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Abstract  23 

This study explores the adsorption of Methylene Blue (MB) onto Green Peel (GP) material, 24 

utilizing advanced analytical techniques and modeling approaches. Fourier-transform infrared 25 

spectroscopy (FT-IR) confirms GP's effectiveness as an adsorbent. The study systematically 26 

examines the influence of key factors such as adsorbent dose, pH, MB concentration, and 27 

temperature on adsorption efficiency. Among the isotherm models analyzed, the monolayer 28 

with double energy (M2) model is identified as the most accurate for describing MB adsorption 29 

onto GP. Steric parameters provide insights into the adsorption mechanism, revealing 30 

temperature-dependent changes. Thermodynamic analysis indicates an exothermic adsorption 31 

process, with a decrease in adsorption capacity at elevated temperatures. Density Function 32 

Theory (DFT) analysis highlights the potential for electron transfer during adsorption, 33 

contributing to a deeper understanding of the process. Molecular Dynamic Simulation (MDS) 34 

uncovers stable adsorption configurations and reveals the significance of chemical interactions 35 

and Van der Waals forces. Gaussian Process Regression with Lévy Flight Distribution 36 

(GPR_LFD) demonstrates exceptional predictive accuracy, closely aligning experimental and 37 

predicted MB uptake values. Optimal adsorption conditions (30 minutes contact time, 0.6 g 38 

adsorbent dose, 400 mg/L initial MB concentration, pH 6.6, and 10°C) yield an adsorption 39 

capacity of 207.90 mg/g. The integration of LFD optimization and GPR prediction through a 40 

MATLAB interface further enhances the practical application of these findings. This 41 

comprehensive investigation not only advances the understanding of MB adsorption onto GP 42 

but also highlights GP's potential as an efficient, reusable adsorbent. 43 

Graphical Abstract: 44 
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1. Introduction 49 

Industrial effluents from various industrial sectors, including textiles, dyeing, food processing, 50 

pharmaceuticals, paper manufacturing, leather production, and cosmetics, serve as a prominent 51 

source of environmental pollution and are notable generators of chromatic wastewater 52 

emissions [1–3]. Among these sectors, the dye industry plays a notably pivotal role in this 53 

environmental context. [4,5]. Dye compounds in water hinder sunlight penetration, disrupting 54 

aquatic plant photosynthesis and posing serious health risks due to their mutagenic, 55 

carcinogenic, and teratogenic properties, which can harm human kidneys, liver, reproductive 56 

system, and central nervous system [6–9]. Untreated wastewater containing dyes like 57 
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Methylene Blue, a chemically stable and water-soluble cationic dye, poses significant 58 

environmental risks due to its persistence and widespread industrial use [10]. The release of 59 

this dye into the environment causes serious health issues, including nausea, respiratory 60 

problems, allergic reactions, cardiac arrhythmias, tissue necrosis, cognitive impairment, cancer 61 

risks, and dysfunction in the brain, liver, and central nervous system [11,12]. Our previous 62 

studies conclude that the biomass was ineffective in removing anionic azo dyes. The negatively 63 

charged surface and open structure of the GP adsorbent likely contribute to its low adsorption 64 

performance. Throughout the years, researchers have effectively devised a diverse array of 65 

methodologies for the eradication of methylene blue in industrial effluent, including 66 

electrochemical treatment, ion exchange, photocatalytic degradation [13], membrane filtration, 67 

coagulation-flocculation [14,15], and Fenton process [16,17]. Among these techniques, the 68 

adsorption method is an important process for improving the quality of water and protecting 69 

the environment [4,18]. Due to its is an efficient, simple, regenerable, and eco-friendly method 70 

for treating wastewater and reducing hazardous pollutants. [19,20].  71 

Various adsorbents, including those made from agricultural and industrial byproducts, offer a 72 

straightforward, cost-effective, and eco-friendly solution for dye removal. Using these raw 73 

adsorbents helps reduce waste disposal costs and addresses environmental challenges. 74 

Modifications are needed to enhance their practical use and improve their adsorption efficiency, 75 

durability, and reusability [9]. Different modifying reagents, such as base solutions (sodium 76 

hydroxide, calcium hydroxide, and sodium carbonate) and mineral and organic acids 77 

(hydrochloric acid, sulphuric acid, nitric acid, tartaric acid, thioglycolic acid, citric acid, etc.), 78 

are used in the chemical modification of adsorbents [21]. 79 

Researchers have conducted extensive examinations and assessments of prospective 80 

biosorbents in order to successfully extract colors from water pollution.  81 
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In recent years, notable advancements have included the utilization of materials such as orange 82 

peel [22], Ziziphus jujube [23], Pinus pinaster [24], almond shell [25], Acorus calamus [26], 83 

green macroalgae [27], the prickly pear [28], corn cob [29], and other similar substances for 84 

various successful applications in dye removal processes. 85 

Despite advancements in adsorption methods, several limitations persist [30]. The limited 86 

adsorption capacity of traditional adsorbents can be quickly exhausted, hindering their long-87 

term effectiveness [31]. Additionally, the efficiency of adsorption can be compromised by 88 

inefficient processes, suboptimal conditions, and sometimes inadequate selectivity, leading to 89 

the adsorption of non-targeted components [31]. The development of new, efficient adsorbents 90 

remains a challenge, as does the optimization of operational conditions to ensure effective 91 

adsorption in variable environments [30]. 92 

To address these existing challenges, researchers have adopted artificial intelligence (AI) and 93 

optimization techniques using metaheuristic algorithms in the field of adsorption. Noteworthy 94 

studies include the development of AI-based models for predicting vanadium adsorption onto 95 

activated carbon nanocomposites [32], the application of AI modeling and genetic algorithm 96 

optimization for the decolorization of bromo-cresol green dye using acid-functionalized rice 97 

husk [33], and the utilization of deep learning and AI tools for modeling a pressure swing 98 

adsorption unit [34]. Additionally, researchers have explored the use of activated carbon 99 

derived from jujube pebbles for the adsorption of methylene blue, employing responsive surface 100 

methods, machine learning techniques, thermodynamics and mechanism analysis, modeling of 101 

kinetics and isotherms, and optimization [30]. Another study proposes a predictive model 102 

combining K-Nearest Neighbor with the Gray Wolf Optimizer Algorithm (KNN_GWO) for 103 

estimating the amount of phenol adsorption on powdered activated carbon [31]. Another study 104 

utilized artificial intelligence, specifically Gaussian process regression (GPR) and particle 105 

swarm optimization (PSO), to predict the adsorption capacity of MB dye and optimize the 106 



6 
 

treatment conditions of textile wastewater. These AI techniques are applied to enhance the 107 

efficiency of the treatment process by providing accurate predictions and identifying optimal 108 

operating conditions [35]. These approaches showcase the diverse applications of AI in 109 

optimizing adsorption processes. 110 

The use of AI has allowed for precise identification of optimal conditions to maximize 111 

adsorption capacity, improve overall efficiency, and design selective adsorbents [30]. 112 

Moreover, AI has guided the virtual development of new adsorbent materials. Metaheuristic 113 

algorithms have been leveraged to optimize operational parameters, effectively explore the 114 

space of process operating conditions, dynamically regulate in response to load fluctuations, 115 

and provide accurate predictions of adsorption performance [31].  116 

In the context of this study, the utilization of green peel (GP) was meticulously investigated as 117 

an adsorbent for the effective removal of methylene blue (MB) dye from solution-made water. 118 

In the early stages, scanning electron microscopy (SEM) and Fourier-transform infrared 119 

spectroscopy (FT-IR) were judiciously employed to confirm the dye adsorption process of GP. 120 

Conversely, X-ray diffraction (XRD) was specifically utilized to elucidate the crystalline 121 

structure of GP, offering crucial insights into the structural properties of the adsorbent material. 122 

The Brunauer-Emmett-Teller (BET) theory is widely used to analyze the surface area and 123 

porosity of materials 124 

A systematic exploration of parameters influencing MB removal, including adsorbent mass, 125 

pH, initial concentration, and temperature, was conducted. Detailed analysis of isotherm data, 126 

accompanied by steric parameters, provided insights into the geometry and adsorption 127 

mechanisms. Furthermore, a comprehensive investigation into the reactivity and stability of 128 

MB and GP was undertaken, shedding light on potential electron transfer phenomena during 129 

the adsorption process. In the context of MB adsorption onto cellulose-based materials like 130 

green peel, diverse mechanisms contribute to the overall adsorption process. Notably, MB 131 
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adsorption onto Green Peel (GP) involves multiple interactions, including electrostatic 132 

attraction, van der Waals forces, hydrogen bonding, and, under certain conditions, covalent 133 

bonding. Precipitation of MB onto GP occurs when concentrations exceed solubility, 134 

contributing to overall adsorption. The significance of each mechanism depends on factors like 135 

pH and temperature. GP’s recyclability was confirmed using a 0.1 M ethanol solution, 136 

demonstrating its potential for reuse after evaluating removal efficiency and adsorption 137 

capacity. A dive into the stable adsorption configuration of MB on the GP surface through 138 

molecular dynamics simulation was undertaken. Simultaneously, a model based on the 139 

Gaussian process coupled with Levy flight distribution (GPR_LFD) was developed to predict 140 

MB adsorption by GP. Furthermore, Levy flight distribution (LFD) was independently used to 141 

identify optimal conditions for maximal MB removal. Finally, a user-friendly MATLAB 142 

interface integrating LFD optimization and GPR_LFD prediction was designed to facilitate the 143 

practical application of the obtained results. 144 

Additionally, the study innovates by exploring the complex mechanisms of adsorption between 145 

GP and MB, using kinetic and adsorption models, as well as techniques like molecular 146 

mechanics and Density Functional Theory (DFT) simulation to provide critical insights into the 147 

underlying interactions. The development of an advanced prediction model based on GPR_LFD 148 

represents a major breakthrough, delivering highly precise estimates of GP's maximum 149 

adsorption capacity. In this investigation, the research stands as a pioneering contribution to the 150 

field of water treatment. By integrating innovative adsorbent materials, comprehensive 151 

characterization techniques, and advanced simulation tools, significant strides have been made 152 

in addressing water contamination issues caused by cationic dyes. 153 

2. MATERIAL AND METHODS  154 

2.1. Adsorbate used   155 
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To assess the adsorption capacity of the prepared biomass, a persistent and stable dye was 156 

chosen. MB was selected due to its reputation for persistence in various environments. 157 

Additionally, MB exhibits stability, ensuring the maintenance of its chemical and physical 158 

properties under variable conditions. These characteristics have made MB an ideal candidate to 159 

evaluate the adsorption efficiency of our biomass on a persistent contaminant. The 160 

characteristics of MB are detailed in Table S1, with the molecular structure depicted in Figure 161 

S1.  162 

2.2. Preparation of solution  163 

1 g of MB powder provided by the company SIGMA-ALDRICH was dispersed in 1 liter of 164 

distillate water to produce 1 g/L colorant solution. Then, various solutions ranging from 100 to 165 

600 mg/L were made using distillate water. These solutions were then applied to various 166 

experiments.  167 

A study of its visible UV spectrum at wavelengths between 200 and 800 nm, carried out using 168 

a UV‑1700 type spectrophotometer pharmaspec Shimadzu, made it possible to determine the 169 

wavelength corresponding to the maximum absorbance, λmax = 663 nm. 170 

2.3. Adsorbent preparation 171 

GP were collected from residues of local green peas. After initial cleaning with distilled water 172 

and drying at ambient temperature, the material was pulverized, rinsed, and dried overnight in 173 

a furnace at 60°C to create natural biosorbents. Subsequently, preliminary trials were conducted 174 

to select the optimal material among the natural biosorbent, the one activated by 175 

orthophosphoric acid (GP-H3PO4), and the one activated by KOH (GP-KOH). Results indicated 176 

that the natural biosorbent removed 80% of MB, while the activated biosorbents (GP-KOH and 177 

