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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Micro- and nanoplastics (MNP) induce
several responses on terrestrial
invertebrates.

• Phenotypic and physiological disorders
were observed after MNP exposure.

• Studies on nanoplastics used mostly
polystyrene beads.

• A standardize protocol should be used to
characterize MNP and their toxicity.
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A B S T R A C T

The increasing accumulation of small plastic particles, in particular microplastics (>1 µm to 5 mm) and nano-
plastics (< 1 µm), in the environment is a hot topic in our rapidly changing world. Recently, studies were
initiated to better understand the behavior of micro- and nanoplastics (MNP) within complex matrices like soil,
as well as their characterization, incorporation and potential toxicity to terrestrial biota. However, there remains
significant knowledge gaps in our understanding of the wide-extent impacts of MNP on terrestrial invertebrates.
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We first summarized facts on global plastic pollution and the generation of MNP. Then, we focused on compiling
the existing literature examining the consequences of MNP exposure in terrestrial invertebrates. The diversity of
investigated biological endpoints (from molecular to individual levels) were compiled to get a better compre-
hension of the effects of MNP according to different factors such as the shape, the polymer type, the organism,
the concentration and the exposure duration. The sublethal effects of MNP are acknowledged in the literature,
yet no general conclusion was drawn as their impacts are highly dependent on their characteristic and experi-
mental design. Finally, the synthesis highlighted some research gaps and remediation strategies, as well as a
protocol to standardize ecotoxicological studies.

1. Plastic-production and environmental pollution

1.1. Plastic manufacturing: facts and figures

Industrialization, demographic growth, and globalisation have
increased the diversity and amount of environmental contaminants
[1-3]. Therefore, concerns about pollution - defined as the presence or
introduction of agent in the environment, their extent and impacts on
the health of organisms and biodiversity in general - have increased over
the years [4–9]. Biodiversity is now threatened by multiple sources of
anthropogenic pollution, including light [10] and noise pollution [11],
chemical pollution of air, water and soil. For this reason, alarming
consequences of humankind resource intensive development on biodi-
versity health repeatedly alert scientists, the public, and authorities
[12-16]. Yet, despite increasing numbers of investigations, research ef-
forts, and regulation tools (e.g. Registration, Evaluation, Authorisation
and Restriction of Chemicals, REACH; EU regulation 2006), the growing
diversity of anthropogenic emissions of environmental contaminants
makes it difficult to assess the potential toxicity of all of them [17].

Plastic-made products, and plastics from personal care products and
cosmetics industry, have rapidly emerged as important sources of
environmental contamination and their degradation into microplastics
seriously impacts biodiversity [18,19]. Due to their increasing use and
their persistence, the prevalence of plastic pollution is growing relent-
lessly and represents a hallmark of the Anthropocene era [20,21]. Since
plastics were discovered in the 1900s, plastic production has increased
over the years, in particular since the second part of the 1950s [22]. In
2022, the global plastic production was estimated at 400.3 Mt (million
metric tons) [23], and it is predicted that production could be doubled
by 2050 [24,25].

Plastics are produced by associating several monomers (ethylene,
propylene, styrene) reacting with a catalyst to form polymers with the

desired physico-chemical features (hydrophobic behaviour, flexibility,
resistance to chemicals, temperature or light / UV, and low weight).
Chemical additives (e.g. plasticisers, flame retardants, metals) are added
to plastics as softeners, colorants, etc.[26]. The physical and chemical
properties of plastics, and the low production cost [27], have made this
material an indispensable element of our every day’s life [24]. Plastics
are highly used by the food industry (Figure A.1, Supplementary ma-
terials) which packages many products with polyethylene (PE) (low--
density polyethylene, LDPE, and high-density polyethylene, HDPE) and
polypropylene (PP). These two polymers alone represent 40 to 45 % of
the global plastic production [22,28]. The rest of the production com-
prises seven other polymers: polyvinyl chloride (PVC, 12 % of the plastic
production), polyethylene terephthalate (PET, 6 %), polystyrene (PS, 5
%), polyurethane (PUR, 5 %), other thermoplastics (3 %) and poly-
carbonate (PC) and polyamide (PA) for 1 % of the plastic production
[28,29](Fig. 1).

1.2. Low-recycling rates and waste mismanagement of plastic-made
products

The massive plastic production combined with low-recycling rates
and waste mismanagement inevitably result in millions of tons of plastic
being released into the environment. Worldwide, Ryberg et al. [28]
reported that 6.2 Mt of macroplastics (>5 mm) were disseminated
without regulation in the environment in the year 2015. This estimation
is in line with Jambeck et al. [30] who suggested that 4.8 to 12.7 Mt of
land-based plastic sources entered annually in the oceans, additionally
highlighting that more than 80 % of marine plastic pollution has a
terrestrial origin [31]. The global amount of plastic waste produced in
the period 1950–2015 was estimated at 6300 Mt, with only 9 % of this
total amount being recycled or reprocessed into a secondary material,
and 12 % destroyed thermally by combustion or pyrolysis (extraction of

Fig. 1. The fate of plastics in the environment. Data were obtained from Plastics Europe [23]. HDPE: High density polyethylene, LDPE: Low density polyethylene,
PAHs: Polycyclic aromatic hydrocarbon, PET: Polyethylene terephthalate, PP: polypropylene, PS: Polystyrene, PUR: Polyurethane, PVC: Polyvinyl chloride.
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fuel from plastics waste) [24]. The remaining 79 % of plastic waste was
discarded in managed systems (sanitary landfills), or left uncontained in
open dumps, or in natural environments [24,32]. The low proportion of
recycled plastics and their long degradation time greatly increase the
likelihood of their disposal in landfills, ultimately leading to contami-
nation of adjacent habitats and biospheres [33], impairing organism
health and ecosystems’ functioning [34,35]. If the legislation about
plastic production, use, and management remains unchanged, envi-
ronmental plastic pollution will rise continuously in the next decades
[27]. In a business-as-usual scenario, plastic pollution transfer to the
environment will double by 2040 [32], mirroring the expected plastic
production at the horizon 2050 [25]. Plastic quantities may even in-
crease by 2.8 and 2.6-fold in terrestrial and aquatic environments,
respectively [32], further increasing toxicity hazards for biodiversity.

