
I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1837

TEST�SET� ADAPTIVE RENAMING

AND SET AGREEMENT�

A GUIDED VISIT TO ASYNCHRONOUS COMPUTABILITY

E. GAFNI M. RAYNAL C. TRAVERS

http://www.irisa.fr

Test�Set� Adaptive Renaming

and Set Agreement�

a Guided Visit to Asynchronous Computability

E� Gafni� M� Raynal�� C� Travers���

Syst�emes communicants
Projet ASAP

Publication interne n����� � Mars 	

� � �� pages

Abstract� An important issue in fault�tolerant asynchronous computing is the respective power of an
object type with respect to another object type This question has received a lot of attention� mainly in
the context of the consensus problem where a major advance has been the introduction of the consensus
number notion that allows ranking the synchronization power of base object types �atomic registers� queues�
test�set objects� compare�swap objects� etc� with respect to the consensus problem This has given rise
to the well�known Herlihy�s hierarchy

Due to its very de�nition� the consensus number notion is irrelevant for studying the respective power
of object types that are too weak to solve consensus for an arbitrary number of processes �these objects
are usually called subconsensus objects� Considering an asynchonous system made up of n processes prone
to crash� this paper addresses the power of such object types� namely� the k�test�set object type� the
k�set agreement object type� and the adaptive M �renaming object type for M � 	p � d p

k
e and M �

min�	p � �� p � k � ��� where p � n is the number of processes that want to acquire a new name It
investigates their respective power stating the necessary and su�cient conditions to build objects of any of
these types from objects of any of the other types More precisely� the paper shows that ��� these object
types de�ne a strict hierarchy when k �� �� n� �� �	� they all are equivalent when k � n � �� and ��� they
all are equivalent except k�set agreement that is stronger when k � � �� n� � �a side e�ect of these results
is that that the consensus number of the renaming problem is 	�

Key�words� Adaptive renaming� Asynchronous system� Atomic register� Atomic snapshot� Process crash�
Reduction� Set agreement� Shared memory� Test�set� t�Resilience� Wait�free algorithm

�R�esum�e � tsvp�

� Department of Computer Science� UCLA� Los Angeles� CA ������ USA� eli�cs�ucla�edu
�� IRISA� Universit�e de Rennes �� Campus de Beaulieu� ���	
 Rennes Cedex� France� raynal�irisa�fr

��� IRISA� Universit�e de Rennes �� Campus de Beaulieu� ���	
 Rennes Cedex� France� travers�irisa�fr

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(UMR 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Renommage adaptatif� test�set et accord ensembliste�

une visite guid�ee dans la calculabilit�e asynchrone

R�esum�e � Ce rapport �etudie la calculabilit�e respective de trois probl�emes de coordination asynchrone � le
test�set� le renommage adaptatif et l�accord ensembliste Des relations qui relient ces probl�emes sont mises
en �evidence et une hi�erarchie �fonction de leur di�cult�e algorithmique� est �etablie

Mots cl�es � Renommage adaptatif� syst�eme asynchrone� registre atomique� instantan�e atomique� crash
de processus� r�eduction� accord ensembliste� m�emoire partag�ee� test�set� r�esilience� algorithme sans attente

� Introduction

��� Asynchronous distributed problems

Test�set� renaming and set agreement are among the basic problems that lie at the core of wait�free com�
putability in asynchronous shared memory systems prone to process crashes Wait�free means that the
algorithm that solves the problem must allow each process �that does not crash� to terminate all its opera�
tions in a �nite number of computation steps whatever the behavior of the other processes �ie� despite the
fact that all the other processes are very slow or even crash� ����

The renaming problem has been introduced in ��� in the context of asynchronous message�passing systems
prone to process crash failures It consists in designing an algorithm that allows processes �that do not crash�
to obtain new names from a name space of size M �such an algorithm is called an M �renaming algorithm�
It has been shown that in an asynchronous system made up of n processes prone to crash failures� that
communicate through atomic read�write registers only� the smallest size for the new name space that a
wait�free algorithm can produce is M � 	n� � ���� �This result clearly shows the additional price that has
to be paided� namely n� � name slots� in order to cope with the net e�ect of asynchrony and failures�

A renaming algorithm is adaptive if the size of the new name space depends only on the number of pro�
cesses that ask for a new name� and not on the total number of processes Let p be the number of processes
that participate in the renaming algorithm Several adaptive renaming algorithms have been designed such
that the size of the new name space is M � 	p � � �eg� �	� �� �� ��� These algorithms are consequently
optimal with respect to the size of the new name space when considering read�write shared memory systems

The test�set problem is an old and well�known problem �a lot of share memory multiprocessor machines
provides the processes with a test�set primitive that allows them to coordinate and synchronize� It consists
in providing the processes with an operation that return � �winner� or
 �loser� to the invoking process� in
such a way that only one process obtains the value � The k�test�set problem is a simple generalization
of the previous problem �that does correspond to ��test�set�� at least one and at most k of the invoking
processes are winners