GP-H3PO4) showed removal rates ranging from 69.17% to 28.14%. These outcomes prompted 178 

the selection of natural biomass as the preferred adsorbent for further research. 179 
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2.4. Characterization of adsorbent  180 

In the current investigation, a range of characterization techniques was applied and will be 181 

elaborated upon later in this study. In particular, infrared spectroscopy was employed to 182 

scrutinize the surface chemistry of various specimens, including raw GP and GP loaded with 183 

methyl blue (GP+MB). This analysis was carried out using a Fourier transform infrared 184 

spectrometer (FT-IR) of the SHIMADZU brand, specifically an IRAffinity-1S model, in 185 

conjunction with potassium bromide (KBr) discs, within a spectral range spanning from 4000 186 

to 500 cm-1. 187 

X-ray diffraction (XRD) diagrams were constructed in a 2θ angle range spanning from 4 to 188 

90 degrees, with an incremental step of 0.02 degrees and an acquisition time of 6.985 seconds 189 

per step. To probe the micromorphology of the untreated green peel, a Hitachi S-3000N 190 

Scanning Electron Microscope (SEM) was utilized for image capture at electron beam energies 191 

of 10 kV and magnifications of 30, 100, and 300. 192 

The scanning electron microscope (SEM) is considered a highly valuable tool for the 193 

examination and analysis of microstructural morphology. SEM relies on electron-material 194 

interactions to generate high-resolution images of the sample's surface. This technique was 195 

employed to scrutinize the surface characteristics and morphological attributes of the green peel 196 

(GP) samples under investigation. 197 

The specific surface area of GP was calculated by using the Brunauer–Emmett–Teller 198 

(BET) method based on the data of the N2 adsorption–desorption isotherm. 199 

The concept of the zero-point charge is a pivotal concept in physics, elucidating the 200 

circumstances surrounding the neutral electrical charge state of certain particles. This concept 201 

is founded on the fundamental premise that all matter inherently possesses an intrinsic level of 202 

energy, even in a state that may superficially appear at rest. This energy, recognized as "zero-203 
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point" or "vacuum" energy, holds the potential to initiate interactions among particles, thereby 204 

leading to the acquisition of a net electric charge. 205 

In the pursuit of determining the point of zero charge (pHpzc), a method was employed wherein 206 

50 mL of sodium chloride (NaCl) solution was placed within sealed vials. The pH levels of 207 

these solutions were systematically adjusted across a range from 2 to 12 through the utilization 208 

of either a 0.1 M sodium hydroxide (NaOH) or 0.1 M hydrochloric acid (HCl) solution. Each 209 

vial was supplemented with 15 mg of GP material. Subsequently, the suspensions underwent 210 

agitation at ambient room temperature for an approximate duration of 24 hours, following 211 

which the final pH values were ascertained.  212 

2.5. Effect of process variables on the adsorption process 213 

2.5.1. The effect of biosorbent dose 214 

One key element in figuring out the biosorbent material's potential for biosorption is the fraction 215 

of biosorbent in the solution. Adsorbent dosages of 0.2, 0.4, 0.6, 0.8, and 1 g/L were tested at 216 

an initial dye concentration of 100 mg/L to examine the impact of the initial dosage of GP 217 

biosorbent on the MB dye. 218 

2.5.2. Effect of initial pH 219 

Due to its ability to modify the surface characteristics of materials and affect the arrangement 220 

of anions and cations, pH is crucial to adsorption. In order to investigate the impact of pH on 221 

our experimental setup, a series of tests were conducted. namely, contacting a volume of 25 mL 222 

of MB in 100 mL Erlenmeyer flasks with 15 mg of green pea material (GP) and an initial 223 

concentration of 100 mg/L. These suspensions were initiated at distinct initial pH values 224 

implied from [2, 4, 6, and 10] and maintained at room temperature. The mixtures were subjected 225 

to agitation for 24 hours at a rate of 250 ppm. Following this, the suspensions underwent 226 
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centrifugation, and the ultimate concentration of filtrate was determined using ultraviolet (UV) 227 

spectroscopy. 228 

2.6. Adsorption analysis 229 

2.6.1. Adsorption kinetics 230 

Studying adsorption kinetics is a critical phase in the analysis of an adsorption method as it 231 

facilitates the assessment of the duration necessary to reach adsorption equilibrium [36]. 232 

A range of distinct initial concentrations, represented by 50, 100, 150, 200, and 250 mg/L, were 233 

employed in the formulation of solutions. For each of the above concentrations of MB, 0.015 g 234 

of biosorbent material was introduced into 25 mL of a methyl blue solution in a 50 mL 235 

volumetric flask under continuous stirring at a speed of 250 rpm. At specific time intervals, 236 

samples were extracted for subsequent analysis using a Shimadzu Spectrophotometer UV-1700. 237 

Kinetic modeling plays a crucial role in the design of adsorption systems, and the quantity of 238 

adsorbate captured is computed using Equation (1) [37,38] 239 

      𝑸𝒕 =
( 𝑪𝒐−𝑪𝒕)𝑽

𝒎
                                                                                                                    (1) 240 

Where Co (mg.L-1) is the first concentration of colorant, Ct (mg.L-1) is the remaining 241 

concentration of dye at the time t, V (mL) is the volume of the solution, and m(g) is the mass 242 

of the adsorbent [39]. 243 

The dye clearance efficiency was determined using Eq. (2) [40]:  244 

𝐑% =  
𝑪𝒐−𝑪𝒆

𝑪𝒐
∗ 𝟏𝟎𝟎                                                                                                                 (2) 245 

2.6.2. Kinetic modeling 246 

The kinetics of solute adsorption were characterized using an adsorption dynamics study, which 247 

governed the rate of adsorption at the solid-solution interface. To fit the experimental data, 248 
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numerous kinetic models were used, including pseudo-first-order (PFO), pseudo-second-order 249 

(PSO), pseudo-nth-order (PNO) and Elovich models [41]. To identify the adsorption 250 

mechanism for design purposes, we used the intraparticle diffusion model [23,36], and the 251 

Fractional power kinetic model [42,43] 252 

Table.1. Equation and parameters models for nonlinear regression of Kinetic adsorption. 253 

Equation 

number 

Equation name Equation formed Parameters 

 

 

(3) 

 

 

pseudo-first-

order (PFO)  

 

 

𝑄𝑡 =  𝑄𝑒 ( 1 − 𝑒𝑘1 𝑡 ) 

Qe (mg g-1) and Qt (mg g-1) refer to the 

amount of dye adsorbed at equilibrium 

and at time t (min). respectively.  

k1(L min-1) is the equilibrium rate 

constant of the pseudo-first-order 

equation 

(4) pseudo-first-

order (PSO) 
𝑄𝑡 = ( 

𝐾2 𝑄𝑒
2 𝑡

𝐾2 𝑄𝑒 𝑡 + 1
 ) 

k2 (L min-1) is the equilibrium rate 

constant of the pseudo-second-order 

equation 

(5) pseudo-nth-

order (PNO) 

𝑄𝑡 =  𝑄𝑒 − [( 𝑛 − 1 )𝐾𝑛 𝑡 + 𝑄𝑒
(𝑛−1)

]
1

(1−𝑛)⁄
 kn is a constant and n is the biosorption 

reaction order. 

(6) Elovich  𝑄𝑡 =
1

𝛽
ln(𝛼𝛽) +

1

𝛽
ln 𝑡 α is the constant of the initial sorption 

rate (mg/(g·min)). β is the constant of 

desorption (g/mg). 

 

(7) 

the intraparticle 

diffusion 

𝑄𝑡 = 𝐾𝑖𝑑 𝑡0.5 + ∁ kid (mg.g-1 min-0.5) is the rate constant 

of intraparticle diffusion. 

C is the intercept. 

 

(8) 

Fractional 

power 

𝑙𝑛𝑄𝑡 = ln 𝐾 + 𝜗 ln 𝑡 𝜗 is the fractional power kinetic model 

constant.  

K is the fractional power kinetic model 

constant (mg g−1 h−1). 

 254 

2.7. Equilibrium modeling classical and advanced adsorption models 255 
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Adsorption isotherms are pivotal in understanding the interactions between adsorbates and 256 

adsorbents, serving as indispensable tools for optimizing adsorbent utilization and providing 257 

crucial insights into determining adsorbent capacity. In our investigation, we acknowledge the 258 

significance of concentration gradients in propelling the adsorption process. Elevated 259 

concentration gradients enhance adsorption effectiveness by intensifying the driving force and 260 

facilitating mass transfer. This leads to more frequent collisions and quicker diffusion of MB 261 

molecules onto the surface of the adsorbent. However, it's important to note that high 262 

concentrations of MB may saturate adsorption sites and increase competition among molecules, 263 

consequently decreasing adsorption efficiency. Understanding these dynamics 264 

comprehensively is essential for maximizing the efficiency of adsorption systems and 265 

effectively addressing challenges posed by high dye concentrations in wastewater treatment. 266 

Our study offers crucial insights into enhancing adsorption mechanisms for efficient water 267 

filtration. 268 

The adsorption isotherm experiments were carried out by contacting MB solutions at various 269 

concentrations (ranging from 50 to 800 mg/L) with 0.015 g adsorbent. These mixtures were 270 

stirred continuously at 250 rpm for 2 hours at three distinct temperatures (10, 20, and 30 °C). 271 

After reaching equilibrium, the solutions were separated, analyzed, and the adsorbed quantities 272 

were calculated using Eq (1).  273 

Traditional isotherms data analysis, specifically the Langmuir, Freundlich, and Sips models, 274 

since the experimental data were fitted using three widely used conventional adsorption 275 

isotherm models. Table 2 provides these models' fundamental formulations [40,44–47]. 276 

Table.2. shows the equations and parameters of such models. 277 

Equation 

number  

Equation 

name  

Equation formed  Parameters 
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(9) 

 

 

Langmuir 

 

 

eL

eL

m

e

CK1

CK

Q

Q

+
=  

Qe (mg g-1) is the amount of MB adsorbed per unit mass of 

adsorbent.  

Qm (mg.g-1) is the monolayer capacity of the adsorbent. 

Ce (mg.L-1) is the equilibrium dye concentration in the 

solution. 

KL the Langmuir constant. 

(10) Freundlich 1/n

eFe CKQ =  KF and n-1 are empirical constants indicative of sorption 

capacity and sorption intensity, respectively. 

(11) Sips 
m

m

)CK(1

)C(K

Q

Q

eS

eS

m

e

+
=  

Ks  is (L mg-1) the Sips constant 

m the exponent of the Sips model 

 

 278 

Additionally, we evaluated the interactions between the examined dye, namely Methylene Blue 279 

(MB), and the GP composite. This assessment involved the application of monolayer with 280 

single energy (M1), monolayer with double energy (M2), and multilayer (M3) adsorption 281 

models. In the context of these advanced statistical models, the subsequent calculations were 282 

employed: 283 

Table.3. The Advanced statistical physics models M1, M2 and M3 [48,49]. 284 

model Equation  Parameters  

Single-energy single-

layer model eq(12) 

𝐐 =
𝐐𝟎

𝟏 + (
𝐂𝟏/𝟐

𝐂𝐞
)

𝐧 =
𝐧. 𝐍𝐦

𝟏 + (
𝐂𝟏/𝟐

𝐂𝐞
)

𝐧 
 

Q (mg.g−1): adsorbed quantity. 

 

n : number of ions per site. 
Double-energy single-

layer model eq(13) 
𝐐 = 𝐧. 𝐍𝐦.