1.3. Aims and objectives of the review

To date, the necessary data on the effects of plastic debris on
terrestrial invertebrates remains insufficient in terms of taxonomic and
geographic coverage [35]. To get a better view of the existing infor-
mation on the topic, we evaluate the effects of micro- and nanoplastics
(MNP) and identify knowledge gaps by compiling and synthesising the
available literature. By providing a broad, overarching perspective that
spans developmental, behavioural and trophic ecology, life traits,
physiology in an integrative way across multiple invertebrate taxa with
particular emphasis on terrestrial arthropods, this review amalgamates
information on the wide range of MNP-induced effects on biological
functions and organism fitness, and the underlying physiological and
molecular disorders. First, we briefly present the types and sources of
plastics which are accumulating in the environment. Second, we
examine the underlying physiological and molecular impacts of MNP.
Third, we explore the consequences of MNP on feeding and reproduction
activities, and mobility in terrestrial invertebrates, anticipating impacts
on behavioural patterns, vital processes and health of these organisms.
In every section, scientific observations are compared regarding plastic
size (microplastics (MP), nanoplastics (NP) and fibers), polymer type
and conditions of exposure, with regard to the characteristics of the
studied organism. This approach enables a deeper understanding of
plastic hazards by facilitating more effective comparisons, thus high-
lighting similarities and differences of the impacts of MNP for organ-
isms. To structure the sections, examples are grouped by taxa (whenever
possible), starting with below-ground invertebrates and ending with
above-ground invertebrates. The compiled information offers an over-
view of our current knowledge of plastic impacts on the physiological
reactions and biological processes in terrestrial arthropods, and iden-
tifies knowledge gaps. In the final section, we offer recommendations for
forthcoming efforts, emphasising crucial aspects that require immediate
attention. Inspired by the studies of Jemec Kokalj et al. [36,37], we
advocate for the crucial need of having a standardized set of criteria to
harmonize protocols across studies, enabling meaningful comparisons.

2. The journey of plastic-made products in the environment:
types, sources and fate of plastics

Two categories of micro (MP, 1000 nm - 5 mm [38]) and nano-
plastics (NP, 1–1000 nm [38,39]) can be found in the environment:
primary and secondary MP and NP. Primary MNP are synthesised for
industrial purposes, and used for industrial air blasting, cosmetics or
pharmaceutical products [40,41]. They are generally monodispersed,
round and made from the same polymer. Secondary MNP are particles
resulting from the fragmentation and degradation of macroplastics (>
5 mm) [42]; they can be oxidised, hydrolysed, fragmented and bio-
degraded in the environment [43,44] (Fig. 1). Secondary MP include
fibers deriving from the degradation of synthetic textiles and having
diameters and lengths ranging from 6 to 175 µm and 250 µm to 5 mm,
respectively [45,46]. Once in the environment, the surface of plastic

debris is weakened by photo-oxidation with ultraviolet (UV) radiations
before plastic debris are fragmented into smaller particles by the action
of physical forces, including movements of water, wind, pressure or
mechanical work of the soil, and leading to the surface erosion of the
debris [47,48]. Biological processes (e.g. bio-fragmentation) by micro-
organisms or animals may also lead to the partial degradation and
fragmentation of plastic debris. Bacteria, such as Brevibacillus sp. or
Pseudomonas sp., and fungi have long been documented and charac-
terised as plastic biodegraders by forming a biofilm on their surface [43,
49-51]. Then, the fragmented small-sized plastic debris can be ingested
by aquatic and terrestrial organisms, and, by a combination of friction
through digestive gut movement and enzymes, debris are further frag-
mented into smaller particles [52,53,48]. All these processes contribute
to formation of MNP being highly polydisperse in shape, size, and
characteristics originating from different polymers.

There are several reasons contributing to environmental MNP
pollution, including deficiencies in their collection and processing, or
final discarding of plastic waste [28,30]. Domestic products in the form
of shopping bags, food wrappers, bottles and packaging represent a
significant part of plastic wastes which may be improperly treated and
pollute the environment [24]. In addition, agricultural mulch film,
sewage sludge and certain organic soil conditioners are contributing
directly to the release of MNP in terrestrial environments [54]. For
instance, a study conducted in China estimated that 10–30 % of the total
amount of MP found in soil came frommulch films liable for specific soil
pollution by PE and PVC materials [55]. Sewage sludges, which are
residues of wastewater treatment, are also commonly added to agri-
cultural soils to provide plant nutrients. This procedure significantly
contributes to contaminating soil with a large variety of MNP [56]:
Nizzetto et al. [57] estimated that 63,000–430,000 tons and 44,
000–300,000 tons of microplastics could be present in European and
North American farmlands, respectively, through the application of
urban sewage sludge. Worst, the quantity of MNP originating from
wastewater sludges might be underestimated due to limitations in
identification methods, which would drastically increase the actual
measured quantity of particles introduced in the environment [58].
Finally, the atmosphere serves as an important source of MNP transport
and dissemination [54,59,60]. Dris et al. [61] reported that 29–280 MP
items/m2/day in Paris result from atmospheric deposition. Altogether,
these sources of transfer of plastic debris to the environment progres-
sively enrich soils with MNP, in turn increasing the likelihood of their
ingestion or inhalation through atmospheric exchanges by terrestrial
organisms [62].

Substantial quantities of microplastics have already been measured
from soil samples [63] all around the world: in China, 40 mg/kg of MP
with a size between 0.9 and 2 mm were found in agricultural soils
continuously covered by mulch films over several years [64]. In Ger-
many, 0.34 microplastics particles per kg of dry soil were quantified in
agricultural soils [65], and amounts up to 67,500 mg/kg of MP were
reported from soils near an industrial area in Australia [66].

The detection and quantification of MP in complex matrices such as
soil or living organisms was recently improved [67]. In particular,
scanning or transmission electron microscopy can be used to visualize
MNP and characterize their shape in the studied matrices [68]. Quan-
tification of MP, assessment of chemical and polymer nature can be
achieved by vibrational spectroscopy (e.g. Fourier-transformed infrared
spectroscopy (FTIR), Raman spectroscopy, hyperspectral imaging), or
by Pyrolysis gas chromatography-mass spectrometry (Py-GCMS) [54,
59]. While these techniques are reliable for the identification of
man-made MP, we are still missing suitable techniques for characteri-
sation of NP in environmental matrices. Dynamic light scattering (DLS)
and nanoparticle tracking analysis (NTA) can be performed for assessing
NP size and particle concentration [69]. Moreover, Py-GCMS was
recently developed to detect NP and determine polymer natures in
complex matrices [69,70]. Despite these advancements, there is still no
reliable and harmonized procedure to quantify NP from environmental
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samples. Once transferred in the environment, MNP are easily trans-
ported by wind, atmospheric streams, water run-off, or animals [71],
allowing them to be dispersed to other compartments such as oceans,
groundwaters or deep soil layers [72]. In the soil, MNP act as active
substances interfering with the physicochemical and hydrological
properties of the ecosystems, including soil aggregation forming, pH,
water retention and availability of nutrients, thus affecting biodiversity
[35].

