelles possibilités de parallélisation bien adaptées à des
implantations matérielles dédiées. Nous avons implanté cette approche sur un
accélérateur FPGA et avons mesuré des gains en performance supérieurs à 10 par
rapport à lâimplémentation logicielle de HMMER3, laquelle exploite pourtant
déjà de manière extrêmement e�cace les extensions SIMD des processeurs x86.

Mots-clés : Pas de motclef
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1 Introduction

Pro�le Hidden Markov Models (HMMs) constitute an important computational
tool extensively used in analyzing biological sequences, in particular for search-
ing for statistically over-represented sub-sequences. One of the most commonly
used program for HMM analysis is the open source software suite HMMER,
developed at Washington University, St. Louis by Sean Eddy [5].

HMMER involves very computationally demanding algorithms and account
for a large amount of time spent in biological sequence analysis. As a conse-
quence, a great deal of e�ort has been put to improve its software performance
through both �ne grain (SIMD extension such as ALTIVEC and SSE exten-
sions), coarse grain parallelisation (using MPI or multi-threads) and GPUs.
Many authors have also investigated dedicated parallel hardware implementa-
tions, notably on FPGAs.

As currently de�ned and programmed, the latest version of HMMER spends
most of its time in two kernel functions (called MSV and P7Viterbi). These two
kernels contain loop carried dependencies (caused by the feedback path from the
end to the beginning of model (the edges from M5 through L to M0 in Fig.1)
which restricts any kind of parallelism.

We propose a technique to rewrite the computation in such a way that both
kernels become very amenable to parallel implementation, while keeping all the
original dependencies into account.

This research work makes two contributions. First, we describe how the orig-
inal dynamic programming equations of MSV and P7Viterbi can be rewritten
so as to develop the new algorithm that admits a scalable parallelization scheme
at a price of a moderate increase in the algorithm computational volume. Then
we propose several strategies for e�ciently implementing this improved algo-
rithm1 on a FPGA-based High Performance Computing platform and discuss
the performance that we obtained.

This document is organized as follows. Section 2 provides a detailed overview
of previous work on parallelization of the HMMER software. Section 3 and 4 ex-
plain the approach we followed to rewrite the computations involved. Section 5
and 6 respectively focus on the FPGA implementation and on experimental
results. Conclusion and future work directions are drawn in Section 7.
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Figure 1: Structure of a Plan7 HMM

1In this work we are interested only in the hmmsearch software, as hmmpfam is known to
be I/O bound
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2 Related work

Because of its widespread use and of its heavy computing requirements, HM-
MER has received a lot of attention from the high performance computing
community, with several implementations either for standard parallel machines
or more heterogeneous architectures [16, 17]. In the following we will focus on
hardware implementation targeting ASIC or FPGA technology.

2.1 Early HMMER implementations

Early proposals [11, 12] of hardware accelerator for pro�le based similarity
search considered an (over) simpli�ed version of the algorithm in which the
feed-back loop is ignored as such a simpli�cation happen to have a relatively
limited impact on the actual Quality of Results of the algorithm.

The �rst hardware implementation of the exact algorithm was done by Oliver
et al [13]. In their work, they reconsidered the problem by taking advantage
of the fact that in hmmsearch, multiple independent instances of the Viterbi
algorithm are to be executed during each call. They used this fact to model the
problem as a triple nested loop (instead of a simple double nested loop) in which
the most outer loop is parallel and proposed a SIMD architecture for execution
the algorithm.

However, one of the issues with their parallelization scheme is that all pro-
cessing elements need to concurrently access the (large) transition cost look-up
tables. They addressed this problem by observing that all the processing ele-
ment would only access a small subset of the table (24 locations, that is the
number of bases in the Amino Acid alphabet). They therefore propose a vector-
ized memory with a 24-element wide data bus, in which each PE selects its cost
value using a 24 to 1 multiplexer. Of course this approach su�ers form severe
scalability issues, which makes it impractical for massively parallel implemen-
tations.

In the mean time, another approach was proposed by Derrien and Quinton
[4]. It also uses the fact that many instances of the Viterbi algorithm can be
processed in parallel, however the parallelization scheme (based on polyhedral
space-time transformation) is more sophisticated than that of Oliver et al. [13]
and allows one to derive a �exible architectural skeleton which does not need
access to a shared memory for calculating the transition costs. The proposed
approach also easily handles resource constraints by controlling the number of
processing elements in the architecture, and allows for precise tuning of the
datapath pipeline. Although the approach does not su�er from previous short-
coming, its scalability is still somewhat limited, as the local storage requirements
of the hardware implementation can be prohibitive. For example a 64-element
processing array with a 6 stage pipelined datapath, would need more than 500
FPGA embedded memory blocks.