(
𝐂𝐞

𝐂𝟏/𝟐
)

𝐧

+ 𝟐. (
𝐂𝐞

𝐂𝟏/𝟐
)

𝟐𝐧

𝟏 + (
𝐂𝐞

𝐂𝟏/𝟐𝟏
)

𝐧

+ (
𝐂𝐞

𝐂𝟏/𝟐
)

𝟐𝐧
 

Nm (mg.g−1) : sites receptor density. 

Q0 (mg.g−1); adsorbed quantity at 

saturation 

Multilayer model eq 

(14) 

𝑸

= 𝐧. 𝐍𝐦.
𝐅𝟏(𝐂𝐞) + 𝐅𝟐(𝐂𝐞) + 𝐅𝟑(𝐂𝐞) + 𝐅𝟒(𝐂𝐞)

𝐆(𝐂𝐞)
 

with 

C1/2(mg .L−1) : the concentration at half–

saturation 

 

C1 and C2 (mg.L−1) : concentrations at half 

saturation for the first and the second 

active sites respectively. 
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𝐅𝟏(𝐂𝐞) =  

(−𝟐. (
𝐂𝐞

𝐂𝟏
)

𝟐𝐧

)

(𝟏 − (
𝐂𝐞

𝐂𝟏
)

𝐧

)

+

(
𝐂𝐞

𝐂𝟏
)

𝐧

(𝟏 − (
𝐂𝐞

𝐂𝟏
)

𝟐𝐧

)

(𝟏 − (
𝐂𝐞

𝐂𝟏
)

𝐧

)
𝟐

 

𝐅𝟐(𝐂𝐞) =  

𝟐. (
𝐂𝐞

𝐂𝟏
)

𝐧

(
𝐂𝐞

𝐂𝟐
)

𝐧

(𝟏 − (
𝐂𝐞

𝐂𝟐
)

(𝐧𝐍𝟐)

)

(𝟏 − (
𝐂𝐞

𝐂𝟐
)

𝐧

)

 

𝐅𝟑(𝐂𝐞) =  
− (

𝐂𝐞

𝐂𝟏
)

𝐧

(
𝐂𝐞

𝐂𝟐
)

𝐧

(
𝐂𝐞

𝐂𝟐
)

(𝐧𝐍𝟐)

𝐍𝟐

(𝟏 − (
𝐂𝐞

𝐂𝟐
)

𝐧

)

 

𝐆(𝐂) =  

(𝟏 − (
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)

 

n1 and n2 : number of ions per site for the 

first and the second sites receptor 

respectively. 

 285 

2.8. Precision of the kinetic model and adsorption isotherm  286 

Nonlinear regression was carried out to identify the model parameters from experimental data. 287 

In nonlinear regression, the model parameters are identified to minimize the sum of squared 288 

model prediction errors.  289 

In addition to the coefficient of determination (R2), the normalized standard deviation 290 

∆Q(%)defined in Eq(15) is also used to assess model performance[50]. 291 

∆𝑄(%) = 100 ×
√∑(

𝑄𝑡𝑒𝑥𝑝−𝑄𝑡𝑐𝑎𝑙
𝑄𝑡𝑒𝑥𝑝

)
2

𝑛−1
                                                                                              (15) 292 

Where the Qt,exp and Qt,cal refer to the experimental and calculated values from kinetic 293 

adsorption and n is the number of data points. 294 
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The validity of the adsorption isotherm was also measured using the hybrid error function 295 

(HYBRID), which is defined as [51]: 296 

𝐻𝑌𝐵𝑅𝐼𝐷 =
100

𝑁−𝑝
∑ [

(𝑄𝑡,𝑒𝑥𝑝−𝑄𝑡,𝑐𝑎𝑙)2

𝑄𝑒𝑥𝑝
]𝑁

𝑖=1                                                                                         (16) 297 

Where Qt,exp  is the observation from the batch experimental, Qt, cal is the estimate from the 298 

isotherm for corresponding Qexp , N is the number of observations in the experimental isotherm 299 

and p is the number of parameters in the regression model. 300 

2.9. The thermodynamic study 301 

The energy changes that take place during an adsorption process can be seen by using 302 

thermodynamic parameters like Gibbs free (∆G°), enthalpy (∆H°), and entropy (∆S°), which can 303 

also be used to investigate the impact of temperature. The following equations are used to 304 

compute these parameters [52] : 305 

𝐾 =
𝟏𝟎𝟎𝟎∗𝑄𝑒

𝐶𝑒
                                                                                                                      (17) 306 

∆𝐺 = −𝑅𝑇 ln 𝐾                                                                                                                (18) 307 

∆𝐺 = ∆𝐻 − ∆𝑆                                                                                                                 (19) 308 

In the above equations, K is the equilibrium constant; T (K) is the adsorption temperature; R 309 

(8.314 J∙mol-1∙K-1) is the universal gas constant. The ratio 'Qe/Ce' acts as the Langmuir 310 

equilibrium constant at various temperatures. In general, ∆H° and ∆S° are calculated from the 311 

slope and intercept of ∆G° versus T.                                                  312 

2.10.  Specifics of the Density Function Theory 313 

The characterization of the systems under investigation is substantially contingent on the 314 

frontier molecular orbitals (FMOs), specifically the Highest Occupied Molecular Orbital 315 

(HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), which are determined 316 
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utilizing the Density Functional Theory (DFT) with the DMOl3 technique. The energies 317 

associated with HOMO and LUMO play a pivotal role in quantum chemical computations, as 318 

they furnish crucial insights into the microscopic interactions occurring within adsorption 319 

systems. These parameters are integral to quantum chemistry simulations, and the computed 320 

energy values for EHOMO, ELUMO, and Eo are presented in the formulae below [53]. 321 

The following formulas are employed to determine potential (μ), electronegativity (χ), global 322 

hardness (η), global softness (S), global electrophilicity index (ω), softness (σ), and the 323 

maximum amount of electronic charge (ΔNmax). 324 

𝜇 =  𝐸𝐻𝑂𝑀𝑂 + 𝐸𝐿𝑈𝑀𝑂                                                                                                             (20) 325 

𝒳 = −𝜇                                                                                                                                  (21) 326 

𝜂 =  
𝐸𝐿𝐼𝑀𝑂−𝐸𝐻𝑂𝑀𝑂

2
                                                                                                                   (22) 327 

𝑆 =
1

2𝜂
                                                                                                                                     (23) 328 

𝜔 =
𝜒2

2𝜂
                                                                                                                                    (24) 329 

𝜎 =
1

𝜂
                                                                                                                                       (25) 330 

Δ𝑁𝑚𝑎𝑥 =
−𝜇

𝜂
                                                                                                                            (26) 331 

2.11.  Description of Molecular Dynamic Simulation  332 

All molecular dynamic simulations (MDS) conducted in this study were executed utilizing the 333 

BIOVIA MATERIALS STUDIO 2020 software. In these simulations, the GP (-1 0 0) surface 334 

was employed as the substrate for investigating the adsorption of MB onto the GP surface. The 335 

application of periodic boundary conditions defined a simulation box with dimensions of (27 Å 336 

× 27 Å × 15 Å), encompassing the GP slab, the MB molecule, and a vacuum slab. Geometrical 337 
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refinement of the MB molecular structure and the GP (-1 0 0) surface was achieved by energy 338 

minimization. Employing a time step of 0.1 femtoseconds (fs) and a simulation duration of 50 339 

picoseconds (ps), the COMPASS force field model was applied under the NVT ensemble 340 

during the course of the molecular dynamic simulations. 341 

2.12. Regenerative Characteristics  342 

In the desorption process, electron transfer between MB dye and the ethanol solvent is essential 343 

for releasing MB molecules from the adsorption sites on the biosorbent. Effective electron 344 

transport, facilitated by suitable electron sources or acceptors present in the system, promotes 345 

increased desorption kinetics. This process can occur through redox reactions, where electron 346 

donors donate electrons to the MB dye, aiding its detachment from the biosorbent surface, or 347 

where electron acceptors take electrons from the MB dye, facilitating its release into the solvent. 348 

Desorption experiments were conducted using a 0.1 M ethanol solution. Following each 349 

adsorption cycle, the adsorbent material was immersed in 50 mL of 0.1 M ethanol solution for 350 

1 hour and then dried at 60°C for 30 minutes. Post-adsorption, the concentration of MB in the 351 

solution was measured to compute removal efficiency and adsorption capacity. The addition of 352 

adequate electron donors or acceptors in the ethanol solution significantly enhances desorption 353 

efficiency, resulting in more efficient removal of MB from the biosorbent material. 354 

2.13. Gaussian Process Regression coupled with Lévy flight distribution 355 

The seamless integration of Gaussian Process Regression (GPR) with the Lévy flight 356 

distribution constitutes a refined statistical modeling approach aimed at delving deeply into the 357 

intricate structure and inherent variability of the data. GPR, rooted in Gaussian stochastic 358 

processes, operates under the assumption that observations stem from a multivariate normal 359 

distribution [54,55], thereby establishing connections between each data point through a 360 

covariance matrix [56]. This methodology adeptly captures both the general trend in the data 361 
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and the uncertainty associated with each prediction, proving particularly relevant in contexts 362 

where relationships between variables are as diverse as they are nonlinear [30]. Key features of 363 

GPR encompass the specification of covariance, often defined by a kernel, which articulates 364 

the similarity between different observations [55]. The model is then meticulously adjusted to 365 

maximize the likelihood of observed data while incorporating regularization to forestall any 366 

undesirable overfitting [55]. 367 

Simultaneously, the Lévy flight distribution distinguishes itself with large amplitude jumps 368 

between states, offering a dynamic alternative to the standard random walk traditionally 369 

constrained in its jumps [57]. This characteristic is crucial for modeling rare events or 370 

phenomena likely to exert significant impacts on the data, introducing an additional dimension 371 

of robustness to the model [57]. Key aspects of the Lévy flight distribution include the 372 

meticulous determination of the stability parameter, precisely governing the probability of large 373 

amplitude jumps [57]. A higher stability index promotes more frequent and larger jumps, 374 

reinforcing the model's ability to respond to data intricacies [57]. 375 

The synergistic union between Gaussian Process Regression and the Lévy flight distribution 376 

aims to optimally leverage the intrinsic advantages of these two distinct approaches. The 377 

resulting model capitalizes on the flexibility of GPR to model the underlying structure of the 378 

data while integrating the unique capability of the Lévy flight distribution to capture rare events 379 

and significant jumps. GPR ensures the provision of a comprehensive prediction enveloped in 380 

confidence intervals, while the Lévy flight distribution introduces an unprecedented dimension 381 

to finely capture unpredictable phenomena. The model adjustment process involves a 382 

meticulous estimation of the parameters of the GPR kernel and the stability parameter of the 383 

Lévy flight distribution, a crucial step to optimize model performance while guarding against 384 

overfitting risks. Thus, this holistic approach provides a comprehensive solution for modeling 385 

complex data, combining the agility of GPR to provide probabilistic predictions with the 386 
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distinctive power of the Lévy flight distribution to represent rare events and abrupt changes, 387 

shaping a statistical modeling tool of great finesse. 388 

Within this research endeavor, the integration of GPR with LFD, denoted as GPR_LFD, has 389 

been utilized as a pivotal and sophisticated method for predicting the adsorbed quantities of 390 

MB by GP. Utilizing parameters meticulously optimized in the preceding section, the predictive 391 

model encompasses a comprehensive set of influential variables, including contact time (X1), 392 

adsorbent mass (X2), MB concentration (X3), pH (X4), and Temperature (X5). After the 393 

establishment of the database, a normalization process was applied to confine its values within 394 

the interval [-1,1]. Subsequently, the dataset underwent a meticulous division, allocating 70% 395 

for training, 15% for validation, and the remaining 15% for stringent testing to rigorously assess 396 

the efficiency and generalization capability of the finest model. 397 

During the intricate model creation phase, a thorough exploration and optimization process 398 

encompassed ten distinctive kernel functions. This exhaustive set included, among others, 399 

exponential, exponential squared, Matern32, Matern52, quadratic rational, ARD exponential, 400 