The k�set agreement problem has been introduced in ��� It is a paradigm of coordination problems
encoutered in distributed computing� and is de�ned as follows Each process is assumed to propose a value
The problem consists in designing an algorithm such that ��� each process that does not crash decides a value
�termination�� �	� a decided value is a proposed value �validity�� and ��� no more than k di�erent values are
decided �agreement� �The well�known consensus problem is nothing else than the ��set agreement problem�
The parameter k can be seen as the coordination degree �or the di�culty� associated with the corresponding
instance of the problem The smaller k is� the more coordination among the processes is imposed� k � �
means the strongest possible coordination� while k � n means no coordination

It has been shown in ��� ��� 	�� that� in an asynchronous system made up of processes that communicate
through atomic registers only� and where up to t processes may crash� there is no wait�free k�set agreement
algorithm for k � t Di�erently� when k � t the problem can be trivially solved �a prede�ned set of k
processes write their proposal� and a process decides the �rst proposal it reads�

The k�set agreement problem is on the values proposed by the processes In order that problem be
non�trivial� the number of values proposed has to be greater than k That problem de�nes a relation linking
its inputs and its outputs Di�erently� the test�set problem is purely �syntactic in the sense there are no
input values In the following� we consider that any number p � n of processes participate in the k�test�set
problem or the k�set agreement This means that we implicilty consider their adaptive versions �as we
implicitly do for the underlying atomic registers�

��� The kind of questions addressed in the paper

An important and pretty natural question is the following� While M � 	p� � is a lower bound for adaptive
renaming when the processes communicate through atomic registers only� is it possible to obtain a smaller

PI n����

name space when the system is equipped with test�set objects� or with k�set agreement objects! More
generally� what are the relations linking these three problems!

These questions have been partially answered in ����� ���� and �	
� A wait�free algorithm is presented
in ���� that solves the renaming problem from k�test�set objects� for M � 	p � d p

k
e Another wait�

free algorithm is presented in ���� that solves the M �renaming problem from k�set agreement objects for
M � p� k� � A t�resilient algorithm is presented in �	
� that solves the k�set agreement problem from any
adaptive min�	p� �� p� k � ���renaming algorithm for k � t

Are all these algorithms optimal! Among M �renaming� k�test�set� and k��set agreement� are they values
of M � k and k� for which these problems are equivalent! If yes� which ones! Which are the values for which
these problems are not equivalent! Etc This is the type of questions addressed in the paper� the aim of
which is to capture the computability power of each problem with respect to the other ones The ultimate
goal is to relate all these problem instances in a single hierarchy

��� Content of the paper

Notation and de�nitions

� fk and gk denote the integer functions fk�p� � 	p� d p
k
e and gk�p� � min�	p� �� p� k � ��

Let us notice that f� � g�� for p � ����n�� fn�� � gn�� and gk � fk when k � �	��n� 	� ���

� �n� k��SA denotes the k�set agreement problem in a set of n processes

� �n� k��TS denotes the k�test�set problem in a set of n processes

� �n� fk��AR denotes the adaptive fk�p��renaming problem in a set of n processes

� �n� gk��AR denotes the adaptive gk�p��renaming problem in a set of n processes

� Sometimes we say �x� y��XX object instead of �x� y��XX problem

� �x� y��XX � �x�� y���YY means that there is a wait�free algorithm that solves the �x�� y���YY problem
from �x� y��XX objects and atomic registers

� �x� y��XX � �x�� y���YY means that �x� y��XX � �x�� y���YY and �x�� y���YY � �x� y��XX

Global picture Each instance of any of the previous problems involves two parameters The �rst is the
maximal number of processes �n� that can participate For the adaptive renaming problem� the second is a
function on the number of participating processes That function de�nes the size of the actual new name
space Here we consider two function families �fk and gk� For the two other problems� the second parameter
is the coordination degree �k� In both case� that parameter �fk or gk and k� respectively� characterizes the
di�culty of the corresponding instance� the smaller that parameter is� the more di�cult the problem is

Although the renaming problem on one side� and the set agreement and test�set problems on the other
side� seem to be of di�erent nature� this paper shows that their instances can be ranked in a single hierarchy
More speci�cally� the results of the paper �combined with other results ��	� ��� �"� ��� 	
�� are depicted in
Figure � Basically� they show that these problems can be ranked in three distinct levels �denoted �� 	 and ���
�n� k��SA is stronger than �n� gk��AR �this is denoted with a bold arrow�� that in turn is stronger than�n� fk��
AR� �n� k��TS� �k��� k��TS� and �k��� k��SA Moroever� these four problems are always equivalent for any
value of the pair �n� k�

Interestingly� it is easy to see that� when n � k��� the previous hierarchy collapses� and all the problems
become equivalent It is also easy to see that� when k � � and n � k � �� the last two lower levels merges
�as we then have fk � gk�� while the �n� ���SA problem remains stronger �this follows from the fact that

�Actually the algorithm presented in ���� is based on k�set agreement objects� but a simple observation shows that these
objects can be replaced by k�test�set objects�

�hk � �k means that �k � � � k � n� �� �p � � � p � n� hk�p� � �k�p� and there is a value of p such that hk�p� � �k�p��

Irisa

�n� k��SA

�n� gk��AR

�n� fk��AR � �n� k��TS � �k � �� k��TS � �k � �� k��SA

Level �

Level �

Level �

Only when k � � or k � n� �

�n � �� k��SA Level �

�n� k � ���TS Level �

Only when k � n� �

Figure �� A hierarchy of problems

�n� ���SA is the consensus problem� while the consensus number� of the �n� ���TS object is 	 ���� In the
other cases� the hierarchy is strict
Remark� A weaker version of the renaming problem �namely� non�adaptive renaming� is considered in ����
where the authors show that non�adaptive renaming is strictly less powerful than set agreement That work
is based on combinatorial topology and does not consider the test�set problem In addition to considering
the adaptive version of the renaming problem� the approach considered here is totally di�erent It is entirely
based on reductions

Structure and content of the paper To establish the relations described in Figure �� the paper proceeds
as follows It �rst presents the system model in Section 	 Then� each section presents addresses a particular
point More precisely we have the following

� Section � shows that �n� k��TS � �k � �� k��TS

	 Section � shows that �k � �� k��TS � �k � �� k��SA

� Section " shows that �n� fk��AR � �n� k��TS

� Section � shows that there is no construction of an �n� gk����AR object from �n� k��SA objects

Piecing these results �and other results� to obtain the global picture We are now in order to
justify the presence and the absence of arrows in the Figure � �As we can see� as it aggregates new results
with previous results� the paper has also a �survey #avor �

� Equivalences The previous items �� 	 and � establish the equivalences stated in level �

� Bold arrows �going down�

� From level � to level �� trivial transformation from �n� �� k��SA to �n� k��SA

� From level � to level 	� transformation �n� k��SA � �n� gk��AR in ����

� From level 	 to level �� from the fact that �k � � � k � n� �� gk � fk

�The consensus number of an object de�ned by a sequential speci�cation is the maximum number of processes for which
that object can wait�free solve the consensus problem�

PI n����

� From level � to level
� trivial transformation from �n� k��SA to �n� k � ���SA

� Slim arrows �going up�

� From level � to level 	� follows from f� � g� �case k � �� and fn�� � gn�� �case k � n� ��

� From level ��	 to level �� when n � k�� �n� k��SA is �k��� k��SA �and both are then equivalent
to �k � �� gk��AR�

� Impossibility

� From level � �resp�
� to level � �resp� ��� proved in ��"�

� From level 	 to level � for k �� n� �� proved in �	
�

� From level � to level 	 for k �� �� n� �� follows from �k � � � k � n� �� gk � fk

� Optimality

� As fk � fk��� the algorithm described in ����� that builds an �n� fk��AR object from �n� k��TS
objects� is optimal in the sense that an �n� fk��AR object cannot be built from �n� k � ���TS
objects

� Due to item �� The algorithm described in ����� that solves the �n� gk��AR problem from �n� k��SA
objects �bold arrow from level � to level 	� is optimal in the sense that no new name space smaller
than gk can be obtained from �n� k��SA objects only

� Computing model� object types� and transformation require�

ments

��� Process model and atomic registers

Process model The system consists of n processes that we denote p�� � � � � pn The integer i is the index
of pi Each process pi has an initial name idi A process does not know the initial names of the other
processes� it only knows that no two processes have the same initial name �The initial name is a particular
value de�ned in pi�s initial context� A process can crash Given a run� a process that crashes is said to be
faulty� otherwise it is correct in that run Each process progresses at its own speed� which means that the
system is asynchronous

While we are mainly interested in wait�free transformations� we sometimes consider a t�resilient transfor�
mation Such a transformation can cope with up to t process crashes� where t is a system parameter known
by all the processes A wait�free transformation is nothing else than an �n� ���resilient transformation

Atomic registers and snapshot operation The processes cooperate by accessing atomic read�write
registers Atomic means that each read or write operation appears as if it has been executed instantaneously
at some time between its begin and end events ���� ��� Each atomic register is a one�writer�multi�readers
��WnR� register This means that a single process can write it Atomic registers �and shared objects� are
denoted with uppercase letters The atomic registers are structured into arrays A process can have local
registers Such registers are denoted with lowercase letters with the process index appearing as a subscript
�eg� resi is a local register of pi�

The processes are provided with an atomic snapshot operation ��� denoted X�snapshot��� where X is an
array of atomic registers� each entry of which can be written by at most one process It allows a process pi
to atomically read the whole array This means that the execution of a snapshot�� operation appears as it
has been executed instantaneously at some point in time between its begin event and its end event Such
an operation can be wait�free implemented from �WnR atomic registers ��� �To� our knowledge the best
snapshot�� implementation requires O�n log�n�� read�write operations on base atomic registers �"��

Default value The value 	 denotes a default value that can appear only in the algorithms described in
the paper It always remains everywhere else unknown to the processes