2.2 Speculative execution of HMMER Viterbi algorithm

More recently, an approach for hardware acceleration based on speculative ex-
ecution was proposed by Takagi et al. [15] and Sun et al. [14]. Their idea is
to take advantage of some property of the max operation, so as speculatively
ignore the dependency over variable X[i, k] since it very seldom contributes to

RR n° 7370
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MSV 
filter

P7Viterbi 
filter

P7Forward 
score100%

4M op. per base 25M op. per base 25M op. per base

5% 1%

75% exec. time 22% exec. time 3% exec. time

Figure 2: HMMER3 execution pipeline, with pro�ling data

the actual computation ofM [i+1, k], D[i+1, k] and I[i+1, k]. This then results
in a feedback-loop free algorithm, like [11]-[12], which is very easy to parallelize.

However, whenever it is observed that the actual value of X[i] would have
contributed to the actual value ofM [i+1, 0], all computations related to columns
i′ such as i′ > i are discarded (�ushed) and the computation must be re-executed
so as to enforce the original algorithm dependencies. To do so Takagi et al.
propose a misspeculation detection mechanism which stores in a bu�er the values
of M,D and I computed at the beginning of the new column (and their inputs)
until the actual value of X is available (that is Mprof cycles later). The true
values of M,D and I are then recomputed, and if they di�er from the previous
one, it means that the speculation was wrong, and that the previous results
must be discarded.

One of the main issues with such an approach is the probability and cost of
a misprediction. In this solution, whenever a misprediction occurs, the archi-
tecture has been running useless calculations during Mprof cycles. Assuming a
misspeculation probability p, the execution overhead for a sequence of S amino
acid bases can then be written as :

e =
S +Mprof

S +Mprof + pSMprof

As noticed by Takagi et al, the average observed value for p is 0.0001, which
lead to an e�ciency that vary between 94% and 99% depending on the depth of
the speculation. It can also be observed that overhead is more important for an
architecture exhibiting a large level of parallelism (the depth of the speculation
being deeper), and for long sequences matched against small pro�les, for which
the probability of observing a repetition is cumulative with the sequence size.
As an example Takagi et al. report cases where HMM pro�le characteristics
lead to a poor e�ciency (performance degradation by 85%).

2.3 HMMER3 and The Multi ungapped Segment heuris-
tic

The new version of HMMER, which is available for use now, is a radical rewrite
of the original algorithm, with a clear emphasis on performance. The most
noticeable di�erence in this new version lies in a new �ltering heuristic (called
Multi ungapped Segment Viterbi) which serves as a pre�ltering step, and is
executed before the standard P7Viterbi in the HMMER pipeline as illustrated

RR n° 7370
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in Figure 2. This algorithmic modi�cation alone helps improve performance by
a factor of 10, and its algorithm is outlined below :

M [i, k] =MSC[k] + max(M [i− 1, k − 1], X[i− 1]) (1)

X[i] = fX(max
k

(M [i, k]) (2)

It is to note that the algorithm still retains the feedback loop which restricts
to compute entire Mi before start computing Mi+1, as Xi is being broadcasted
to Mi+1. But as apparent from Eq. (1), M does not depend on I and D, which
gives opportunity for faster computation.

HMMER globin.hmm, Pkinase.hmm, rrm.hmm, fn3.hmm,
M=143 M=255 M=77 M=84

V2 ≈ 0.03 ≈ 0.03 ≈ 0.03 ≈ 0.03
V3-noSSE 0.3 0.37 0.3 0.26
V3-SSE 5.2 7.16 2.83 2.65

Table 1: Performance in GCUP for Pfam-B.fasta

In addition to this �ltering step, both P7Viterbi and MSV algorithm have
also been redesigned so as to operate on short wordlengths (8 bits for MSV
and 16 bits for P7Viterbi) so as to fully bene�t from the SIMD extensions
(SSE,Altivec) available on all Intel/AMD CPUs. As shown in table 1, the
combination of the MSV pre-�ltering stage with SIMD has a huge impact of the
overall software performance, which is improved by a factor of more than 100,
and which actually makes most previous FPGA implementations acceleration
slower than any recent Dual-core CPU machine, as shown by Table 2.