ARD exponential squared, ARD Matern32, ARD Matern52, and ARD quadratic rational. The 401 

optimization process was nuanced, involving the exploration of various basis functions such as 402 

constant, linear, PureQuadratic, and zero, while simultaneously fine-tuning the parameters 403 

(Kernel Scale [sigmaM, sigmaF], and sigma) for each kernel function. 404 

In this study, we present a novel contribution by introducing and implementing the GPR_LFD 405 

approach, marking the first application of this innovative amalgamation of the Lévy Flight 406 

Distribution algorithm with Gaussian Process Regression in adsorption. This distinctive 407 

combination sets our research apart from earlier proposals and opens new avenues for 408 

exploration in adsorption. It signifies a significant leap forward in the optimization of 409 

hyperparameters for machine learning algorithms. This approach promises not only enhanced 410 
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results but also improved adaptability across diverse applications and datasets, underscoring its 411 

potential as a robust and versatile modeling tool. 412 

The integration of Lévy Flight Distribution (LFD) optimization and Gaussian Process 413 

Regression (GPR) prediction within MATLAB culminates in a sophisticated framework that 414 

yields multifaceted advantages across diverse domains [58]. Foremost, this amalgamation 415 

engenders heightened optimization prowess by synergizing the exploratory efficiency of LFD 416 

with the predictive accuracy of GPR [58]. By traversing the search space adeptly, LFD 417 

optimally navigates complex landscapes, while GPR adeptly synthesizes insights from limited 418 

data, culminating in refined optimization outcomes surpassing those achievable through 419 

singular methodologies [58]. 420 

Moreover, the fusion of LFD and GPR manifests in the manifestation of robust predictive 421 

models. GPR's capacity for discerning underlying patterns from sparse datasets harmonizes 422 

seamlessly with LFD's ability to expedite model training and parameter refinement [58]. This 423 

symbiosis empowers the construction of predictive models endowed with unparalleled accuracy 424 

and adaptability, capable of elucidating system behaviors across varying contexts with 425 

remarkable fidelity [58]. 426 

A salient consequence of this integration is the judicious allocation of resources. By leveraging 427 

MATLAB's computational prowess, this amalgamated approach optimizes resource utilization, 428 

mitigating time, computational, and experimental expenditures. Such efficiency not only 429 

expedites decision-making processes but also augments cost-effectiveness, thereby fortifying 430 

its appeal across sectors characterized by resource constraints [58]. 431 

Furthermore, the versatility of this integrated framework is unequivocal. Its applicability spans 432 

myriad domains, from engineering and finance to healthcare and environmental science. Such 433 

universality underscores its status as a potent toolset capable of addressing optimization and 434 
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prediction imperatives in multifarious contexts, thereby facilitating paradigm shifts and 435 

catalyzing innovation across diverse disciplines. 436 

In conclusion, the integration of LFD optimization and GPR prediction using MATLAB 437 

represents a pinnacle in computational methodology, heralding a new era of optimization 438 

efficacy, predictive precision, resource efficiency, and cross-disciplinary applicability. As the 439 

frontier of computational science continues to evolve, this integrated framework stands as a 440 

beacon of innovation, promising to illuminate pathways to transformative advancements across 441 

the spectrum of human endeavor. 442 

2.13.1. Statistical evaluation criteria 443 

In the present study, the performance of each GPR model was evaluated using various model 444 

performance measures including the Correlation Coefficient (R) and Root Mean Squared Error 445 

(RMSE) [59–65]: 446 

𝑅 =
∑ (𝑦𝑒𝑥𝑝−𝑦̅𝑒𝑥𝑝)(𝑦𝑝𝑟𝑒𝑑−𝑦̅𝑝𝑟𝑒𝑑)𝑁

𝑖−1

√∑ (𝑦𝑒𝑥𝑝−𝑦̅𝑒𝑥𝑝)2 ∑ (𝑦𝑝𝑟𝑒𝑑−𝑦̅𝑝𝑟𝑒𝑑)2𝑁
𝑖−1

𝑁
𝑖−1

                                                                                                           (27) 447 

𝑅𝑀𝑆𝐸 = √(
1

𝑁
)(∑ (𝑦𝑒𝑥𝑝 − 𝑦𝑝𝑟𝑒𝑑)2𝑁

𝑖−1                                                                                     (28)  448 

Where N is the number of data samples; yexp and ypred are the experimental and the predicted 449 

values respectively; 𝑦̅𝑒𝑥𝑝 and 𝑦̅𝑝𝑟𝑒𝑑 are respectively the average values of the experimental and 450 

the predicted values [66–70]. 451 

3. Results and discussion 452 

3.1. Characterizations  453 

Figure S2 illustrates the diffraction pattern of GP, manifesting a distinct prominent peak at 2θ 454 

= 22° attributed to the (0 0 2) crystallographic plane, alongside a minor peak at 2θ = 15° 455 

corresponding to the (1 0 1) plane [44,71]. The XRD spectrum shows that for the 2 theta analysis 456 
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range above 40°, there are no distinct diffraction peaks of crystalline cellulose. Instead, there 457 

are mainly amorphous peaks. This implies that the predominant components of the native pulp 458 

are non-cellulosic substances, such as hemicellulose and lignin [44,71]. These observations 459 

collectively signify the characteristic structural features associated with cellulose I. 460 

FT-IR characterization was employed to quantitatively appraise the functional categories that 461 

are identifiable on the pure green peel (GP) samples. Both acid-activated (OP-H3PO4) and 462 

alkali-activated (OP-KOH) samples were analyzed for comparative purposes. The outcomes, 463 

as depicted in Figure 1, reveal the presence of distinct absorption bands. Notably, the surface 464 

of GP exhibited a higher concentration of alcoholic and phenolic -OH functional groups in 465 

comparison to cellulose, as evidenced by a broad absorption band at 3341 cm-1 [72]. Additional 466 

spectral features included weak bands at 2924 cm-1, indicative of hydrophobic CH2 467 

asymmetrical and symmetrical stretching vibrations, and a band at 1623 cm-1, corresponding to 468 

C=O and N-H functionalities, potentially associated with amide I groups [73]. Furthermore, the 469 

band at 1320 cm-1 was attributed to the C-H group, and at 1030 cm-1, stretching vibrations 470 

corresponding to O-H and C-OH were identified, indicative of the presence of polysaccharides 471 

within cell walls, such as arabinan and cellulose [74]. 472 

Figure 2 indicates that the pHpzc (point of zero charge) of the adsorbent was determined to be 473 

5.5. This implies that the GP surface exhibited a positive charge when the solution's pH was 474 

lower than 5.5 and a negative charge when the solution's pH exceeded 5.5.  475 

Within this pH range, MB is found in both cationic (tri-protonated, or MBH2
+) and 476 

undissociated (MB°) forms. The cationic forms mono-protonated (MBH) and di-protonated 477 

(MBH2
+) occur for pH values higher than 6, with the latter form species predominating [75]. 478 

However, with pKa values greater than 8.33, the nitrogen atom in the MB molecule's core cycle 479 

is completely deprotonated, leaving the MB dye negatively charged (MB-). Because our 480 

biomaterial has a negative charge as a result (pH>5.5), we chose the cationic dye (MB). 481 
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Figure 3 depicts the scanning electron microscope (SEM) analysis of the surface morphology 482 

of GP biomass during the adsorption process of MB dye, conducted at varying magnifications 483 

ranging from 100 to 5 μm and at an accelerating voltage of 5 kV. Furthermore, the raw green 484 

peel exhibits a distinct structural characteristic. The SEM imagery reveals the presence of 485 

abundant pores and an irregular surface structure within the fibers of the GP [76]. It is clearly 486 

illustrated that the enhanced adsorption potential can be attributed to this specific surface 487 

feature of the fiber material. 488 

The BET characterization of Green Peel (GP) shows a surface area of  85.672 m²/g, 489 

indicating a substantial amount of available surface for adsorption. This high surface area 490 

suggests that GP has significant potential for adsorbing Methylene Blue (MB) or other 491 

substances, reflecting its effectiveness as an adsorbent. The result points to GP’s promising 492 

performance in adsorption applications, although further analysis of its pore structure and 493 

adsorption dynamics would provide additional insights. 494 
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Figure.1. FTIR characterization of biomass (raw and GP-BM). 496 
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Figure.2. Determination of the zero charge point of GP raw. 498 
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Figure.3. SEM images of a GP raw. 501 

3.2. Effect of adsorbent dose  502 
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Figure 4 illustrates the impact of the mass of adsorbent on the binding of MB. It reveals a 503 

reduction in the adsorption capacity per unit mass of adsorbent as the adsorbent mass increases. 504 

This reduction is accompanied by an increase in the absorption rate, leading to enhanced 505 

pollutant removal. This phenomenon may be attributed to an increase in the available surface 506 

area and the number of active sites on the surface of GP material[26]. 507 
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Figure.4. Effect of adsorbent dose on the adsorption of MB on GP (Co: 100 mg. L-1, Contact 509 

time: 30 min). 510 

3.3. Effect of pH  511 

Figure 5 indicates how the pH of an aqueous solution affects the MB adsorption on GP material. 512 

The findings illustrate that under acidic conditions (pH < 6), the adsorption capacity of (GP) 513 

exhibits an augmentation from 10.6 to 111.22 mg/g. Conversely, under alkaline conditions (pH 514 

> 6), there is a reduction in adsorption capacity to 107.56 mg/g. At very low starting pH levels, 515 

there is relatively little MB absorption.  This is brought on by the protonation of the adsorbate 516 

(MB) in an acidic environment and the competition with excess H+ ions and dye cations for 517 

active sites. Because of electrostatic attraction, there are fewer strongly charged sites and more 518 

less charged sites when the pH of the solution rises. The negatively charged adsorbent surface 519 
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at greater pH values changes the polarity of the adsorbent by forming an electric double layer, 520 

resulting in dye adsorption [77]. 521 
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Figure.5. Influence of pH on the adsorption of BM on GP (mGPb: 0.015 g, Co: 0.1 g/L, 523 

Contact time: 30 min). 524 

3.4. Removal Kinetics in Relation to Contact Duration 525 

In Figure S3, the impact of contact duration on the adsorption capability of the biosorbent under 526 

investigation is depicted for dye concentrations ranging from 50 to 250 mg/L. The dye solution 527 

was allowed to come into contact with the biosorbents for 24 hours in order to calculate the 528 

adsorption capacity at equilibrium, Qeexp, (Table 1). However, the data points shown in Figure 529 

S3 are only for the first 30 minutes because there were no noticeable changes in the adsorption 530 

capacity of the biosorbent under study after that point. Due to the presence of multiple 531 

functional groups on the surface of all biosorbents during the first stages of adsorption, which 532 

led to highly attractive interactions between dye molecules and adsorbent, the adsorption 533 

capacity of MB dye rose fast in the first 15 min. The concentration of adsorbed dye grew slowly 534 

during prolonged contact durations, converging after 30 minutes to a value close to equilibrium. 535 
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The outcomes of the nonlinear regression of the PFO, PSO, and PNO equations are shown in 536 

