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Abstract

This paper deals with a 3D linear formulation for mono-symmetric composite beams with

deformable connection, taking into account non-uniform torsion. To simplify the develop-

ment of the analytical solution, it is assumed that the warping of each layer of the composite

section has no contribution on the stress resultants of each layer. Therefore, the warping

function obtained with the classical St-Venant beam theory can be used for each subsection.

As a result, the variables associated to both connection shearing plans become uncoupled.

Using the virtual work principle, the governing equations are derived, and solved in closed-

form. Based on the analytical expressions of the displacement fields, the exact stiffness

matrix of the composite beam is computed. In addition, a displacement-based formulation

is suggested. Appropriate polynomial interpolation functions are selected to circumvent

slip-locking phenomenon. It has been shown that the slip-locking can be avoided by using

quadratic shape function for axial displacement interpolations, by providing an additional

middle node in each layer. Four examples are investigated in this paper. The prediction as

well as the performance of the proposed direct stiffness method, are compared against an

existing solution from the literature. In addition, slip-locking problem is addressed and the

performance of the displacement-based method against the exact formulation is evaluated.

The influence of warping effects on the composite beam response is assessed. Finally, a para-

metric study is conducted to evaluate the influence of connection rigidity and the coupling

of the displacement fields on slip distributions.

Keywords: Composite beam, Direct stiffness method, interpolation functions, Slip,

Locking
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1. Introduction

Composite structures are one of the efficient solutions that shape the construction in-

dustry of the past decades, paving the way to innovation and advancement in the field of

structural design and construction materials. Composite systems have become increasingly

popular among the engineering, architectural and research communities who are investigat-

ing new alternative of high-performance structures. Choosing the appropriate materials, the

strength-to-weight ratio of the structure may increase. Additionally, the use of composite

structures such as steel-concrete, timber-steel or timber-concrete structures may decrease

the carbon footprint of the buildings. That is a strong argument in promoting the develop-

ment of environmentally sustainable solutions. Steel-concrete and concrete-timber are the

typical applications of two-layered composite beams, which are normally formed by connect-

ing two distinct beams through adhesive agents or mechanical devices. Usually, friction at

the interface is not taken into account in force transfer mechanisms between the two lay-

ers. The connection is often assumed to be flexible, and become approximately rigid when

using strong adhesive agents that limit the interface-slip. Regarding the modelling of the

connections, a discrete or a continuous bond model can be used. Choosing the appropriate

connection model is not simple, as the spacing of the connectors can significantly impact

the results. In fact, in case of sparse connectors (with large spacing), using a continuous

bond model can lead to a substantial underestimation of the deflection compared to the

discrete model [1]. However, the continuous connection model was considered by Newmark

[2] whose work has pioneered the consideration of a partial interaction in planar composite

beams producing more realistic responses compared to the earlier rigid connection model.

Thereafter, numerous studies [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] have been conducted in order to

investigate different aspects, aiming to produce more high performance 2D composite beam

theories. In contrast to a large amount of research on 2D composite beam, 3D composite

Email address: yassir.wardi@insa-rennes.fr (Yassir Wardi)



1

beam receives less attention. Schnabl and Planinc [13] have developed a 3D beam theory

assuming uniform torsion. They have extended the 2D theory to account for bi-axial bend-

ing, as well as torsion. Dall’Asta [14] has investigated two-layered composite beams with

deformable connection under general loading conditions, taking into account non-uniform

warping effects by adopting Vlasov assumptions. In case of composite beams, Dall’Asta [14]

pointed out that the warping function depends on the shear modulus of both layers and the

axial stiffness of the connection. Finding an analytical expression for the composite warping

function, proves to be a challenging task, and it is not addressed in the present work.

The purpose of this paper is to present a new 3D formulation for a mono-symmetric

composite beams. The kinematics of the composite beam are established using two local

reference frames attached to the shear center of each layer. The connection at the interface

consists in rows of connectors placed on the contact surface where slip can occur in two

directions: longitudinal and lateral directions. The warping function of the composite beam

is assumed to be independent of the contact interaction. This assumption may lead to a

conservative result since the contribution of the connection rigidity to the torsional stiffness

associated with warping is neglected. Indeed, it results in a larger slip at the interface.

Using the virtual work principle, the strong-form of the equilibrium equations are derived

along with consistent boundary conditions. Next, the governing equations are solved ana-

lytically. This paper also addresses the use of interpolation functions and their limitations

in reproducing the results obtained with the closed-form solution. In fact, when a high

connection stiffness value is used, the composite beam model produces a poor curvature

description, which indicates the occurrence of the locking-problem. In the literature, this

issue of slip-locking in 2D composite beam element has been extensively studied. Schnabl

et al. [15] have introduced the modified virtual principle as an alternative for developing a

shear and slip locking-free two-layered Timoshenko beam formulation. On the other hand,

Dall’Asta and Zona [16] demonstrated that increasing the element with more degrees of

freedom can enhance the accuracy of the element response. Studies conducted in [17] and

[18] also confirmed that the use of more degrees of freedom improves the beam response. In
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this paper, the same remedy is adopted.