Min GCUPS Max GCUPS
Takagi [15] 0.78 7.38
Y Sun [14] 0.28 3.2
T. Oliver [13] 5.3

Table 2: Reported average performance for previous FPGA implementation of
HMMER2

2.4 Accelerating the complete HMMER3 pipeline

As shown in �gure 2, because the MSV algorithm is used as a pre�ltering step,
the P7Viterbi algorithm also signi�cantly contributes to the execution time. In
other words, signi�cantly improving global performance cannot be done by only
accelerating the MSV kernel alone, as a consequence there is still a need for
e�ciently accelerating the P7Viterbi algorithm.

In the following section we propose to rewrite both MSV and P7Viterbi
algorithms to make them amenable to hardware acceleration. We do so by using
a simple reformulation of MSV equations to expose reductions operations, and
by using an adaptation of the technique proposed by Gautam and Rajopadhye
[6] to detect scans and pre�x computations in P7Viterbi. This exposes a new
level of parallelism in both algorithms that was previously unknown.

RR n° 7370
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3 Rewriting the MSV Kernel

As mentioned earlier, the main computation in the MSV kernel is a dynamic
programming algorithm that follows the standard algorithmic technique of �lling
up one data tables (called M[i,k] in this paper with i as the column index, and k
as the row index) together with some other auxiliary variables. The values of the
table entries are determined from previously computed entries (with appropriate
initializations) using the following formulas.

M [i, k] =MSC[k] + max(M [i− 1, k − 1], Xb[i− 1]) (3)

Xe[i] =max(max
k

(M [i, k])) (4)

Where Xb is computed as:

Xb[i] = max(Xn[i− 1] + tloop, Xe[i], Xe[i− 1]) (5)

It can be observed that the computation of M has a diagonal dependency
for column Mi−1 and Xb, where Xb depends on all value of Mi−1 i.e. we can
not start computation for column Mi, until we have computed column Mi−1,
which gives column-wise sequential execution to the algorithm.

On the other hand, all values of a given column Mi can be computed in
parallel, and since the computation of Xe consists of a max reduction operation,
It can be realized using a max tree computation as shown in Fig.3

Mi,0

Mi,1

Mi,7Mi-1,7

Mi-1,0

Mi-1,1

Max tree

Dataflow graph  for ith stage (M=8)

Max

Max

Max

Max

Max

Max

Max

Max

Xi

Xi-1

8

+

+

+

+

+

+

+

+

Msci,0-7

Figure 3: Data�ow dependencies for one stage of the MSV �lter (M = 8)
algorithm after rewriting
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4 Rewriting the P7Viterbi Kernel

As shown in previous section, it is easy to rewrite the MSV algorithm recurrence
equations so as to expose parallelism in the form of a simple max-reduction
operation.

In this Section, we show how it is also possible to use a similar (but more
complex) rewrite on the P7Viterbi kernel. Here again, the goal is to get rid
of the current inherent sequential behavior caused by the so-called feed-back

loop. To do so we replace the accumulation along the j index for one of the
variables by a pre�x-scan operation and replace the feed-back loop by a simple
max-reduction operation. This transformation leads to a modi�ed dependence
graph which is much better suited for a parallel hardware implementation.

4.1 The P7Viterbi algorithm

The P7Viterbi algorithm is somewhat similar to MSV, except that it �lls three
data tables (called M[i,k], I[i,k] and D[i,k]) together with some other aux-
iliary variables. The values of these tables entries are determined using the
following formulas, where the column index, i is written as a subscript in order
to focus on the important dependences.

Mi[k] = fM (Mi−1[k − 1], Ii−1[k − 1], Di−1[k − 1], Xi−1) (6)

Ii[k] = fI(Mi−1[k], Ii−1[k]) (7)

Di[k] = fD(Mi[k − 1], Di[k − 1]) (8)

Xi = fX(max
k

(Mi[k] + E[k])) (9)

Here, X[i] is an auxiliary computed variable, E[k] is an input, and fM , fI ,
fD and fX are some simple functions. The key observation concerning these
formulas is that

� there is a chain of dependences in the increasing order of k in computing
the values of D in any column;

� to compute the X for any column, we need all the values of M of that
column, each of which needs a D from the previous column; and

� the value of X of a column is needed to compute any M in the next
column.