3. Plastic chemical additives increase toxicity hazards for
biodiversity

The toxicity of MNP can be increased by plastic additives [73],
including flame retardants, biocides, metals, or the plasticizers, such as
Bisphenol A (BPA) and Di(2-ethylhexyl) phthalate (DEHP), which have
non-covalent bonds that facilitate their subsequent release into the
environment or directly into the organisms [74]. BPA and DEHP are
widely recognised for their endocrine disrupting effects [75-77], and for
their carcinogenic effects [78]. Additionally, plastic debris can aggre-
gate other contaminants (co-contaminants), such as organic pollutants
(pesticides and pharmaceuticals), (heavy)metals or metalloids. Indeed,
MNP have a large specific surface area, a small size, are merely lipophilic
and frequently negatively charged [79]. These features increase their
capacity to adsorb and carry pollutants, in particular pesticides such as
flubendiamide and diflubenzuron [80,81], as well as metals, such as Pb
[82]. Thus, MNP contribute to increase the bioavailability and transfer
of pollutants in soils and in many terrestrial organisms [79]. The affinity
between MNP and contaminants increases with decreasing particle size
as smaller particles have a larger specific surface area which enhances
their reactivity with both organic and inorganic pollutants [83]. Toxicity
of highly hazardous compounds, such as atrazine or cadmium, increased
in mixture with MNP [84,85]. Such pollutant mixtures greatly reduce
survival, feeding, immunity and antioxidant capacity of invertebrate
species like annelids [86,87].

Knowing that most plastic waste ends up in terrestrial environments -
and in the oceans for a significant fraction of the debris - we need in-
formation of their effects on terrestrial species, and their transfer within
the trophic chain including humans [88]. Actually, the research efforts
have mainly focused on plastic pollution in the oceans [89,90]. For
instance, the meta-analysis of [91] on polystyrene MNP reported 110
articles on aquatic invertebrates, and almost three times less (40) in
terrestrial invertebrates. Yet, as ubiquitous components of the terrestrial
environments, MP and NP, their additives and potential
co-contaminants, may represent a non-negligible part of terrestrial in-
vertebrates’ diet [92,93]. A large number of invertebrates ingest plastic
debris when feeding, as MNP have been identified in half of the studied
macroinvertebrate species [94].

4. Compilation of the literature and visualisation of the current
knowledge

To compile the existing information on the effects of MNP on
terrestrial invertebrates, we employed the following keywords for con-
ducting the literature search: “microplastics”, “nanoplastics”, “micro
(nano)plastics”, “terrestrial”, “insect”, “invertebrate”, “arthropod”,
“organisms”, “effects”, “impacts”, “ecotoxicology”, “phenotypic”,
“physiology”, “metabolism”, “reactive oxygen species”, “oxidative
stress”, “hormone”, “excretion”, “digestion”, “reproduction”, “fecun-
dity”, “lifespan”, “development”, which allowed compiling review and
research articles, book chapters and Ph.D. dissertations from several
databases, including SCOPUS, Web of Science and Google Scholar. As
the existing literature on above-ground insects remains limited to few
taxa, we have incorporated knowledge on below-ground invertebrates
(nematodes, earthworms, collembolans, enchytraeids, isopods) so that
we could provide a more comprehensive overview of the results ob-
tained so far, and the grand challenges and research avenues that should
be primarily explored.

The available information was extracted according to the type (MP,

Fig. 2. Visual representation of the information gathered from the literature search. Investigations on the effects of plastic debris on terrestrial invertebrates rep-
resented 53.1 %, 41.7 % and 5.2 % for microplastics, nanoplastics, and fibers, respectively. The first line of pie charts shows the proportion of studies using plastic
fragments, beads or fibers. The second and third lines of pie charts summarize the type of polymers and the type of organisms considered in the studies for each
category of plastic debris (MP, NP and fibers). HDPE: High density polyethylene; LDPE: Low density polyethylene; PA: Polyamide; PE: Polyethylene; PES: Polyester;
PET: Polyethylene terephthalate; PLA: Polylactic acid; PP: polypropylene; PS: Polystyrene; PVC: Polyvinyl chloride.
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NP or fibers), shape (beads, fragments or fibers), polymer, particle size,
concentration, studied organism, and exposure duration. Table A.1
compiles this information and the associated major findings. Fig. 2
synthesises the distribution of particle characteristics (shape and poly-
mer) and the studied taxa according to plastic types (MP, NP and fibers).
Some disparities and research gaps were further emphasized in Fig. 2,
evidencing a scarcity of information for the effects of fibers (only 5.2 %
of the available literature on the topic). For NP-based investigations,
knowledge disparities were also striking, as a significant proportion of
research articles focused on the study of the effects of polystyrene beads
on nematodes (Fig. 2, Table A.1 (Supplementary material)).

The literature search additionally allowed the identification of the
major endpoints which are currently used in investigations assessing the
toxicity of MNP on terrestrial invertebrates. Endpoints assessing physi-
ological effects included accumulation (and tissue presence/damage),
microbiota, oxidative stress, genotoxicity (DNA damages and gene
expression), immunotoxicity and neurotoxicity. Those assessing bio-
logical effects of MNP included measurements of feeding (and food
intake and excretion), development (and body mass and morphometry),
survival (and mortality), reproduction, locomotion (and behaviour).
Then, for each article, the following scores were used: (a) 0 when the
endpoint was not studied, (b) 1 when it was explored but no effect was
observed, (c) 2 when the endpoint was explored and was significantly
affected by MNP. In some investigations, different plastic types were
studied (for example, MP, NP or fibers) and were treated as independent
entities in our exploration of the literature. When several exposure
conditions were explored in the study, as for instance examination of the
effects of exposure to several polymer types, sizes or concentrations,
these conditions were considered dependent, and thus counted as a
single article for the endpoints (See Supplementary materials Table B).
This scoring code allowed us to visually represent the existing infor-
mation on the effects of MNP on terrestrial invertebrates by representing
for each major endpoint the percentage of articles where an effect (or
absence of effect) was observed.

