1	Winter fruit contribution to the performance of the invasive fruit fly Drosophila suzukii
2	under different thermal regimes
3	Jordy Larges ^{1,‡} , Gwenaëlle Deconninck ^{2,‡} , Romain Ulmer ¹ , Vincent Foray ² , Nathalie Le Bris ³ ,
4	Marion Chorin ³ , Hervé Colinet ³ , Olivier Chabrerie ¹ , Patrice Eslin ¹ , Aude Couty ^{1,*}
5	
6	¹ EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université
7	de Picardie Jules Verne, Amiens, France
8	² IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université de
9	Tours, Tours, France
10	³ ECOBIO, Ecosystemes, biodiversite, evolution, UMR CNRS 6553, Universite Rennes, Avenue
11	du General Leclerc, 35042 Rennes cedex
12	[‡] Joint lead author
13	
14	Running title: D. suzukii performance in winter fruit
15	
16	*: Corresponding author: aude.couty@u-picardie.fr
17	
18	ORCID of the authors:
19	• Gwenaëlle Deconninck: 0000-0003-2002-0992
20	• Romain Ulmer: 0000-0002-9441-1702
21	• Vincent Foray: 0000-0002-1561-1934
22	• Nathalie Le Bris: 0009-0004-6115-3948
23	• Marion Chorin: 0000-0003-1129-8503
24	• Hervé Colinet: 0000-0002-8806-3107
25	• Olivier Chabrerie: 0000-0002-8949-1859
26	• Patrice Eslin: 0000-0002-1300-5092
27	• Aude Couty: 0000-0002-6734-0400

28 Supplementary Materials

- 29
- 30 Figure S1 Ovarian load of female *D. suzukii*: (a) Dissected female with visible ripe ovaries; (b)
- 31 ripe ovaries; (c) eggs. Legend: ripe ovaries (R), unripe (Ue) and mature eggs (Me), oviduct (Ov)
- 32 and ovipositor (Op).
- 33

Figure S2 (a) Wing size measurement (red: wing length 1, yellow: wing length 2, blue: wing
width); wing area index = (wing length 1 + wing length 2) × wing width (after Ulmer *et al.*,
2024), (b) tibia size measurement and (c) count of the melanized abdominal tergites in *D. suzukii*.

- 39
- 40

41

Figure S3 Number of melanized tergites (mean \pm sd) of *D. suzukii* flies that emerged under the different temperature regimes (CR: 20°C; FCR: fluctuating controlled regime of 8–15°C 12h:12h; UNR: uncontrolled outdoor regime between 24 March and 31 June 2023). Different letters indicate significant differences at *p* < 0.05 (GLM with Poisson error distributions).

Table S1 Period of fruit collection.

Collection date	Fruits
25.01.2023- 27.01.2023	Aucuba + Viscum
01.02.2023- 03.02.2023	Aucuba + Viscum
08.02.2023- 10.02.2023	Aucuba + Viscum
15.02.2023- 17.02.2023	Aucuba + Viscum
24.03.2023	Aucuba + Viscum + Elaeagnus
29.03.2023- 31.03.2023	Aucuba + Viscum + Elaeagnus
05.04.2023- 07.04.2023	Aucuba + Viscum + Elaeagnus
12.04.2023	Elaeagnus
19.04.2023	Elaeagnus

50	Table	S2	Total	number	of	individuals	available	for	each	experiment	(CR:	20°C;	FCR:

51 fluctuating controlled regime of 8–15°C 12h:12h; UNR: uncontrolled outdoor regime between

Temperature regime	Diet	Longevity	Starvation resistance	Ovarian load	Energy content	Morphometric measurement
	Artificial	49♂/40♀	64♂/58♀	30♀	20 ♀	65♂⁄/94♀
CD	Aucuba	65♂/42♀	59♂/35♀	30♀	20 ♀	69♂/90♀
CK	Elaeagnus	65♂/38♀	44♂/28♀	33♀	20 ♀	57♂/80♀
	Viscum	126♂/60♀	149♂/106♀	32♀	20 ♀	62♂/92♀
	Artificial	40♂/48♀	46♂/35♀	30♀	20 ♀	60♂/88♀
ECD	Aucuba	37♂/26♀	33♂/23♀	20 ♀	20 ♀	58♂⁄/66♀
FCK	Elaeagnus	28♂/15♀	31♂/16♀	14♀	20 ♀	50♂/39♀
	Viscum	73♂/61♀	61♂/46♀	30♀	20 ♀	60♂⁄/90♀
	Artificial	35♂/35♀	33♂/34♀	33♀	20 ♀	60♂⁄/90♀
UND	Aucuba	66♂/60♀	32♂/31♀	31♀	20 ♀	61♂⁄/91♀
UIVIN	Elaeagnus	27♂/30♀	0♂/0♀	0 ♀	16♀	22♂⁄/23♀
	Viscum	41∂⁄/56♀	40♂/36♀	32♀	20 ♀	57♂/80♀

52 24 March and 31 June 2023).