Because of this, there seems to be an inherent sequentially to the algorithm, as
noted by all previous work on this problem.

4.2 Finding reductions

We now develop an alternate formulation of the equations so that there is no such
chain of dependences, thus enabling scalable parallelization of the computations
on a hardware accelerator.

More speci�cally, we show that the equation computing D can be replaced
by a di�erent equation in which such dependences either do not exist, or can be
broken through well-known techniques. For our purposes, we shall focus on the
function fD, which is de�ned more precisely as follows:

RR n° 7370
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Di[k] =
{
k = 1 : Mi−1[0] +A′[0]
k > 1 : max(Di[k − 1] +B[k],Mi−1[k] +A′[k]) (10)

where A′ and B are appropriate inputs. From the point of view of the
computation in the i-th column, we can consider the values for the previous
column (viz., the Mi−1 terms above) as inputs, and so the equation can be
further abstracted as follows:

Di[k] =
{
k = 1 : a0

k > 1 : max(Di[k − 1] + bk−1, ak−1)
(11)

Now, if B is zero, the equation is a simple scan computation (also called

pre�x computations) Di[k] =
k

max
i=1

ai.

It is well known how to e�ciently and scalably parallelize such scan com-
putations [10]. However, if B 6= 0, the solution is not at all obvious. We show
below how to obtain a scan-like structure for this case. If we expand out the
individual terms, we see that:

D[1] = a0

D[2] = max(a0 + b1, a1)
D[3] = max(max(a0 + b1, a1) + b2, a2))

= max(a0 + b1 + b2, a1 + b2, a2)
D[4] = max(a0 + b1 + b2 + b3, a1 + b2 + b3, a2 + b3, a3)

...

D[k] = max(a0 + b1 + b2 + b3 . . . bk−1, a1 + b2 + b3 . . . bk−1,

a2 + b3 . . . bk−1, . . . ak−2 + bk−1, ak−1)

The last term can be written more visually as

D[k] = max

ak−1,max




b1+b2+b3+. . .+bk−1

b2+b3+. . .+bk−1

b3+. . .+bk−1

...
bk−1

+


a0

a1

a2

...
ak−2






Writing this more compactly, we proceed as follows.

D[k] = max

ak−1,
k−1
max
j=1

aj−1 +
k−1∑
i=j

bi


= max

ak−1,
k−1
max
j=1

aj−1 +
k−1∑
i=j

bi +
j−1∑
i=1

bi −
j−1∑
i=1

bi


= max

(
ak−1,

(
k−1∑
i=1

bi +
k−1
max
j=1

(
aj−1 −

j−1∑
i=1

bi

)))
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Figure 4: Data�ow dependencies for one stage of the P7Viterbi (M = 8) algo-
rithm after rewriting

Now note that
j−1∑
i=1

bi (say, b′j−1) is a scan of the B input, so

D[k] = max
(
ak−1, b

′
k−1 +

i−1
max
j=1

(aj−1 − b′j−1)
)

= max
(
ak−1, b

′
k−1 +

i−1
max
j=1

a′j−1

)
(12)

where a′j = aj − b′j is the element wise di�erence of a and b′.
Now, the inner term is max-scan of the a′ vector. Hence the D[k] as speci�ed

by Eqn. 12 can be computed in parallel using the following steps.

1. Compute, B′ the sum-pre�x of the array B. Note that in the Viterbi
algorithm, this needs to be done only once since B is an input.

2. Compute C, the element wise subtraction of this from A.

3. Perform a max-pre�x on C. This can be parallelized perfectly and scalably.

4. Add B′ element wise to this and compare (again element wise) the result
with the A input, retaining the larger one. This yields D, the desired
answer.

4.3 Impact of the data-dependence graph

To help the reader understanding the bene�ts of this rewriting transformation,
we provide in Fig. 4 an illustration of the data dependence �ow in the rewritten
algorithm for a small problem size (pro�le size M = 8). In this data�ow graph,
functions fi,k,gi,k and hi,k are de�ned as follows :

fM (w, x, y, z) = max
4

(w + bsck, x+ TMMk, y + TDMk,

z + TIMk) +msck[dsqi]
gI(x, y, z) = max

2
(x+ TIIk, y + TMIk) + isck[dsqi]

hD(x, y) = max
2

(x+ TMDk, y + y)

RR n° 7370
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In these expressions max and sum correspond to saturated (w.r.t to −∞)
max and sum operations. It can be observed, that there is no longer a chain of
dependency along the vertical axis in the data-�ow graph, and that the longest
path (i.e. critical path) is now set by the depths of the parallel max-tree and
the parallel max-pre�x blocks, which is O(log2(M)). Another consequence is
that update operations for Mi,k, Ii,k and Di,k can be executed in parallel for all
values of k in the domain 0 ≤ k ≤M .