This paper will be organized as follows. In section (2) the composite beam kinematics

are described and the model assumptions are presented. In section (3), the composite beam

equilibrium equations are derived using the principle of virtual work. The linear cross-

section constitutive laws are recalled in section (4). The closed-form solution of the governing

equations, as well as the exact stiffness of the composite element and the corresponding nodal

forces are derived in section (5). Section (6) introduces the displacement-based formulation

as an alternative to the direct stiffness method to derive the element stiffness matrix. Slip-

locking issue is discussed in section (7), along with a proposal to achieve a locking-free

formulation. Examples are discussed in section (8) to validate the proposed direct stiffness

method and to highlight the performance of the displacement-based method compared to

the direct formulation with regards to slip-locking issue. Finally, conclusions are drawn in

section (9).

2. Beam Kinematics

2.1. Assumptions

The following assumptions are made for the development of the present composite beam

formulation:

(H1) - Each layer of the composite beam is homogeneous and isotropic;

(H2) - The cross-section of each layer remains rigid in its own plane;

(H3) - The vertical separation between the two layers is ignored;

(H4) - The deformation and rotations are assumed to be small;

(H5) - The two layers are connected by several rows of connectors placed longitudinally with

respect to the composite section’s plane of symmetry;

(H6)- Without warping, plane section remains plane and orthogonal to the deformed beam

axis during deformation (Eurler-Bernoulli beam theory);

(H7)- The axial displacement due to torsion (warping effect) is proportional to the twist

angle gradient (Vlasov theory);
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(H8)- The warping of each layer has no contribution to the stress resultants at any cross-

section.

Figure 1: The composite beam section

2.2. Displacement field

The composite cross-section of the beam is composed of layer (a) and (b) that are con-

nected by distributed connectors on their mutual contact surface as illustrated in fig. 1.

Each layer has its own coordinate system located at its shear center.

Let ekα = (ekx, e
k
y, e

k
z) be the orthonormal reference base of the beam (k) in the initial con-

figuration. The axis of the beam (k) is presented by the base vector ekx. The beam (k)

cross-section is then in the plane described by the base vectors (eky, e
k
z). The position of any

arbitrary point P k (see fig. 2) in the initial configuration can be expressed as:

Xk = Xk
c + ykc e

k
y + zkc e

k
z (1)

where Xk
c denotes the position vector of the shear center ck of the beam (k) in the initial

configuration and (ykc , z
k
c ) are the coordinates of point P k with respect to the shear center.

The deformed configuration of the beam (k) is defined by the triad tkα = (tkx, t
k
y, t

k
z), which

form a right-handed orthogonal basis according to the Euler-Bernoulli assumption (H6).

Following (H2), (H6) and (H7), the position of the point P k in the deformed configuration

is then given by:

xk = xk
c + ykc t

k
y + zkc t

k
z + uk

ω(x
k, ykc , z

k
c )t

k
x (2)

where
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(a) longitudinal direction

(b) lateral direction

Figure 2: Deformed configuration

• uk
ω(x

k, ykc , z
k
c ) denotes the longitudinal displacement generated by warping;

• xk
c denotes the position vector of the shear center ck in the deformed configuration of

the beam (k).

The two bases ekα and tkα in the initial and deformed configuration are related by an orthog-

onal rotation matrix Rk such that:

tkα = Rkekα (3)
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Recalling the Euler-Rodrigues formula for the rotation matrix in [19], Rk can be expressed

as:

Rk = cos(φk)I3 +
sin(φk)

φk
θ̂
kc
+

1− cos(φk)

(φk)2
θkcθkcT (4)

with θkc =
[
θkcx θkcy θkcz

]T
being 3D rotation vector about the shear center of beam (k),

θ̂
kc

the skew-matrix which is defined as the cross-product of the vector θkc with an arbitrary

vector, and φk =
∥∥θkc

∥∥ its corresponding angle. Considering the small rotation hypothesis

(H4), the first order approximation of the rotation matrix eq. (4) is given by:

Rk = I3 + θ̂
kc

=


1 −θkcz θkcy

θkcz 1 −θkcx

−θkcy θkcx 1

 (5)

Subtracting eq. (1) from eq. (2) and making use of eq. (3), one obtains the displacement

field:

dk = dk
c + ykc

(
Rk − I3

)
eky + zkc

(
Rk − I3

)
ekz + uk

ω(x
k, ykc , z

k
c )R

kekx (6)

with dk
c = xk

c −Xk
c = uk

ce
k
x + vkc e

k
y + wk

ce
k
z .

Neglecting the non-linear terms in eq. (6), the displacement field can be expressed as:

uk = uk
c − ykc θ

kc
z + zkc θ

kc
y + uk

ω (7a)

vk = vkc − zkc θ
kc
x (7b)

wk = wk
c + ykc θ

kc
x (7c)

where (uk, vk, wk) are the components of the displacement vector dk in the direction of x-,

y- and z-axis, respectively, and (uk
c , v

k
c , w

k
c ) are the corresponding displacements of the shear

center.

The longitudinal displacement due to warping, according to Vlasov kinematic assumption

(H7), can be expressed as:

uk
ω(x

k, ykc , z
k
c ) = ωk

(
ykc , z

k
c

)
θkcx,x (8)

where (•),x denotes the derivative of (•) with respect to x. Within the hypothesis made

in (H8), ωk represents the warping function with respect to the shear center of beam (k)
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cross-section and fulfills the following normality conditions:∫
EkωkdAk = 0;

∫
Ekykgω

kdAk = 0;

∫
Ekzkgω

kdAk = 0; k = {a, b} (9)

where (ykg , z
k
g ) are the coordinates of an arbitrary point on the cross-section, with respect to

the centroid of the beam (k).

