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Abstract: Most operating systems heavily rely on intermediate data structures for mod-
ularity or portability reasons. This paper extends program specialization to eliminate these
intermediate data structures in a uniform manner. Qur transformation process is fully auto-
matic and is based on a specializer for C programs, named Tempo. The key advantage of our
approach is that the degree of safety of the source program is preserved by the optimization.
As a result, mature system code can be reused without requiring additional verification.

Our preliminary results on the automatically optimized RPC code are very promising
in that they are identical to the results we obtained by manual specialization of the same
code. In this last experiment, performance measurement of the specialized RPC fragments
shows a minimal speedup of 30% compared to the non-specialized code.

Elimination of intermediate data structures is part of our research effort towards optimiz-
ing operating system components via program specialization. It improves on our previous
work in that optimizations are now carried out automatically using our specialization tool.
Furthermore, it shows how generic subsystems can be automatically specialized into specific
system extensions by exploiting application constraints.
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Une approche uniforme et automatique a I’élimination
des copies dans les extensions systemes par
spécialisation de programmes

Résumé : La plupart des systemes d’exploitation utilisent intensivement des structures de
données intermédiaires afin de mettre en ceuvre les propriétés de portabilité et modularité.
Cet article propose une extension a la spécialisation de programmes pour éliminer de maniére
uniforme les copies intermédiaires. Notre processus de transformation est automatique et
repose sur un spécialiseur de programmes C appelé Tempo. L’avantage majeur de notre
approche est que le degré de sureté du programme source est préservé par le processus
d’optimisation. En conséquence, il devient possible de réutiliser du code systéme mature
sans mettre en ceuvre des vérifications additionnelles.

Nos résultats préliminaires sont trés prometteurs : le produit de 'optimisation automa-
tique de fragments de code de I’appel de procédure a distance est similaire au code spécialisé
manuellement. Pour cette expérimentation, les mesures de performance sur le code spécia-
lis¢ du RPC montrent un gain minimum de 30% en temps d’exécution par rapport au code
non spécialisé.

L’élimination des structures de données intermédiaires s’intégre dans notre axe de re-
cherche relatif a 'optimisation de composants de systemes d’exploitation par spécialisation
de programme. Cette étude enrichit nos travaux précédents dans la mesure u le processus
d’optimisation est maintenant réalisé automatiquement par notre outil de spécialisation.

Mots-clé : Spécialisation de programme, évaluation partielle, élimination de copies, sys-
temes d’exploitation extensible, appel de procédure a distance
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1 Introduction

Services offered by operating systems are by nature general. As new applications and hard-
ware platforms emerge, this increasing generality penalizes performance. This conflict bet-
ween generality and performance is the basis of several research projects which are aimed
at designing operating systems which can adapt to usage patterns to treat specific cases
efficiently [1, 2, 3, 4].

This paper explores a new approach for automatically generating system extensions in
the context of extensible operating systems. Our main contribution is to provide a way
of performing program specialization of general system layers exploiting the usage pattern
of a particular application. This approach is suited for cases where information can be
extracted from the user application in addition to information given by subsystems. Because
such information varies from one application to another, the specialization process is used
repeatedly; this makes its automation a necessity in the specialization of large production
code such as operating systems. A typical example of this situation occurs in Remote
Procedure Calls (RPC), where context information (e.g., procedure signatures) is provided
by an application and used by a tool (e.g., stub compilers) to generate specialized code
running at user level.

Our adaptation process is based on a specializer for C programs, named Tempo [5].
Tempo aggressively performs various program transformations such as elimination of unused
code and variables, and procedure unfolding. Like any optimizer, if it is semantic preserving,
the specializer will produce optimized code that can be trusted (if the non-specialized one

is).

OS relevance. Synthetix, and the Synthesis kernel [6], have demonstrated significant
potential gains of specialization in operating systems. However, both the Synthesis kernel
and Synthetix experiments up to now have been done by hand. Our experience with these
experiments shows that in order to scale up the experiments and apply specialization to an
entire production operating system, we need powerful tools to automate the specialization
process. This is particularly the case for production code with simultaneous requirements
of performance, correctness, modularity, and portability.

A critical issue in the art of operating system optimization is avoiding physical memory
copy. Many techniques have been introduced in the last fifteen years to optimize system
structuring by eliminating copies [7, 8, 9, 10, 11]. Merging system layers together offers an
opportunity to remove intermediate data structures which are normally needed for modula-
rity reasons. However, copy elimination is beyond conventional program specialization; this
optimization requires additional transformations.