RR n° 7370
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5 Mapping the computations to hardware

Even though the rewritten version of both MSV an P7Viterbi algorithms ex-
hibits a signi�cant amount of hidden parallelism, deriving a e�cient architecture
from the modi�ed data�ow graph is not straightforward.

In this section we address the di�erent challenges involved in this architec-
tural mapping. We �rst start by discussing e�cient hardware implementation
of parallel pre�x operations as needed by P7Viterbi, and present two transfor-
mations (namely C-Slow and tiling) that we use to improve the architecture
e�ciency.

5.1 Implementing the max-pre�x operator

As mentioned in Section 4.B, step 3, the rewritten version of the P7Viterbi
algorithm exhibits a max-pre�x pattern. Pre�x computation is a very general
class of computations which can be formally de�ned as follows : given an input
vector xi with 0 ≤ i < N we de�ne its ⊕-pre�x vector yi as :

yi =
i⊕

k=0

xk = x0 ⊕ x1 ⊕ . . .⊕ xi

Where⊕ is a binary operator with associativity (and possibly commutativity,
see [8] for a more detailed de�nition). Because binary adders fall into this
category and since adders form one of the most important building blocks in
digital circuits, there is a wealth of research going back almost 50 years dealing
with fast (aka parallel) implementations of pre�x adders [10, 3, 9, 7] using various
interconnection networks topologies.

One of the most important aspects of these network topologies is that they
allow the designer to explore the trade-o� between speed (i.e. critical path of
the resulting circuit), area (number of operators used to implement the pre�x
operation), and others metrics such as fan-out or wiring length.

For example, Figure 5.a shows a Brent-Kung[3] network that computes the
pre�x in 2(log2N−1) stages with 2(N−1)− log2N operators. Similarly, Figure
5.b shows a Ladner-Fischer network which implements a faster circuit (log2N
stages) at a price of an increase in area (N

2 log2N operators).
Although a survey of all existing techniques and network topologies is clearly

out of the scope of this paper, we provide in table 3 a short summary of the
characteristics of the most commonly used algorithms. Note that most of these
algorithmic explorations were in a context where the operator was extremely
�ne grain�just a few Boolean gates, as in a half- or full-adder.

Method Delay Cost
Ladner-Fischer[10] log2N

N
2 log2N

Kogge-Stone [9] log2N N log2N −N + 1
Brent-Kung [3] 2 log2N − 2 2N − 2− log2N

Table 3: Characteristics of various parallel-pre�x networks

Despite the fact that our computation scheme is based on the same pre�x
patterns as binary adders, our situation di�ers in two ways :
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(a) Brent Kung

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

(b) Ladner-Fischer 

x3 x2x5 x4x7 x6x9 x8x11 x10x13 x12x15 x14 x1 x0

s3 s2s5 s4s7 s6s9 s8s11 s10s13 s12s15 s14 s1 s0

Figure 5: Two examples of parallel parallel pre�x implementation for N = 16

� The basic operation is not a bit-level (i.e full-adder) but a more complex
word level operation (namely max).

� The size of the pre�x can be very large (up to 256 input elements) which
poses scalability issues in terms of routing.

To the best of our knowledge there has been no systematic study of FPGA
implementation of pre�x computations. One reason is that the typical use of
such circuits would be in adders, where high-speed carry circuits are already
provided by FPGA vendors, and there are few applications that need coarse-
grain, word-level operators. For the HMMER application we implemented a
number of the max-pre�x as well as max-reduce architectures. The performance
comparisons are reported later in Section VI.

5.2 Mapping data�ow as a combinational datapath

It can be easily seen from Fig.4 and Fig.3, that in both MSV and P7Viterbi, it
is not possible to pipeline the execution of consecutive stages �all the results of
the ith stage are needed before ANY value in the (i+1)th stage can be computed.

RR n° 7370



Accelerating HMMER on FPGA using Parallel Pre�xes and Reductions 15

As a consequence, and in spite of the fact that we replaced in both cases the
initial chain of dependence of O(M) operations by a chain of O(log2(M)), the
possibly large values of M may induce a large critical path, which will in turn
lead to a poor clock frequency.