5. Plastic particles ingestion, internalization and diffusion in
terrestrial invertebrates

Once in the environment, some of the plastic fragments may be
ingested unintentionally by the terrestrial fauna. Plastic consumption
may have wide-reaching consequences for the organisms, from abrasion
of intestinal tissue to diffusion through the intestinal wall [95,96].

5.1. The routes of MNP entry in terrestrial invertebrates

Ingestion and inhalation are the two main routes for MNP entry in
the body of terrestrial invertebrates. The presence of plastic particles in
atmospheric air has been reported in several recent studies [97-99]
making inhalation a prominent source for respiratory contamination in
animals. Inhaled MNP are recognized to be harmful for human health
[100], and adverse effects were also reported in mice [101,102]. Sur-
prisingly, contamination by inhalation, and subsequent toxicity from
air-breathing to terrestrial invertebrates has remained understudied.

So far, ingestion represents the main studied mechanism of plastic
uptake by terrestrial invertebrates, and the journey of MNP through
different digestive compartments (digestive tube and intestine) has been
studied by fluorescence or confocal microscopy [103-105]. These tech-
niques revealed the presence of PS MP (1.3 µm) in the intestine of Eisenia
fetida at concentrations of 0.10 µg/mg [106]. Uptake and elimination of
PS MNP from soil in E. fetida was size-dependent: the smallest particles
(70 nm) were resorbed in the head region, bigger debris (1 µm) were
excreted, and the biggest ones (10 µm) remained in the gut lumen [107].
Moreover, quantities of PS NP ranged from 2.09 to 3.8 ng/larva in the
gut of MP-fed Tenebrio molitor, declined to 0.11 - 0.63 ng in glands, but
were not detected in the excrements [108]. In the terrestrial snail
Achatina fulica, the transfer of PET fibers was detected from the crop to

the stomach [105], and similar findings were made in the giant snail
Achatina reticulata [104]. Finally, polystyrene MP of 2 µm were also
found in different gut portions of the fruit fly Drosophila melanogaster
[109] (Table A.1), and PE MP were found in gut portions of the black
soldier fly (Hermetia illucens) larvae [110].

In many instances, terrestrial invertebrates ingest MNP when
feeding, as illustrated in the previous examples, especially for soil-
dwelling invertebrates which ingest contaminated litter by plastics
[111]. Many plastic fragments contain pigments, and the size and colors
of MP can make them resemble potential prey. As a result, invertebrates
may also confuse MP with prey, thus increasing the likelihood of plastic
ingestion by predatory insects. To our knowledge, there is no study
investigating this hypothesis for terrestrial species, but it was observed
for aquatic invertebrates which fed more on MP than natural prey in
plastic-contaminated environments [112]. Carnivorous species may be
further exposed to MNP when ingesting plastic-contaminated preys, as
observed for spiders eating plastic-contaminated mosquitoes [113].
These ingestions could hint on a possible accumulation and transfer
within food webs. Such transfer was also alerted in a ‘backyard’ study,
where uptake of MNP by earthworms and transfer to chicken was evi-
denced [114].

Finally, ingestion of MNP by invertebrate can occur when consuming
on plants and vegetables. MNP uptake by terrestrial plants has recently
gained attention with the discovery of accumulation and translocation
of plastic particles in different plants structures [115-117], placing
herbivorous and omnivorous invertebrates at exposure risk when
feeding on contaminated plants and fruits. Under controlled conditions,
polystyrene NP transfer from plants to snails was evidenced, with plastic
debris having ecotoxicological effects in both organisms [118,119].

5.2. Cellular and tissular impacts, diffusion of MNP in the body

First, plastic particles may damage organism through the abrasion of
invertebrates’ skin epidermis. This injury, caused by mechanical friction
of MNP against the epidermis, and was reported in earthworms whose
epithelium was exfoliated in presence of MP. Microscopic observations
of earthworm skin further revealed the existence of epidermis lacera-
tions, tissue loss and abrasion at high LDPE MP concentrations (1.5 g/kg
dry soil), while no physical damages were noted at lower concentrations
(0.1 and 1.0 g/kg dry soil) [120]. Interestingly, the physical injuries
were only mentioned for microplastics. It is likely that the smallest-sized
plastic debris (NP) caused less surface damage, while the likelihood of
their internalization into the animal’s body should be way higher [93].

After ingestion, the intestinal epithelium represents the first physical
barrier that may limit the diffusion of MNP within the individual’s body.
In earthworms, the size of intestinal cells and their nuclei were altered
and became irregular in individuals that consumed polystyrene MP
[106]. The histopathological damages were dose-dependent, with
higher changes at higher MP concentrations [106,121]; alterations were
also size-dependent with largest beads (1300 nm) inducing more dam-
ages in comparison to smaller ones (100 nm) [106]. With larger PS or PE
MP, investigations evidenced detachment of gut epithelium, inflamma-
tion, fibrosis and congestion [106,121]. Plastic particles have the po-
tential to alter the epithelium barrier: terrestrial snails exposed to high
concentrations (0.14 and 0.71 g/kg dry soil) of MP suffered from
stomach and intestinal damages, in particular shortening or breakage of
intestinal villi [105].

The intestinal epithelium is not impermeable to MNP intrusion.
Polystyrene MP and NP may even increase the permeability of intestinal
epithelial tissues, as demonstrated in Caenorhabditis elegans [122,123].
The internalization of MNP through intestinal cells has been evidenced
in a range of terrestrial invertebrates such as earthworms, spiders, flies
and silk moths [124,113,109,125,126]. Tang et al. [126] observed the
adsorption of polystyrene NP (90–110 nm) in the intestinal cells and in
the chloragogenous tissue of E. fetida. Similarly, polystyrene and PET NP
were internalised by D. melanogaster into enterocytes, after they were
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transported by extracellular membranes. NP were also observed in
cytoplasmic cells (near mitochondria) and in the haemolymph of
D. melanogaster [103,124]. Importantly, most research focused on NP as
their smaller size facilitates their translocation among body compart-
ments [127]; however, microplastics of 2 µm were also detected in flies’
bodies [109].

Plastic fragments can subsequently accumulate in different tissues
and organs: MNP were detected in Malpighian tubules of flies and
moths, potentially impacting animal’s excretion [109,125]. Sexual or-
gans and gametogenesis processes were also affected. Polystyrene NP
were observed in flies’ ovaries exposed to 50 and 100 mg/L PS NP,
increasing apoptosis and cell deaths in the oocytes of the F5 generation
[128]. Similarly, polyethylene microplastics (1000 mg/kg dry soil)
impaired spermatogenesis in Eisenia andrei, especially the arrangement
of sperm bundles in the seminal vesicles [129]. More precisely, Yu et al.
[130] observed apoptotic germ cells in C. elegans, and even more sur-
prisingly, germline apoptosis was also detected in offspring from F1-F4
generations after a single maternal exposure.