Irisa

��� Base objects

The objects considered here are the objects associated with the adaptive renaming� k�test�set and k�set
agreement problems as discussed in the Introduction These objects are considered in a system of n processes�
and are consequently accessed by at most n processes

One�shot test	set object A �n� k��TS object provides the processes with a single operation� denoted
TS competek�� �One�shot means that� given such an object�a process can invoke that operation at most
once �there is no reset operation� The invocations on such an object satisfy the following properties�

� Termination An invocation issued by a correct process terminates

� Validity The value returned by an invocation is � �winner�� or
 �loser�

� Agreement At least one and at most k processes obtain the value �

Set agreement object A �n� k��SA object is an object that allow processes to propose values and decide
values To that end� it provides them with an operation denoted SA proposek�� A process invokes that
operation at most once When it invokes SA proposek��� the invoking process supplies the value v it proposes
�input parameter� That operation returns a value w called �the value decided by the invoking process �we
also say �the process decides w � The invocations on such an object satisfy the following properties�

� Termination An invocation issued by a correct process terminates

� Validity A decided value is a value that has been proposed by a process

� Agreement At most k distinct values are decided

Adaptive renaming A renaming object allows the processes to obtain new names from a new name space
����M � It provides the processes with a single operation denoted AR renamek�� A renaming algorithm is
adaptive with respect to the size M of its new name space� if M depends on the number p of processes that
actually participate in the renaming algorithm �the processes that invoke AR renamek��� We consider here
two families of M �adaptive renaming objects for � � k � n � �� namely� the family of �n� fk��AR objects
and the family of �n� gk��AR objects� where M � fk�p� � 	p�d p

k
e� and M � gk�p� � min�	p� �� p� k� ���

respectively The invocations on such an adaptive renaming object satisfy the following properties�

� Termination An invocation issued by a correct process terminates

� Validity A new name belongs to the set ����M �

� Agreement No two invocations return the same new name

��� Transformation requirement

This paper focuses on transformations that satisfy the following property�

� Index independence The behavior of a process is independent of its index

This property states that� if� in a run� a process whose index is i obtains a result v� that process would
have obtained the very same result if its index was j From an operational point of view� the indexes de�ne
an underlying communication infrastructure� namely� an addressing mechanism that can only be used to
access entries of shared arrays

	 �n� k��TS and �k � �� k��TS are equivalent

As n � k� building a �k��� k��TS object from an �n� k��TS object is trivial So� the interesting construction
is the one in the other direction This section presents such a construction

PI n����

Principles and description of the construction The idea of the construction is simple It is based on
the following two principles

First� in order to satisfy the index independence property� the transformation �rst uses an underlying
renaming object that provides the processes with new names that they can thereafter use �instead of their
indexes Renaming algorithms that satisfy the index independence property and use only atomic registers
do exist �eg� see ���� These algorithms provide a new renaming space whose maximal size is M � 	n� �
So� the new name of a process pi is an integer in the set f�� � � � � 	n� �g that is independent of its index i
This underlying base renaming object is denoted BASE AR

Let m � C�	n� �� k��� �the number of distinct subsets of �k��� elements in a set of 	n� � elements�
Let us order these m subsets in an array SET LIST ����m� in such a way that SET LIST �x� is the set of the
k�� processes that de�ne the xth subset Moreover� let BASE TS ����m� be an array of m base objects with
type �k � �� k��TS

The principle that underlie the second part of the construction is the following First� the �k � ��
processes that de�ne SET LIST �x� are the only ones that can access BASE TS �x� When a process pi invokes
TS competek��� starting from the �rst base object BASE TS �x� it belongs to� it scans �one after the other and
in the increasing order on their indexes� all the sets BASE TS �x� it belongs to If BASE TS �x��TS competek��
returns
 �loser�� pi stops scanning and returns
 as the result of its invocationTS competek�� Otherwise� pi is
a winner among the processes that accessBASE TS �x�$ it then proceeds to the next object of BASE TS ����m�
to which it belongs If there is no such object �pi has then �successfully scanned all the subsets it belongs
to�� it returns � as the result of TS competek��

The construction is described in Figure 	 The local variable posi keeps pi�s current scanning position in
SET LIST ����m� The function next�new namei� posi� returns the �rst entry y �starting from posi�� and in
increasing order� of SET LIST ����m� such that new namei belongs to SET LIST �y� Finally� the predicate
last�new namei� returns true i� posi � m or new namei belongs to no set from SET LIST �posi � �� until
SET LIST �m� The statement return�v� terminates pi�s invocation

Remark If a �	n� ���renaming algorithm was not initially used �line
��� we would have to use next�i� posi�
at line
� �and last�i� at line
�� It would follow that the base objects BASE TS �posi� that are accessed
by a process pi at line
" would depend on the index i Consequently� the results provided to pi by these
objects would depend on that index� thereby making the transformation not index independent As we can
see� using an underlying renaming algorithm �that satisfy index independence� allows solving that issue

operation TS competek���
���� new namei � BASE AR�rename���
��
� posi � ��
���� while �true� do
��	� posi � next�new namei� posi��
���� resi � BASE TS �posi��TS competek���
���� if �resi � �� then return ���
��� else if