Figure 6. Table 4 summarizes the parameters they were able to gather. At the beginning and 537 

for the first five concentrations (50, 100, 150, 200, and 250 mg L-1), respectively. The PFO-538 

derived curves are flatter than the experimental data from adsorption. They surpass the 539 

experimental results for the latter step of adsorption, on the other hand. Given a little variation 540 

in the beginning stage time, the same observation for the PSO-derived curves. Because of this, 541 

there is another order n besides 1 and 2 that offers the least amount of variation throughout the 542 

adsorption process [78]. The Elovich model's poor R2 values (Table 4) showed that pore 543 

diffusion was not the primary factor influencing MB adsorption onto GP. 544 

The PNO-derived curves that deviate the least from the experimental data support this assertion, 545 

and all of this was supported by Table 4 normalized standard deviation (∆Q%) and the 546 

correlation coefficient R2 values. The correlation coefficients of the pseudo-nth-order kinetic 547 

model exhibit strong correlation coefficients and low average percentage error values. This 548 

model performs better than the pseudo-first and pseudo-second-order equations and matches 549 

the experimental data nicely. For concentrations of 50, 100, 150, 200, and 250 mg L-1, the order 550 

of the adsorption reaction n was discovered to be between 1.09, 1.41, 5.14, 1.26, and 2.98, 551 

respectively.  552 

The rate-controlling step is intraparticle diffusion, and the plot of (qt) vs (t1/2) should be linear 553 

and pass through the origin. The correlation coefficients in this study (0.978 <R2< 0.989) show 554 

that the adsorption closely resembles the intra-particle diffusion model. However, the intercept 555 

does not pass through the origin, indicating that intra-particle diffusion is not the rate-limiting 556 

step. This shows that there are three unique zones, with the first being curved, the second being 557 

linear, and the third being horizontal lines. The first area is swift and is a result of the outward 558 

diffusion of MB molecules from their exterior surface. The diffusion of MB molecules in the 559 

pores is regulated by intra-particle diffusion (inner diffusion) during the progressive adsorption 560 
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stage, which causes the second area. The intraparticle diffusion is beginning to slow down in 561 

the third area, which is the last equilibrium stage, as a result of the low concentration of MB in 562 

the solution. Further observations show that the boundary layer thickens as Co is increased from 563 

50 to 250 mg L-1, which is explained by a decrease in the likelihood of external mass transfer 564 

and an increase in the likelihood of internal mass transfer.  565 

Additionally, it was discovered that the intra-particle-diffusion rate constant, kp, increased as 566 

the initial MB concentration increased, indicating that the boundary layer may have played a 567 

role in the growing driving force for the mass transfer between the solution and GP surface 568 

[79]. As shown by the positive and less than 1 value of v in the fractional power model, this 569 

model should explain the mechanism. However, the poor values of the correlation coefficient 570 

(R2) along with the capacity calculated using this model are not close to the experimentally 571 

obtained value, indicating that this model is also not applicable (Figure 6). 572 

Table.4. Kinetic Parameters for nonlinear regression of BM Adsorption onto GP. 573 

models Parameters 50 mg.L-1 100 mg.L-1 150 mg.L-1 200 mg.L-1 250 mg.L-1 

 

 

PFO 

Qexp 45.54 96.49 143.26 196.98 238.09 

Qe 50.94 97.94 133.41 146.54 156.18 

K1 0.138 0.159 0.197 0.205 0.394 

R2 0.989 0.988 0.948 0.994 0.990 

∆Q% 0.140 0.002 0.047 0.692 1.183 

PSO Qe 56.68 106.46 146.10 157.50 161.95 

K2 0.003 0.002 0.002 0.002 0.006 

R2 0.976 0.989 0.983 0.992 0.997 

∆Q% 0.598 0.106 0.003 0.433 1.022 

PNO Qe 51.27  100.06 202.007 148.52 170.18 

Kn 0.004 0.005 1.09*10-10 0.007 4.42*10-5 
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n 1.09 1.41 5.14 1.26 2.98 

R2 0.986 0.992 0.992 0.996 0.998 

∆Q% 0.158 0.013 1.681 0.641 0.813 

Elovich a 65.73 264.51 585.78 2352.44 1.751*107 

B 0.114 0.058 0.052 0.058 0.112 

R2 0.945 0.971 0.993 0.973 0.997 

Intraparticule Kp 18.845 35.504 49.532 52.137 53.097 

C 2.723 7.655 11.763 17.894 29.727 

R2 0.914 0.932 0.959 0.899 0.838 

Fictional 

power 

K 3.11 3.907 4.35 4.482 4.844 

𝝂  0.177 0.12 0.091 0.082 0.033 

R2 0.840 0.9 0.953 0.855 0.928 
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(f) 585 

Figure.6. graph representative of Nonlinear simulation of the pseudo-first-order (a), 586 

pseudo-second-order (b), pseudo-nth-order (c), fractional power (d), intraparticle (e), and 587 

Elovich kinetic models (f). (m = 30 mg, v = 50 ml, stirring = 250 ppm, T = ambient 588 

temperature). 589 

3.5. Adsorption isotherm study  590 
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Figure.7. Result of fitting isotherms data of MB adsorption onto GP with Langmuir, 594 

Freundlich and Sips models. (m = 15 mg. v = 25 ml. stirring = 250 ppm. pHnatural). 595 

The hybrid error function (HYBRID) and fitting parameters are displayed in Table 5. By 596 

contrasting the (HYBRID) and R2 scores for data fit. The high coefficients (R2 > 0.99) and the 597 

lower HYBRID levels demonstrate that the Langmuir model provides the best applicability to 598 

the equilibrium adsorption data with a monolayer of MB attributed to a homogeneous 599 

distribution of active sites on the surface of the GP. The maximum monolayer adsorption of 600 

MB on GP was observed to be 207.33 mg/g at 10 °C, decreasing to 148.52 mg/g at 40 °C. This 601 

reduction at higher temperatures is attributed to desorption, facilitated by the formation of more 602 

hydrophobic bonds between the MB molecules in water. These bonds decrease the contact 603 

between the molecules and the adsorbent surface [79], as molecules in water tend to detach 604 

from the surface to which they adhere as temperature rises. This phenomenon occurs because, 605 

with increased temperature, molecules in water exhibit a tendency to form stronger bonds with 606 

each other, thereby diminishing their affinity for the surface. A high tendency for the adsorption 607 

of the MB on the GP is indicated by values of 1/n for the Freundlich isotherm between 0 and 1, 608 

whereas lower R2 values imply that the model is inadequate for adjusting experimental data. 609 
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The three conventional models that were utilized to build the MB uptake dynamic are 610 

inadequate. The setup and regulation of the MB-GP interaction are therefore considered as 611 

requiring the help of theoretical treatment using sophisticated models.  612 

Table.5. Different Isotherm model parameters for the adsorption of MB onto GP. 613 

Models Parameters 10 °C 20 °C 30 °C 40°C 

Langmuir 
Qexp(mg • g-1) 203.333 192.187 179.380 147.828 

Qm(mg • g-1) 
234.161 203.351 168.405 154.527 

KL (L • mg-1) 
0.032 0.029 0.055 0.036 

R2 

HYPRID 

0.997 

3.887 

0.997 

8.649 

0.999 

7.677 

0.999 

0.014 

Freundlich N 3.890 3.813 8.006 5.526 

KF(mg•g-

1)(L/mg)1/n 

48.993 40.853 78.215 50.609 

R2 

HYPRID 

0.876 

19.850 

 

0.915 

1.055 

0.994 

11.734 

 

0.989 

1.066 

Sips 
Qm(mg•g-1) 

126.71 115.05 99.60 71.41 

KS (L•mg-1) 
0.05276 0.09661 0.062117 1.4016 

M 1.05426 1.03999 1.1606 1.108 

R2  

HYPRID  

0.92913 

481.237 

0.90737 

516.00 

0.98158 

519.374 

0.91354 

658.377 

3.6. Sophisticated statistical physics models 614 

Our trial isotherm information was subjected to simulation applying ORIGIN software (version 615 

2018). In Figure 8, we determined the most suitable model or models for comprehending MB 616 

adsorption onto GP material by assessing the correlation coefficient R2 as detailed in Table 5. 617 

The optimal model from advanced statistical physics for describing the MB adsorption onto the 618 

GP adsorbent was identified as the double-energy single-layer model. 619 

3.6.1. Steric parameters  620 

3.6.1.1 Parameter n 621 

The adsorption geometry (vertical or horizontal) and uptake method (multi-docking or multi-622 

interactions) of the studied dye MB on GP adsorbent may both be explained by the steric n 623 

parameter, where n is the number of dye molecules adsorbed per active site of the adsorbent 624 
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(GP). Based on the n parameter, three primary situations are often recognized when defining 625 

the adsorption shape and mechanism: Si (n > 1) MB adsorption can occur in a vertical geometry 626 

via a multi-interaction process, when (n < 1) MB adsorption takes place horizontally via a multi-627 

docking process (multiple GP functional groups can bind to a single molecule of the under-628 

studied dye), and when (n=1) this condition signifies the attachment of the adsorbed species to 629 

an adsorption site in a non-parallel configuration, indicative of a mono-adsorbate process 630 

leading to the formation of a monomer [80]. 631 

Figure 9 shows the n values at four temperatures, 283, 293, 303, and 313 K, and the obtained 632 

values of this parameter are given in Table 6. The n1 values corresponding to the four 633 

temperatures were found as 2.7, 3.058, 2.342 and 2.721, while the n2 values are 0.452, 0.966, 634 

7.411and 5.126 at 283, 293, 303 and 313, respectively. The MB–GP interaction revealed a 635 

vertical (non-parallel) arrangement with a multimolecular manner mechanism for the n1. In 636 

addition, in the 2nd variable n2 a vertical setting presented, a multimolecular mode for 637 

temperatures 283 and 293, the adsorbed MB attitude was changed to horizontal placement, and 638 

the molecule acquired a parallel (horizontal) orientation with a multi–docking mode by 639 

increasing the solution temperature to 303 and 313 K. 640 

3.6.1.2. Parameter Nm 641 

The density of the receptor site Nm parameter functions as a steric indicator, specifying the 642 

number of occupied adsorption sites within a unit mass of the adsorbent. Moreover, it denotes 643 

the number of available adsorption sites for species adsorbed at the state of equilibrium [81]. 644 

In Figure 9, the temperature-dependent variation in receptor site density (Nm) is depicted. The 645 

densities of the GP receptor sites, specifically Nm1 and Nm2, exhibited a decreasing trend with 646 

the temperature rise. This phenomenon is correlated with an elevation in the quantity of 647 
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captured molecules (n1 and n2 per site), indicative of a heightened tendency toward aggregation 648 

as the temperature rises.  649 

3.6.1.3. Parameter Qsat 650 

The saturation adsorption quantity, Qsat, serves as a steric parameter interdependent with other 651 

steric factors (Qsat,i=Nmi*ni). In accordance with the most appropriate statistical physics model, 652 

Qsat can be expressed in terms of the number of species adsorbed per adsorption site, the density 653 

of adsorption sites, and/or the formation of layers. This metric enables an assessment of the 654 

effectiveness of the adsorbent utilized in the adsorption process [82]. 655 

In Figure 9, the temperature-dependent variation of the overall saturation adsorption quantity 656 

was graphically represented. The total adsorbed amount at saturation exhibited a notable 657 

sensitivity to temperature fluctuations. Specifically, an elevation in temperature led to a 658 

decrease in the adsorbed quantity, attributable to the exothermic nature of the adsorption 659 

process a characteristic feature in conventional adsorption phenomena. 660 
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Figure.8. The outcome of fitting isotherm data pertaining to the adsorption of MB onto a GP 664 

adsorbent with M1, M2, and M3 models (m = 15 mg. v = 25 ml. stirring = 250 ppm. pH=6.6).  665 