The kinematics, described in eq. (7), can be formulated in the reference base with origin

attached to the centroid of each cross-section. To do so, it is necessary to perform the

following change of variables:

ykc = ykg − cky (10a)

zkc = zkg − ckz (10b)

where (cky, c
k
z) are the coordinates of the shear center in the new coordinates system (ykg , z

k
g ).

In case of mono-symmetrical cross-sections, ckz = 0 for k = {a, b}. Therefore, the beam

kinematics can be expressed as follows:

uk = uk
c + ckyθ

kc
z − ykgθ

kc
z + zkgθ

kc
y + ωkθkcx,x (11a)

vk = vkc − zkg θ
kc
x (11b)

wk = wk
c +

(
ykg − cky

)
θkcx (11c)

To fulfill the hypothesis made in (H8), the axial displacement of the shear center has to be

related to the axial displacement of the beam centroid through the following expression:

uk
c = uk

0 − ckyθ
kc
z (12)

Inserting eq. (12) into eq. (11), the beam kinematics can be reformulated as:

uk = uk
0 − ykgθ

k
z + zkgθ

k
y + ωk θkx,x (13a)

vk = vkc − zkg θ
k
x (13b)

wk = wk
c +

(
ykg − cky

)
θkx (13c)
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in which we denote θkx = θkcx , θky = θkcy and θkz = θkcz to simplify the notation. Considering

Euler-Bernoulli assumption, we have: θky = −wk
c,x and θkz = vkc,x.

In what follows, for the sake of simplicity, the subscript (·)g representing the coordinate

system referring to the centroid of the cross-section is omitted.

2.3. Slip at interface

The inter-layer slip is considered in both directions: a longitudinal slip in the x-axis of

the beam and a lateral slip in the z-axis direction due to the transverse plane deformation of

the composite beam. In case of using 2n-row connectors (n-row on either side of symmetric

axis of the composite cross-section), there are 2n + 1 slips: 2n longitudinal slips and one

lateral slip.

Figure 3: The connectors position

For a row of connectors (p), located at zp with respect to the reference axis of the beam (a)

see fig. 3, the slip is defined as:

sp = da
p (x, h

a, zp)− db
p

(
x,−hb, zp

)
(14)

where dk
p represents the displacement field of an arbitrary point on the contact surface of

the beam (k) for k = {a, b}. The slip components can be obtained by inserting eq. (13) into

eq. (14) as:

spx = −∆u0 − haθaz − hbθbz − zp ∆θy + ωa
p

∂θax
∂x

− ωb
p

∂θbx
∂x

(15a)

spy = −∆vc + zp∆θx (15b)

spz = −∆wc + haθax + hbθax − cay θ
a
x + cby θ

b
x (15c)
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with ∆(·) = (·)b− (·)a, ωa
p = ωa

(
ha − cay, zp

)
and ωb

p = ωb
(
−hb − cby, zp

)
. It can be seen that

the lateral slip spz is independent of the connector position zp. As a result, there is only one

lateral slip sz to be considered in the model.

The no-uplift condition (H3) imposes that:

spy = −∆vc + zp ∆θx = 0 (16)

The eq. (16) holds true for any position zp of the connectors, thus:

∆vc = 0 ; ∆θx = 0 (17)

Therefore, both beams exhibit the same vertical displacement (vc = vac = vbc) and the same

twist angle (θx = θbx = θax). Consequently, the composite beam’s kinematics can be simplified

to the following:

uk = uk
0 − ykgθz + zkgθ

k
y + ωkθx,x (18a)

vk = vc − zkg θx (18b)

wk = wk
c +

(
ykg − cky

)
θx (18c)

with θz = θbz = θaz = vc,x. Taking into account the constraints given in eq. (17) and eq. (18),

the slip components can be evaluated as follows:

spx = −∆u0 − hθz − zp∆θy + ωpθx,x (19a)

sz = −∆wc + hcθx (19b)

where ωp = ωa
(
ha − cay, zp

)
− ωb

(
−hb − cby, zp

)
, h = ha + hb and hc = h− cay + cby.

2.4. Strain field

By using the composite beam kinematics, the linear strain can be evaluated as:

εkx = uk
,x = uk

0,x − ykθz,x + zkθky,x + ωkθx,xx

γk
xy = uk

,y + vk,x =
(
ωk
,y − zk

)
θx,x

γk
xz = uk

,z + wk
,x =

(
ωk
,z + yk − cky

)
θx,x

(20a)

(20b)

(20c)
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3. Equilibrium condition

The equilibrium condition of the composite beam possessing 2n-row of connectors is

derived on the basis of the virtual work principle. Using the displacement fields developed

in eq. (18) and eq. (19), we can express the balance between the work done by external

and internal forces for an arbitrary virtual displacement. The beam is supposed to be

subjected to external loading consisting of uniform distributed loads fku with k = {a, b}, and

concentrated forces and moments Qn. Thus, the virtual work principle for the composite

beam can be formulated as:∑
k=a,b

∫
V k

(
σk
xδε

k
x + τ kxyδγ

k
xy + τ kxzδγ

k
xz

)
dV k +

L∫
0

DT
scδdscdx =

∑
k=a,b

∫
V k

fku
T
δdk

udx+ δqTQn

(21)

where:

� σk
x, τ

k
xy and τ kxz are the axial and the shear stresses acting on the beam (k) cross-section;

� δεkx, δγ
k
xy and δγk

xz are, respectively their corresponding virtual strains;

� DT
scδdsc is the virtual work done by the shear forces in the connection at the interface

i.e.: DT
scδdsc =

2n∑
p=1

Dsc
pxδspx +Dsc

z δsz;

� fku
T
δdk

u is the virtual work done by the uniform distributed external loads of beam (k)

where

δdk
u =

[
δuk

0, δvc, δw
k
c , δθx, δθ

k
y , δθz, δθx,x

]T
fku =

[
nk
x, q

k
y , q

k
z , m

k
x, m

k
y, m

k
z , b

k
x

]T
� q is the nodal displacements of the composite beam element given by:

q =
[
qT
0 , q

T
L

]T
with

q0 =
[
ua
0(0), u

b
0(0), vc(0), w

a
c (0), w

b
c(0), θx(0), θ

a
y(0), θ

b
y(0), θz(0), θx,x(0)

]T
qL =

[
ua
0(L), u

b
0(L), vc(L), w

a
c (L), w

b
c(L), θx(L), θ

a
y(L), θ

b
y(L), θz(L), θx,x(L)

]T
11



As illustrated in Figure 4, q0 and qL represent the composite beam’s degrees of freedom at

the element ends. Introducing eqs. (13), (19) and (20) into eq. (21), we get:

Figure 4: The composite beam’s degrees of freedom

L∫
0

DT∂̂ (δd) dx+

L∫
0

DT
sc∂̂sc (δd) dx =

∑
k=a,b

∫
V k

fku
T
δdk

udx+ δqTQn (22)

where:

δd =
[
δua

0, δu
b
0, δvc, δw

a
c , δw

b
c, δθx

]T
D =

[
Na, N b, Mz, M

a
y , M

b
y , Mx, B

]T
Dsc = [Dsc

1x, D
sc
2x, . . . D

sc
2nx, D

sc
z ]

T

∂̂ =



∂

∂x
0 0 0 0 0 0

0
∂

∂x
0 0 0 0 0

0 0
∂2

∂x2
0 0 0 0

0 0 0 − ∂2

∂x2
0 0 0

0 0 0 0 − ∂2

∂x2
0 0

0 0 0 0 0
∂

∂x

∂2

∂x2



T
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∂̂sc =



1 1 . . . 1 0

−1 −1 . . . −1 0

−h
∂

∂x
−h

∂

∂x
. . . −h

∂

∂x
0

−z1
∂

∂x
−z2

∂

∂x
. . . −z2n

∂

∂x
−1

z1
∂

∂x
z2

∂

∂x
. . . z2n

∂

∂x
−1

ω1
∂

∂x
ω2

∂

∂x
. . . ω2n

∂

∂x
hc



T

in which: Nk =
∫
Ak

σk
x dA; Mx =

∑
k=a,b

∫
Ak

[
τ kxy(

∂ωk

∂y
− zk) + τ kxz(

∂ωk

∂z
+ yk − cky)

]
dA; Mk

y =∫
Ak

zkσk
x dA; Mz = −

∑
k=a,b

∫
Ak

ykσk
x dA; and B =

∑
k=a,b

∫
Ak

σk
xω

k dA.

Performing integration by parts, we can rewrite the principle of virtual work as follows:

δqT (Q−Qext)−
L∫

0

δdT
(
∂̃D+ ∂̃scDsc + ∂̃eQe

)
dx = 0 (23)

where:

Qe =
[
na
x, n

b
x, q

a
y + qby, q

a
z , q

b
z, m

a
x +mb

x, m
a
y, m

b
y, m

a
z +mb

z, b
a
x + bbx

]T
,

∂̃ =



∂

∂x
0 0 0 0 0 0

0
∂

∂x
0 0 0 0 0

0 0 − ∂2

∂x2
0 0 0 0

0 0 0
∂2

∂x2
0 0 0

0 0 0 0
∂2

∂x2
0 0

0 0 0 0 0
∂

∂x
− ∂2

∂x2


,

∂̃sc =



−1 −1 . . . −1 0

1 1 . . . 1 0

−h
∂

∂x
−h

∂

∂x
. . . −h

∂

∂x
0

−z1
∂

∂x
−z2

∂

∂x
. . . −z2n

∂

∂x
−1

z1
∂

∂x
z2

∂

∂x
. . . z2n

∂

∂x
1

ω1
∂

∂x
ω2

∂

∂x
. . . ω2n

∂

∂x
−hc


,
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∂̃e =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 − ∂

∂x
0

0 0 0 1 0 0
∂

∂x
0 0 0

0 0 0 0 1 0 0
∂

∂x
0 0

0 0 0 0 0 1 0 0 0 − ∂

∂x


.