5.3 Mapping data�ow as a C-slowed pipelined datapath

One solution to improve the through-put of the hardware implementation is to
use the same approach as used by Derrien et al [4], and also Oliver et al. [13] by
applying a C-slow transformation on the generated datapath so as to interleave
several execution of the data�ow graph (that is several independent instances
of the MSV/P7Viterbi algorithm).

Another way to view this transformation is to consider that we add an
additional outer loop iterating over independent instances of the algorithm,
and then perform a loop interchange so as to move this parallel outer loop to
the innermost level and implementing the multiple independent instances on
pipelined hardware parallelism.

Using this trick, and assuming the interleaving of S independent instances,
the ith stage now only depends on stage that was executed i− S stages before.
This extra delay can then be used to pipeline the stage execution, as depicted
in Figure 6a.

This of course has some additional memory cost (we must replicate all reg-
isters/memories in the architecture), but because the critical path remains in
O(log2M), we only need a reasonably small C-slow factor to achieve the maxi-
mum through put (as compared to S ≈ O(M) in the approach of Derrien and
al.).

5.4 Managing resource constraints through tiling

Both MSV and P7Viterbi data�ow graphs sizes scale linearly1 with the target
HMM pro�le sizeM . For large values of pro�le sizes ( e.g., greater than 100) the
straightforward mapping of the complete data�ow graph to a hardware datapath
quickly becomes out of reach of most FPGA platforms.

However, since the computational pattern of both algorithms exhibits a lot
of regularity, it is possible to apply a simple tiling transformation, which tiles
each data�ow of size M into P partitions, each of them calculating M/P con-
secutive values of the current column. This transformation, and its impact on
the scheduling of computation is depicted in Figure 6b. In the case of MSV,
the partitioned datapath should implement a M/P reduction max operator,
whereas in the case of P7Viterbi, we need a M/P max pre�x operation.

As a summary, the characteristics of various design space points that we
explored are listed in Table 4.

5.5 Accelerating the full HMMER execution pipeline

As mentioned in subsection 2.4, improving global performance requires that
both MSV and P7Viterbi are accelerated in hardware. This can be done very
easily by streaming the output of MSV to the input of the P7Viterbi, so as to

1The scaling is linear for the Brent-Kung architecture that we implemented. For the
Ladner-Fischer architecture, the resource usage grown as n log n

RR n° 7370



Accelerating HMMER on FPGA using Parallel Pre�xes and Reductions 16

Tfunc +Tmax.log2P Tmax.log2P

Tfunc

stage i

stage i

Cycle m Cycle m+1 Cycle m+...Cycle m-1

stage i+1

(a) C-slow

Tmax.log2P

Tfunc

Tmax.log2P

Tmax.log2P

Tfunc

Tfunc

stage i stage i+1

Cycle m Cycle m+1 Cycle m+...Cycle m-1

P

P

P

(b) Tiled Mapping

Figure 6: C-slow and Tiled Data�ow graphs
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Method Area Tclk Through-put
Combinational O(M) O(log2M) O( M

log2 M )
Tiled O(M/P ) O(log2

M
P ) O( M

log2
M
P

)

C-slow O(M) O(1) O(M)
Tiled + C-slow O(M/P ) O(1) O(M/P )

Table 4: A summary of the di�erent architectural solutions, along with their
space-time characteristics

map the complete HMMER3 pipeline to hardware. Special care must however
be taken of the C-Slow factor for both accelerators, which must be the same so
as to avoid a complex data reorganization engine between the two accelerators.

In addition, depending on available resource, it is even possible to instantiate
several HMMER3 pipelines in parallel, as illustrated in Figure 7.

MSV filter P7Viterbi 

MSV filter P7Viterbi 

MSV filter P7Viterbi 

P iterations in // P’ iterations in //

Figure 7: System level view of a complete HMMER3 hardware accelerator

However, in order to optimize hardware resource usage, we must also ensure
that the pipeline workload is well distributed among the hardware accelerators.
Let us quantify the total algorithm execution time, written as Ttotal when the
two task executions are pipelined, we have :

Ttotal = max (Tmsv, αTviterbi)

Where TMSV and TV iterbi correspond to the average algorithm execution
times, and where α is the �ltering selectivity. Optimizing performance there-
fore means ensuring the raw performance (in GCUPS) of the P7Viterbi accel-
erator is able to sustain the �ltered output of the MSV accelerator, that is, it's
performance should be at least 1/20th that of MSV.

