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A B S T R A C T

This document is a supplementary document to Huijben and Terpstra et al. ”Generating Synthetic Computed Tomography for
Radiotherapy: SynthRAD2023 Challenge Report”.

1. Participant methods

Each subsection briefly describes the methods used by the
participating teams. Top five methods were presented in the
main paper. The team names correspond to the submis-
sion reported on the leaderboard at https://synthrad2023.
grand-challenge.org/evaluation/test/leaderboard.

1.1. ShantouBME (task 1)

ShantouBME employed a 2D U-net (Ronneberger et al.,
2015) for task 1, incorporating an additional convolutional layer
in the bottleneck. The model was trained using L1 loss, with
separate models for the brain and pelvis. Magnetic resonance
(MR) images were normalized at the patient level, while com-
puted tomography (CT) images were normalized using the fixed
range of [−1024, 3000] Hounsfield units (HU). Random patches
of 224 × 224 pixels were sampled to augment the training data.
The model processed the full-size 2D slices in one go during
testing, and the normalization procedure was reverted. The
models were trained for 300 epochs using the Adam optimizer
with a learning rate of 3e − 4 and a step descent learning rate
scheduler. The epoch with the lowest validation loss was se-
lected for inference.

1.2. FGZ Medical Research (task 2)

FGZ Medical Research employed one collective 2D denois-
ing diffusion probabilistic model (DDPM) (Ho et al., 2020) with
a U-Net architecture (Ronneberger et al., 2015) for brain and
pelvis data in task 2. The DDPM was conditioned on the cone
beam CT (CBCT) image and trained using the mean squared
error (MSE) loss. Training used 500 diffusion steps, while in-
ference used 15 diffusion steps, as implemented in denoising
diffusion implicit models (DDIM) (Song et al., 2020). Prepro-
cessing involved resizing slices to 256 × 256 pixels, clipping
intensities to [−1024, 2000] HU, and normalizing to [−1, 1].
No data augmentation was applied. The normalization and re-
sizing steps were reversed to produce a synthetic CT (sCT) in
HU. The epoch with the lowest validation mean absolute error
(MAE) was selected for inference. The model was trained for
200 epochs using AdamW optimizer and a learning rate of 1e−4
with a warm-up scheduler.

1.3. FGH 365 (task 1 & 2)

Participating in both tasks, team FGH 365 employed a
modality-, anatomy- , and site- (MAS)-specific strategy to syn-
thesize sCT images across multiple modalities (tasks 1 and 2),
anatomical regions (brain and pelvis), and sites (centers A,

B, and C). Their approach consisted of two MAS-specific so-
lutions. For solution #1, separate 3D pix2pix models (Isola
et al., 2017) were trained for each of the 11 MAS configura-
tions present in the dataset. Solution #2 consisted of one uni-
fied model conditioned on the MAS and was trained on the
collective datasets of both tasks. The latter was based on the
3D pix2pix model but incorporated MAS-conditioned dynamic
convolution layers (Zhang et al., 2021; Liu et al., 2022a) at the
first two and last two layers. For all models, the generator loss
included the L1 loss, the adversarial loss (Isola et al., 2017),
and an edge-aware loss (Luo et al., 2021; Fan et al., 2023), and
the discriminator loss was the binary cross entropy (BCE) loss.
MRI intensities were clipped to the 99.5th percentile, and CT
images were clipped to [−1000, 3000] HU. All modalities were
linearly normalized to [−1, 1] at the patient level. Data aug-
mentation consisted of random patch selection, random affine
transformations, flipping, noise addition, and random contrast
adjustment. The models of solution #1 were trained on 3D
patches of 128× 128× 128 voxels for brain and 256× 128× 64
voxels for pelvis, while the model of solution #2 was trained
on 3D patches of 192 × 192 × 128 voxels. During inference,
patches overlapping by 40% (for volumes ≥ 500 × 280 × 140
voxels) or 60% (for volumes < 500 × 280 × 140 voxels) were
selected using a sliding window and overlapping regions were
averaged to create the full-size sCT, which was then linearly
rescaled from [−1, 1] to [−1000, 3000] HU. FGH 365 proposed
an uncertainty-based site prediction algorithm since the acqui-
sition center was unavailable for the test data. This algorithm
considered the MAE between the sCTs obtained from solutions
#1 and #2 and assumed the correct center to have the low-
est MAE. Solutions #1 and #2 were trained for 5000 and 800
epochs, respectively, and both solutions used the AdamW op-
timizer with a constant learning rate of 2e − 4. The final mod-
els were selected based on the epoch with the lowest validation
MAE, and the final output was the average of the sCT predic-
tions from the two MAS-specific solutions.