Equation (23) being satisfied for all admissible variations, we can derive the following equi-

librium equations:

∂̃D+ ∂̃scDsc + ∂̃eQe = 0 (24)

and the following natural boundary conditions:

Q−Qext = 0 (25)

The expanded forms of eq. (24) can be expressed as:

Na
,x −

2n∑
p=1

Dsc
px + na

x = 0

N b
,x +

2n∑
p=1

Dsc
px + nb

x = 0

−Mz,xx −
2n∑
p=1

hDsc
px,x + qay + qby −ma

z,x −mb
z,x = 0

Ma
y,xx −

2n∑
p=1

zpD
sc
px,x −Dsc

z + qaz +ma
y,x = 0

M b
y,xx +

2n∑
p=1

zpD
sc
px,x +Dsc

z + qbz +mb
y,x = 0

Mx,x −B,xx +
2n∑
p=1

ωpD
sc
px,x − hcD

sc
z +ma

x +mb
x − bax,x − bbx,x = 0

(26a)

(26b)

(26c)

(26d)

(26e)

(26f)

and the natural boundary conditions are:

14



Na(0) = −Q1; Na(L) = Q11;

N b(0) = −Q2; N b(L) = Q12;

−Mz,x(0)− h

2n∑
p=1

Dsc
px(0)−mz(0) = −Q3; −Mz,x(L)− h

2n∑
p=1

Dsc
px(L)−mz(L) = Q13

Ma
y,x(0)−

2n∑
p=1

zpD
sc
px(0) +ma

y(0) = −Q4; Ma
y,x(L)−

2n∑
p=1

zpD
sc
px(L) +ma

y(L) = Q14;

M b
y,x(0) +

2n∑
p=1

zpD
sc
px(0) +mb

y(0) = −Q5; M b
y,x(L) +

2n∑
p=1

zpD
sc
px(L) +mb

y(L) = Q15;

Mx(0)−B,x(0) +
2n∑
p=1

ωpD
sc
px(0) + bx(0) = −Q6; Mx(L)−B,x(L) +

2n∑
p=1

ωpD
sc
px(L) + bx(L) = Q16;

Ma
y (0) = −Q7; Ma

y (L) = Q17;

M b
y(0) = −Q8; M b

y(L) = Q18;

Mz(0) = −Q9; Mz(L) = Q19;

B(0) = −Q10; B(L) = Q20;

in which Q1 to Q20 are applied nodal forces and moments.

4. Constitutive laws

For linear and isotropic material, the axial and shear stresses of beam can be related to

the linear strains as:

σk
x = Ekεkx (27a)

τ kxy = Gkγk
xy (27b)

τ kxz = Gkγk
xz (27c)

where Ek and Gk are the Young and shear modulus of the beam (k), respectively. For every

connector row (p), Kpx and Kz represent, respectively, the uniformly distributed connection

15



stiffness for axial and lateral slips. The constitutive law for the connection is linear. Thus,

the contact forces and slips can be related as follows:

Dsc
px = Kpxspx (28a)

Dsc
z = Kzsz (28b)

Combining the kinematics given in eqs. (19) and (20) and the constitutive laws provided in

the eqs. (27) and (28), the internal forces can be formulated as follows:

Nk = EkAkuk
0,x (29a)

Mk
y = EkIky θ

k
y,x (29b)

Mz = EI
s

zθz,x (29c)

Mx = GJ
s
θx,x (29d)

B = EI
s

ωθx,xx (29e)

Dsc
px = Kpx (−∆u0 − h θz − zp∆θy + ωpθx,x) (29f)

Dsc
z = Kz (−∆wc + hcθx) (29g)

where Iky =
∫
Ak

(
zk
)2
dA; Ikz =

∫
Ak

(
yk
)2

dA; Ikx =
∫
Ak

[(
yk
)2

+
(
zk
)2]

dA; Ikω =
∫
Ak

(
ωk
)2

dA;

Ck
t =

∫
Ak

[
zkωk

,y −
(
yk − cky

)
ωk
,z

]
dA; Jk = Ikx +

(
cky
)2

Ak − Ck
t ; EI

s

z = EaIaz + EbIbz ; GJ
s
=

GaJa +GbJ b; and EI
s

ω = EaIaω + EbIbω.

The linear constitutive laws eq. (29) can be cast in the compact forms as:

D = Km∂̂d (30)

and

Dsc = Ksc∂̂scd (31)
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where

Km =



EaAa 0 0 0 0 0 0

0 EbAb 0 0 0 0 0

0 0 EI
s

z 0 0 0 0

0 0 0 EaIay 0 0 0

0 0 0 0 EbIby 0 0

0 0 0 0 0 GJ
s

0

0 0 0 0 0 0 EI
s

ω


;Ksc =



K1x 0 . . . 0 0

0 K2x . . . 0 0
...

...
. . . 0 0

0 0 . . . K2nx 0

0 0 0 0 Kz



5. Direct stiffness method

In the direct stiffness method, the equilibrium equations are written in terms of the

composite beam’s displacements which are analytically solved. From the analytical solutions,

all expressions of all mechanical variables are determined and the internal forces are obtained

via the force-displacement relationship of the composite beam. Next, the composite element

stiffness matrix can be derived along with its corresponding nodal forces.