Using this constraint we can then de�ne a set of pipeline con�gurations,
by choosing distinct tiling parameters (i.e. partition sizes) for P7Viterbi and
MSV such that the level of parallelism exposed in MSV is at least 20× that of
P7Viterbi.
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6 Experimental results

In this section we provide an in-depth quantitative analysis of our proposed ar-
chitectures, and compare their performance with that of state of the art software
implementation of HMMER3 on CPU using the SSE SIMD implementation.

Our target execution platform consists in a high-end FPGA accelerator from
XtremeData (XD2000i-FSBFPGA) which has already been successfully used
for implementing bioinformatics algorithms [2]. This platform contains two
Stratix-III 260 FPGAs, high bandwidth local memory (8.5 GBytes/s) and a
tight coupling to the host front side bus though Intel Quick Assist technology,
providing sustained 2GBytes/s bandwidth between the FPGA and the host
main system memory.

Our design �ow leverages on High-level synthesis through a commercial C
to Hardware compiler (Impulse-C) combined with a semi automated source to
source compiler [1] so as to ease architectural design space exploration.

The rest of the section is organized as follows, we �rst make a quantitative
analysis of performance/area results for the MSV accelerator, then address the
mapping of max pre�x network implemented on FPGA along with P7Viterbi im-
plementation results. Finally, we discuss system level performance and compare
our performance of our approach with that of an hypothetic GPU implementa-
tion.

6.1 Area/performance results for the MSV �lter

Table 5 summarizes area and performance results obtained for several MSV
hardware accelerators using di�erent values of M and S (the MSV accelerator
doesn't need tiling as for all pro�le sizes, it �ts in the FPGA). It can be observed,
that even though we use a C to hardware high level synthesis tool, we are
able to achieve remarkably high operating frequencies (up to 215MHz). When
compared2 with that of table 1 results indicate speedup for a single accelerator
varying between 3× to 6× depending on M .

M C-Slow (S) Logic Util. M9K MHz GCUPS

64 7 10k / 5% 66 / 8% 215 14
128 8 19k / 9% 130 / 15% 201 25
256 9 37k / 19% 258 / 30% 175 45
512 10 69k / 34% 513/60% 160 81

Table 5: Performance and resource usage of our MSV hardware implementation

6.2 Area/performance results for max-pre�x networks

As mentioned in Section 5, the P7Viterbi implementation uses a parallel max
pre�x scheme, for which many implementation scheme exists. As this compu-
tational pattern is at the core of the modi�ed algorithm, we explored several
alternative implementations so as to experimentally quantify their respective
merits with respect to an FPGA implementation.

2This is an rough approximation, as we should also account for the time spent by the
software in P7Viterti (20% of the total execution time)
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Method 16 32 64 128
Area

Brent-Kung 883 1879 3972 8030
Ladner-Fischer 512 2728 6266 14226
Kogge-Stone 1846 4637 11394 26786

Fmax

Brent-Kung 82 59.7 47.24 36.91
Ladner-Fischer 109 79.6 65.6 53.4
Kogge-Stone 102 76.8 61 46.8

Table 6: Speed/Area results for combinational parallel max pre�x implementa-
tions on Stratix-II FPGA

The results are provided in table 6 show that for large values of M , so
called fast implementations of parallel pre�x such as Kogge-Stone or Ladner-
Fischer provide only marginal speed improvements with respect to the Brent-
Kung architecture. This can easily be explained by the long wires used in the
two �rst two approaches, which make the routing much more challenging on an
FPGA.

6.3 Area/performance results for the P7Viterbi �lter

Table 7 summarizes area and performance results obtained for several P7Viterbi
hardware accelerators using di�erent values of M ,S and P . It can be observed,
that re-written P7Viterbi kernel can deliver quite promising performance with
log2(M) CSlow factor. By �tting multiple instances of P7Viterbi on board, It
can alone(i.e. not using MSV �lter) perform better than earlier implementation
of HMMER2.

P M Logic Util. M9K MHz GCUPS

8 64 5.8K / 2.8% 69 / 8% 126 1
16 64 10.1K / 4.9% 112 / 13% 119 1.9
8 128 6.8K / 3.3% 128 / 14.8% 124 0.99
16 256 14K/ 6.9% 170 / 19.7% 117 1.87
32 256 28.7k / 14% 332 / 38% 112 3.6

Table 7: Performance and area for our P7Viterbi implementation

6.4 System level performance

So far, we have provided area/performance results only for standalone accel-
erator modules, which should at some point be integrated together in one or
several complete HMMER3 computation pipelines.