1.4. KoalAI (task 1 & 2)
Team KoalAI used a locally enhanced (LE) generative adver-

sarial network (GAN), training four models for each subtask.
The models consisted of a 3D patched-based generator and a
mixture of 3D and 2D patch discriminators (Isola et al., 2017).
The generator loss consisted of the L1 loss with a weight of
100 and an adversarial loss (MSE) with a weight of 1. The
team included different model architectures for the generator,
including ResNet (Johnson et al., 2016), UNet (Ronneberger
et al., 2015), and DynUNet (Isensee et al., 2019). Two architec-
tures were considered for the discriminator, including a patch
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discriminator (PatchD) (Isola et al., 2017) and a LE discrim-
inator (LED) combining a 3D and a 2D PatchD. Specifically,
task 1 pelvis used the ResNet generator and LED, and took in-
puts of 256 × 256 × 56 voxels. The other three subtaks used an
ensemble of three model architectures, presented as ‘generator
& discriminator’ in the following. Task 1 brain considered 1)
ResNet & LED with an input size of 256 × 256 × 56 voxels, 2)
ResNet & PatchD with an input size of 256 × 56 × 256 voxels,
and 3) ResNet & LED with an input size of 56 × 256 × 256
voxels. Task 2 pelvis used 1) DynUNet & PatchD with an in-
put size of 128 × 128 × 128 voxels, 2) ResNet & LED with an
input size of 256 × 256 × 56 voxels, and 3) UNet & PatchD
with an input size of 448 × 448 × 64 voxels. Lastly, task 2
brain used ResNet & LED with three different input sizes of
256 × 256 × 56, 2) 256 × 56 × 256, and 3) 56 × 256 × 256
voxels. MRI data were preprocessed by histogram matching
with a random MRI sample, N4 bias field correction, smoothing
with a gradient anisotropic diffusion filter and applying the pro-
vided body mask. In addition, the arms on the pelvic MRI were
removed using a 2D-connected component algorithm. CBCT
data were preprocessed with lower-bound intensity scaling (0
to -1024), applying the provided body mask, and clipping in-
tensities to [−1000, 3000] HU. A thresholding algorithm was
also applied, followed by denoising using a 2D connected com-
ponent algorithm to remove bright spots surrounding the body
in the pelvis CBCT data. MRI volumes were normalized to
[−1, 1] at the patient level, while (CB)CT inputs were normal-
ized to [−1, 1] using the fixed range [−1024, 3000] HU. Data
augmentation for both tasks included random patch selection,
affine and elastic deformations, random intensity shifts, random
contrast adjustments, and random histogram shifts. The models
were trained using the Adam optimizer and learning rate 2e−4.
The training was stopped when the validation MAE did not im-
prove for 100 epochs, and the final model was selected based
on the best validation MAE. At test time, output volumes were
generated from patches with a 25% overlap and averaged using
equal weighting. The normalization process was inverted.

1.5. USC-LONI (task 1)

USC-LONI participated in task 1 and employed a 2.5D diffu-
sion model (Ho et al., 2020) followed by two 2D U-Nets (Ron-
neberger et al., 2015) acting as refinement networks. The diffu-
sion model, which considered multiple axial slices, was trained
using the L1 loss and a consistency loss assessing the difference
between adjacent slices in the 2.5D data. One refinement net-
work considered axial slices, while the other considered frontal
slices, and both were trained using the L1 loss. CT data were
normalized to [−1, 1] using a fixed range of [−1024, 3000] HU,
and MRI data were normalized at the patient level to [0, 1]. The
image slices were resized to 256 × 256 for the diffusion model,
which considered 3 consecutive slices. The original size was
used for the 2D refinement networks. No data augmentation
was applied. During inference, overlapping 2.5D inputs were
selected with a stride of 1, and DDIM sampling (Song et al.,
2020) with 20 steps was used for the diffusion model. Over-
lapping slices were averaged, resizing and normalization steps
were reversed, and the two refinement networks were applied to

the 2D axial and frontal slices. The diffusion model was trained
for 140,000 iterations with a batch size of 16, using a learning
rate of 2e−4 for the first 100,000 iterations and 5e−5 for the
last 40,000 iterations. The refinement U-nets were trained for
20,000 iterations with batch size 16 and learning rate 2e−4. All
models were trained with the Adam optimizer.