6. Plastic-induced physiological disorders in terrestrial
invertebrates

MNP diffusion among body compartments, tissues and cells may lead
to physiological damages and disorders. The major physiological end-
points measured for examining the presence (accumulation), effects - or
the absence of effects - of MNP in terrestrial invertebrates are presented
in Fig. 3.

6.1. Gut microbiota

The gut microbiota has essential roles in energy metabolism, devel-
opment and immunity [131-133]. As diet quality can affect gut micro-
biota composition and functionality, ingestion of MNP-contaminated
food and its passage through the digestive tract can influence the
microbiome [134]. Microbial community diversity and richness can be
approximated with the Chao and the Shannon index, respectively [135].
Both indices were decreased in E. fetida exposed to PE and PLA MP
[136]. Similar conclusions were drawn by Tang et al. [126] after PS NP
ingestion. At the microbial phylum level, the abundance of Proteobac-
teria was decreased while Firmicutes were increased in comparison to
the control group [126]. Similar decreases in microbial community di-
versity and richness were also measured in E. crypticus exposed to PS NP
[137], in F. candida exposed to PE MP [138,139] and in A. mellifera
exposed to PS MP [140]. These studies indicate that MNP ingestion led

to a shift in microbiome structure, resulting in changes in predominant
phylum [141,138,126,140,136,137]. In sum, MNP ingestion can cause
dysbiosis, potentially leading to physiological disorders and impacts at
individual scales.

6.2. Neurotoxicity

MNP were reported to provoke neurodegeneration damages when
invertebrates are exposed to plastic contamination. For instance,
transgenic GFP C. elegans strains exposed to polystyrene MP (1 µm)
revealed a downregulation of gene expression, involved in cholinergic
synaptic transmission, resulting in damage in cholinergic and GABAer-
gic neurons [142].

Neurotoxicity effects can also be assessed through measurements of
the activity of acetylcholinesterase (AchE), the enzyme responsible for
the cleavage of the neurotransmitter acetylcholine from its postsynaptic
receptor in invertebrates and vertebrates. PE and PLA microplastics
(100–200 µm) caused AchE stimulation at high concentrations in
earthworms [136]. LDPE exposure, however, either inhibited or stimu-
lated AchE activity in earthworms depending on the concentration and
time of exposure [120]. These results clearly highlighted neurotoxicity
through MNP ingestion and may partially explain the changes in loco-
motion behaviour at individual scale. Importantly, neurotoxicity
induced by MNP is mainly studied on aquatic organisms. Thus, more
research is needed to explain the neurodegeneration of terrestrial in-
vertebrates to clarify the underlying mechanisms.

6.3. Oxidative stress

Under normal conditions, production and degradation of ROS are
balanced. Exposure to MNP, as with almost all xenobiotics, can strongly
alter the redox balance, thus leading to oxidative stress, loss of redox
homeostasis and eliciting antioxidant defences [143,144]. The effects of
MNP on the oxidative system were frequently reported in the literature,
with almost half of the articles studying the effects of MP, NP or fibers on
terrestrial invertebrates focusing on antioxidant responses (Fig. 3).

ROS imbalance measured from terrestrial invertebrates which
ingested MNP may originate from three different pathways: (i) when
ageing into the environment, photooxidation and ultraviolet light ra-
diation lead to weathering of MNP, accompanied with the formation of
free radicals at the surface of the plastic debris which react with oxygen
[145]. When ingested by organisms, these plastic debris increase
extracellular ROS production [143], (ii) less or non-altered MNP induce
intracellular increase of ROS production [142], and (iii) ingested MNP

Fig. 3. Physiological effects of fibers, micro- and nanoplastics reported in the available literature. Bioaccumulation, microbiota, neurotoxicity, oxidative stress,
genotoxicity, or immunotoxicity incurred by microplastics, nanoplastics and fibers exposures to terrestrial invertebrates were evaluated as physiological endpoints.
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are recognised as foreign compounds by the organisms’ immune systems
and internalised through cell membranes [146]; the neutralisation
process is associated with the production of high quantities of ROS. The
membrane permeability is also increased through the transfer of MNP
which may facilitate the transfer of ROS into cellular compartments
[122,123].

The amount of oxidative stress induced by MNP can be measured by
considering intracellular ROS amounts, ROS-induced damages (protein
carbonylation, lipid peroxidation, DNA damages), and/or by assessing
the antioxidant system which depends on the amount of antioxidant
molecules and on the activity of several antioxidative enzymes [147].
The oxidative system includes enzymes as the superoxide dismutase
(SOD), catalase (CAT), glutathione S-transferase (GST), glutathione
peroxidase (GPx) and peptides as metallothionein (MT), glutathione
(GSH) or vitamins E and C, as well as xanthophylls [144,148]. MNPwere
effectively reported as oxidative stress inducers in terrestrial in-
vertebrates [124,120,106,149,142,150,105,136,122]. For instance, the
exposure to polystyreneMNP (100, 500 nm and 1, 2, 3 µm, at 1 mg/L for
3 days) induced the expression of a GST enzyme - a key enzyme involved
in cellular detoxification - in C. elegans [142]. ROS production was also
increased after ingestion of PS MP (from 1 to 100 µg/L) by the nematode
[122]. Interestingly, when E. fetidawas exposed to PE and PLAMP (from
0.5 to 14 % w/w), GST levels were first decreased after 14 days for both
polymers, before being increased after 28 days of exposure [136]. The
levels of CAT and SOD enzymes, which are key enzymes for scavenging
ROS, were also affected after MNP ingestion by E. fetida. These responses
were modulated by MNP concentration, with higher activities being
measured at higher MNP concentrations [136], and was also increased
with MNP weathering [84]. In earthworms exposed to 550–1000 µm
LDPE MP, antioxidant responses were greater with aged-MP compared
to virgin-MP [84]. However, MP did not provoke oxidative stress in the
digestive gland of the snails [104]. Similarly, no changes in ROS pro-
duction was measured in the silkworm moth Bombyx mori while SOD
activity was slightly reduced (the activity of GST and CAT remained
unchanged) [125]. So far, the existing knowledge suggests that antiox-
idant responses highly depend on the concentration and duration of
exposure, size of the particles (smaller-sized particles generate more
ROS), and their weathering state [84,143,142].