 666 
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Table.6. The determined parameter values for advanced models in the context of the 667 

adsorption process of MB onto GP biomass. 668 

Models Parametrs T = 283 K T = 293 K T = 303 K 313 K 

M1 

n 2.102 1.844 1.209 1.101 

Nm 98.981 98.642 135.976 137.628 

C1/2 27.381 29.598 20.277 27.866 

R2 0.993 0.995 0.999 0.999 

M2 

n1 2.700 3.058 2.342 2.721 

n2 0.452 0.966 7.411 5.126 

Nm1 66.716 64.158 43.494 1.861 

Nm2 142.174 58.234 4.727 1.377 

C1 32.101 34.024 25.945 25.944 

C2 6.569*10-16 30.487 195.439 143.787 

R2 0.995 0.999 1 0.999 

M3 

n 0.178 0.164 0.095 0.117 

Nm1 36.423 33.872 30.501 23.634 

Nm2 32.784 33.399 58.987 56.983 

C1 1.151*10-32 3.737*10-34 4.91*1011 6.848*10-35 

C2 30.957 33.193 18.847 34.896 

R2 0.995 0.996 0.999 0.999 

 669 
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Figure.9. Changes in Nm, n, and Qsat with temperature during the adsorption process of MB-672 

GP. 673 

3.7. Thermodynamic  674 

From Table S2, it is clear that the sorption of MB onto GP is exothermic, as shown by the 675 

negative value of H, supporting the findings on the temperature impact, which shows that the 676 

adsorption capacity falls as temperature rises. From 10 to 40 °C, ∆G° is positive and augmented, 677 

indicating that adsorption is viable at higher temperatures. At the solid-liquid interface during 678 

adsorption, the positive entropy ∆S° indicates an increase in randomness as indicated in Table 679 

S2. 680 

The application of the advanced Double-energy single-layer model (M2) enables the 681 

computation of thermodynamic parameters, encompassing entropy, Gibbs free energy, and 682 

internal energy [83,84]. 683 

Table.7. The function of entropy, free enthalpy, and internal energy as related to the M2 model. 684 

 685 
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Function Equation Number 

Entropy 𝑆𝑎

𝐾𝐵
= 𝑁1 [𝑙𝑛 (1 + (

𝐶𝑒

𝐶1
)

𝑛1𝑚

) +
𝑛1𝑙𝑛 (

𝐶1

𝐶𝑒
)

1 + (
𝐶1
𝐶𝑒

)
𝑛1𝑚] + 𝑁2 [𝑙𝑛 (1 + (

𝐶𝑒

𝐶2
)

𝑛2

) +
𝑛2𝑙𝑛 (

𝐶2

𝐶𝑒
)

1 + (
𝐶2
𝐶𝑒

)
𝑛2

] 
(29) 

Gibbs free enthalpy 

𝐺 = 𝐾𝐵𝑇𝑙𝑛 (
𝐶𝑒

𝑍𝑣

) [
𝑄𝑠𝑎𝑡1

1 + (
𝐶1

𝐶𝑒
)𝑛1𝑚

+
𝑄𝑠𝑎𝑡2

1 + (
𝐶2

𝐶𝑒
)𝑚𝑛2

] 

𝑍𝑣 =
𝑍𝑔𝑡𝑟

𝑉
= (

2𝜋𝑚𝐾𝐵𝑇

ℎ2
)

3
2⁄

 

(30) 

Internal energy 
𝐸𝑖𝑛𝑡 = 𝐾𝐵𝑇 [𝑁1𝑠

𝑙𝑛(
𝐶𝑒
𝑍𝑣

) + 𝑛1𝑚𝑙𝑛(
𝐶1
𝐶𝑒

)

1 + (
𝐶1
𝐶𝑒

)𝑛1𝑚

+ 𝑁2𝑠

𝑙𝑛(
𝐶𝑒
𝑍𝑣

) + 𝑛2𝑚𝑙𝑛(
𝐶2
𝐶𝑒

)

1 + (
𝐶2
𝐶𝑒

)𝑛2𝑚
] 

(31) 

 686 

The computation of the Gibbs free enthalpy involves the utilization of Equation (34) as 687 

outlined in Table 7, relying on the M2. Subsequently, the Gibbs free enthalpy is graphically 688 

represented against adsorbate concentrations across diverse temperatures for the GP adsorbent, 689 

as illustrated in Figure 10. The observation in Figure 10 indicates the negativity of the Gibbs 690 

free energy, signifying the spontaneous nature of the adsorption process. Furthermore, an 691 

increase in temperature is correlated with a diminishing free enthalpy, indicating a 692 

consequential reduction in the viability of the adsorption process [85]. 693 

The assessment of internal energy serves as a comprehensive means to evaluate all 694 

energy contributions to the MB adsorption system [48,84]. The general expression for internal 695 

energy is represented by Equation (35). The depicted values for this thermodynamic parameter 696 

in the examined adsorption system are presented in Figure 10. Notably, all recorded internal 697 

energy values manifest as negative, indicative of the spontaneous occurrence of the Methylene 698 

Blue adsorption systems and the concurrent release of energy. 699 

The entropy variation for M2 model given by Equation (33), exhibits two distinct 700 

behaviors discernible in terms of concentration. At lower concentrations (C1/2 > C), there is an 701 

observed increase in entropy, indicating a rise in molecular disorder. This implies that MB 702 
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molecules undergo random movement across the biosorbent (GP) surfaces, facilitated by the 703 

abundant active sites provided by GP at low concentrations, enhancing the adsorption process. 704 

Conversely, at higher concentrations (C1/2 < C), an opposite phenomenon is evident. The 705 

elevation in concentration results in a reduction of entropy. This decline is attributed to a 706 

plausible decrease in the number of receptor sites available on GP for adsorption as the 707 

concentration increases [84,85]. 708 
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Figure.10.  Evolution of entropy, free enthalpy, and internal energy as a function of 712 

concentration during the absorption of MB by GP adsorbent at distinct temperatures. 713 

3.8.  Density Function Theory (DFT) study  714 

Quantum chemical parameters MB GP 
ETot (ev) -1181.86 -4104.31 

EHOMO (ev) -3.870 0.423 
ELUMO (ev) -2.684 0.268 
∆EGap (ev) 1.186 -0.155 
ⴄ (ev) -0.593 0.07751 
X (ev) 6.554 -0.691 
S (ev) -0.843 6.4516 
ω (ev) -36.218 3.0805 
σ (ev) -1.686 12.903 

ΔNmax (ev) -11.05 -8.916 

 715 

As widely recognized, the propensity of a molecule to undergo electron loss is frequently 716 

associated with its highest occupied molecular orbital energy (EHOMO), whereas the molecule's 717 

capacity to accept electrons, as well as its lowest unoccupied molecular orbital energy (ELUMO), 718 

are closely tied to its electron affinity [47,53].  719 
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Furthermore, a diminutive energy gap (EGAP) signifies heightened reactivity within the 720 

molecule, thereby enhancing the efficacy of MB adsorption onto the GP surface, thereby 721 

manifesting a notably stable adsorption process.  722 

The concept of global hardness encapsulates a molecule's resistance to deformations or 723 

polarization when subjected to minor perturbations in chemical reactions. In general, molecules 724 

characterized by low global hardness values and elevated global softness values exhibit greater 725 

ease in adhering to suitable surfaces. The capacity of molecules to attract electrons is also 726 

demonstrated by the electrophilicity index, which can rise with falling values. 727 

 MB GP 
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Figure.11. (a) Optimized molecular structure, (b) HOMO, (c) LUMO and (d) electron 729 

density. 730 

3.9. Molecular Dynamic Simulation study  731 

A pivotal approach for elucidating the intricate interactions between MB molecules and the 732 

adsorbent (GP) surface involves leveraging molecular dynamic simulations (MDS). The MDS-733 

based investigation reveals that the equilibrium configuration of MB adsorption onto the GP (-734 

1 0 0) surface, as illustrated in Figure 12, corresponds to the most thermodynamically stable 735 

state. Figure 12 depicts the parallel adsorption mode of MB molecules on the GP (-1 0 0) 736 

surface, which underscores the strong intermolecular contacts between MB and the GP surface 737 

atoms. The chemical adsorption of MB onto the GP surface can be attributed to the contribution 738 

of electron-rich atoms, specifically sulfur, nitrogen, and oxygen, as inferred from a 739 

comprehensive analysis of the molecular structures of both MB and GP. Furthermore, Van der 740 

Waals dispersion is crucial in enabling and facilitating the capture of MB molecules onto the 741 

cellulose surface, which aligns with the outcomes obtained during the isoelectric point 742 

characterization, confirming physical adsorption. The computational assessment of various 743 

adsorption energy parameters for MB onto the GP surface is concisely presented in Table 8. 744 

The observed negative adsorption energy value (-75.821 kcal/mol) underscores the fact that the 745 

adsorption procedure is spontaneous. The notably elevated binding energy value (37.117 746 
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kcal/mol) can be attributed to a superior and highly stable adsorption process. It is noteworthy 747 

that the deformation energy associated with the molecular rearrangements induced by MB 748 

adsorption implies a reduction in the stability of both the MB molecules and the GP surface. 749 

In summary, molecular dynamic simulations serve as a pivotal tool for gaining a comprehensive 750 

understanding of the complex interplay between MB molecules and the GP surface [86]. The 751 

adsorption process is primarily governed by chemical interactions involving electron-rich 752 

atoms, and it is further enhanced by Van der Waals forces, culminating in a stable adsorption 753 

configuration. Thermodynamic analysis, as succinctly conveyed in Table S2, underscores the 754 

spontaneity and favorability of the adsorption process, with the deformation energy indicating 755 

the stability implications arising from MB-induced conformational changes. 756 

Table.8. Energies derived from computational calculations pertaining to the adsorption of MB 757 

molecules onto the GP surface. 758 

Adsorption 

energy, 

Kcal/mol 

Rigid adsorption    

energy, Kcal/mol  

Deformation 

energy,  

Kcal/mol  

BM: d 

Fad/dNi 
Total energy, 

Kcal/mol  

-75.821  -85.69  9.868  -75.821  -143.212  

 759 
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 760 

Figure.12. The arrangement of MB's equilibrium adsorption onto the GP surface. 761 

3.10. Regenerative Characteristics 762 

The recyclable properties of the adsorbent material played a pivotal role in the assessment of 763 

its applicability. The regenerative performance of GP in the context of MB adsorption is 764 

depicted in Figure 13. It is obvious that both have the ability for adsorption and desorption 765 

efficiency exhibited a diminishing trend with an increasing number of usage cycles. During the 766 

first four cycles, GP retained substantial adsorption efficacy, demonstrating adsorption 767 

capacities (mg/g) and removal rates (%) of 80.92, 60.84, 43, and 35.75 mg/g for cycles 1 to 4 768 

respectively, constituting 78.75%, 59.20%, 41.84%, and 34.78% of the initial values. 769 

Nonetheless, after five cycles, the adsorption capacity of the adsorbent decreased to 13.26 mg/g. 770 

This decline is related to the incomplete desorption of MB from the adsorption sites, when MB 771 
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molecules are not fully released from these sites, they continue to occupy space on the 772 

biosorbent surface, limiting its capacity to adsorb more MB molecules, resulting in a decrease 773 

in the adsorption capability of the GP. Consequently, the optimal usage cycle for GP was 774 

determined to be five cycles. 775 
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Figure.13. Assessment of the Durability and Reusability of GP for MB Adsorption. 777 

Experimental Parameters: MB Solution (100 mg/L), T= Room Temperature, GP Mass= 50 778 

mg, Time: 1 hour. 779 

3.11. Gaussian Process Regression coupled with Lévy flight distribution 780 

After optimizing ten kernel functions using the LFD algorithm in conjunction with the base 781 

function, the most effective kernel function was selected based on statistical criteria. Table 9 782 

presents the outcomes of this selection process, offering details on the best model, its 783 

corresponding parameters (kernel scale and sigma), and performance assessments using 784 

statistical metrics (R and RMSE) across three distinct phases (training, validation, and all data). 785 

The table also includes information on kernel settings, the preferred kernel function, resulting 786 

basis functions, the count of Lévy flights employed, and the number of iterations required to 787 

achieve the best model. 788 
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Table.9. Performances of the GPR-LFD model. 789 

