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A B S T R A C T

This document is a supplementary document to Huijben and Terpstra et al. ”Generating Synthetic Computed Tomography for
Radiotherapy: SynthRAD2023 Challenge Report”.

1. Supplementary analyses and results

This document provides additional analyses and results from the SynthRAD2023 challenge, which defined two tasks: 1) mag-
netic resonance imaging (MRI) to computed tomography (CT) synthesis and 2) cone beam CT (CBCT) to CT synthesis. These
additional analyses include comparing the performance differences between all teams for each evaluation metric and investigating
their statistical significance. In addition, we analyze the runtime of each team’s algorithm and examine the average performance
per patient in the test set. Finally, we visually analyze the results for two low-performing patients.

1.1. Teams’ performance and significance

To state the significance of a team outperforming another in terms of individual metrics, we employed the Wilcoxon signed-rank
test (Wilcoxon, 1945) with Holm’s adjustment for multiple testing (Holm, 1979) for each metric separately (Figures 1 and 2). The
significance level for this test is set at α = 0.05. Based on the image similarity metrics, high-ranking teams robustly outperform
lower-ranked teams. Statistical significant improvements were observed when comparing all image metrics between a team and
another team ranked at least seven places lower for task 1, or six placed lower for task 2. However, for the dose metrics, this
relation is weaker. In task 1, no statistical significant differences were observed between the top fourteen teams regarding the
photon dose metrics and top eleven teams regarding the proton dose metrics. In task 2, no statistically significant differences
were observed between the top eight teams regarding the photon and proton dose metrics, except for the fifth team (Pengxin Yu),
which significantly outperforms the sixth team (KoalAI) regarding the proton DVH metric. Furthermore, Figure 3 shows a detailed
overview of the resource utilization per team per subtask.

1.2. Data influence

For task 1, we performed a more detailed analysis of the influence of magnetic field strength on sCT generation performance.
However, the absence of variability in magnetic field strengths for centers B and C constrained this analysis to center A (Figure 4).
For the brain, the only significant difference was observed for γphoton, which decreased from 98.99 ± 1.43 for 1.5T to 97.33 ± 3.23
for 3T. In contrast, for the pelvis, a significant increase in performance was observed for 3T compared to 1.5T. Specifically, the
SSIM increased from 0.83 ± 0.05 to 0.84 ± 0.05, γphoton increased from 97.51 ± 3.45 to 98.75 ± 2.59, and γproton increased from
93.29 ± 4.05 to 95.64 ± 3.42.

In analyzing the synthetic CT (sCT) generation performance at the patient level for both tasks, we present the mean SSIM and
mean photon gamma pass rate per patient in Figure 5. One pelvis patient in center A for task 2 is severely underperforming in terms
of photon gamma pass rate, while multiple brain patients from center B are underperforming in task 1. A visual inspection of two
of these patients (1BB183 and 2PA039) (Figure 6) reveals that for patient 1BB183 (Figure 6a), the image quality of sCTs is high.
However, the table of the CT scanner is still visible in the ground truth CT but not in the MRI. Jetta Pang was able to synthesize
a table, increasing the gamma pass rate (γ = 90.24%) while the other teams did not synthesize a table, which led to large dose
errors (γ = 75 − 79%). This leads to higher dose deposition within the target while omitting the dose deposition in the table, which
received more than 10% of the target dose and is therefore included in the gamma pass rate analysis, causing low gamma pass
rates for these patients. Further investigation shows this happened for multiple brain patients from center B in task 1. Furthermore,
patient 2PA039 (Figure 6b) suffers from a low-quality CBCT with a central artifact combined with a small field-of-view, making
image synthesis difficult.

References

Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics , 65–70.
Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1, 80–83. doi:10.2307/3001968.
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Fig. 1: Significance map of task 1. Visualizing pairwise comparisons of team performances for the individual metrics, where teams are sorted based on the
performance for the respective metric. Yellow shading in the upper triangle indicates that the team on the x-axis performs significantly better than the y-axis, while
blue indicates no significantly better performance. Blue in the lower triangle indicates that the team on the x-axis performs significantly worse than the team on the
y-axis.
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Fig. 2: Significance map of task 2. Visualizing pairwise comparisons of team performances for the individual metrics, where teams are sorted based on the
performance for the respective metric. Yellow shading in the upper triangle indicates that the team on the x-axis performs significantly better than the y-axis, while
blue indicates no significantly better performance. Blue in the lower triangle indicates that the team on the x-axis performs significantly worse than the team on the
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Fig. 3: Resource utilization during inference for tasks 1 (left) and 2 (right), represented by inference time and GPU usage. Values are averaged over 60 patients per
subtask for each team, with different teams distinguished by colors. A cross represents brain averages, while a circle represents pelvis averages.
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Fig. 4: Boxplots of the teams’ performance for task 1 in terms of SSIM and gamma pass rates for photon and proton, grouped by different region, acquisition center
and magnetic field strength. The number of test cases per subgroup is indicated by “n=x”. Statistical significance (Mann-Whitney U-test, α = 0.01) was calculated
for center A between different field strengths of the same region and is indicated by an asterisk if significant.
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Fig. 5: Mean SSIM versus mean photon gamma pass rate per patient, averaged over all participants. The hue encodes the center. Two patients are clear outliers,
while multiple patients of center B are underperforming.
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(a) Example sCTs for outlier patient 1BB183. The image quality is high, but the CT still contains the table, which is difficult to synthesize if not present in the input. The image error
map has been masked with the provided mask.
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(b) Example sCTs for outlier patient 2PA039. The challenging anatomy and artifacts make accurate sCT generation difficult. The image error map has been masked with the provided
mask.

Fig. 6: Examples of underperforming patients: patient 1BB183 for task 1 (MRI-to-CT; a) and patient 2PA039 for task 2 (CBCT-to-CT: b). The model input is shown
in the upper left, and the ground truth is in the center-left. The sCT of the top five participants for task 1 and task 2 are shown in the top row. The difference from
ground truth CT after masking with the provided mask is shown in the middle row. On the bottom left is the planned irradiation based on the CT for a photon (a)
and proton (b) plan. The bottom row shows the dose difference when the treatment plan is applied to the sCT (CT dose - sCT dose).
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