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Abstract

Visual servoing based upon geometrical features such
as image points coordinates is now well set on. Never-
theless, this approach has the drawback that it usually
needs visual marks on the observed object to retrieve ge-
ometric features. The idea developed here is that these
features can be retrieved by integrating dynamic ones,
which can be estimated without any a priori knowledge
of the scene. Thus, more realistic objects can be used to
achieve vision-based control such as tracking and fiza-
tion tasks. We detail control laws concerning these two
tasks, first using integration of speed in the image and
then by direct regulation of these dynamic parameters.
Results are finally presented and comparisons are made
between the two types of control methods.

1 Introduction

The aim of visual servoing, as presented in [11, 13],
is to control the robot displacements using visual fea-
tures. One of the method used to complete such con-
trol laws is to apply the task function approach [19]
to visual sensors and is based on the linear relation
existing between image features variation and camera
motion [9]. Geometric primitives have most often been
used until now to complete robotic tasks such as po-
sitioning with respect to a given object. For exam-
ple, visual marks are used in [9] to extract geometric
features from the image, whereas [5, 7, 10] use infor-
mations from the object contour or particular features
such as corners. Convergence is usually ensured and
stable, at least when the initial position is in the 3D
neighborhood of the desired position, and most of these
applications run at video rate. The major problem en-
countered is that an a priori knowledge of the geometric
features is needed.

Visual servoing based on dynamic features has re-
cently been developed [8, 18, 21]. In this case, no
knowledge of the observed pattern is necessary. The
useful informations are extracted from 2D motion be-

tween two successive images. It can be seen that tasks
such as tracking a moving object can be solved by this
approach. To maintain the object at the same position
in the image is equivalent to make its 2D projection
keep a null speed.

Several papers deal with target tracking of mobile
object. [3, 6, 12, 17] use visual marks to extract geo-
metric information which are reinforced by an estima-
tion of object speed in the image to compensate errors.
Another method is used in [2, 15], but it is only able to
track a small object. An affine model of 2D motion is
computed between two successive images and the sec-
ond image is compensated with the opposite motion.
Threshold difference between this new image and the
first one gives the position of the object, and the cam-
era is controlled in pan and tilt so that this position
stays at the image center. Finally, [1] uses a stereo-
vision system to build a 3D model of the object motion
in order to position the robot arm to grasp it.

This paper proposes a new approach to regulate
speed in the image to zero. The problem of using di-
rectly dynamic visual features in the control loop is
that, as the order of derivation is increased by one,
there is generally no more a linear relation between
features variations and camera motion. Furthermore,
drift due to reacting time are not compensated. For
these reasons, this paper develop the idea that posi-
tion in the image can be retrieved by integration along
time of speed in the image. Thus, visual servoing, as it
is done with geometric features, can be used, but visual
marks are no longer necessary. The principle of servo-
ing by retrieving position from speed is quickly exposed
in Section 2. Two applications are then presented and
compared to methods using directly dynamic visual
features in the control loop. We first describe the cor-
responding control laws, and then, display results ob-
tained on our eye in hand 6 d.o.f. robotic system. The
first application, detailed in Section 3, is the tracking of
a mobile object using camera pan and tilt. The other
one, in Section 4, corresponds to the positioning of the
camera parallel to a plane coupled to a fixation task.



2 Image-based control from speed mea-
surements

Our aim is to control the robot by classical image-
based techniques but without having any a priori
knowledge on the image content. The solution pro-
posed is to retrieve geometric features by integrating
dynamic measurements along time.

Let us call s = (z,y)?, the 2D projection at time t
of a 3D point M, and § its apparent speed in the image.
s can obviously be retrieved knowing the projection sg
at time 0 and the evolution of § along time, by:

t
s=so+/ s dt
10)

This relation can be approximated under the follow-

ing discrete form: k
S:SO+Zéi 5ti (1)
i=1

h 1 easurement of § and ot;, the

duration between (i—l)th and it? measurements.
The motion model used to approximate speed in the
image is a simplified quadratic model with 8 parame-

ters as below (see [8, 20]):
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with §; being the it

a1 + azx + azy + bix? + by @)
as + asT + agy + bsy? + bazy

with
a1 = —Vg — Qy az = Y1Vg + 0, az = YaUg + Q,
a4 = —Uy + Qg a5 = 11Uy — Q, ag = Y2y + U,

by = —mv, —Qy ba=-—7v,+Q by3=byby=10
where T and {2 respectively represent the translational
and the rotational terms of the kinematic screw be-

tween the camera frame and the observed object frame,
1
(vz,vy,v;) = Z—T, and Z = Zp + X + 1Y is the

equation of the Iflanar approximation of the object sur-
face at the considered point expressed in the camera
frame. The algorithm used to estimate parameters
a; and b; is the RMRm (robust multi-resolution al-
gorithm) developed in [16].