LFD Max_iteration=50 

SearchAgents_no=100 

 
Kernel 

function 

Basis 

Function 

Kernel Scale 

 

Sigma 

 

Quantity 

 

R RMSE 

 

 

 

 

 

 Sigma M SigmaF   Train Val ALL Train Val ALL 

GPR_DA ARD- 

 

Exponential 

 

 

PureQu

adratic  

 

 

   11.9415 

   25.4642 

   22.5696 

   28.4045 

   89.6149 

134.7677 0.5744 65 

 

 

 

 

1.0000 0.9980 

 

0.9990    0.0142    3.1874   2.5390 

 790 

The results obtained following the optimization of kernel functions and basis functions 791 

highlight the superiority of the model using the ARD exponential kernel with the PureQuadratic 792 

basis compared to other kernels listed in Table 9. It is important to note that the parameters of 793 

the LFD were set to Max_iteration=50 and SearchAgents_no=100. 794 

In terms of performance metrics, the correlation coefficients demonstrate an exceptional fit of 795 

the model to the data. The correlation coefficient for the training set reaches a perfect value of 796 

1.0000, indicating an optimal correlation. For the validation set, the high correlation coefficient 797 

of 0.9980 emphasizes a robust agreement with the validation data. The overall correlation 798 

coefficient, which stands at 0.9990, attests to an outstanding overall performance of the model. 799 

Regarding the RMSE, measuring the difference between predicted and actual values, the results 800 

are equally remarkable. The RMSE for the training set is 0.0142, indicating high accuracy in 801 

predicting training data. For the validation set, the RMSE remains remarkably low at 3.1874, 802 

confirming the robustness of the model in predicting validation data. The overall RMSE, 803 

established at 2.5390, reflects a satisfactory overall performance of the model across all data. 804 

The optimized model with the ARD exponential kernel and Pure Quadratic basis stands out for 805 

its excellent fit to the data, characterized by high correlation coefficients and exceptionally low 806 
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prediction errors, both for the training and validation sets. These results underscore the 807 

reliability and precision of the model in predicting the adsorbed quantities of MB by GP, 808 

reinforcing its significant potential for advanced predictive applications. 809 

These results are visually presented in Figure 14, providing a graphical representation of the 810 

findings. 811 

 812 

(a) 813 
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 814 

(b) 815 

 816 

(c) 817 

Figure.14. Relationship between the experimental and the GPR_LFD model predicted values: 818 

(a) training Data, (b) validation Data, and (c) All Data 819 
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3.11.1. Performance of GPR_LFD model tested 820 

In the initial phase of data partitioning, a deliberate reservation of 15% from the database was 821 

specifically earmarked for assessing the GPR_LFD model's top performance achieved through 822 

interpolation. The outcomes of this thorough evaluation have been meticulously documented in 823 

Table 10, providing a comprehensive presentation of statistical coefficients and their 824 

corresponding errors. 825 

Table.10. Model test performance of GPR_LFD. 826 

R RMSE 

0.9952     3.8513 

The results from Table 10 reveal the outstanding performance of the GPR_LFD model during 827 

its evaluation of the test data. A remarkably high correlation coefficient of 0.9952 attests to a 828 

robust positive correlation between the model predictions and the actual values. Furthermore, 829 

the low RMSE of 3.8513 indicates notable accuracy, with model predictions exhibiting an 830 

average error margin of approximately 3.85 units compared to the actual values. These findings 831 

confirm the GPR_LFD model's ability to accurately and reliably capture underlying 832 

relationships in the data, underscoring its relevance and efficacy in the context of interpolating 833 

test data. 834 

To provide a visual representation of these performances, experimental values and predicted 835 

values have been graphically represented in Figure 15. 836 
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 837 

Figure.15. Comparison between experimental and predicted values to assess performance OF 838 

GPR_LFD. 839 

3.11.2. Residues study 840 

In this section, a rigorous and comprehensive evaluation was conducted to thoroughly assess 841 

the performance and efficacy of the selected model [66,87]. This in-depth assessment 842 

encompassed both the application of the residual method and an error histogram, spanning 843 

various critical phases, including training, validation, and testing [61,65]. Following this, a 844 

meticulous comparative analysis was performed by superimposing experimental values onto 845 

predicted ones, covering all data points across the training, validation, and testing datasets, 846 

vividly depicted in Figure 16(a). Furthermore, an extensive error quantification involved a 847 

scrupulous examination of the disparities between experimental and predicted values for the 848 

entire dataset, including data from the training, validation, and testing sets, adhering to 849 
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established methodologies. The outcomes of this thorough error assessment were thoughtfully 850 

visualized in Figure 16(b), employing advanced residual analysis techniques. 851 

 852 

 853 

(a) 854 



56 
 

 855 

(b) 856 

Figure.16. Residuals relating to the models established by the different techniques according 857 

to the estimated values: (a) Relationship between experimental data and the predicted data of 858 

samples, and (b) Instances distribution of errors. 859 

The findings depicted in Figure 16a gracefully emphasize a substantial agreement between 860 

experimental and predicted values, providing compelling validation of the model's 861 

effectiveness. Moreover, Figure 16b offers additional persuasive evidence of the model's 862 

efficiency, with 84 out of 98 experimental values closely aligning with their predicted 863 

counterparts, resulting in only minor deviations. Notably, the residual errors for the remaining 864 

14 cases were exceptionally minimal, further highlighting the model's outstanding performance. 865 

These comprehensive observations unequivocally establish the model's robustness and 866 

precision, leaving no room for doubt about its capabilities. 867 

3.12. Optimization and Validation of the optimum conditions 868 
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The optimization of independent parameters for maximizing MB uptake was carried out using 869 

the Lévy flight distribution method [57]. The accuracy of the optimization results was then 870 

rigorously validated through laboratory experiments. The comparative analysis in Table 11 871 

intricately presents predicted values alongside experimental results, offering a comprehensive 872 

view of the corresponding errors between the two datasets. 873 

Where:      Error = Experimental response − Predicted response                                  (32) 874 

Table.11. Comparison between actual and predicted responses at optimum 875 

conditions. 876 

 877 

The results prominently showcase a compelling alignment between the observed outcomes and 878 

the predictions derived from the GPR_LFD model in the domain of MB adsorption. Under the 879 

precisely defined optimal conditions—characterized by a 30-minute contact time, 0.600 g of 880 

adsorbent mass, an initial MB concentration of 400 mg/L, a pH level of 6.6, and a temperature 881 

of 10°C, the experimental MB adsorption rate reached an impressive 207.90 mg/g. Remarkably, 882 

the model-predicted value closely mirrored this at 207.89 mg/g, with a minute discrepancy of 883 

only 0.008 mg/g. This nuanced precision in the concordance between predicted and observed 884 

values vividly underscores the LFD algorithm's exceptional efficacy in orchestrating 885 

optimization with remarkable finesse. 886 

GPR_LFD 

• X1 = 30 min. X2 = 0.6 g. X3= 400 mg/L, X4= 6.6 and X5= 10°C 

MB uptake (mg/g). experimental values 207.90 

MB uptake (mg/g). predicted values 207.89 

Error (mg/g) 0.008 
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These findings not only affirm the reliability of the GPR_LFD model but also underscore the 887 

algorithm's inherent ability to guide the optimization process with precision. The LFD 888 

algorithm's seamless convergence on optimal conditions, resulting in such close 889 

correspondence between experimental and predicted values, attests to its robustness and 890 

efficiency in navigating intricate parameter spaces. This detailed congruence further instills 891 

confidence in the model's capacity to capture complex patterns and optimize outcomes 892 

accurately, solidifying its value as a powerful tool in the realm of MB adsorption studies. 893 

3.13. Interface for optimization and prediction 894 

At the forefront of advancements in computational tools for environmental research, an 895 

innovative MATLAB application has been meticulously engineered to harness the formidable 896 

capabilities of the LFD algorithm. This application serves a dual purpose by not only optimizing 897 

process conditions but also predicting MB uptake with precision, employing the sophisticated 898 

GPR_LFD model. A hallmark of user-friendliness, this cutting-edge tool seamlessly integrates 899 

the computational prowess of MATLAB with the intricate workings of the LFD algorithm. 900 

Users can effortlessly input a spectrum of experimental parameters, including contact time, 901 

adsorbent mass to initial MB concentration, pH, and temperature. This dynamic interface 902 

empowers the LFD algorithm to dynamically optimize these conditions, refining them to their 903 

optimal configurations. Beyond this, the application utilizes the GPR_LFD model to predict 904 

MB uptake with a high degree of accuracy, facilitating a comprehensive understanding of 905 

adsorption behavior under various scenarios. What sets this application apart is not only its 906 

functionality but also its intuitive user interface, allowing researchers and practitioners to 907 

explore diverse scenarios effortlessly. The real-time visualization of how different parameters 908 

impact MB adsorption enhances its usability. This innovative MATLAB application emerges 909 

as a powerful, efficient, and user-centric tool, embodying the seamless integration of LFD 910 
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optimization and GPR_LFD prediction, making it indispensable for researchers in the dynamic 911 

field of MB adsorption studies.  912 

 913 

Figure.17. MATLAB Interface for optimization analysis (LFD) and prediction of MB uptake 914 

using GPR_LFD. 915 

3.14. Comparison with Published Results: A Comparative Analysis 916 

The Table 12 provides a comparison of the maximum adsorption capacities of various 917 

adsorbents, expressed in milligrams per gram (mg/g). Among the listed adsorbents, the 918 

biocomposite film derived from cellulose demonstrates a maximum adsorption capacity of 919 

146.81 mg/g. This highlights the adsorption capabilities of this material, indicating its potential 920 

for water contaminant removal. The tea-derived activated material (AST) shows a slightly 921 

lower adsorption capacity, at 104.2 mg/g. Although this value is lower than that of the 922 

biocomposite film of cellulose, it remains significant, suggesting the effectiveness of AST as 923 

an adsorbent. On the other hand, the sludge-rice husk biochar exhibits a more modest adsorption 924 
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capacity, at 22.59 mg/g. However, it still serves as a potentially useful adsorbent, especially 925 

considering its biological origin and availability. The jute stick biomass stands out with an 926 

impressive adsorption capacity of 198.86 mg/g, making it one of the most efficient adsorbents 927 

on the list. This high adsorption capacity underscores the effectiveness of jute stick biomass for 928 

water contaminant removal. The banana stem-activated carbon shows an adsorption capacity 929 

of 64.66 mg/g, making it a reasonable choice for various water purification applications, 930 

although it is less efficient than jute stick biomass. Macore fruit shells exhibit the lowest 931 

adsorption capacity among the listed adsorbents, with a value of 10.61 mg/g. While this is the 932 

lowest value listed, it remains significant in certain application contexts. Lastly, the "GP" 933 

developed in this study stands out with a remarkable adsorption capacity of 207.89 mg/g, the 934 

highest among all the mentioned adsorbents. This high value suggests that the "GP" could be a 935 

highly effective adsorbent for water contaminant removal, offering new prospects for treating 936 

contaminated water. 937 

Table.12. Comparative Assessment of Adsorption Capacities for MB Dye among Various 938 

Adsorbents. 939 

Adsorbent name Capacity maximum 

 (mg/g) 

Reference 

Biocomposite film derived from cellulose 146.81 [88] 

Tea-derived activated material (AST) 104.2 [89] 

Sludge-rice husk biochar 22.59 [90] 

Jute stick biomass 198.86 [91] 

Banana stem-activated carbon 64.66 [92] 

Macore fruit shells 10.61 [93] 