�
posi � last�new namei�

�
then return ��� end if

���� end if

���� end while

Figure 	� From �k � �� k��TS objects to an �n� k��TS object �code for pi�

Theorem
 The algorithm described in Figure � is a wait�free construction of an �n� k��TS object from a

bounded number of atomic registers and �k � �� k��TS objects�

Proof The validity property of the �n� k��TS object is trivial� the only values that can be returned are

and � �lines
� and
�� As far as the the termination property is concerned� let pi a correct process that
invokes TS competek�� If pi executes return�
� at line
�� it terminates So� let us assume that pi never
executes return�
� at line
� It follows that it is a winner in each base object BASE TS �y� it accesses These
objects de�ne a list that has a last element BASE TS �z� When pi accesses that base object� we have both
posi � z and last�new namei� � z� from which it follows that pi executes return��� at line
�

The proof of the agreement property is decomposed in two steps

Irisa

� At most k processes are winners
The proof is by contradiction Let us assume that �k��� processes are winners Let S be the set of the
new names of these �k � �� processes There is a set SET LIST �y� such that SET LIST �y� � S Due
to the code of the construction� a process pj that is a winner in the high level object CONST � has to be
a winner in all the base �k � �� k��TS objects BASE TS �x� such that new namej � SET LIST �x� It
follows from that observation that all the processes of S invoke BASE TS �y��TS competek�� and obtain
� from that base object On another side� it follows from the agreement property of that underlying
�k � �� k��TS base object� that at most k of these processes return the value � A contradiction

� At least one process is a winner
Let BASE TS �y� be the last �k � �� k��TS base object accessed during a run Due to the agreement
property of the base objects� there is at least one process pj that is a winner with respect to the base
object As pj does not access other �k � �� k��TS objects� it follows that it returns the value � as the
result of its invocation TS competek��

�Theorem �

 �k � �� k��TS and �k � �� k��SA are equivalent

To show �k��� k��TS � �k��� k��SA� we proceed in two steps A wait�free transformation is �rst presented
that builds an �n� k��TS object from an �n� k��SA object Then� a t�resilient transformation is described that
builds an �n� t��SA object from an �n� t��TS object When instantiated with t � k � n��� that transformation
becomes a wait�free transformation from �k � �� k��TS to �k � �� k��SA The two transformations imply
�k � �� k��TS � �k � �� k��SA

��� From �k � �� k��SA to �k � �� k��TS

This section presents a simple wait�free transformation that constructs an �n� k��TS object from a an �n� k��
SA object

Principles and description of the construction Its underlying idea is the following� a process that
decides the value it has proposed is a winner But� it is possible that no process decides the value it has
proposed So� the transformation consists in forcing at least one process to decide its value To attain this
goal� the processes uses a shared array� with one entry per process� that they can atomically read using a
snapshot operation This construction �initially introduced in ���� is described in Figure � Its code is self�
explanatory REG ����n� is an array of atomic registers� initialized to �	� � � � �	� KS denotes the underlying
�n� k��set object In order that at least one and at most k processes be winners� the processes are required
to propose di�erent values to the underlying �n� k��set object A simple way do that� without violating the
index independence property� consists in each process pi proposing its initial identity idi

operation TS competek���
���� REG�i�� KS �SA proposek�idi��
��
� regi����n�� REG�snapshot���
���� if ��x � regi�x� � idi� then resi � � else resi � � end if �
��	� return �resi�

Figure �� From an �n� k��SA object to an �n� k��TS object �code for pi�

Theorem � The algorithm described in Figure � is a wait�free construction of an �n� k��TS object from an

�n� k��SA object�

Proof The algorithm is trivially wait�free� which proves the termination property The validity property of
the �n� k��TS object is also trivial as the only values that can be returned are
 and � �line
�� For the the
agreement property� we have to show that at least one and at most k processes are winners

PI n����

� Due to the agreement property of the underlying �n� k��SA object� there are at most k processes that
obtain their index from that object It follows that the shared array REG ����n� contains at most k
di�erent non�	 values Consequently� the predicate �
x � reg i�x� � i� �line
�� can be true for at most
k processes pi It follows that at most k processes can return the value � at line
�

� Let us now prove that at least one process is a winner If there is a process pi that obtains its
own index from the invocation KS �SA proposek�i�� that process is a winner So� let us assume that
no process pi obtains its own index from its invocation KS �SA proposek�i� There is consequently a
cycle j�� j�� � � � � jx� j� on a subset of processes de�ned as follows� j� � REG �j��� j� � REG �j��� � � � �
j� � REG �jx� Among the processes of this cycle� let us consider the process pj that is the last to
update its entry REG �j�� thereby creating the cycle �Let us observe that� as the write and snapshot
operations that access the array REG are linearizable� such a �last process pj does exist� But then�
when pj executes line
�� the predicate �
x � regj �x� � j� is necessarily true �as pj completes the cycle
and �due to the snapshot operation� sees that cycle� It follows that pj returns �� which completes the
proof of the theorem