Contributions. Tempo implements our general approach to automate system optimiza-
tions. The contributions of this paper can be summarized as follows.

e We have developed a new approach to combining and specializing existing system
layers using program transformation.

RR n"2903



4 E.N. Volanschi, G. Muller, C. Consel, L. Hornof, J. Noyé & C. Pu

e To achieve this integration of layers, we introduce a new technique to eliminate me-
mory copy by constructing an abstract copy history and eliminating intermediate data
structures.

Outline. The rest of the paper is organized as follows. Section 2 describes the Tempo
specializer and the merging of existing system layers in a specialized system extension.
Section 3 introduces the copy elimination technique and its integration into Tempo; this
technique is first illustrated by automatic specialization of protocol stack layers which mimic
RPC; then, we present preliminary results in applying our technique for optimizing RPC in
the Chorus/ClassiX operating system. Section 4 presents related work in the specialization
of operating systems. Finally, Section 5 gives concluding remarks.

2 Layer Integration via Partial Evaluation

The conflict between modularity and performance is now a well-identified problem in system
software development. Modularity in system code has many advantages such as maintai-
nability, re-usability, and generality. However, these advantages come at the expense of
performance if the modular design is mapped directly to an implementation. Indeed, it
often introduces some overhead due to operations such as protection domain crossing, data
copying and format translation between layers, and heavily parameterized interface func-
tions. Rather, modular design should be the basis of a stepwise refinement process to derive
an implementation, instead of being directly mapped to an implementation.

We claim that this refinement process can be achieved by program specialization. This
automatic transformation process can collapse modules by such transformations as removing
parameterization of interface functions and propagating constants. In this section we first
give an overview of a program specialization system, named Tempo [5]. Then, we argue
that our approach to developing Tempo makes it particularly well-suited to optimize system
code. Finally, we discuss how the feature of Tempo are exploited to collapse layers.

Overview of Tempo

Tempo is a program transformation system based on program specialization [12, 13]. It
takes a source program written in C and parts of its input, and produces a specialized
program. This program specializer is off-line [12, 13] in that it processes a program in two
steps: during the first phase only a known/unknown division of the input is given. Pointer
and side-effect information of the subject program are first computed. Then, a binding-time
analysis determines the computations which rely on the known parts of the input. Finally,
an action analysis determines a program transformation for each construct in the program.

The result of the first phase can either be used for compile-time or run-time specialization.
In the former case, a concrete value is given for each known input at compile time, and the
program is specialized at compile time as well. In the latter case, the concrete values only
become known at run time, and specialization relies on a strategy based on templates [14].

INRIA
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In both cases, the specialization process is guided by the transformations generated by the
first phase.

The analysis phase handles partially-static structures, that is, data structures where only
some but not all the fields are known. It also treats pointers to partially-static structures;
they are handled in a dual way: they can be both dereferenced during specialization and
residualized in the specialized program.

Tempo: a Specializer Dedicated to System Code Optimization

Besides the RPC experiment discussed in this paper, the techniques and tools we introduce
are applicable to other operating system components. In fact, some of the optimizations
included in Tempo have been specifically developed to address cases prompted by operating
system experiments where manual specialization have been performed. These experiments
are important to our work in that they introduce specialization techniques and methodolo-
gies, and assess their impact in the context of a real operating system. Specifically, Tempo
has benefited from close collaboration with the Synthetix project which has manually spe-
cialized the Unix file system component of HP-UX [1]. Synthetix is actively testing and
evaluating Tempo for the next generation specialization experiments on production opera-
ting system code.

Using Tempo to Collapse System Layers

Let us now describe some opportunities for specialization which appear when a given confi-
guration of layers is to be optimized.

Fixed usage patterns of interfaces. When layers are composed in a fixed manner, some
usage patterns of interface functions become available. For example, in the RPC application,
the number and size of arguments are fixed by the client server interface. As a result, the
size and layout of low-level messages become known. The specialization process can thus
exploit this information to perform some optimizations: pre-allocation of communication
resources, unrolling fragmentation and assembling loops in lower protocols.