1.6. UKA (task 1 & 2)

UKA used a multiplanar approach consisting of three iden-
tical 2D U-Net models (Ronneberger et al., 2015) without skip
connections. Separate models were trained for each task and
anatomical region using 2D axial, sagittal, or coronal slices.
The loss function used a masked average of L1 loss and struc-
tural similarity index measure (SSIM) calculated at full and
half resolution. MRI intensities within the body mask were
clipped to the 99th percentile and normalized to [−1, 1] at the
patient level. CBCT intensities were first adjusted to be non-
negative and CBCT and CT images were clipped to [0, 3000]
and [−1024, 3000] HU, respectively. The (CB)CTs were nor-
malized to [−1, 1] using these fixed ranges. To ensure that
the input size was a multiple of 8, zero padding was applied,
and data augmentation consisted of random flipping. At test
time, horizontal and vertical flipping were applied to each in-
put slice, and the predictions were flipped back and averaged
with the unaugmented prediction. Finally, the multi-plane 2D
predictions were averaged, and the intensities were rescaled to
[−1024, 3000] to produce the final 3D sCT. The models were
trained using the AdamW optimizer with a 1e− 4 learning rate.
An early stopping criterion was employed to terminate the train-
ing process when the validation loss did not decrease for five
epochs. The epoch with the lowest validation loss was selected
for inference.

1.7. PSICPT AI4PT (task 1)

Team PSICPT AI4PT participated in task 1 for which they
employed a 2.5D patch-based nnU-Net (Isensee et al., 2021)
for both regions separately. The models were trained using
the L1 loss. MRI inputs were linearly normalized at the pa-
tient level, while CT inputs were normalized using the fixed
range of [−1000, 2000]. For training, 64 sampling planes of
4×128×128 voxels were randomly sampled for each patient by
applying rotation, flipping, and random clipping. At inference
time, patches overlapping by 2 × 64 × 64 voxels were selected,
and overlapping regions were averaged. Furthermore, the CT
normalization procedure was reverted to result in an sCT in HU.
The models were trained for 200 epochs using the Adam opti-
mizer. A warm-up and cosine scheduler adjusted the learning
rate to 2e − 4.

1.8. Breizh-CT (task 1 & 2)

BreizhCT participated in both tasks using a pix2pix model
(Isola et al., 2017) with a six-block residual network (He et al.,
2016) generator and a patchGAN discriminator (Isola et al.,
2017). Tasks 1 and 2 utilized a 2D and 3D patch-based model,
respectively, and two separate models were trained for the brain
and pelvic regions. The loss function combined the cGAN
loss (Mirza and Osindero, 2014) and a custom perceptual loss
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(Johnson et al., 2016) using the ConvNext-tiny architecture (Liu
et al., 2022c) pre-trained on ImageNet. The perceptual loss con-
sisted of a style term and a content term, and for both tasks, the
style term was computed by comparing sCT and CT; for task
2, the content term was also computed by comparing sCT and
CBCT. The perceptual loss leveraged paired training data but
without direct voxel-wise supervision between sCT and CT to
avoid registration inaccuracies. Preprocessing involved adjust-
ing CBCT intensities using histogram matching with the ground
CT during training and the CT from the training set with the
highest mutual information during testing. (CB)CT intensities
were clipped to [−1024, 3000] HU and divided by 1000, and
MRI intensities were clipped to [0, 2000] and divided by 1000.
No data augmentation was applied. The model input sizes for
task 1 were 2D patches of 224 × 224 pixels for the pelvis and
168 × 168 pixels for the brain, and the input sizes for task 2
were 3D patches of 32 × 224 × 224 voxels for the pelvis and
66 × 168 × 168 for the brain. For training and testing, patches
were selected with a stride equal half the patch. Postprocessing
involved taking the median of overlapping regions, reverting
preprocessing steps, and clipping to [−1024, 3000]. The mod-
els were trained for 200 epochs using the AdamW optimizer
with a constant learning rate of 1e − 4. The epoch with the best
validation MAE was selected for inference.