GP 207.89 This work 

 940 

In conclusion, the data from the table reveal that the "GP" exhibits the highest adsorption 941 

capacity among all listed adsorbents. This remarkable performance suggests that the "GP" could 942 
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be an extremely effective adsorbent for treating contaminated water, thereby providing new 943 

opportunities to enhance water purification technologies. These findings underscore the 944 

importance of research on advanced materials such as the "GP" in seeking sustainable solutions 945 

to challenges related to access to clean water. 946 

3.15. Proposal for an adsorption mechanism 947 

Figure 18 provides a visual representation of the interactions involved in the adsorption process 948 

of cationic methylene blue dye onto the biosorbent. Understanding the mechanism behind the 949 

adsorption of organic compounds onto the adsorbent requires a comprehensive analysis, 950 

typically involving a comparison of the FTIR spectra of the adsorbent before and after the 951 

adsorption process. This analysis is often supplemented by studies conducted under various 952 

conditions such as pH, temperature, and initial dye concentration, as well as desorption 953 

experiments. These investigations, combined with FTIR analysis and MDS results, allow 954 

researchers to propose the primary adsorption mechanisms. The identified mechanisms 955 

typically include electrostatic attraction, dipole-dipole interactions, Yoshida hydrogen bonding 956 

formations, and n-π interactions. Specifically, the primary adsorption process for various 957 

aromatic contaminants on carbonaceous materials is often attributed to the n-π electron 958 

interaction. In this process, the aromatic rings of pollutant molecules act as electron acceptors, 959 

while carbonyl oxygen ions on the biochar surface serve as electron donors. Through spectral 960 

analysis, researchers observe a significant reduction in the intensity of the band at 1623 cm-1, 961 

associated with C=O functional groups, after adsorption, indicating the involvement of n-π 962 

interactions in the adsorption process. Hydrogen bonding interactions also play a crucial role in 963 

adsorption and can be classified into two types. Firstly, dipole-dipole hydrogen bonds 964 

frequently form between appropriate atoms (e.g., oxygen or nitrogen) of the aromatic 965 

adsorbates and surface hydrogen atoms of hydroxyl groups on the carbonaceous material. 966 

Secondly, Yoshida hydrogen bonding connections typically occur between the aromatic rings 967 

of adsorbate molecules and the surface hydroxyl groups of the carbonaceous material. Spectral 968 

analysis post-adsorption shows a slight decrease in the intensity of bands associated with C-O 969 

and -OH groups, suggesting the presence of dipole-dipole and Yoshida hydrogen bonding 970 

interactions. Overall, understanding these complex interactions is essential for elucidating the 971 

adsorption mechanisms and optimizing the adsorption process for efficient removal of 972 

contaminants from water sources. 973 
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 974 

Figure.18. Adsorption mechanism of MB onto GP absorbent. 975 

3.16. Cost Analysis for natural GP biosorbent Synthesis 976 

The Energy and Cost Estimate section provides a meticulous breakdown of the financial aspects 977 

associated with the production of natural green pea peels (GP) biosorbent. This analysis aims 978 

to offer a comprehensive prediction of the anticipated production costs involved in generating 979 

one kilogram of GP biosorbent. Table 13 in the section presents a detailed cost estimation of 980 

the various stages involved in the production process. The first item listed is the "Cost of peels 981 

collection," which is intriguingly noted as 0.00 USD. This indicates that there are no direct 982 

expenses incurred in collecting the pea peels, suggesting that they are obtained as a byproduct, 983 

potentially from food processing industries or agricultural activities. This approach not only 984 

minimizes production costs but also underscores the sustainability of utilizing agricultural 985 

waste for value-added purposes. Moving on, the "Cost of drying of adsorbent" is also listed as 986 

0.00 USD, with a note specifying that the drying process utilizes natural sunlight. By leveraging 987 

solar energy for drying, the production process avoids the need for energy-intensive methods, 988 
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significantly reducing operational expenses. This environmentally friendly approach not only 989 

contributes to cost-effectiveness but also aligns with sustainable practices. The final cost item 990 

in Table 13 is "Milling and sieving," which incurs a total cost of 100 w. The cost is expressed 991 

in terms of power consumption, with 1 kW/h equivalent to 0.035 USD in Algeria. This cost 992 

likely represents the electricity consumption associated with milling and sieving equipment 993 

used to process the pea peels into the desired biosorbent form. Despite this expense, the overall 994 

cost remains relatively low, further enhancing the economic viability of the production process. 995 

In summary, the cost estimation provided in Table 13 offers valuable insights into the financial 996 

aspects of GP biosorbent production. The absence of expenses for peels collection and drying, 997 

coupled with the utilization of solar energy and relatively low milling and sieving costs, 998 

highlights the cost-effectiveness and sustainability of the production process. This 999 

comprehensive cost analysis serves as a valuable tool for decision-makers and stakeholders, 1000 

facilitating informed decisions regarding resource allocation and investment in GP biosorbent 1001 

production for efficient and environmentally friendly water treatment solutions. According to 1002 

these results, a comparison of its costs with current studies is presented in Table S3. 1003 

Table.13. cost estimation of GP biosorbent. 1004 

unit Total cost  

Cost of peels collection 0.00 USD 

Cost of drying of adsorbent 0.00 USD (dried using the sun) 

Milling and sieving 100 w (1KW/h = 0.035 USD in Algeria) 

 1005 

4. Conclusion  1006 

This research presents a comprehensive exploration of the Methylene Blue (MB) adsorption 1007 

dynamics onto Green Peel (GP), employing diverse methodologies from statistical physics 1008 
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models to Molecular Dynamic Simulation (MDS). The study firmly establishes GP's suitability 1009 

for adsorption, substantiated by analyses like X-ray diffraction (XRD) and Fourier-transform 1010 

infrared spectroscopy (FT-IR), The Brunauer-Emmett-Teller (BET), providing a robust 1011 

foundation for subsequent investigations. By dissecting influential factors in MB removal such 1012 

as adsorbent mass, pH, concentration, and temperature, the research furnishes crucial insights 1013 

into the nuances of the adsorption process. 1014 

Isotherm data analysis identifies the double-energy single-layer model as the most fitting, 1015 

supported by comprehensive correlation coefficient evaluation. Steric parameters reveal 1016 

intricate adsorption geometry and mechanisms, with temperature-dependent variations 1017 

shedding light on captivating shifts in orientation and modes. Thermodynamic scrutiny exposes 1018 

the exothermic nature of MB adsorption onto GP, coupled with a noticeable decline in 1019 

adsorption capacity at elevated temperatures. Density Function Theory (DFT) studies deepen 1020 

our understanding of the interaction, reactivity, and stability of both MB and GP systems. These 1021 

studies emphasize the potential for electron transfer during adsorption. In the desorption 1022 

process, electron transfer between the MB dye and the ethanol solvent plays a crucial role in 1023 

facilitating the release of MB molecules from the adsorption sites on the biosorbent. When a 1024 

suitable electron acceptor or donor is present in the system, it provides a pathway for electron 1025 

transfer to occur more efficiently. This can happen through various mechanisms, such as redox 1026 

reactions, where the electron donor transfers electrons to the MB dye, promoting its desorption 1027 

from the biosorbent surface. Conversely, electron acceptors can accept electrons from the MB 1028 

dye, facilitating its release into the solvent. Overall, the presence of suitable electron donors or 1029 

acceptors enhances the kinetics of the desorption process, leading to more effective removal of 1030 

MB from the biosorbent material. On the other hand, while regenerative properties underscore 1031 

GP's recyclability, albeit with diminishing efficiency over successive usage cycles, Molecular 1032 

Dynamics Simulation (MDS) unveils the stable adsorption configuration of MB onto the GP 1033 
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surface. This approach elucidates the intricate interplay of chemical interactions and Van der 1034 

Waals forces. Density Function Theory (DFT) studies deepen our understanding of the 1035 

interaction, reactivity, and stability of both MB and GP systems. These studies emphasize the 1036 

potential for electron transfer during adsorption. In the desorption process, electron transfer 1037 

between the MB dye and the ethanol solvent plays a crucial role in facilitating the release of 1038 

MB molecules from the adsorption sites on the biosorbent. On the other hand, while 1039 

regenerative properties underscore GP's recyclability, albeit with diminishing efficiency over 1040 

successive usage cycles, Molecular Dynamics Simulation (MDS) unveils the stable adsorption 1041 

configuration of MB onto the GP surface. This approach elucidates the intricate interplay of 1042 

chemical interactions and Van der Waals forces. Harnessing Gaussian Process Regression 1043 

coupled with Lévy flight distribution (GPR_LFD), the study optimizes kernel functions, 1044 

pinpointing the ARD exponential kernel and PureQuadratic basis as optimal choices. Rigorous 1045 

model testing attests to its precision, reliability, and exceptional alignment with the data. 1046 

Experimental validation under optimized parameters (30-minute contact time, 0.600 g 1047 

adsorbent mass, initial MB concentration of 400 mg/L, pH 6.6, and 10°C) yields a striking 1048 

congruence between experimental and predicted MB uptake values, reaching an impressive 1049 

207.90 mg/g. A user-friendly MATLAB interface integrates LFD optimization and GPR 1050 

prediction for practical application. In essence, this research bridges empirical observations 1051 

with advanced modeling techniques, advancing our understanding of MB adsorption onto GP 1052 

and emphasizing GP's substantial potential as an effective adsorbent. The study not only 1053 

contributes to scientific understanding but also hints at future applications in environmental 1054 

remediation and wastewater treatment, showcasing the synergy between empirical investigation 1055 

and computational modeling in unraveling complex phenomena. 1056 

Nomenclature 1057 

C  the intercept of Intraparticle diffusion function 1058 
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Co  initial concentration of MB (mg•L-1) 1059 

Ce  final concentration of MB in the solution  1060 

Ct:  concentration of MB at time t (mg•L-1) 1061 

C1/2  the concentration at half–saturation (mg•L-1)  1062 

C1  concentrations at half saturation for the first active site (mg•L−1)  1063 

C2  concentrations at half saturation for the second active site (mg•L−1) 1064 

Eint  System internal energy (J•mol-1)  1065 

F  fraction of MB adsorbed at time t  1066 

G  Gibbs free enthalpy (J•mol-1) 1067 

GP  Green pea 1068 

 h  Planck constant (J•s-1)  1069 

KB  Boltzmann constant (J•K)  1070 

k1  equilibrium rate constant of PFO equation (L•min-1)  1071 

k2  equilibrium rate constant of PSO equation (L•min-1) 1072 

KF  Freundlich constant (g•L•mg)  1073 

Kid  the rate constant of intraparticle diffusion(mg•g-1•min-0.5)  1074 

KL  Langmuir constant (L•mg-1)  1075 

kn  equilibrium rate constant of PNO equation (L•min-1)  1076 

Ks  Sips constant (L•mg-1)  1077 

M  mass of the mixture (g)  1078 

ms  the exponent of the Sips model 1079 

MB  methylene blue  1080 

n  number of ions per site 1081 

n1  number of ions per site for the first site receptor  1082 

n2  number of ions per site for the second site receptor  1083 

nf  Freundlich (R-P) constant 1084 

no  biosorption reaction order N number of experimental points performed  1085 

Nm  sites receptor density(mg•g-1)  1086 

PFO  pseudo-first-order,  1087 

PSO  pseudo-second-order  1088 
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PNO  pseudo-nth-order  1089 

Qe  amount of dye adsorbed at equilibrium (mg•g-1)  1090 

Qt  quantity adsorbed at time t (mg•g-1)  1091 

R  the correlation coefficient  1092 

RMSE Root Mean Squared Error 1093 

Sa  Entropy (J•mol•K-1) t time (min)  1094 

T  temperature (°C or °K)  1095 

V  volume of the mixture (L)  1096 

Zv  Translation partition function per unit volume 1097 

 Zgtr  translation partition function 1098 

β  the constant of desorption (g/mg). 1099 

α  the constant of initial sorption rate (mg/(g·min)) 1100 

𝜗  the fractional power kinetic model constant.  1101 
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