Module instantiation. Because the combination of layers is fixed, the genericity of each
layer can be eliminated. This genericity usually corresponds to options interpreted by the
layer. Since some of these options are fixed for a given configuration of layers, they are
identified as constants and thus propagated by the specializer. Unused functionalities then
become dead code which is eliminated by the specialization process.

Unfolding of multiple entry points. Some layers provide several entry points for the
same service. Each entry point offers a specific interface. For instance, a service may expect
a sequence of arguments to be processed; however, several entry points corresponding to the
most common cases may be available — typically, entry points for one or two arguments.

RR n"2903
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An example of this situation can be found in the Unix system calls write and writev,
where the first operation is used to write a single value while the second operation writes a
sequence of values.

These multiple entry points are eliminated by inlining their definitions. The resulting
program directly calls the general routine with appropriately packaged arguments.

Session-oriented invariants. Subsystems often include three fundamental stages. The
first stage involves the creation and initialization of a local state descriptor. The second stage
consists of performing transactions which include repeated interpretation of components of
the state descriptor. Usually, some components of this state descriptor do not change during
these transactions. The last stage corresponds to the termination of the session and usually
involves both releasing system resources and freeing the state descriptor.

Not only can the invariant components of a state be used to specialize operations which
perform the transactions, but they can also be propagated to other modules to trigger further
optimizations. A concrete example of this form of specialization is described in the HP-UX
experiment [1].

3 Copy Elimination by Program Specialization

Achieving code fusion, as presented above, leads to performance gains. However, to obtain
all the potential speedup from a complete layer integration, one must also eliminate interme-
diate data structures. With modern architectures, references to memory become more and
more costly, relative to the speed of the processor. This is especially true when large data
structures (e.g., buffers) which do not fit in the first-level cache are manipulated. Traditio-
nally, intermediate data structures are not eliminated by program specialization because this
process is limited to propagating known wvalues. If an intermediate data structure consists
of unknown values, it will not be eliminated.

3.1 Principle of Copy Elimination

We propose an approach to integrating data structure elimination into program speciali-
zation by means of program instrumentation and specialization. The program is first ins-
trumented to maintain a history of the copy of data structures. Then, the instrumented
program is automatically transformed by specialization.

Instead of propagating the data, a symbolic version of the copy operation is invoked to
propagate the origin of the data. The actual data is only copied once, from its original
source to its final destination, when it is needed, that is, used in actual computations.

Figure 1-a illustrates this principle on a simple case. It shows how a copy history is used
to eliminate the intermediate data structures. Notice that our strategy of copy elimination
relies on some assumptions regarding the way intermediate data structures are used. In
particular, the contents of the origin of the data structure must not change while it is in the
copy history.

INRIA
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Figure 1: Keeping a history of the copies. The middle diagram represents the result of
eliminating intermediate data structures using either a lazy (a) or an eager (b) history of
the copies.

Modeling the copies. To introduce our model of copying, let us consider the buffer
data type, together with two operations: an initialization function and a copy function.
The initialization function is left unspecified; it is assumed that the initialization values
are defined by a given application. For the sake of simplicity, it is assumed that it is a
binary operation which is passed the address of a buffer and its length: init(buffer,
length). To allow some typical operations on buffers, like assembling and fragmentation,
the copy function takes two offsets: copy(dst, src, off dst, off_src, length). No
other operations allow buffers to be modified.

Furthermore, we assume that buffers are manipulated in a “single assignment” manner.
That is, a buffer is first filled by initializations and/or copies. Once it is completely filled,
the buffer can be used: its contents can be copied to other buffers. In other terms, copy
operations into the buffer and out from it are serialized, and never intertwined. This condi-
tion ensures that the contents of the buffer will not change as long as it is part of the copy
history.

In fact, various approaches can be used to construct a history of data copying: it can be
built eagerly or lazily. The former approach, shown in Figure 1-a, amounts to limiting the
propagation of a source buffer to one level. When the actual origin is needed, it is retrieved
by following the history backwards. In contrast, eager history, shown in Figure 1-b, always
points directly to the origin of the buffer. As can be seen in Figure 1-b, the history of buffer
D directly points to A and B.

Notice that when all buffers are “single-assigned”, both approaches to building histories
are equivalent. However, this equivalence does not hold when an intermediate buffer is
updated while being in the history. In this case, only the eager approach is correct and thus
will be used in the rest of this paper.