Of course, simpler models (constant, affine) can be
used to estimate the position of the image center, which
are simply deduced from the one presented above by
identification with the corresponding parameters. In
fact, there is a necessary compromise to find between
precision of the estimation and duration of calculation.

The following block-diagram sums up the whole
paragraph where s and s*, respectively represent the
current and desired position in the image, Q2 the con-
trolled rotation and a; the dynamic visual features
which give the 2D speed integrated to retrieve s.

— Control law Robot Camera

/ aj Features
Extraction

Figure 1: Block diagram: geometrical image-based
control from dynamic visual features

3 Application to tracking

The principle of the tracking task is to control the
camera pan and tilt such that a detected mobile ob-
ject becomes projected at the center of the image or
for want of anything better to keep it at the same po-
sition. We are not interested here in problems such as
occlusions or multiple moving objects.

3.1 Detection of the mobile object

A step of detection of the mobile object has to be
done first to obtain its initial projection mask on the
image. As we do not use any a priori information on
the target, this detection is performed using only the
property that it is in motion. The camera remaining
static until the mobile object is detected, the object
projection location is determined by difference between
two successive images. In practice, because of noise in
the image, we use a local spatial (3 x 3 pixels) average
of image intensities. Then, by considering a threshold
difference between these two averaged images, we get a
binary image separating moving zones from motionless
ones. Under the hypothesis of a single moving object, it
is easy to separate the mask of the mobile object from
the background. The center of gravity of the mask
gives the initial position which has to be regulated to
zero, corresponding to so in (2). Once the detection is
done, s is obtained by integration of speed parameters
given by the RMRm algorithm.

3.2 Associated control law

Having the estimation of the center of gravity
(c.0.g.) of the target from (1), we thus can use a stan-
dard control law to complete the regulation of this es-
timated 2D position.

Let us consider the vector of error s = (z,y)T.
Using the fact that the camera motions are only the
rotations around the z and y axes, we get from (2):

. Qe,z s . zy  (-1—12?%)
=1L ’ — with L =

s ( Qc,y > ot W (1 + y2) —xyY

where % represents the 2D motion of the target and

Q. the camera rotation.



Then, specifying an exponential decay with gain A of
the error s (§ = —\s), the control law is given by:

(Qc,z)__iA< Y )_L—I@
Qe ) 1T+22492\ —2 ot

The first term of this control law only allows to reach
convergence when the observed object is motionless.
To remove the tracking errors due to the object own
motion, the second term has to be added and can be
estimated by [4]:

s ~ —~

9% _F_ I,
ot °

where the RMRm estimation algorithm gives $ and Q.
is the measured camera rotation. As done in [4], this
estimation is filtered using a Kalman filter with a con-
stant acceleration model with correlated noise.

3.3 Results

The tracking task has been tested on a 6 d.o.f.
Cartesian robot cell, where the camera is mounted on
the end-effector. 256 x 256 images were acquired by
a SunVideo Board and treated on an UltraSpark sta-
tion. As we do not have any exact measurement of
the c.0.g. when using a real complex object, the con-
trol law has been first tested with a simple target from
which we can extract geometric features. The position
of the c.o.g. is unused in the control law but can be
compared to its estimation from the motion parame-
ters. Thus, we can observe the exact behavior of the
control law. The object was a black surface where 4
white circles formed a square (see initial image on Fig
2(a)). An image processing running at video rate gives
the position of the c.o.g. for each circle. Displace-
ments of this four centers and measurement of time
between two successive images give the speed for each.
Applying a affine model of motion, in order to get a
sufficient precision on constant parameters, leads to a
linear system of 6 unknowns with 8 equations, which
is solved by least square method. Finally, the c.o.g. of
the square is given by the intersection of its two di-
agonals. Then, the experiment has been made with a
20 x 20 cm square from which no geometric features
can be easily computed (see initial image on Fig 2(b)).
In this case, to ensure a rate as closest as possible to
the video rate, only the constant model of motion is
used. With the object size such as it is obtained in
this experiment, the rate reached is about 20 images
per second.