53

Proteins (square	Proteins (square-root -transformed)										
Effect	Df	Sum of Squares	Mean Square	F	$P > \Box^2 $						
Fruit	2	15.64	7.822	80.95	< 2e-16						
Residuals	187	18.07	0.097								
Glucose (log-tra	Glucose (log-transformed)										
Effect	Df	Sum of Squares	Mean Square	F	$P > \Box^2 $						
Fruit	2	156.22	78.11	600.6	< 2e-16						
Residuals	186	24.19	0.13								
P:C (square-roo	ot-transfor	rmed)									
Effect	Df	Sum of Squares	Mean Square	F	$P > \Box^2 $						
Fruit	2	6.944	3.472	65.74	< 2e-16						
Residuals	186	9.823	0.053								

Table S3 Differences in nutritional composition (proteins, glucose, P:C ratio) between fruits.

Data were analyzed using ANOVA on square-root-transformed proteins and P:C ratio, and log-transformed glucose. Df: degrees of freedom; $P > |\Box^2|$: *p*-value.

Table S4 Influence of diet, temperature and their interaction on *D. suzukii* emergence rate.

Emergence rate								
Effect	Df	LR Chisq	$P > \Box^2 $					
Diet	3	2974.64	< 2.2e-16					
Temperature	2	457.25	< 2.2e-16					
Diet × Temperature	6	85.29	2.9e-16					

Data were analyzed using generalized linear models (GLM) on binomial data with logit link function. Df: degrees of freedom; LR Chisq: likelihood ratio Chi-square; $P > |\Box^2|$: *p*-value.

59 Table S5 Influence of diet, temperature and their interaction on *D. suzukii* sex ratio (M:F).

Sex ratio								
Temperature regime	Df	LR Chisq	$P > \Box^2 $					
Diet	3	5.0542	0.1679					
Temperature	2	14.3665	0.0008					
Diet × Temperature	6	6.0839	0.4139					

Data were analyzed using generalized linear models (GLM) on binomial data with logit link function. Df: degrees of freedom; LR Chisq: likelihood ratio Chi-square; $P > |\Box^2|$: *p*-value.

60

61 Table S6 Sex ratio (M:F) of emerging D. suzukii under different combinations of temperature

62 regime (CR: 20°C; FCR: fluctuating controlled regime of 8–15°C 12h:12h; UNR: uncontrolled

63 outdoor regime between 24 March and 31 June 2023) and diet. The sex ratio was calculated in

64 each experimental tube to obtain the mean sex ratio \pm sd.

Temperature regime	Diet	Ntot	Females	Males	Mean sex ratio ± sd (M:F)
CR	Artificial	393	200	193	0.49 ± 0.25
	Aucuba	292	151	141	0.50 ± 0.37
	Elaeagnus	321	164	157	0.48 ± 0.32
	Viscum	556	258	298	0.53 ± 0.23
FCR	Artificial	303	182	121	0.39 ± 0.28
	Aucuba	168	95	73	0.44 ± 0.42
	Elaeagnus	147	76	71	0.52 ± 0.35
	Viscum	543	303	240	0.45 ± 0.29
UNR	Artificial	334	176	158	0.49 ± 0.29
	Aucuba	410	220	190	0.48 ± 0.38
	Elaeagnus	77	48	29	0.38 ± 0.39
	Viscum	643	322	321	0.50 ± 0.30

66 Table S7 Influence of diet, temperature and their interaction on D. suzukii morphometric

- 67 measurements (wing area index and tibia size), mass, energy content (J/mg of fly biomass) and
- 68 development time.