6.4. ROS-induced damages: lipid peroxidation and DNA damages

When the capacity of the antioxidant system is no longer sufficient
for scavenging ROS, the resulting excess of oxidative stress can alter
macromolecules, i.e. DNA, lipids, and proteins. Lipid peroxidation re-
sults from the free radical-mediated alteration of polyunsaturated fatty
acids, thus damaging cell membrane and lipid-containing structures
[151]. The oxidation of lipid-membranes changes their structures [152].
This increases membrane permeability and alters homeostasis of the
cell, then increasing the possibility for ROS and other contaminants to
enter the cells [152]. Once lipids are peroxidised, aldehydes, in partic-
ular malondialdehyde (MDA), are formed as secondary peroxidation
products, and can be used as reliable biomarkers of oxidative stress
[153] (Table A.1).

In E. fetida exposed to PE and PLA MP for 14 days, MDA levels were
significantly higher compared with controls [136]. Interestingly, the
amounts of MDA decreased, and reached values below those measured
in the controls when the duration of exposure was prolonged to 28 days.
The overproduction and then inhibition of the amount of oxidative stress
caused by MP highly correlated with the activation of the antioxidant
system [136]. Similarly, MDA content in snails exposed for 4 weeks to
PET fibers increased at the highest concentrations (0.71 g/kg dry soil),
as a consequence of a depleted antioxidant system [105]. This increase
reflected a free radical excess which directly impacted tissues and
molecules, moreover MDA is also an important DNA mutagen [154].
Contrastingly, in a similar study using this annelid exposed for 28 days
to LDPE MP, the MDA levels remained higher, hence the antioxidant

system did not succeed in reducing oxidative stress [84,120].
MNPmay enhance DNA damage both directly and indirectly through

excessive ROS production [143]. To assess the potential genotoxicity of
MNP, the comet assay can be used which detects double strand DNA
breakages [155]. In earthworms (E. fetida), larger plastic particles
further accentuate the DNA damage (PS MP, 1300 nm versus PS NP,
100 nm), moreover, genotoxicity was dose-dependent with greater DNA
impacts at higher concentrations (1000 µg/kg dry soil versus 100 µg/kg
dry soil) [106]. In addition, 8-hydroxydeoxyguanosine (8-OHdG) levels,
a marker of DNA oxidation, were increased in earthworms exposed to
aged-LDPE MP as compared with controls [84]. DNA damages were
evidenced after individuals of D. melanogaster ingested PET and PS NP at
high concentrations (>100 µg/g food) [103,124]. Conversely, smaller
particles (50 nm compared to 200 nm) induced more DNA breaks [124].

MNP-induced genotoxicity was reported to accumulate from one
generation to another [79]. For instance, using comet assay, Sobhani
et al. [156] observed higher DNA damage in the F1 generation of
E. fetida compared to F0 generation exposed to polystyrene MP at three
concentrations (0.01 %, 0.1 % and 0.5 % w/w in soil). Here again,
damages were increased when concentrations of MP were augmented
[156]. Epigenetic modifications are additionally thought to occur after
NP ingestion, with subsequent effects over several generations. Indeed,
Yu et al. [130] found a DNA hypomethylation of ced-3 promoter,
increasing the expression of its associated gene and leading to cell
apoptosis. In this study, hypomethylation was even found to occur from
F0 to F4 generations, causing gene expression perturbations [130], and
partially explaining the transgenerational effects described in the above
section.

The current body of knowledge suggests that oxidative stress and
damages induced by MNP ingestion can impact key life history traits
such as longevity as cumulative damages from oxidative stress can
accelerate the ageing process by affecting various physiological func-
tions (oxidative theory of ageing, [157]). Likewise, oxidative damage in
the brain may alter neuronal function and signalling pathways involved
in behaviour regulation.

6.5. Immune system

MNP are exogenous compounds and ingestion of these xenobiotics
by terrestrial invertebrates elicits immune responses [143]. The innate
immune system was repressed in the nematode species C. elegans
exposed to NP [158]. Kwak and An [129] studied the viability of coe-
lomocytes, which have a key role in innate immune responses in
earthworms, through measurements of esterase activity. The activity of
the enzyme decreased significantly in earthworms exposed to poly-
ethylene NP, leading to an attenuation of the immune system. In general,
the harmful effects on the immune system are stronger when plastic
particles are smaller: the esterase activity was lower when plastic sizes
were in the range 180–212 µm compared to plastics with sizes in the
range 250–300 µm [129]. Similarly, coelomocyte viability was
decreased in E. fetida after PS NP exposure inducing oxidative damage in
immune cells [159]. More precisely, PS NP interacted directly with
immunity protein lysozyme (LZM), a lysosome protein with a key role in
the immune system, and inhibited their activity, structure and confor-
mation [159]. Conversely, the innate immune system of B. mori was
enhanced after ingestion of polystyrene MNP, as evidenced by the
over-expression of genes encoding antimicrobial peptides (Cecropin A
and Lysozyme) [150].

In invertebrates, immune cells circulate in the haemolymph, and
total haemocyte count (THC) is a valuable indicator of responses to a
range of environmental stressors [160,161]. No changes in THC were
reported from specimens of Porcellio scaber exposed to PET and tyre wear
MP while the proportion of haemocyte types was altered: the number of
semi-granulocytes was decreased and the number of granulocytes was
increased, potentially triggering humoral molecules [162]. MNP also
disturbed the ability of organisms to defend themselves from microbial
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infection, with nanopolystyrene at concentrations of 10 and 100 µg/L
inhibiting the induction of antimicrobial gene expression in nematodes
infected by the fungi Candida albicans [163]. The authors reported
higher mortalities of the nematodes at the highest NP concentration
[163] . Similarly, the silkworms were more vulnerable to bacterial
infection (Serratia marcescens Bm1) when they were exposed to poly-
styrene NP at 10 µg/ml [150].

In silkworms exposed to NP, no inhibition of the defence system was
observed for MP which, conversely, induced a stronger immune
response [150]. This finding demonstrates that it is necessary to take
into account the size of plastic particles as important drivers of the im-
pacts and physiological and molecular responses of organisms. The
smallest plastic fragments might be undetectable, and due to their sizes
and easier diffusion among body compartments and tissues, cause
dyspepsia and physical injuries that alter the quality of the physiological
responses in general. The inflammatory and immune responses on or-
ganisms exposed to MNP are more studied on aquatic species [164,165].
More research is needed on terrestrial organisms to explore the under-
lying mechanisms following MNP ingestion on the immune system and
any consequence on pathogens resistance.