5.1. Displacement fields

The solution of the governing equations provides the expressions of all the displacement

field. The latter is obtained by combining the beam kinematics developed in section 2,

the equilibrium equations (26) and the constitutive relations (29). Inserting eq. (29) into
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eq. (26), we get:

EaAaua
0,xx + 2

n∑
p=1

Kpx (∆u0 + h θz) + na
x = 0

EbAbub
0,xx − 2

n∑
p=1

Kpx (∆u0 + h θz) + nb
x = 0

EI
s

zθ
a
z,xxx − 2h

n∑
p=1

Kpx (∆u0,x + h θz,x) = qay + qby −ma
z,x −mb

z,x

EaIay θ
a
y,xxx +Kz (∆wc − hcθx) + 2

n∑
p=1

Kpx

(
z2p ∆θy,x − zpωpθx,xx

)
+ qaz +ma

y,x = 0

EbIbyθ
b
y,xxx −Kz (∆wc − hcθx)− 2

n∑
p=1

Kpx

(
z2p ∆θy,x − zpωpθx,xx

)
+ qbz +mb

y,x = 0

GJ
s

zθx,xx − EI
s

ωθx,xxxx −hcKz (−∆wc + hcθx)

+2
n∑

p=1

Kpx

(
−zpωp∆θy,x + ω2

pθx,xx
)
+mx − bx,x = 0

(32a)

(32b)

(32c)

(32d)

(32e)

(32f)

in which the symmetry of connectors with respect to y-axis is considered.

It can be seen that in the system of equations (32), the variables in the XY-plane are

uncoupled from the ones in the XZ-plane. This uncoupling feature is due to the assumption

made in (H8). In what follows, the solution will be split into two parts. The first one will

be reserved to the development of the solution for ua
0, u

b
0 and θz using eqs. (32a) to (32c),

and the second part is the solution for wa
c , w

b
c and θx using eqs. (32d) to (32f). It is worth

mentioning that the solution will be derived under static external loading conditions and

uniform shear connection stiffness: Kxp = Kx.

5.1.1. The XY-plane solution

The solution in the XY-plane is obtained by solving a differential equation with a sin-

gle independent variable. The displacement fields are formulated on the basis of this sole

variable.

Dividing eq. (32a) and eq. (32b) by EaAa and EbAb, respectively, and then subtracting

the outcomes leads to the following:

−∆u0,xx −
2nKx

EA
gu +

na
x

EaAa
− nb

x

EbAb
= 0 (33)
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where: gu = −∆u0 − h θz; EA
s
= EaAa + EbAb and EA =

EaAa EbAb

EA
s .

Multiplying eq. (32c) with (− h

EI
s

z

) and adding the result to the derivation of eq. (33),

we obtain the governing equation in the XY -plane as:

gu,xxx − 2nKx

(
1

EA
+

h2

EI
s

z

)
gu,x +

h
(
qay + qby

)
EI

s

z

= 0 (34)

whose solution is:

gu = XguCu + Zgu (35)

with:

Xgu =
[
1, eλu(x−L), e−λux, 0, 0, 0, 0, 0

]
; Zgu =

h
(
qay + qby

)
λ2
uEI

s

z

x

Cu = [C1, C2, C3, C4, C5, C6, C7, C8]
T and λ2

u = 2nKx

(
1

EA
+

h2

EI
s

z

)
.

The vector Cu represents the integration constants. It is worth noting that for highly

stiff longitudinal connection, the term eλux may go to infinity for any positive values of x.

Hence, the term eλu(x−L) whose values will range between 0 and 1 is introduced to address

this numerical ill-conditioning problem.

Inserting the solution of gu into eqs. (32a) and (32b) and performing double integration,

we obtain:

ua
0 = Xa

uCu + Za
u (36a)

ub
0 = Xb

uCu + Zb
u (36b)

with:

Xa
u =

2nKx

EaAa

∫ (∫
Xgudx

)
dx+ xI4 + I5; Za

u =
2nKx

EaAa

∫ (∫
Zgudx

)
dx− na

x

2EaAa
x2

Xb
u = −2nKx

EbAb

∫ (∫
Xgudx

)
dx+ xI6 + I7; Zb

u = −2nKx

EbAb

∫ (∫
Zgudx

)
dx− nb

x

2EbAb
x2

I4 =
[
0 0 0 1 0 0 0 0

]
; I5 =

[
0 0 0 0 1 0 0 0

]
I6 =

[
0 0 0 0 0 1 0 0

]
; I7 =

[
0 0 0 0 0 0 1 0

]
19



Besides, by using the definition of gu, the rotation θz and the vertical displacement vc can

be expressed as follows:

θz = XθzCu + Zθz (37a)

vc = XvcCu + Zvc (37b)

where:

Xθz = −1

h

(
Xb

u −Xa
u +Xgu

)
; Zθz = −1

h

(
Zb

u − Za
u + Zgu

)
Xvc =

∫
Xθz dx+ I8; Zvc =

∫
Zθz dx

I8 =
[
0 0 0 0 0 0 0 1

]
.

5.1.2. The XZ-plane solution

Similar to the previous development, the solution for the XZ-plane can be obtained by

solving the coupled system of equations (32d-32f). The compact representation of the system

of equations is firstly derived.