Wing area index					
Effect	Df	Sum of Squares	Mean Square	F	P > F
Diet	3	90.06	30.021	223.548	< 2.2e-16
Temperature	2	52.78	26.391	196.522	< 2.2e-16
Diet × Temperature 6 4.58		0.764	5.689	8.09e-06	
Residuals	910	132.19	0.134		
Tibia size					
Effect	Df	Sum of Squares	Mean Square	F	<i>P</i> > F
Diet	3	2.534	0.8446	205.037	< 2.2e-16
Temperature	2	0.406	0.2032	49.336	< 2.2e-16
Diet × Temperature	6	0.129	0.0215	5.228	2.64e-05
Residuals	910	3.749	0.0041		
Mass					
Effect	Df	Sum of Squares	Mean Square	F	<i>P</i> > F
Diet	3	31.279	10.426	131.987	< 2.2e-16
Temperature	2	0.523	0.262	3.312	0.0382
Diet × Temperature	6	2.111	0.352	4.455	0.0003
Residuals	224	17.695	0.079		
Energy content (log-tr	ransforn	ned)			
Effect	Df	Sum of Squares	Mean Square	F	P > F
Diet	3	2.853	0.9511	11.357	6.02e-07
Temperature	2	1.575	0.7877	9.406	0.0001
Diet × Temperature	6	1.884	0.3140	3.749	0.0014
Residuals	216	18.089	0.0837		
Development time (log	g-transfo	ormed)			
Effect	Df	Sum of Squares	Mean Square	F	P > F

Diet	3	83.9	28.0	3634.5	< 2.2e-16
Temperature	2	854.9	427.5	55585.4	< 2.2e-16
Diet × Temperature	6	8.7	1.4	187.7	< 2.2e-16
Residuals	3822	29.4	0.0		

Data were analyzed using ANOVA; if a transformation was required to achieve normality, the transformation is indicated in parentheses. Df: degrees of freedom; P > F: *p*-value.

Table S8 Morphometric measurement (mean ± sd) of flies emerging from artificial diet, *Aucuba japonica*, *Elaeagnus ×submacrophylla* or *Viscum album* fruits under different temperature regimes (CR: 20°C; FCR: fluctuating controlled regime of 8–15°C 12h:12h; UNR: uncontrolled outdoor
 regime between 24 March and 31 June 2023). Differences were analyzed using ANOVA followed by Tukey HSD's tests. Different letters indicate

real significant differences between diet \times temperature at p < 0.05.

_	Temperature	Artificial		Aucuba		Elaeagnus		Viscum		Test	<i>p</i> -value
Mass	CR	1.91 ± 0.23	a	0.73 ± 0.21	d	1.22 ± 0.32	bc	1.32 ± 0.28	b		
(mg)	FCR	1.81 ± 0.14	a	0.96 ± 0.46	cd	1.19 ± 0.38	bc	1.20 ± 0.22	bc	Anova	0.0003
	UNR	2.04 ± 0.22	a	1.14 ± 0.21	bc	1.08 ± 0.32	bc	1.28 ± 0.24	b		
Tibia size	CR	0.83 ± 0.05	bc	0.67 ± 0.07	g	0.78 ± 0.08	de	0.80 ± 0.06	d		
(11111)	FCR	0.86 ± 0.05	ab	0.73 ± 0.07	f	0.80 ± 0.08	cd	0.81 ± 0.06	cd	Anova	2.64e-05
	UNR	0.88 ± 0.04	a	0.76 ± 0.07	ef	0.82 ± 0.07	cd	0.82 ± 0.07	cd		
Wing area index	CR	3.18 ± 0.29	bc	2.18 ± 0.43	f	2.74 ± 0.41	e	2.90 ± 0.29	de		
(mm)	FCR	3.63 ± 0.29	a	3.03 ± 0.47	cd	3.32 ± 0.43	b	3.33 ± 0.36	b	Anova	8.09e-06
	UNR	3.52 ± 0.20	a	2.74 ± 0.43	e	3.14 ± 0.38	bcd	3.17 ± 0.41	bc		

74 1	Fable S9 Influence	of temperature	regime on	the number o	of melanized tergites of D.	suzukii.
-------------	---------------------------	----------------	-----------	--------------	-----------------------------	----------

Number of melanized tergites								
Effect	Df	Sum of Squares	F	<i>P</i> > F				
Temperature	2	22.86	26.452	5.47e-12				
Residuals	1310	566.07						

Data were analyzed using general linear models with Poisson error distributions. Df: degrees of freedom; P > F: *p*-value.