In fact, the eager approach is applicable to most programs which include copying of data
structures across layers, where these layers only read the data they are passed. A well-known
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8 E.N. Volanschi, G. Muller, C. Consel, L. Hornof, J. Noyé & C. Pu

example is protocol layers, where packets are concatenated, fragmented and dispatched, but
usually not modified.

A naive implementation. A natural strategy to achieve elimination of data copying
is to introduce a copy history at run time. Instead of copying data structures, only their
addresses are copied. However, this approach introduces some overhead for each copy during
run time, and intermediate buffers remain.

In contrast, we propose to eliminate intermediate buffers via a program transformation
guided by a static analysis. This process is automatically achieved using Tempo.

3.2 Using Tempo to Eliminate Intermediate Buffers

The copy elimination process consists of two phases. Firstly, an analysis phase processes the
program to be optimized; it is aimed at determining the history of each buffer. Secondly, if
the history of a buffer can be statically determined, its intermediate instances are eliminated
during the transformation phase. Otherwise they remain in the transformed program.

3.2.1 Analysis Phase

Before the analysis phase, the program is slightly transformed by a pass which replaces
buffer operations by their symbolic version. The first step of this transformation consists
of substituting standard buffers by symbolic ones: each element contains a pointer to the
origin of its actual value, instead of the value itself (e.g., bytes). This transformation is
performed automatically. Then, the implementation of the copy operation is replaced by a
symbolic one which initializes all the elements of the destination buffer with the address of
the source. This symbolic operation is a library function included in our system.

Analysis phase via alias analysis. In fact, a copy history consists of pointers linking
the destination to its source. One approach to collecting pointer information could be to use
an alias analysis (see [15], for instance). However, existing alias analyses are not accurate
enough to determine distinct pointer information about each element of an array. For
instance when a buffer is built from several buffers, pointer information about the source of
a specific component is lost because it is merged with the source of the other components.
As a consequence, using an alias analysis would lead to overly conservative optimizations.

Analysis phase via binding-time analysis. The problem with the alias analysis is that
it attempts to compute pointer information which is too accurate: not only does it determine
whether pointers between objects are unconditional, but it also attempts to compute the
actual pointers. In the context of copy history only the former property is needed. When the
copy history of a buffer is statically known, this buffer can be eliminated. Furthermore, this
property is already captured by the information produced by the binding-time analysis of
Tempo. More specifically, binding-time information tells whether or not the origin of a buffer

INRIA
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Figure 2: The different cases of buffer copying

is known. As for the actual pointers, they are directly propagated during the transformation
phase. Considering again the example in which a buffer is built from several buffers; the
binding-time analysis will first determine whether all copies are unconditional. If so, the
actual pointers will be used during the transformation phase to eliminate the intermediate
buffer. This situation is illustrated by buffer C' in Figure 1-b.

3.2.2 Transformation Phase

After the binding-time analysis, buffers are divided in two types: those which have a known
history — they are called static buffers —, and the others, called dynamic buffers. As a
consequence, the implementation of the copy operation will differ depending on the type
of the buffers which are manipulated. Some of the copies will be executed during the
transformation phase, and thus will be eliminated, while other copies will remain. In fact, the
copy operator could be seen as overloaded with respect to the types of its buffer arguments.
Resolution of this overloading is actually done during the analysis phase. Let us consider
the various cases of this overloading (see Figure 2):

Static destination/static source: the copy operation can be completely performed, and thus
eliminated, during the transformation phase because the destination and the source of
the buffer are known.

Static destination/dynamic source: although the origin of the source is unknown, the copy
operation can still be performed. It consists of creating a new history starting from
the address of the source, that is, the root of the history.

Dynamic destination/dynamic source: no information is available. The copy invocation
remains in the transformed program.

Dynamic destination/static source: the destination buffer is not eliminated. As well, the
copy operation to this buffer remains; its source will correspond to the root of the
source buffer history.

Notice that if the source buffer itself is built from several origins, code must be gene-
rated for several copies into the destination buffer.