Subtracting eq. (32e) from eq. (32d), we get:

−∆wc,xxxx+
Kz

EIy
(−∆wc + hcθx)+

2Kx

EIy

n∑
p=1

(
z2p ∆wc,xx + zpωpθx,xx

)
+

qbz
EbIby

− qaz
EaIay

= 0 (38)

in which θky = −wk
c,x has been used. Equations (32f) and (38) can be cast in the following

form:

A1Yw,xxxx −A2Yw,xx +A3Yw = Fw (39)

where:

Yω = [∆wc, θx]
T; EIy =

EaIay E
bIby

EaIay + EbIby

A1 =

 EIy 0

0 EI
s

ω

 ; A2 = Kx


2

n∑
p=1

z2p 2
n∑

p=1

zpω
ab
p

2
n∑

p=1

zpωp
GJ

s

Kx

+ 2
n∑

p=1

(ωp)
2


A3 = Kz

 1 −hc

−hc h2
c

 ; Fw =

 EIy
EbIby

qbz −
EIy
EaIay

qaz

mx

 .
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Assume that the solution of eq. (39) has the following form:

Yw = Yh
w +Yp

w = Vee
r x +Yp

w (40)

where YP
w represents the particular solution and Yh

w = Ve e
r x the homogeneous solution of

the system. Inserting eq. (40) into eq. (39), we obtain the corresponding eigenvalue problem

as:

MeVe = 0 (41a)

A1Y
p
w,xxxx −A2Y

p
w,xx +A3Y

p
w = Fw (41b)

where Me = r4A1 − r2A2 +A3. The vector Ve is therefore the eigenvector associated with

the zero-eigenvalue of the matrix Me. To compute all possible solutions, it is necessary to

find all r that verify: det(Me) = 0. Consequently, the characteristic equation of the system

can be expressed as follows:

det(Me) = r8 + a6r
6 + a4r

4 + a2r
2 = 0 (42)

where:

a4 = Kz

(
1

EIy
+

hc
2

EI
s

ω

)
+K2

x

(
GJ

s
Iscy

Kx

+ Iscy Iscω −
(
Iscyω
)2) 1

EIyEI
s

ω

;

a6 = −Kx

(
GJ

s

KxEI
s

ω

+
Iscω
EI

s

ω

+
Iscy

EIy

)

a2 = −KzKx

(
h2
cI

sc
y +

GJ
s

Kx

+ Iscω + 2Iscyωhc

)
1

EIyEI
s

ω

;

Iscy = 2
n∑

p=1

z2p ; Iscω = 2
n∑

p=1

ω2
p; and Iscyω = 2

n∑
p=1

zpωp.

The eq. (42) is an octic polynomial characterized by eight roots. The roots can be real or

complex numbers. A simple factorization shows that zero is a double root, which leaves only

six of them to be identified. Considering the change of variable t = r2, the characteristic

equation can be transformed into a cubic polynomial, which makes finding the roots a lot

easier, using Cardano’s formula [20].

(
t3 + a6t

2 + a4t+ a2
)
t = 0 (43)
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The solution of eq. (43) provides four roots for t, resulting in eight conjugate complex

numbers roots for r. Consequently, the roots of eq. (42) are:

r1 = 0; r2 = 0;

r3 = α; r4 = −α;

r5 = a+ i b; r6 = a− i b;

r7 = −a+ i b; r8 = −a− i b

(44)

where α can be either a real or complex number and a and b are real positive numbers.

Hence, the homogeneous solution can be formulated as follows:

Yh
w = Ve1 (C9 + C10x) +Ve3

(
C11e

α(x−L) + C12e
−αx
)

+ C13 [Re5 cos(bx)− Ie5 sin(bx)] e
a(x−L) + C14 [Re5 sin(bx) + Ie5 cos(bx)] e

a(x−L)

+ C15 [Re5 cos(bx) + Ie5 sin(bx)] e
−ax + C16 [−Re5 sin(bx) + Ie5 cos(bx)] e

−ax

(45)

where:

� Ve1 is the eigenvector corresponding to the eigenvalues r1 and r2;

� Ve3 is the eigenvector corresponding to the eigenvalues r3 and r4;

� Re5 is the real part of the eigenvector associated to the eigenvalue r5;

� Ie5 is the imaginary part of the eigenvector associated to the eigenvalue r5;

� C9 to C16 are constants of integration.

It is worth mentioning that the solution depends on the values of parameters a6, a4 and a2

and it may be in a different form for other cases. Therefore, the closed-form expressions

need to be updated accordingly. For the particular part of the solution Yp
w, we can assume

the following form:

Yp
ω =

p1
2
x2

 hc

1

+ p2

 0

1

 (46)
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where p1 and p2 are parameters to be determined. It is worth noting that the vector [hc, 1]
T

is the eigenvector associated to zero-eigenvalue of the matrix A3 whose determinant is zero.

So, Yp
w must verify eq. (41b) as:

−A2

 hc

1

 p1 +A3

 0

1

 p2 = Fw (47)

which can be solved for p1 and p2. Therefore, the solution of eq. (39) (∆wc and θx) can be

obtained as:

Yω(1) = ∆wc = wb
c − wa

c = X∆wcCw + Z∆wc (48)