The same conditions were taken for the two exper-
iments, including initial positions of the target and of
the camera. The target was translating along a rail

alternatively to the right and to the left at the same
speed, with a 4 seconds pause between the two mo-
tions. Accelerations and decelerations were 40 cm/s?.
The camera was about 1 m away from the object which
was seen before its first motion, but did not necessar-
ily appear at the center of the image. The images were
256 x 256 pixels. A was chosen equal to 1.5. The suc-
cessive motions are the following (where the number of
iterations are approximative): it. 1 to 100, right move
at 8 cm/s; it. 100 to 220, 4 seconds stop; it. 220 to
450, left move at 8 cm/s; it. 450 to 560, 4 seconds stop;
it. 560 to 700, right move at 8 cm/s; it. 700 to 900,
stop; it. 900 to 1000, right move at 30 cm/s; it. 1000
to 1100, 4 seconds stop, it. 1100 to 1220, left move at
30 cm/s; finally after iteration 1220, stop.

a W4
Figure 2: Initial images. (a)
(b) “Real” square

Four points object

For the first experiment, we present in Fig. 3 the dif-
ference between the estimated position of the center of
the object and the measured one. This error is always
less than 0.5 pixel. Thus, as there is no drift due to
the integration, we conclude we can trust the estima-
tion of the c.o.g.. Furthermore, previous experiments
have been made, in order to compare noise in estima-
tions of the constant parameters of motion by the two
methods presented above, with known motions of the
observed object. It showed that noise is not greater
with the RMRm algorithm than with the four point
estimation. It is even sometimes lower, in particular
when the object is motionless.

Difference ente les c.d.g estime et mesure

000 1200 1400 1600

0 200 400 601

0 800 ft
Nombre diiteration

Figure 3: Four points experiment. Difference between
the estimated displacement and the measured position
of the center (in pixel)



The estimated displacement of the object center for
the real square experiment, is displayed in Fig 4. This
result is very similar to the one obtained with the four
points experiment, and there is even less oscillations
in the steps corresponding to the target stops. This
experiment shows that convergence is well obtained for
the initial error of about 40 pixels (it is brought to zero
in less than 40 iterations even if the first motion of the
object is on the opposite direction). At each abrupt
change in the target motion (stop or start), there is
an overrun due to the Kalman filter reacting time, but
convergence is still obtained. This overrun of about 10
pixels is compensated in approximatively 20 iterations
(0.8 seconds) when the speed is 8 cm/s (respectively
25 pixels and 50 iterations when the speed is 30 cm/s).

50

e —
40 >

30

T I \H{ V

1000 1200 1400 1600

Estimated centre displacement

-40

50

0 200 400 600 800
Number of iteration

Figure 4: Square target experiment. Estimated dis-
placement of the object center (in pixel)

The computed rotational velocities are displayed in
(see Fig 5). A level of about 4 deg/s is necessary to
track the 8 cm/s motion. In the case of the 30 cm/s
motion, due to short time between start and stop of
the object, we can note that €1, and ), just reach
their constant level of about 15 deg/s when the object
stops, but no perturbation occurs in the regulation of
the estimated c.o.g..

Rotation speed

20

0 200 400 601 1000 1200 1400 1600

Figure 5: Square target experiment. Computed control
law €, and Q, (in deg/s)

3.4 Tracking with image motion based
control

To see the interest of the previous method, a control
directly based on image motion has been settled. The
task consists now in trying to keep the object at the
same position in the image by regulating to zero the
constant terms of motion s; = (a1,a4)”. Derivating s;
along time leads to the interaction relation [20]:

a1 Qoo Os1 . 0 -1
. =L{ .° —— with L =
(a4) (Qc,y>+6tW1t [1 0]
Applying the gradient type control, using a decreasing

gain ), the control law, expressed as angular accelera-
tion, is then:

Qc,x _ as N —1@
(o)== %)%

Bor i o 51p — S1p— .

% is estimated by % where indices k& and
k — 1 stand for current and previous values and
51 = (a1 + Qey,as — Qe )T which is the zero order

of % considered previously. Thus, it can be estimated
with the same Kalman filter, only replacing B by mea-
sure of (d;,ay)T. Direct filtering of §; is not accurate
as the acceleration step is generally too short in front
of the Kalman filter reacting time.

In the following summarizing block-diagram, s and
s* stand respectively for the current and desired val-
ues of the dynamic features (a1,a4)?, which are given
by the 2D-motion estimation algorithm and 2 is the
controlled rotational acceleration.