RR n"2903



10

E.N. Volanschi, G. Muller, C. Consel, L. Hornof, J. Noyé & C. Pu

typedef char buftype; /* The type of buffer elements =/

extern init(buftype v[], int len); /* initialize a buffer */

void copy(buftype dst[], buftype src[], int off_d, int off_s, int len) {

}

bcopy (dst+off d,

int Dyn;

srctoff_s, lenxsizeof(buftype));

/* Variable unknown until evecution */

buftype A[1], B[2], C[2], D[3],
E[4], F[4], H[1], K[1];

void main() {

}

init(A,1); init(B,2); init(H,1); init(K,1);

copy(D,A,0,0,1);
copy(C,B,0,0,2);
copy(D,C,1,0,2);
copy(E,D,1,0,3);

if(Dyn)

/* assemble A and B x/
/* into buffer D x/

/* E will contain D plus a header =/

/* add header H or K, but */

{copy(E,H,0,0,1);}

else

{copy(E,K,0,0,

copy(F,E,0,0,4);

/* will not know which one until evecution */

1);}

Figure 3: A simple program

Once the appropriate implementation is selected for each copy, the program is ready to be

transformed using Tempo. This phase essentially amounts to propagating buffer addresses
and executing copy operations. An example illustrating all the aspects of our approach is
presented below.

3.3 A Simple Example

Consider the program shown in Figure 3, which manipulates buffers of characters. The data
flow of the buffers is shown in Figure 4. Buffer D consists of data from buffers A and B.
Then, the first component of buffer E is filled with either H or K; in fact, the decision as

to which buffer is to be selected is under dynamic control (i.e., the test of the conditional is
not known until run time). Its second component contains buffer D.

INRIA
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Figure 4: Data flow of the buffers for the simple program

Recall that before the analysis phase the buffers are substituted by symbolic ones. This
substitution amounts to first redeclaring the data type of buffer elements (buftype in Fi-
gure 3) as void *. Then, as discussed previously, a symbolic version of copy() is provided.

The program yielded by the analysis phase is shown in Figure 7. The dynamic buffers
(shown in boldface) are those for which the origin is unknown. This includes buffer E whose
first component is unknown. Furthermore, the analysis phase has selected the appropriate
implementation for the copy operator depending on the different types of buffers involved.

The four implementations of the copy operation are shown in Figure 5. It is impor-
tant to notice that they are part of our approach and do not change from one application
to another. Operations copy_SS() and copy_SD() correspond to calls to copy where the
destination buffer is static; such calls are completely executed during the transformation.
Operation copy DD() is used when both destination and source buffers are dynamic; in such
a context, the call is reproduced, but it refers to the standard copy routine. Operation
copyDS() corresponds to a call to copy where the destination buffer is dynamic and the
source buffer is static; such a call yields several copy invocations, one per element. The
function NAME() simply translates a known origin (which is the value of a pointer) to the
name of its corresponding buffer — its definition is omitted. It is automatically generated
from the list of buffers manipulated by the program.

Note that this version of copy DS() systematically generates len copies of one byte, that
is, one copy for each byte of the destination buffer. This strategy can be improved when n
additional bytes come from the same buffer; in such a situation the copy does not need to be
split. An optimized implementation which exploits this property is presented in Figure 6.
Before generating copy operations, the maximum number of bytes coming from the same
origin is accumulated and then a single copy operation is generated.

The final, optimized program is shown in Figure 8. Three static buffers out of eight have
been eliminated. As well, three copies out of seven have been eliminated. In this example,

RR n"2903
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/* Static destination, Static source */

void copy_SS(void *xdst, void *x*src, int off_d, int off_s, int
len)

{

int i;
for(i=0; i<len; i++)
dst[off d+i]=src[off s+1i];

/* Static destination, Dynamic source =/

void copy_SD(void *xdst, void *x*src, int off_d, int off_s, int
len)

{

int i;
for(i=0; i<len; i++)
dst[off_d+i]=&src[off_s+i];
/* Dynamic destination, Dynamic source */

void copy DD(void *xdst, void **src, int off_d, int offs, int
len)

copy(dst, src, offd, off s, len);

}

/* Dynamic destination, Static source x/

void copy DS(void *xdst, void **src, int off_d, int off_s, int
len)

int i, source_off;
void *x*source;

for(i=0; i<len; i++) {
NAME/(&source, &source_off, src[off_s+1]);
copy(dst, source, off_.d+1i, source_off, 1);

Figure 5: The implementation of the copy operations

INRIA
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/* Dynamic destination, Static source */

void copy DS(void *xdst, void **src, int off_d, int off_s, int len)

{
int i, source_off, old_i;
void *x*source;

for(i=0; i<len; i++) {
NAME (&source, &source_off, src[off_s+1]);
oldi=i;
while(i<len && ((voidxx)src[off s+i+1])-((voidx*x*)src[offs+i])==1)
i++;
copy(dst, source, off_d+oldi, source_off, i-old_i+1);