�Theorem �

��� From �k � �� k��TS to �k � �� k��SA

This section presents a t�resilient construction of an �n� t��SA object from an �n� t��TS object Taking
t � k � n� � gives a wait�free construction

Principles and description of the construction This construction �described in Figure �� uses two
arrays of atomic registers� denoted REG ����n� and COMPETING ����n� �both initialized to �	� � � � �	�� The
behavior of a process can be decomposed in two parts

� Part �� Write and read shared registers �lines
��
��
When a process pi invokes SA proposek�vi� it �rst deposits in REG �i� the value it proposes� in order
to make it visible to all the processes �line
�� Then� it invokes KTS �TS competek�� �where KTS is
the underlying �n� t��TS object� and writes � or
 into COMPETING �i� according to the fact it is a
winner or not �line
	� Then� using the snapshot operation� pi reads the whole array COMPETING

until it sees that at least n � t processes are competing to win �notice that� in the wait�free case� a
process executes only once the loop body�

� Part 	� Determine a value �lines
"��
�
Then� pi computes the processes it sees as winners �line
"� If it sees a winner� it decides the value
proposed by that process �line
�� If pi sees no winner �lines
��
��� it decides the value proposed by a
process �pj� that does participate �REG �j� �� 	� but not seen as a competitor by pi �competingi �j � �� 	�
In that case� as the underlying �n� k��TS object is adaptive� the pj is one of the t processes that can
be winners �pj is not seen winner by pi because it is slow or it has crashed�

It is easy to see that the indexes are used only as pointers� thereby guaranteeing the index independence
property

Theorem � The algorithm described in Figure � is a t�resilient construction of an �n� t��SA object from an

�n� t��TS object�

Proof As we are concerned by t�resilience� we assume that at most t processes may crash� and at least n� t

correct processes participate in the algorithm Let us �rst observe that� as the underlying �n� t��TS object
is wait�free and at least n� t correct processes participate� the termination property is trivially satis�ed

The validity property follows from the two following observations First� if the value returned by a process
pi is determined from its set winnersi � it is a value proposed by a winner� and any process �winner or loser�
deposits its value �line
�� before competing to be winner �line
	� Second� if the returned value is not
determined from the set winnersi � it follows from the de�nition of seti that the value REG �j� decided by
pi has been previously deposited by pj �the proof that seti is not empty is given below in the proof of the

Irisa

operation SA proposet�vi��
���� REG�i�� vi�
��
� COMPETING�i�� KTS �TS competet���
���� repeat competingi � COMPETING�snapshot��
��	� until

�
jfj � competingi�j� �� �gj � �n� t�

�
�

���� let winnersi � fj � competingi�j� � �g�
���� if winnersi �� 	 then �i � any value
 winnersi
��� else let seti � fj � REG�j� �� � � competingi�j� � �g�
���� �i � any value
 seti
���� end if�
���� return �REG��i��

Figure �� From an �n� t��TS object to an �n� t��SA object �code for pi�

agreement property�

The agreement property requires that at least one and at most t di�erent values are decided Due
to the underlying �n� t��TS object� there are at least one and at most t winner processes� so at most t
entries of COMPETING are equal to � Consequently� any set winnersi computed at line
" is such that

 � jwinnersi j � t

Let us consider the process px that �at line
"� obtains the smallest set winnersx Due to the total order
on the snapshot operations issued by the processes at line
� �linearization order due to the atomicity of these
operations�� we can conclude that any process pi that executes line
" is such that winnersx � winnersi We
consider two cases

� jwinnersx j � � In that case� it follows from the previous observation �winnersx � winnersi � that at
least one winner is seen by each processes pi that decides As we have � � jwinnersi j � t� at least one
and at most t di�erent values are decided

� jwinnersx j �
 In that case� it follows from line
� that px sees at least �n� t� processes that obtained

 from the underlying KTS object �loser processes� This means that� when considering the last
value of the array COMPETING ����n�� there are at most t processes pj such that �COMPETING �j� �
�� �REG �j� �� 	 � COMPETING �j� � 	� It follows that� when jwinnersx j �
� at most t di�erent
values can be decided

We now show that at least one value is decided Let pi be a process that decides

� jwinnersi j � � In that case� pi decides the value of a winner process pj

� jwinnersi j �
 As the underlying �n� t��TS object is adaptive� we conclude that there is at least
one process py that has invokedKTS �TS competet�� and is a winner �pi does not see py as a winner
because py crashed before writing COMPETING �y�� or has not yet written � into COMPETING �y�
because it is very slow� The important point is that such a process py has written its value into
REG �y� before invoking KTS �TS competet�� It follows that� when pi computes seti� that set is
not empty� and pi decides a value� which completes the proof of the theorem