Table S10 Energy content (mean \pm sd) of flies emerging from artificial diet, *Aucuba japonica*, *Elaeagnus* ×*submacrophylla* or *Viscum album* fruits under different temperature regimes (CR: 20°C; FCR: fluctuating controlled regime of 8–15°C 12h:12h; UNR: uncontrolled outdoor regime between 24 March and 31 June 2023). N = 20, except for Artificial and *Aucuba* in FCR (n = 18 and n = 17, respectively), Artificial, *Aucuba* and *Viscum* in UNR (n = 19), and *Elaeagnus* in UNR (n = 16). The reduced sample size is due to removal of aberrant values. Differences were analyzed using ANOVA on log-transformed (total energy content, fructose, glycogen, proteins) or square-root-transformed values (glucose, total carbohydrates, lipids) followed by Tukey HSD's tests.

80 Different letters indicate significant differences between diet \times temperature at p < 0.05.

	Temperature	Artificial		Aucuba		Elaeagnus		Viscum		Test	<i>p</i> -value
Total energy	CR	4.50 ± 1.21	abcd	4.13 ± 1.24	cd	4.22 ± 1.52	cd	4.37 ± 1.19	bcd		
(J/mg fly biomass)	FCR	5.96 ± 1.55	a	4.70 ± 1.60	abc	4.43 ± 0.99	abcd	3.41 ± 1.03	d	Anova	0.0014
	UNR	5.82 ± 0.94	a	6.03 ± 1.96	ab	4.85 ± 1.34	abc	4.39 ± 1.57	cd		
Glucose	CR	10.23 ± 4.43	b	12.45 ± 5.21	ab	9.05 ± 3.27	b	8.47 ± 3.95	b		
(mg/mg my biomass)	FCR	9.12 ± 1.42	b	12.52 ± 9.57	ab	7.01 ± 4.01	b	7.13 ± 3.57	b	Anova	0.0100
	UNR	20.73 ± 11.32	a	11.26 ± 5.17	b	11.12 ± 8.14	b	9.04 ± 5.32	b		
Fructose (mg/mg fly biomass)	CR	1.10 ± 2.12	bcd	1.78 ± 2.24	abc	0.91 ± 0.92	bcd	0.76 ± 1.12	bcd		
	FCR	0.69 ± 1.05	bcd	0.39 ± 0.39	cd	0.44 ± 0.85	cd	0.19 ± 0.25	d	Anova	0.1434
	UNR	3.55 ± 3.52	a	2.11 ± 2.45	ab	1.83 ± 2.14	abc	0.92 ± 0.91	bcd		
Total	CR	11.33 ± 6.41	bc	14.23 ± 6.60	b	9.96 ± 3.63	bc	9.23 ± 4.21	bc		
(mg/mg fly biomass)	FCR	9.81 ± 1.87	bc	12.92 ± 9.85	bc	7.46 ± 4.11	С	7.33 ± 3.47	с	Anova	0.0077
	UNR	24.28 ± 13.70	а	13.37 ± 6.53	bc	12.95 ± 9.32	bc	9.96 ± 5.38	bc		

Glycogene (mg/mg fly biomass)	CR	8.09 ± 4.52	bc	14.85 ± 6.20	a	10.00 ± 4.35	abc	8.15 ± 2.45	bc		
	FCR	6.07 ± 2.36	С	11.79 ± 9.57	abc	9.16 ± 9.59	С	5.97 ± 1.24	С	Anova	0.0293
	UNR	15.73 ± 8.27	a	17.15 ± 16.08	ab	17.99 ± 13.37	a	8.64 ± 2.67	abc		
Proteins (mg/mg fly biomass)	CR	89.84 ± 26.35	ab	64.85 ± 27.91	b	101.37 ± 73.83	a	99.29 ± 51.43	a		
	FCR	88.58 ± 20.09	ab	72.67 ± 45.41	ab	80.35 ± 14.78	ab	66.62 ± 24.97	ab	Anova	0.0574
	UNR	84.15 ± 15.87	ab	75.38 ± 17.13	ab	84.63 ± 56.07	ab	84.32 ± 41.83	ab		
Lipids (mg/mg fly biomass)	CR	76.43 ± 27.28	С	76.01 ± 27.97	с	64.91 ± 22.45	с	70.04 ± 22.96	С		
	FCR	116.37 ± 37.90	a	88.54 ± 32.29	abc	80.23 ± 23.04	bc	59.26 ± 23.14	С	Anova	0.0047
	UNR	108.42 ± 25.33	ab	122.47 ± 47.84	a	87.26 ± 38.55	abc	76.66 ± 31.61	bc		

Female ovarian load							
Effect	Df	Sum of Square	F	<i>P</i> > F			
Diet	3	2449.15	110.16	< 2.2e-16			
Temperature	2	220.11	14.85	7.03e-07			
Diet × Temperature	5	159.77	4.31	0.0008			
Residuals	304	2252.98					

81 **Table S11** Influence of diet, temperature and their interaction on *D. suzukii* female ovarian load.