Figure 6: An improved implementation of the copy operation

typedef void * buftype;
int Dyn;

buftype A[1], B[2], C[2], D[3],
E[4], F[4], H[1], K[1];

void main() {
init(A,1); init(B,2); init(H,1); init(K,1);
copySD(D,A,0,0,1);
copySD(C,B,0,0,2);
copySS(D,C,1,0,2);
copy DS(E,D,1,0,3);
if(Dyn)
{copy DD(E,H,0,0,1);}
else

{copy DD(E,K,0,0,1);}

copy SD(F,E,0,0,4);
3

Figure 7: The simple program after the analysis phase

RR n"2903
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/* TEMPO Version 1.105, 4/22/96, Copyright Irisa */
int Dyn,;
void xA[1], *B[2], xE[4], xH[1], *K[1];
void main() {
init(A, 1); init(B, 2); init(H, 1); init(K, 1);

copy(E, A, 1,0, 1);
copy(E, B, 2, 0, 2);

if (Dyn # 0)

copy(E, H, 0, 0, 1);
else

copy(E, K, 0,0, 1);

Figure 8: Final version of the simple program

INRIA
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buffer F' is optimized away, because, in this simple program, its contents is not assumed to
be used. If F' were used further, Tempo would have detected it and kept this buffer in the
transformed program.

3.4 An RPC-like Example

The RPC protocol stack is a typical example where redundant copies and intermediate
buffers can be eliminated. In the SUN stub compiler (rpcgen), RPC are implemented over
the BSD socket abstraction, which is itself a complex stack of protocols. A sketch of the
corresponding data flow is given in Figure 9. The XDR layer assembles data in a contiguous
buffer. The socket layer fragments it into a chain of mbufs. Lower layers may copy it again.
Finally, data is copied in the physical buffer. Each layer may add some headers to each
packet.

We present an example which simulates three layers of the RPC implementation: the
RPC layer, the XDR layer, and the socket layer (Figure 10). Compared to the last example,
this one addresses more complex issues like a fragmentation loop, and dynamic memory
allocation. Notice that the code given in Figure 10 has already been processed by the
analysis phase.

Function minimum() is the client skeleton, automatically generated by rpcgen, from the
interface definition. It takes two integer arguments and returns their minimum, computed
on a remote site. The arguments are first packed in the minargs structure, also generated
by rpcgen. Then, part of the RPC header (struct rpcmsg) is initialized. The RPC library
function clntudp_call() implements a generic UDP client. It copies the arguments and
the header into a contiguous buffer, named iovec. The main function of the socket layer is
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struct rpc_msg call_msg;
struct minargs values;
bufelem iovec[RPC_SIZE];

struct mbuf heap_mbuf;

void minimum(int x, int y) {
void clntudp_call(struct rpc_msg *cmsg, struct minargs *argsp);

values.il=x;
values.i2=y;

call msg.rm_direction=CALL;

call msg.cb_rpcvers=2;

call . msg.cb_prog=MINIMUMPROG;
call_ msg.cb_vers=MINIMUMVERS;

clntudp_call(&call_msg, &values);

}

void clntudp_call(struct rpc_msg *xcmsg, struct minargs *argsp) {
void copy_SD(void *xdst, void *x*src, int off_d, int off_s, int len);
void sosend(bufelem xdrs[], int len);

cmsg—rm_xid++;
cmsg—cb_proc=MINIMUM;

copy_SD(iovec, cmsg—buf, 0, 0, sizeof(struct OLD _rpc_msg));

copy-SD(iovec, argsp—buf, sizeof(struct OLD_rpc_msg), 0,
sizeof(struct OLD _minargs));

sosend (lovec, sizeof(struct OLD _rpc_msg)+sizeof(struct OLD _minargs));

void sosend(void **xdrs, int len) {
void copy_DS(void *xdst, void sx*src, int off_d, int off_s, int len);
int i=0,sz;
struct mbuf xm, x*l;

1=0;

while(i<len) {
MGET(&m);
m—next=l; l=m;
sz=min(len-1,MBUF SIZE);
copy_-DS(m—buf, xdrs, 0, i, sz);
i+=MBUF_SIZE;