�Theorem �

The next corollary is a rephrasing of the previous theorem for t � k � n� �

Corollary
 The algorithm described in Figure � is a wait�free construction of a �k � �� k��SA object from

a �k � �� k��TS object�

� �n� fk��AR and �n� k��TS are equivalent

A wait�free algorithm is presented in ���� that builds an �n� fk��AR object from �n� k��TS objects So� to
show that �n� fk��AR � �n� k��TS� this section presents a wait�free construction of an �n� k��TS object from
an �n� fk��AR object This construction is done in two steps A construction of a �k � �� k��TS object from
a �k � �� fk��AR object is �rst presented Then� this base construction is used to wait�free construct an
�n� k��TS object from �n� fk��AR objects

PI n����

��� From �k � �� fk��AR to �k � �� k��TS

Let ARF be a �k��� fk��AR object So� the maximal size of the new name space is Mmax � fk�k��� � 	k
The construction from �k � �� fk��AR to �k � �� k��TS is described in Figure " It is very simple� a process
pi �rst acquires a new name� and then returns � �winner� if and only its new name is comprised between �
and k

operation TS competek���
���� new namei � ARF �rename���
��
� if �new namei � k� then return ��� else return ��� end if

Figure "� From an �k � �� fk��AR object to an �k � �� t��TS object �code for pi�

Theorem The algorithm described in Figure 	 is a wait�free construction of a �k��� t��TS object from a

�k � �� fk��AR object�

Proof The proofs of the termination property� the validity property and the fact that there are at most k
processes are trivial So� it only remain to show that at least process returns the value � We consider two
cases according to the number of participating processes

� p � k � � processes invoke ARF �rename�� We then have M � fk�k � �� � 	�k � ��� dk��
k
e � 	k As

the new name space is ����	k�� it trivially follows� from the fact that no two processes obtain the same
new name� that at least one of the the �k��� participating processes has a new name smaller or equal
to k Consequently� there is at least one winner

� p � k processes invoke ARF �rename�� We then have M � fk�p� � 	p� d p
k
e � 	p� � � p� �p � ��

It follows that at least one of the p processes obtains a new name in the set ����p� As p � k� it follows
from the algorithm that that process is a winner

�Theorem �

The next corollary follows from the previous theorem� Theorem � and Corollary �

Corollary � �k � �� fk��AR � �n� k��TS and �k � �� fk��AR � �k � �� k��SA�

��� From �n� fk��AR to �n� k��TS

As we trivially have �n� fk��AR � �k��� fk��AR� we can use the wait�free transformation from a �k��� fk��
AR object to an �k � �� k��TS object� to obtain a wait�free transformation from �n� fk��AR objects to a
�n� k��TS object More precisely� the construction described in Figure 	 builds an �n� k��TS object from
�n� fk��objects when the underlying �	n� ���renaming base object is replaced by an �n� fk��AR object So
now� in the transformation of Figure 	� a process �rst invokes the underlying �n� fk��object and obtains
a new name in the interval ����fk�p�� �let us notice that the maximal size of the new name space is then
fk�n� � 	n� �� The rest of the transformation of Figure 	 remains unchanged We consequently have the
following theorem �whose proof is the same as the one of Theorem ��

Theorem � The algorithm described in Figure �� in which the base renaming object is an �n� fk��AR object�

is a wait�free construction of an �n� t��TS object from �n� fk��AR objects�

� �n� gk����AR cannot be built from �n� k��SA

This section shows that an �n� gk����AR object cannot be built from �n� k��SA object As gk�p��gk���p� � ��
a corollary of this result is that the algorithm described in ���� �that wait�free builds an �n� gk��AR object
from �n� k��SA objects� is optimal �M � gk is the size of the smallest renaming space that can be obtained
from �n� k��SA objects�

Theorem � There is no wait�free construction of an �n� gk����AR object from �n� k��SA objects�

Irisa

Proof The proof is by contradiction It considers two cases

� k � � We have then gk���p� � p� � It is trivially impossible to rename p processes in a name space
smaller than p

� k � � Let us assume that there is a construction A� from an �n� k��SA object to an �n� gk����AR
object �ie� A� is an adaptive �p� k � 	��renaming algorithm based on �n� k��SA objects and atomic
registers�

The following simple construction A	 builds �n� k����TS object from A� A	 is as follows� a process pi
�rst uses A� to obtain a new name new namei� and considers it is a winner if and only if new namei �
k� � �at most �k� �� processes can be winners� and� due to the adaptivity of A�� at least one process
is a winner�

Given the previous �n� k � ���TS object� it is �trivially� possible to build a �k� k � ���TS object� and
from such an object to build a �k� k � ���SA object �Corollary ��

So the previous sequence of transformations builds a �k� k � ���SA object from an �n� k��SA object�
which has proven to be impossible ��"�

�Theorem �

 Conclusion

The aim of this paper was an investigation of the relations linking the k�test�set problem� the k�set problem�
and two adaptive renaming problem� namely the �	p�d p

k
e��renaming problem and the min�	p��� p�k����

renaming problem Three mains points can be learnt from that study First� the k�test�set problem and the
k�set problem are equivalent in systems of �k � �� processes Second� whatever the number n of processes
de�ning the system� the k�test�set problem and the �	p � d p

k
e��renaming problem are always equivalent

Third� in systems of n processes such that k �� n � �� the k�set problem is strictly stronger than the other
two problems$ if additionally k �� �� then the min�	p��� p�k����renaming problem lies exactly in between
k�set problem agreement problem �that is stronger� and the k�test�set problem �that is weaker� All these
relations are depicted in Figure � So� this paper adds some unity and complements other papers that have
investigated the respective computability power of each of these problems with respect to the other ones
��	� ��� ��� �"� ��� 	
�

References

��� Afek Y�� Attiya H�� Dolev D�� Gafni E�� Merritt M� and Shavit N�� Atomic Snapshots of Shared Memory� Journal
of the ACM� ����	
������� ����

��� Afek Y� and Merritt M�� Fast� Wait�Free ��k � �	�Renaming� Proc� ��th ACM Symposium on Principles of
Distributed Computing �PODC����� ACM Press� pp� �������� �����

�� Attiya H�� Bar�Noy A�� Dolev D�� Peleg D� and Reischuk R�� Renaming in an Asynchronous Environment�
Journal of the ACM� ��	
�������� �����

��� Attiya H� and Fouren A�� Polynomial and Adaptive Long�lived ��k � �	�Renaming� Proc� �	th Symposium on
Distributed Computing �DISC�

�� LNCS ������ pp� ������� �����

��� Attiya H� and Rachman O�� Atomic Snapshots in O�n log n	 Operations� SIAM Journal on Computing� ����	
���
��� �����

��� Attiya H� and Welch J�� Distributed Computing� Fundamentals� Simulations and Advanced Topics� ��d Edition	�
Wiley�Interscience� ��� pages� �����

��� Borowsky E� and Gafni E�� Immediate Atomic Snapshots and Fast Renaming� Proc� �th ACM Symposium on
Principles of Distributed Computing �PODC����� pp� ������ ����

PI n����

��� Borowsky E� and Gafni E�� Generalized FLP Impossibility Results for t�Resilient Asynchronous Computations�
Proc� �th ACM Symposium on Theory of Distributed Computing �STOC����� ACM Press� pp� ������� ����

��� Chaudhuri S�� More Choices Allow More Faults� Set Consensus Problems in Totally Asynchronous Systems�
Information and Computation� ���
������� ����

���� Gafni E�� Read�Write Reductions� Proc� �th Int�l Conference on Distributed Computing and Networking
�ICDCN�
��� Springer Verlag LNCS ����� pp� ������ �����

DISC�GODEL presentation given as introduction to the ��th Int�l Symposium on Distributed Computing
�DISC�
	�� �����

���� Gafni E�� Renaming with k�set Consensus
 an Optimal Algorithm in n�k� � Slots� Proc� �
th Int�l Conference
On Principles Of Distributed Systems �OPODIS�
��� Springer Verlag LNCS ����� pp� ����� �����

���� Gafni E�� Read�Write Reductions� Proc� �th Int�l Conference on Distributed Computing and Networking
�ICDCN�
��� Springer Verlag LNCS ����� pp� ������ �����

��� Gafni E�� Rajsbaum S� and Herlihy M�� Subconsensus Tasks
 Renaming is Weaker than Set Agreement� Proc�

th Int�l Symposium on Distributed Computing �DISC�
��� Springer�Verlag ������ pp������ �����

���� Herlihy M�P�� Wait�Free Synchronization� ACM Transactions on Programming Languages and Systems�
���	
�������� �����

���� Herlihy M�P� and Rajsbaum S�� Algebraic Spans� Mathematical Structures in Computer Science� ����	
 �������
�����

���� Herlihy M�P� and Shavit N�� The Topological Structure of Asynchronous Computability� Journal of the ACM�
����	
�������� �����

���� Herlihy M�P� and Wing J�M�� Linearizability
 a Correctness Condition for Concurrent Objects� ACM Transac�
tions on Programming Languages and Systems� ���	
������� �����

���� Lamport� L�� On Interprocess Communication� Part II
 Algorithms� Distributed Computing� ���	
������� �����

���� Most�efaoui A�� Raynal M� and Travers C�� Exploring Gafni�s reduction land
 from �k to wait�free adaptive
��p�d p

k
e	�renaming via k�set agreement� Proc�
th Symposium on Distributed Computing �DISC�
��� Springer

Verlag LNCS ������ pp� ����� �����

���� Most�efaoui A�� Raynal M� and Travers C�� From Renaming to Set Agreement� �	th Colloquium on Structural
Information and Communication Complexity �SIROCCO�
��� Springer Verlag LNCS �xxxx� pp� aa�bb� �����

���� Saks M� and Zaharoglou F�� Wait�Free k�Set Agreement is Impossible
 The Topology of Public Knowledge�
SIAM Journal on Computing� ����	
��������� �����

Irisa