1.9. SubtleCT (task 1)

SubtleCT participated in Task 1, using a custom 2.5D U-Net
(Ronneberger et al., 2015) with residual blocks (He et al., 2016)
replacing the convolutional blocks. They adopted a two-stage
approach where the model was first trained with an enhanced
CT (eCT) and then with the ground truth CT. The model used
the L1 loss in combination with the SSIM loss, and two identi-
cal models were trained, one for the brain and one for the pelvis.
The eCT was created by setting the window width/level of the
CT to 1000/350 HU. MRIs were normalized using min-max
normalization at the patient level, while CT and eCT were nor-
malized using fixed ranges of [−1024, 3000] and [−150, 850]
HU, respectively. No data augmentation was applied. Input for
the model consisted of five adjacent slices, which were padded
to a size of 288× 288 voxels for the brain and 512× 512 voxels
for the pelvis. During inference, the normalization and resizing
procedures were reversed. Both models were trained for 200
epochs, with the first 100 epochs devoted to the first stage, and
the following 100 epochs to the second stage. The Adam op-
timizer was used with an initial learning rate of 1e − 4 and an
adaptive learning rate decay scheduler. The epoch with the best
validation peak signal-to-noise ratio (PSNR) was selected for
inference.

1.10. MedicalMind (task 2)

MedicalMind implemented two 2D models inspired by
multi-scale gradients (MSG)-GAN (Karnewar and Wang, 2020)
for task 2: Model-Brain and Model-Pelvis. The generator was
a U-Net (Ronneberger et al., 2015) with a ResNet-50 encoder
(He et al., 2016) and a decoder that included an AdaIn block
(Karras et al., 2019) before consecutive convolutions. The gen-
erator predicted an sCT at five different resolutions, and the loss

considered MAE and MSE for each resolution. The discrimi-
nator was similar to a VGG network (Simonyan and Zisserman,
2014) but considered all five resolutions as input, concatenated
the low-resolution inputs with the down-scaled large-resolution
features, and used the BCE loss. Preprocessing involved resiz-
ing 2D axial slices to 512×512 voxels for both brain and pelvis,
clipping CT intensities to [-1000, 2048] HU, and no normal-
ization was applied. During training, random rotation, scale,
shift, and flip operations were used to augment the data, and
at test time, the sCT with the largest resolution was used and
resized back to the original input size. Intensities outside the
body mask were set to -1000 HU, and no other postprocessing
steps were applied. Both models were trained for 106 epochs
using the Adam optimizer with an initial learning rate of 6e−4
and a StepLR scheduler.

1.11. mriG (task 1)

Team mriG employed a patch-based 3D U-Net (Ronneberger
et al., 2015) for task 1 for both regions separately. A com-
bined L1 and SSIM loss was used for training. For prepro-
cessing, a combination of rigid (for bones) and deformable (for
soft tissue) image registration techniques (Klein et al., 2009)
was used. Registration for the pelvis cases was guided by bone
segmentations (Kuiper et al., 2021), with the individual bones
segmented using the method outlined by Liu et al. (2021). MRI
inputs were normalized to [−1, 1] on a case basis using the min-
imum value and the 99th percentile, while CT inputs were first
made non-negative and then divided by 3000. The data were
also reordered to the canonical orientation. Data augmenta-
tion included spatial (random zoom and rotation) and intensity-
based (random contrast adjustments) augmentations. Addition-
ally, patches of 96 × 96 × 64 voxels were sampled randomly
during training. During inference, a sliding window approach
was used with half-overlapping patches in each dimension, and
Gaussian weighting was applied to the edges. Furthermore, the
CT normalization procedure was reverted to result in an sCT
in HU. The models were trained with the AdamW optimizer
for 100,000 iterations with a batch size 12. The learning rate
started at 1e − 4 and ended at 1e − 5.