Figure 10: RPC-like program, after analysis phase
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/* TEMPO Version 1.105, 4/22/96, Copyright Irisa */

extern void minimum(int x, int y) {
values.il=x;
values.i2=y;

call_.msg.rm_direction=CALL;

call_msg.cb_rpcvers=2;

call_.msg.cb_prog=MINIMUMPROG;

call_.msg.cb_vers=MINIMUMVERS;
{ /* unfolded clntudp_call() */

call_ msg.rm xid++;
call_msg.cb_proc=MINIMUM;
{ /* unfolded sosend() x/

struct mbuf xm;

MGET (&m);
m—next=(struct mbuf %)0;

{ /* unfolded copy_DS() */
copy (m—buf, call_msg.buf, 0, 0, 24);

copy (m—buf, values.buf, 24, 0, 8);

}
}
}
}

Figure 11: RPC-like specialized program
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called sosend(); it is responsible for copying the data from user space to system space. But,
in the case of an optimized system extension, this protection domain crossing disappears.
As a result, the remaining effect of this copy is the translation of the data in a standard
system format by fragmenting it in a chain of mbufs.

Dealing with data structures. In this example, unlike the previous one, arbitrary data
structures are involved in copy operations (e.g., struct rpcmsg). The instrumentation be-
fore the transformation phase requires replacing these data structures by symbolic versions.
This transformation is not as simple as redeclaring the type of an array, as discussed before.
Our solution is to add to each such structure a new field containing the history. This field
will be a symbolic buffer, that is, a vector of pointers with as many elements as the size of
the original structure. All the occurrences of a transformed structure which do not involve
copying are unchanged. It is only when a structure occurs in a copy invocation that its
history field is used. This transformation is automatically performed.

Notice that scalar variables are not handled with this automatic transformation. Indeed,
the introduction of a history component to a scalar variable requires a thorough rewrite of
the source code. This is the topic of further work.

Let us now examine the transformed version of the RPC-like program (Figure 11). As
can be noticed, the resulting program is highly optimized: all layers have been collapsed
into one layer; buffer iovec has been eliminated; the fragmentation loop has been unrolled
completely; only two copies, directly to the mbuf, are left.

One key advantage of our approach to integrating copy elimination into program spe-
cialization is that their close interaction enables synergistic optimizations to be performed.
For instance, loop unrolling has made copy invocations explicit and thus enabled their eli-
mination.

3.5 RPC Specialization in Chorus/ClassiX

We are currently applying our technique to the complete RPC in the Chorus/ClassiX ope-
rating system [16]. ClassiX is made from the combination of the Chorus V3.5 kernel and
a subset of the BSD operating system [17]. Our goal is to merge together the stub, socket
and UDP layers, and run the resulting optimized code in a supervisor domain of protection
[18]. The latter mechanism provides Chorus with support for extensibility.

Manual specialization. As we develop the Tempo specializer to digest the Chorus/-
ClassiX production code, we have manually specialized part of Chorus/ClassiX code by
simulating the Tempo algorithms. This process is useful for two reasons: (1) we need the
results of automatic specialization for the validation of Tempo, and (2) we want to estimate
how much we can gain with the automatic approach. We have evaluated the sending side of
RPC, as shown in Figure 12. We estimate to have the results of automated specialization
using Tempo by July 1996.
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Application

minimum()
cntudp_call() RPC stub

jomsendto() | iomrecvfrom| DP-IOM

sendto() recvfrom()

sendit() recvit() Sockets
sosend() sor eceive()

ubpP

1P

Ethernet

I nterface controller

Figure 12: The protocol stack underlying the RPC implementation. The grayed part indi-
cates the code fragment which has been manually specialized.

Preliminary results. We measured the speedup of the manually specialized version on
Pentium 90 PC’s running Chorus/ClassiX, connected by a 10M-bit/s Ethernet network.
The timings are given in Figure 13.

As can be noticed, at the socket level, the specialized send operation is about 4 times
faster than the non-specialized one (the time was measured by replacing the call to inferior
layers by an immediate return). The importance of this speedup decreases to a factor of 1.3
when considering all the specialized layers (stub to socket). This is because the time spent
in the stub and in the DP-IOM levels has not changed, except for 3us which comes from
the optimized packing function for the arguments.

The speedup obtained by manual specialization clearly demonstrates that our approach
is promising

As of now, about 40% of the real BSD code is processed by Tempo. This corresponds to
the analysis and the specialization of about a 2000-line program.