Data were analyzed using general linear models with quasi-Poisson error distributions. Df: degrees of freedom; P > F: *p*-value.

82

- 83 Table S12 Influence of different diets under each temperature regime (CR: 20°C; FCR: fluctuating
- 84 controlled regime of 8–15°C 12h:12h; UNR: uncontrolled outdoor regime between 24 March and 31
- June 2023) on *D. suzukii* starvation resistance and longevity ('Survival with food for 15 days').

Starvation resistance	
Temperature regime	<i>p</i> -value
CR	2.37e-19
FCR	6.24e-12
UNR	2.13e-04
Longevity	
Temperature regime	<i>p</i> -value
CR	2.40e-05
FCR	0.17
UNR	2.49e-03

Data were analyzed using log-rank tests.

86

- 88 **Table S13** Differences in oviposition choice between fruit types under each temperature regime (CR:
- 89 20°C; FCR: fluctuating controlled regime of 8–15°C 12h:12h; UNR: uncontrolled outdoor regime

90 between 24 March and 31 June 2023).

Oviposition choice							
Temperature regime	n	Df	Chisq	$P > \Box^2 $			
CR	3	2	76.0	3.08e-17			
FCR	3	2	51.9	5.49e-12			
UNR	3	2	59.7	1.07e-13			

Data were analyzed using Chi-squared tests with an expected proportion of 1/3 without any choice. Df: degrees of freedom; Chisq: chi-square; $P > |\Box^2|$: *p*-value.

91

93 Nutritional composition of collected fruit

94 For each artificial infestation experiment, a randomly selected batch of 10 fruit was isolated and stored at -80°C for further nutritional analysis of proteins and carbohydrates. The frozen fruit 95 96 were sliced on an ice-cold crystallizer. The material was weighed and then homogenized in tubes with 97 ice-cold PBS (Sigma P4417) and four tungsten beads. The tubes were placed in a bead-beater for 2 min at 25 Hz. Samples were then centrifuged for 5 min at 5000 ×g at 4°C. The clear supernatant was 98 99 removed and stored at -80°C before glucose and protein quantification. For glucose quantification, 100 samples were first deactivated by heating the tubes for 10 min at 70°C. Then, we used glucose 101 oxidase/peroxidase reagent (Sigma G3660) and o-dianisidine reagent (Sigma D2679). The procedure 102 involved the oxidation of glucose to gluconic acid and hydrogen peroxide by glucose oxidase. The 103 hydrogen peroxide then reacted with o-dianisidine in the presence of peroxidase to form a colored by-104 product. The oxidized o-dianisidine then reacted with sulfuric acid to form a stable-colored product 105 whose intensity (pink coloration) was measured at 540 nm using a microplate reader (SAFAS Flx-106 Xenius). A standard curve was generated using a glucose standard solution (Sigma G3285). For 107 protein quantification, we used the Bradford assay, a colorimetric protein assay based on an 108 absorbance shift of the dye Coomassie Brilliant Blue G-250 proportional to protein concentration. The 109 blue coloration was measured at 595 nm using a microplate reader (SAFAS Flx-Xenius). A standard 110 curve was prepared using a stock solution of BSA (bovine serum albumin).

112 Analysis of *D. suzukii* energy content

113 Individual females from each treatment combination were first solubilized in a phosphate-114 lysis buffer. Then, total proteins were assayed using Bradford's reagent (B6916, Sigma-Aldrich) with 115 BSA as a standard. In a second step, a methanol:chloroform mixture and a sodium sulfate solution were added to the homogenate to reach the proportions 2:5:10 v/v/v of water, chloroform and 116 117 methanol, respectively. After vortexing and centrifugation, glycogen was quantified from the pellet 118 while free-carbohydrates and total lipids were assessed from the supernatant. Carbohydrates (free 119 sugars and glycogen) were quantified using Anthrone reagent (319899, Sigma-Aldrich) with D-120 glucose as a standard, and total lipid quantification was performed using Vanillin (V1104, Sigma-121 Aldrich), with triolein as a standard. Optical density measurements were performed using a 122 spectrophotometer (NanoQuant, TECAN).