Camera

S—j®—> Control law Q Robot

S

aj Features

Extraction

Figure 6: Block diagram: direct control of dynamic
visual features

Let us note that in that case, the object can not be
brought to the center of the image as we do not have
anymore information on its position. Indeed, even if
the detection step gives the first position of the c.o.g.,
trying to regulate it without any further information
by an open loop would not be robust. Furthermore,
if in the same time, the c.o.g. is still estimated and
regulated to zero by rotational velocity, as regulation
of s to zero is done by rotational acceleration, it would
raise the problem, as in [14] of specifying the behav-
ior of the control law by two different (and generally
incompatible) means.



3.5 Results

The previous control law has been tested with the
same initial condition and the same “real” target than
in the previous results section. There, translational
speeds were always 30 cm/s. First are presented the
constant parameters of motion i.e. a; and a4 (see Fig
7), the rotation acceleration computed by the control
law (see Fig 8) and the estimated displacement of the
object center (see Fig 9). The angular acceleration
control law allows to fulfill the desired task which was
to brought a; and a4 to zero. It is accomplished in
about 100 iterations after each abrupt change of mo-
tion, and it remains stable during the permanent run-
ning (during either a constant non-null speed motion
or a motionless step), even if the computed parameters
of control law are quite noisy. Finally, when the tar-
get becomes static again (between iterations 250 and
320, and between iterations 580 to 650), it appears a
drift with respect to the initial position (1 or 2 pix-
els in the first stop, and about 10 to 15 in the second
one). It is due to errors in the estimation of the object
own acceleration. The accelerating step is very short
(never more than 15 iterations), so the Kalman filter is
not able to refine the estimated acceleration, and thus
errors are not compensated.

150

Constant parameters

-150 L L L
0 500 600 700 800

100 200 300 400
Number of iteration

Figure 7: Square target experiment. Constant param-
eters of motion (in pixel/s)
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80
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Rotation speed
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0 100 200 300

400
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Figure 8: Square target experiment. Angular acceler-
ation (in deg/s?)

Estimated centre displacement

0 100 200 300 400
Number of iteration

Figure 9: Square target experiment. Estimated dis-
placement of the object center

3.6 Conclusion

The results presented here proves that tracking a
real object, meaning without any visual marks, with
an eye in hand system by visual servoing is possible
whatever could its relative size be. It is solved by re-
trieving position of the object center by integration
of its speed, and it runs close to video rate. On the
contrary, dynamic control directly based on motion is
unable to avoid a sensible drift of the object in the im-
age. Furthermore, in the second case, the task aim was
to keep the object in the same position. In most cases,
a mobile object will appear at the border at the image,
and keeping it in such a position does not seem to be
very clever, while with the first control law it easily can
be brought to the image center.

4 Application to fixation in an align-
ment task

The aim of our second task is to position the image
plane parallel to an observed plane while ensuring a
fixation task, such that P, = P; (see Fig 10). Such a
fixation is important in order that the object always
appear in the image despite the rotational motion in-
volved by the alignment.

Initial position
of camera frame

Object plane

Desired Position
of camera frame

Figure 10: Task to be performed

4.1 Control laws

It can be denoted from (2) that the quadratic terms
of the motion model show the terms ; and -, express-
ing the angular position of the observed plane relatively



to the camera [8]. Thus, it appears that, with a non-
null motion along the optical axis, the alignment task
will be solved if and only if the following condition is
respected:

b1 + Qy _ Y1V2 _ 0
b2 — Qw o Y2V - 0

Several approaches can be considered to solve the
problem of adding a fixation task to the alignment one.
In all the cases considered below, translation 7, along
the optical axis is considered constant and rotation {2,
around this axis is considered null, as it has no influ-
ence upon either the alignment nor the fixation. Fur-
thermore, all control laws are established considering
an exponential decay of the error.

The first approach is to consider that the image
center will always correspond to the same point from
the object if its apparent speed is zero, what means
(a1,a4) = (0,0) (see (2)). Then, a motion-based
visual control law can be established considering the
task constraining the following vector s to reach a zero
value: s = (a1, a8, by + Qy, by — Q)"

Neglecting the second and upper order terms, the
interaction relation linking the derivative § of s with
the motion of the camera can be expressed under the
following form [20]:

-1/Z, 0 0 —wv.|[Ts —5
.| o -1/Z, v, 0 T, — 59
=1 0 0 0 —ul||la |7 s

0 0 v, 0 Q, S4

This leads to the the following rotational velocity
and translational acceleration control law:

T, T, 0 T, 0] [A—u. (sl )
Ty _ 0 _Tz 0 Tz v, S9
Q| 0 0 0 1||[X+v. (s
Q, 0 0 -1 0 v, ( 54 )