To sum up, the available literature revealed that (i) the duration of
exposure and the type of plastic debris are important factors deter-
mining the magnitude of the physiological impacts, (ii) oxidative stress
is triggered by MNP ingestion in several organisms, and the effects de-
pends on the size, concentration and weathering of the plastic frag-
ments, (iii) MNP can be internalized after ingestion and cause oxidative
stress with subsequent tissue and macromolecule damages and inducing
cascading effects at different scales (Table A.1, Supplementary
materials).

7. The effects of micro and nanoplastics on organisms

Once internalised and inducing physiological disorders through
various mechanisms, MNP may affect life history traits of invertebrates.
The most frequent impacts examined at the organism scale in the
available literature are presented in Fig. 4.

7.1. Plastic consequences on feeding

The ingestion of MNP subsequently affects the feeding behaviour of
terrestrial invertebrates, particularly altering the amount of food
consumed and subsequent excretion. Both, false saturation, or damages
of internal organs (mechanical abrasion or physiological interactions)
could be underlying mechanisms. For instance, a reduction of faeces

production was observed in earthworms (Lumbricus terrestris) which had
ingested fibers [93]. Food intake was decreased by 25 to 35 % after
snails (A. fulica) were fed with fiber-contaminated diet for four weeks,
and excretion was even decreased by 60 % at high fiber concentrations
[105]. Similarly, food intake and defecation rates of D. melanogaster
reared on media contaminated with polystyrene MP were significantly
reduced [109].

The alteration of food intake inevitably impacts the quality and
quantity of body reserves and the body mass of terrestrial invertebrates.
A significant body mass decrease (30 %) was measured in the earth-
worm E. fetida exposed to high concentrations of polystyrene MP (1 %
and 2 % (w/w)) [166]. This finding supports the results collected on the
worm Enchytraeus crypticus, where no mortality was induced by inges-
tion of polystyrene NP while a significant body mass reduction was
measured at the highest PS NP concentration (10 % PS NP, w/v) [137].
Furthermore, Fudlosid et al. [167] found that the body size and mass of
the cricket Gryllodes sigillatus were reduced after MP exposure, and the
effect depended on the nature of the polymer: a decrease was observed
for PET fibers, while ingestion of PE MP had no impact. Differences may
partially result from differential impacts of MNP and fibers on the di-
versity and richness of gut and intestine microbiota. However, the
paucity of data on the topic makes it difficult to appreciate the contri-
bution of microorganisms in the observed differences.

The effects of MNP on body mass can then have cascading conse-
quences on starvation resistance. For instance, the resistance to starva-
tion was decreased in flies (D. melanogaster) after MP exposure in a sex-
specific manner: only males were affected [109,168]. Yet, these obser-
vations are not generalizable as feeding (food consumption, efficiency
and energy storage) and defecation rates of a terrestrial isopod species
(P. scaber) exposed to MP from facial cleanser remained unchanged
[169].

7.2. The effects of plastic pollution on survival and reproduction

No mortality was reported when the earthworm E. fetida had inges-
ted PS or PE MNP [84,120] (Table A.1). In this species, a 28-day expo-
sure to LDPE MP at concentrations ranging from 62 to 1000 mg/kg of
dry soil did not induce mortality [170]. Yet, some investigations evi-
denced MP-induced lethality when earthworms ingested PP MP at
concentrations ranging from 300 to 6000 mg/kg dry soil [171]; the
longer duration of exposure (42 days) and the higher concentrations
may have increased the likelihood of MP-induced lethality. The survival
of flying insects, i.e. Drosophila spp. exposed to NP [124,103,172],
B. mori exposed to PS MNP [150], and Apis mellifera exposed to PS MP

Fig. 4. Biological effects of fibers, micro- and nanoplastics reported in the available literature. Feeding, development, survival, reproduction, or locomotion incurred
by micro- and nanoplastic, and fibers exposures to terrestrial invertebrates were evaluated as biological endpoints.
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[140], was not altered by plastic ingestion. The conclusions on the ef-
fects of MNP on survival vary with the study model, the exposure
duration and MNP concentration, with extended and high concentra-
tions impacting survival [173]. These results underscore the significance
of prolonging exposure duration and examining exposure across multi-
ple generations.

The ingestion of MNP may affect reproduction and fecundity of
terrestrial invertebrates. The number of offspring of the nematode
C. elegans was significantly decreased when the concentration of poly-
styrene NP (42 and 530 nm) was higher than 10 mg/kg soil [174]. A
reduction in offspring was observed when the individuals were exposed
to PS NP of 50 nm [149]. The number of E. crypticus juveniles was
reduced by almost 50 % in comparison to controls when exposed to
nylon MP at 120 g/kg dry soil [175]. Similarly, oviposition was reduced
by 50 % when D. melanogaster females were exposed to PET MP (2 µm at
20 g/L) [168]. After 56 days of exposure to polyethylene MP, the
number of E. andrei offspring was not affected by the treatment (62.5,
125, 250, 500 and 1000 mg MP/kg dry soil) [121]. Interestingly, poly-
styrene NP (0.5 %) even stimulated the reproduction of the worm
E. crypticus whose number of cocoons was increased after 7 days of
exposure [137] . As for survival, there is no general rule for the effects of
MNP on the reproduction of terrestrial invertebrates, which depend on
MNP characteristics and investigated taxa.

Several hypotheses were proposed for the impacts of MNP on
reproduction [176]. MNP could decrease energy metabolism, by
decreasing food intake and/or nutrient assimilation, as reported in
C. elegans and D. melanogaster whose lipid storage and amino acids
production were disturbed [149,168]. Moreover, MNP may directly
impact reproductive organs as observed for D. melanogaster, where
polystyrene NP were found in ovaries, increasing the number of
apoptotic and dead cells [128]. These mechanisms are probably inter-
related, and combined with DNA damage and ROS production, may
explain the effects of MNP on reproduction [177].

7.3. Effects on mobility and behaviour

Locomotion, mobility or behaviour of terrestrial invertebrates can be
perturbed by MNP owing to the neurotoxicity and alteration in energy
metabolism these plastic particles can cause to the individuals [178]. By
quantifying the number of head trashes and body bends in a given time
[179], Lei et al. [142] found that individuals of C. elegans exposed to
polystyrene MNP at 1 mg/L exhibited a hyperactive behaviour.
Conversely, locomotion of C. elegans was decreased after the individuals
were exposed to polystyrene NP (exposed at 17.3 mg/L and 86.6 mg/L)
[149] (Table A.1). Yet again, variations in the concentration and size of
plastic particles between the two studies (highest NP concentration and
smaller particles in Kim et al. [149] in comparison to Lei et al. [142]),
prevent the drawing of reproducible patterns.