1.12. RRRocket Lollies (task 2)

RRRocket Lollies employed a multi-channel 2D cycleGAN
(Zhu et al., 2017) with an auxiliary fusion network for task 2.
The discriminator networks were as described by Zhu et al.
(2017) with BCE loss; however, the generator architectures
were modified to include U-Net-like long-range skip connec-
tions (Ronneberger et al., 2015) between corresponding down-
and up-sampling convolutional levels to preserve contextual in-
formation. Also, attention gates were added to the skip con-
nections to emphasize salient features propagated forward from
earlier in the network Schlemper et al. (2019). An auxil-
iary fusion network was added onto the cycleGAN to assist
in multi-channel recombination. This had an identical archi-
tecture to the generators but contained only a single resid-
ual block and short-range residual connections across convo-
lutional layers. MSE loss was used for both the generators



E. Huijben, M. Terpstra et al. /Medical Image Analysis (2024) 5

and fusion networks. Individual models with identical architec-
tures were trained for each anatomical region. Preprocessing
involved resizing (nslices × 448 × 448 voxels for the pelvis and
nslices × 304 × 304 for the brain), clipping, outlier correction to
correct high-intensity voxels on the surface of the patient and
multi-channel normalization. The CT and CBCT scans were
normalized into three channels using windowing to enhance the
contrast of anatomical structures. The full width of the image
range [−1024, 3000] HU was captured in channel one. In chan-
nel two, a contrast setting was used to view soft tissue struc-
tures; for the CT, this was [−150, 150] HU and [−100, 100] HU
for the pelvis and brain, respectively. An automated peak finder
was implemented to set the level to the CBCT soft tissue peak,
with a fixed window width of 150 HU or ±100 HU. In the final
channel, the CT and CBCT images were clipped to [600, 3000]
HU to capture information about the high-density structures.
Using min-max normalization, each channel was independently
scaled to [0, 1]. Postprocessing included reversal of preprocess-
ing steps and multi-channel combination. To recombine the
channels, the full-width image (channel one sCT for the pelvis,
fusion network output sCT for the brain) underwent modifica-
tions based on specific conditions: values within the narrow
range ( −150 to 150 HU) were substituted with channel two
values, and values > 600 HU were replaced with channel three
values. No data augmentation was applied during training. The
models were optimized using the Adam optimizer and initial
learning rates of 1e − 4 and 2e − 4 for the generators and dis-
criminators, respectively. After 5 epochs, the learning rate was
reduced to 80% of the learning rate every 2 epochs for both gen-
erator and discriminator. The models were trained for a maxi-
mum of 200 epochs; however, early stopping was applied when
total generator loss did not improve for 20 epochs. The opti-
mal model is chosen based on image similarity metrics (MAE,
PSNR, and SSIM) calculated on train-time validation data.

1.13. SKJP (task 1 & 2)

For both tasks, SKJP employed a 2.5D U-Net (Ronneberger
et al., 2015) as the basis of the synthesis network and replaced
its encoder by EfficientNet-B7 (Tan and Le, 2019) with multi-
slice inputs and single-slice outputs. The same architecture was
used for both brain and pelvis data, but separate models were
trained using the L1 loss. In task 1, data preprocessing involved
histogram normalization and linear scaling of MRI intensities,
while in task 2, linear scaling of CBCT intensities was applied.
Furthermore, axial slices were cropped or padded to 320 × 320
voxels for the brain and 480×640 voxels for the pelvis, with the
model considering three consecutive slices as input. No data
augmentation was performed. During training, 32 2.5D input
volumes were randomly sampled from each 3D volume. The
initial learning rates were set to 1e−3, 5e−4, 1e−4, 5e−5 for
task 1 brain, task 1 pelvis, task 2 brain, and task 2 pelvis, respec-
tively. The model was trained for 100 epochs using AdamW
optimizer, and the learning rate was decreased at every epoch
with cosine annealing. The epoch with the lowest validation
loss was used as the final model.