(4)

A second approach, previously presented in [8], is
to consider separately the alignment and the fixation
tasks. Once the alignment control law is designed, the
fixation can be obtained by direct compensation of the
rotational motion using a translational one. It may be
done by an open loop control in order to maintain a;
and a4 to zero using:

ar \ _ Ve = —(y
(o)== {Z ]

Since (), and Q,, are controlled by the alignment task,
T, and T}, can be used for fixation and compensation

of the rotational motion. However, this approach
leads to an open control loop which does not take
into account a possible error in the estimation of Z,
(needed to deduce T, and T, from v, and v,), nor
than drift due to non zero affine and quadratic terms
when the initial center does not appear at the image
center anymore.

A third and new approach is to retrieve displace-
ment (z,y)7 due to rotational motion by integrating
speed in the image, and to regulate it to zero by trans-
lational motion.

The vector of measures s for the alignment and fix-
ation task can thus be chosen as:

s=(2,y,b1 +Qy, b2 — Qz)T

In this case, the interaction relation between § and
the camera motion is given by the following equation
[8, 20] where the same approximation to the first order
has been considered:

-1/Z, 0 0 -1 T,
| 0o -1z, 1 o T,
=10 0 0 -wu|| q |TY®
0 0 v, 0 Q,

The corresponding control law is thus given by:

T, -T, 0 Z, 0
T, | _Atv. | 0 -T. 0 Z, <
Q| v, 0 0o o0 1
Qy 0 0 -1 0

This control law is similar to (4) (when replacing T'
by T and (a1,a4) with (z,y)). It can be easily ex-
plained noticing that the model of motion considered
is (2,9)7 = (a1,a4)T + vs(z,y)T and that v, = —v?

[20]. Thus, relation (3) can also be deduced by derivat-
ing the previous one.

4.2 Results

These control laws have been tested on our experi-
mental robotic cell. The initial image of the observed
plane is presented in Fig 11. Experiments have been
made with the same initial position for every case,
where angular errors are about 30 degrees on each axes.
As the estimation of the quadratic parameters of mo-
tion is quite costly, rate of control is about 1 Hz and
the decreasing parameter A was equal to 0.04. Results
obtained for the alignment are displayed in [§8]. We
only present here results for the fixation.

Concerning the first control law, it appeared that
trying to control by acceleration with such a rate is



nearly impossible. Speed reaches a too great value be-
fore it can be updated by a new acceleration. Thus,
we present results only for the second and third con-
trol laws. For the second one, the displacement of the
image center along time has been estimated to be com-
pared with the one obtained in the third case, but has
not been taken into account in the control law. In each
case, the number of iteration taken into account is the
necessary one so that angular errors reach a continuous
running at less that one degree.

Here, we present for each control law, the estimated
drift of the initial center (see Fig. 12, 14) and a; and
a4 (see Fig. 13, 15).

Figure 11: Alignment and fixation task: initial image
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Figure 12: Open loop: Drift of initial centre (in pixel)
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Figure 13: Open loop: Constant parameters
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Figure 14: Closed loop: Drift of initial center (in pixel)
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Figure 15: Closed loop: Constant parameters

The point projected at the center of the initial im-
age has been “manually” retrieved on the final images
for the two cases. In the open loop scheme, respec-
tive drifts on z and y axes are about 35 and 48 pixels
whereas, in the closed loop one, they are only about
1 and 3 pixels. These results, similar to the estimated
positions (which again validates the accuracy of the es-
timation scheme), proves that the second control law
answers better to the desired behavior. This is due to
the fact that the first control law only ensures the con-
stant parameters to reach a zero value (which is done

after the 15tH iterations), but does not compensate
drift of the center obtained during these first iterations.
Then, after iteration 15, this center is subjected to the
divergent motion brought by the translation along the
optical axis. On the contrary, as the second control law
is directly based on this estimated position, it is obvi-
ously brought to zero. There, we can notice that the
constant parameters are also null at convergence, but
drift appearing in the 5 first iterations is compensated
in the following 5 ones.

5 Conclusion

The aim of this paper was to prove that image-based
control can be done by integrating dynamic features.
Usually, when measurements are integrated along time
to estimate a value knowing its successive derivatives,
a problem of bias in the estimation appears, due to the
inevitable noises. Here, we showed that this problem



does not appear. Tasks such as tracking a moving ob-
ject or gazing at the same point of the scene when the
camera is in motion, can be fulfilled using this tech-
nique. This is done by retrieving position from speed
in the image and then applying control laws developed
for image-based servoing.
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