Following the constraints on pipeline workload balancing, and given the re-
source available implementing the accelerator on the board, we derived a set of
pipeline con�guration depending on the target pro�le size M .
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M C-Slow (S) P R Est. GCUPS Through-put

64 7 8 5 69 1075 MB/s
128 8 16 2 51 402 MB/s
256 9 16 1 45 175 MB/s

Table 8: Pipeline con�guration on a single StratixIII260

These con�guration have parameters (C-Slow factor S, Tiling parameter P ,
numer of parralel pipeline R) chosen so as to maximise overall performance.
The set of parameters for a given value of M in chosen as follows:

� First, we choose the C-slow factor S so as to enable the �ne grain pipelining
(i.e. at the operator level) of the MSV accelerator. The same value is then
used for the pipelining the P7Viterbi accelerator.

� Second, we choose the Partition P size so that the P7Viterbi accelerator
can sustain at least 1/20 of the MSV input through-put.

� Last, once we have all parameters de�ning a single HMMER3 pipeline,
we try to pack as many of them as possible (maximize R) on the target
FPGA platform so as to maximise parallelism.

Table 8 provide some of the pipeline con�gurations that we obtained through
this approach. At the time of the submission of the paper, we are still �nalizing
the validation of complete systems with full pipelines. We expect to present
more global performance results in the �nal version of this work, but we must
emphasis that the performance currently provided in Table 8 are only estimates
and not actual measurements. These estimates show that speedup of up to ??×
could be achieved using only one of the two FPGA of the platform. They were
obtained using the equation below, where fMSV (resp. fP7V ) correspond to the
MSV (resp. P7Viterbi) accelerator maximum clock frequency.

GCUPS = R(MfMSV +
1
20
M/PfP7V )

Even though extrapolating system-level performance from P&R data is some-
what disputable, we are con�dent that our architecture performance will be close
to our estimates, as we have practical evidence that the I/O requirements shown
in the last columns of Table 8 are within the reach of our target FPGA platform,
for which we have measured a sustained Host to FPGA through-put of more
than 1.5GByte/sec.

6.5 Discussion

One question raised by our results is whether our FPGA would actually perform
faster than an equivalent GPU implementation. This is an important point as
GPU o�ers more �exibility at a much lower cost than a typical HPC FPGA
platform, even if their power consumption is very high. Sadly, there is currently
no GPU version of HMMER3 available for comparing the two targets.
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We however believe that, to the contrary of HMMER2, a GPU version of
HMMER3 would only o�er marginal performance improvements w.r.t the opti-
mized SSE version. Indeed, previously reported GPU performance [16] improve-
ments for HMMER2 were in the order of 15 − 35× for a single GPU over the
software implementation, this later one using 32 bit arithmetic and not taking
advantage of Intel SIMD extensions.

When looking at HMMER3 performance results (given in Table 1), it turns
out that the use of an optimized SSE software implementation alone brings
up to 20× performance improvement over the non SSE version, a speed-up
somewhat similar than that of the GPUs implementation for HMMER2, and
which is mostly due to the systematic use of sub-word parallelism. As GPUs
do not have support for short integer sub-word parallelism, it is therefore very
unlikely that they will do much better than SSE implementation.
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7 Conclusion

In this document, we have proposed a hardware accelerator architecture for
the new HMMER3 pro�le based search software. This architecture leverages
on a rewriting of the algorithm to expose reduction and pre�x scan computa-
tion patterns without modifying the semantic of the original algorithm. This
rewriting permit a full and e�cient parallelization of the two kernels on hard-
ware, and is combined with an architectural design space exploration stage so
as to determine the best performing architecture for a given HMMER pro�le
size, by taking into account the amount of available hardware resource and the
pipeline workload balance. Our �rst estimates shows that speedup between 10×
could be obtained w.r.t to the state of the art software implementation. Our
ongoing work is currently geared toward obtaining and analysing pro�ling data
from real-life workloads. We Also considering to implement a complex �lter in
between MSV and P7Viterbi, which can feed multiple inputs from MSV to a
single P7Viterbi. This will enable us to use hardware resources at best. We
may obtain a speedup of 15× with such a �lter implementation.
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