1.14. Reza Karimzadeh (task 1)

Reza Karimzadeh participated in task 1, employing a 3D
patch-based pix2pix (Isola et al., 2017) with a Swin UNETR
(Hatamizadeh et al., 2021) generator. Two identical models
were trained for the brain and pelvis. The training loss con-
sisted of the L1 loss weighted by the ground truth CT, an SSIM
loss, and an adversarial loss. Preprocessing involved linear nor-
malization to [−1, 1] at the patient level for MRI data and at the
population level for CT data. During training, random patches
of 64× 64× 64 voxels were sampled and augmented using ran-
dom rotations. During inference, patches with 50% overlap
were selected, and the final result was obtained by averaging
predictions from overlapping regions. During postprocessing,
the normalization procedure was reversed to obtain sCT out-
puts in HU. The model was trained for 1000 epochs using the
AdamW optimizer and the fixed learning rate of 1e − 5. The
epoch with the best validation loss was used as the final model
for inference.

1.15. thomashelfer (task 1)

Team thomashelfer only participated in task 1, where they
used different models for brain and pelvis. For the brain, they
employed a 3D latent diffusion model (LDM) (Esser et al.,
2021; Ho et al., 2020), combining an autoencoder consisting
of a U-Net (Ronneberger et al., 2015) generator with a d dif-
fusion model trained on the latent space of the autoencoder. In
addition, ControlNet (Zhang et al., 2023) was used to ensure the
generation of CT images conditioned on the MRI images. The
LDM and ControlNet were implemented using MONAI gener-
ative models (Pinaya et al., 2023). The autoencoder was trained
with a combination of L1 loss, perceptual loss (Zhang et al.,
2018), a patch-based adversarial objective (Rombach et al.,
2022), and a KL regularization of the latent space. The diffusion
model and ControlNet were trained using the losses suggested
by Pinaya et al. (2023). The input data was center-cropped to
192 × 192 × 192 voxels. MRI were normalized by dividing by
3000, and CT images by subtracting −1024 and then by 4024.
No data augmentation was applied. Input images were encoded
into a latent space of 48 × 48 × 48 voxels. At test time, sCT in-
tensities were rescaled to the original range, and no other post-
processing was applied. The autoencoder was trained for 1000
epochs using Adam optimizer with learning rates of 5e − 5 and
1e − 4 for the generator and discriminator, respectively. The
diffusion model was trained for 1000 epochs using AdamW op-
timizer with a learning rate of 2.5e− 5, and the ControlNet was
trained for 500 epochs using Adam optimizer with a learning
rate of 2.5e − 5. The epochs with the best validation loss were
used at test time.

For the pelvis, the team employed a 3D (patch-based) pix2pix
(Isola et al., 2017) with a U-Net (Ronneberger et al., 2015) gen-
erator. The generator loss consisted of the L1 loss with a weight
of 100 and the adversarial loss (BCE) with a weight of 1. The
pelvis data underwent normalization like the brain data, and no
data augmentation was applied. The model processed half of
the 3D input volume at a time, allowing for varying input sizes,
and combined the two halves without overlap. Intensities were
rescaled to the original intensity range to produce the final sCT
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output. The model was trained for 400 epochs using Adam op-
timizer with a learning rate of 1e − 3 for both the generator and
discriminator. The last epoch was used as the final model for
inference.

1.16. X-MAN (task 1 & 2)

X-MAN used a 3D patch-based cGAN (Liu et al., 2022b)
with a nine-block ResNet12 (He et al., 2016) generator and a
PatchGAN (Isola et al., 2017) discriminator for both tasks. One
collective model was trained for each task, combining brain
and pelvis patients, using L1 loss and adversarial loss. MRI
and CBCT intensities were normalized linearly at the patient
level, while CT intensities were not normalized. The resulting
sCT intensities were scaled from [−1, 1] to [−2000, 2000] HU
before calculating the loss. During training, random patches
of 160 × 160 × 32 voxels were selected. Data augmentation
included random intensity shifts between −10% and 10% and
random gamma adjustments with gamma ranging from 0.5 to
1.5. At test time, patches overlapping by 32 × 32 × 8 voxels
were selected using a sliding window, and overlapping regions
were averaged. The models were trained for 100 epochs using
the Adam optimizer with initial learning rates set to 2e − 4 and
linearly decreasing to zero over all epochs.
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