4 Related Work

The specialization techniques presented in this paper relate to many studies in various
research domains such as manual system optimization and specialization, operating system
structuring, and program transformation. Let us outline the salient aspects of the research
in these domains.

Previous specialization experience. The techniques included in Tempo closely relate
to manual optimizations which have been developed by the operating system community.
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| || Original | Specialized | Speedup |

Socket level 43.75 11.90 x3.9
(emission only)
Stub to socket 109 74 x1.3
(emission only)

Figure 13: Performance comparison. Times are given in ps. Both versions execute the
specialized code in a DP supervisor within the application itself.

For example, layer collapsing was first mentioned in the first Synthesis paper [6]. The elimi-
nation of intermediate data structures is useful in much of operating system data handling,
including RPC, network protocols, file systems, and other forms of I/O. Granted, there have
been proposals of specialized implementation techniques to eliminate copying for particular
situations, for example, fbufs for networking protocol stack [10]. These hand-specialized
techniques, however, usually entails compromises in other system properties such as main-
tainability and portability. Furthermore, these techniques typically cannot be generalized to
other operating systems components. Consequently, automated elimination of intermediate
copying can be valuable in operating system design and implementation, by simplifying the
written code while preserving run-time performance.

General-purpose optimizations. More generally, it is well recognized that physical me-
mory copy is one of the important causes of overhead in computer systems. Finding solutions
to avoid or optimize copies is a constant concern of operating system designers. For instance,
copy-on-write [7] was the technique which made message passing efficient enough to allow
operating systems to be designed based on a micro-kernel architecture [8, 19]. Buffers are
needed when different modules or layers written independently for modularity reasons have
to cooperate together at run time. This cause of overhead has been clearly demonstrated
by Thekkath and Levy in their performance analysis of RPC implementation [9]. Recent
proposals in the networking area explore solutions to improve network throughput and to
reduce latency. Madea and Bershad propose to restructure network layers and to move some
functions into user space [11]. Mosberger et al. describe techniques for improving protocols
by reducing the number of cycles stalled to wait for memory access completion [20].

Safety issues in extensible operating systems. Safety is a well-known problem en-
countered in extensible operating system when an extension code has to be down-loaded
directly into the kernel. While the previous systems did not include a safety verification
mechanism, recent extensible operating systems such as SPIN and Aegis have been desi-
gned with safety as a goal. In SPIN [3], extensions are written in a strongly-typed language
(MODULA-3), which prevents possible invalid memory references. Aegis [4] relies mostly on
system libraries executed at application level. Still; it uses Application-specific Safe Hand-
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lers (ASH) executed at kernel level in specific cases. The safety of ASHs is ensured by the
use of the software fault isolation technique [21] which rewrites the binary code to insert
software-based memory protection instructions.

Program transformation. It has long been known that program transformation is a
key technology to reconcile generality and efficiency. It has been used successfully for spe-
cializing programs in domains such as computer graphics [22]. The key point of program
transformation is that it preserves the semantics of the program. Therefore, if the transfor-
mation process can be automated, the final code has the same level of safety than the initial
program. Our specializer, Tempo, relies on partial evaluation [12, 13], a form of program
transformation which is now reaching a level of maturity which makes it possible to develop
specializers for real-sized languages like C [5, 23] and apply these specializers to real-sized
problems.

5 Conclusion

In this paper we have described a uniform and automatic approach to (1) merging exis-
ting system layers in a specialized extension and (2) eliminating static intermediate data
structures. Our approach relies on the use of a program specializer named Tempo, which
preserves the semantics of the program. As a result, it allows existing system layers to be
re-used and optimized safely without modification.

Our techniques and tools have been successfully applied to a reduced RPC implemen-
tation which was derived from the BSD implementation. We are currently applying our
technique to the complete RPC in the Chorus/ClassiX operating system [16]. As of now,
about 40% of the real BSD code is processed by Tempo. This corresponds to the analysis
and the specialization of about a 2000-line program.

More generally, Tempo offers a unique opportunity to explore various forms of optimi-
zations in real-sized systems. This transformation system can be particularly crucial for
the optimization of operating system components which provide applications with generic
services. For example, in addition to the application on RPC outlined above, the Synthetix
team at OGI is designing specialization experiments using these techniques and the Tempo
specializer.
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