Similarly, hyperactive behaviour was measured in the silkworm
B. mori exposed to PS NP, mainly leading to erratic movements, poten-
tially impacting their fitness [125]. In D. melanogaster, the spontaneous
activity of the flies over 24 h increased by 20 % to 40 % for females and
males after an exposure to PET MP [168]. Using the same experimental
set up, Matthews et al. [172] also found an increase in daily activity in
males exposed to polystyrene MNP at a concentration of 50 ppm.

7.4. Long-term and multi-generational exposures

Once ingested by organisms, MNP can also be transferred to the next
generations and induce ecotoxicological effects. In terrestrial environ-
ment, transgenerational effects have been mainly studied on two or-
ganisms, C. elegans and D. melanogaster, after a continuous or a maternal
exposure [180,181,128,130]. Fitness was impaired through generations
with a decreased fecundity at F4 and F5 (50 and 100 mg/L of PS NP) for
the flies [128], and a brood size reduction for worms, until the F4
generation during continuous exposure to 100 nm PS-NP at 50 and

100 mg/L [130]. Brood size was reduced until F6 when the parental
generation only was exposed to PS NP (exposure at 100 µg/L with 20 nm
NP) [181]. These results suggest that toxicity of MNP through trans-
generational effects is dose and size dependent, with smaller particles
having more effects. The toxicity of MNP over generations may be
explained by their accumulation in ovaries as observed for flies [128],
but also by the increase of oxidative stress and DNA damages and
epigenetic modification [130,181]. Meanwhile, the mechanisms leading
to the transgenerational effects of MNP exposure and ingestion are still
unclear.

8. Research gaps

For many years, the impacts of MNP have been predominantly
explored in aquatic species [91,182]. More recently, terrestrial plastic
contamination has gained attention, but investigations on the effects of
MNP on terrestrial invertebrates have mainly focused on a few model
species. This prevents our ability to get a full understanding of MNP
toxicity for the wildlife. Moreover, we still have little to no information
about the toxicity of a large number of environmental MNP as the cur-
rent knowledge is mainly derived from commercial PS MNP at given
sizes and shapes. Consequently, significant considerations should be
given to the following points in future studies:

1. Characteristics of plastic particles and fibers: disruption of biological
and physiological traits was reported for aquatic invertebrates and to
a lesser extent terrestrial invertebrates. In those studies, it has also
been frequently concluded that the effects of MNP are polymer, size,
concentration, weathering state, and organism dependent. More in-
vestigations with polymers having different chemical composition,
origin (commercial supply, laboratory production), size (diameter of
the particle), shape (morphology of the plastic particle) must be
performed. Although there has been a growing number of articles on
the effects of NP compared to MP, there is an important imbalance in
the polymer type on NP studies with more than 90 % of the articles
using polystyrene, as underlined in Fig. 2. It is essential to investigate
nanoplastic toxicity by including other polymers as PE, PP and PVC,
which are prevalent in the environment.

2. Commercial versus environmental MNP: most of the articles used
commercially available MNP (Fig. 2; [182]). Commercial particles
are perfectly round andmonodisperse, easily accessible for purchase.
However, they do not reflect the environmental reality where aged
MNP usually display irregular shapes and different sizes. Additional
research is required to explore the effects of mixtures of environ-
mental MNP in size and polymers to better understand their envi-
ronmental impact.

3. Presence of chemical additives: the effects of plastic additives and
chemicals/compounds adsorbed onto plastic surfaces in the envi-
ronment, such as metal, plasticizers, pesticides and others, are rarely
represented in the studies of MNP. These compounds are recognized
for their hazardous effects, as explained in the introduction, with
some of them being biocides and endocrine disruptors. More
research testing the effects of MNP in combination with their addi-
tives are needed, as this aspect has remained scarcely taken into
account in the studies.

4. Tested biological organisms: while the effects of MNP are frequently
studied in aquatic species (invertebrates and fishes), there is a
noticeable scarcity of research on terrestrial invertebrates. Moreover,
the range of considered terrestrial taxa is unequally studied. The
main organisms represented are selected (model) species of nema-
todes, annelids, arthropods and molluscs (Fig. 2) with a largely
predominance of investigations on C. elegans [183].

5. Studying the effects of plastic pollution is crucial not only for un-
derstanding immediate impacts but also for comprehending poten-
tial long-term consequences, including transgenerational effects, as
acute effects may be subtle or even imperceptible, while chronic
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exposure could have significant repercussions on invertebrates
within ecosystems.

Finally, the crucial priority remains the standardization of experi-
mental protocols, including MNP concentration units to facilitate com-
parisons between studies. Starting from the information provided by

Jemec Kokalj et al. [36], and completed by Jemec Kokalj et al. [37], we
adapted the quality criteria developed by these authors for studying the
effects of MNP on aquatic invertebrates (Daphnia sp.) so that they can be
extended to terrestrial invertebrates (Table A.2, Supplementary mate-
rials). In doing so, we aim at further encouraging the standardization of
the experimental assays among a large diversity of animal models
thriving in different habitats. Standardized approaches and guidance in
assessing terrestrial invertebrate health risks will improve our under-
standing of impacts and potential genericity of the toxicity of MNP
across animal species. We believe that the lack of consensus on the po-
tential toxicity of MNP on terrestrial invertebrates partially results in
part from some disparity among experimental assays. Thus, guidelines
collecting relevant information on specific biological and physiological
endpoints are presented in Table 1.
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review & editing, Visualization. Elsa DEJOIE: Writing – review &
editing, Writing – original draft, Conceptualization. Claudia WIE-
GAND:Writing – review& editing, Supervision. Chloé M. C. RICHARD:
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DEHP: Di(2-ethylhexyl) phthalate
HDPE: H density polyethylene
LDPE: Low density polyethylene
MNP: Micro- and nanoplastic
MP: Microplastic
NP: Nanoplastic
PA: Polyamide
PAHs: Polycyclic aromatic hydrocarbons
PLA: Polylactic acid
PC: Polycarbonate
PES: Polyester
PE: Polyethylene
PET: Polyethylene terephthalate
PP: Polypropylene
PS: Polystyrene
PUR: Polyurethane
PVC: Polyvinyl chloride
THC: Total haemocyte count
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