Yω(2) = θx = XθxCw + Zθx (49)

where

s1 = Ve1(1); s5 = [Re5(1) cos(bx)− Ie5(1) sin(bx)] e
a(x−L)

s2 = Ve1(1)x; s6 = [Re5(1) sin(bx) + Ie5(1) cos(bx)] e
a(x−L)

s3 = Ve3(1)e
α(x−L); s7 = [Re5(1) cos(bx) + Ie5(1) sin(bx)] e

−ax

s4 = Ve3(1)e
−αx; s8 = [−Re5(1) sin(bx) + Ie5(1) cos(bx)] e

−ax

t1 = Ve1(2); t5 = [Re5(2) cos(bx)− Ie5(2) sin(bx)] e
a(x−L)

t2 = Ve1(2)x; t6 = [Re5(2) sin(bx) + Ie5(2) cos(bx)] e
a(x−L)

t3 = Ve3(2)e
α(x−L); t7 = [Re5(2) cos(bx) + Ie5(2) sin(bx)] e

−ax

t4 = Ve3(2)e
−αx; t8 = [−Re5(2) sin(bx) + Ie5(2) cos(bx)] e

−ax

Z∆wc =
p1hc

2
x2; Zθx =

p1
2
x2 + p2

Cw = [C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20]
T

X∆wc = [s1, s2, s3, s4, s5, s6, s7, s8, 0, 0, 0, 0]

Xθx = [t1, t2, t3, t4, t5, t6, t7, t8, 0, 0, 0, 0] .

Next, the remaining displacement fields are determined. Adding eq. (32d) to eq. (32e), we

have:

EaIayw
a
c,xxxx + EbIbyw

b
c,xxxx = qaz + qbz (50)
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Integrating eq. (50) four times, we get:

fw = EaIayw
a
c +EbIbyw

b
c =

qaz + qbz
24

x4+C17
1

6
x3+C18

1

2
x2+C19x+C20 = XfwCw +Zfw (51)

where C17 to C20 are constants of integration. Combining eq. (51) with eq. (48) and solving

for wa
c and wb

c, we gets:

wa
c = Xwa

c
Cw + Zwa

c
(52)

wb
c = Xwb

c
Cw + Zwb

c
(53)

and consequently,

θay = XθayCw + Zθay (54)

θby = Xθby
Cw + Zθby

(55)

where:

Xwa
c
= Xfw −

EbIby

EI
s

y

X∆wc ; Zwa
c
= Zfw −

EbIby

EI
s

y

Z∆wc

Xwb
c
= Xfw +

EaIay

EI
s

y

X∆wc ; Zwb
c
= Zfw +

EaIay

EI
s

y

Z∆wc

Xθay = −

(
∂Xfw

∂x
−

EbIby

EI
s

y

∂X∆wc

∂x

)
; Zθay = −∂Zfw

∂x
+

EbIby

EI
s

y

∂Z∆wc

∂x

Xθby
= −

(
∂Xfw

∂x
+

EaIay

EI
s

y

∂X∆wc

∂x

)
; Zθby

= −∂Zfw

∂x
−

EaIay

EI
s

y

∂Z∆wc

∂x
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5.2. Stress resultants

Once the displacement fields are determined, the internal forces can be obtained by using

the linear elastic relationship eq. (29) as:

Nk = YNk Cu +RNk (56a)

Mk
y = YMk

y
Cw +RMk

y
(56b)

Mz = YMz Cu +RMz (56c)

Mx = YMx Cw +RMx (56d)

B = YB Cw +RB (56e)

Dsc
px = Yu

Dsc
px
Cu +Ru

Dsc
px
+Yw

Dsc
px
Cw +Rw

Dsc
px

(56f)

Dsc
z = YDsc

z
Cw +RDsc

z
(56g)

where:

YNk = EkAk ∂X
k
u

∂x
; RNk = EkAk ∂Z

k
u

∂x

YMk
y
= EkIky

∂Xθky

∂x
; RMk

y
= EkIky

∂Zθky

∂x

YMz = EI
s

z

∂Xθz

∂x
; RMz = EI

s

z

∂Zθz

∂x

YMx = GJ
s∂Xθx

∂x
; RMx = GJ

s∂Zθx

∂x

YB = EI
s

ω

∂2Xθx

∂x2
; RB = EI

s

ω

∂2Zθx

∂x2

Yu
Dsc

px
= Kpx

[
Xa

u −Xb
u − hXθz

]
; Ru

Dsc
px

= Kpx

[
Za

u − Zb
u − hZθz

]
Yw

Dsc
px

= Kpx

[
−zp

(
Xθby

−Xθay

)
+ ωp

∂Xθx

∂x

]
; Rw

Dsc
px

= Kpx

[
−zp

(
Zθby

− Zθay

)
+ ωp

∂Zθx

∂x

]
YDsc

z
= Kz (−X∆wc + hcXθx) ; RDsc

z
= Kz (−Z∆wc + hcZθx)

5.3. Direct stiffness matrix

The composite beam element possesses twenty degrees of freedom consistent with the

ten displacement fields (ua
0, u

b
0, vc, w

a
c , w

b
c, θx, θ

a
y , θ

b
y, θx,x) evaluated at x = 0 and x = L. The

displacement vector can be expressed as:

q = XC+ qz (57)
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where qz is the vector of the displacement associated with the external loads (particular

solutions); X is a constant matrix and C is a vector collecting the twenty constants of

integration. Similarly, the vector of internal nodal forces of the element can be formulated

as:

Q = YC+Rz (58)

The stiffness matrix is determined based on expressing the nodal forces in terms of the

displacement fields evaluated at end nodes. We proceed by eliminating the constants of in-

tegration. Since the nodal displacement are independent, the matrix X is invertible. Hence,

the constants of integration C can be obtained as a function of the nodal displacements q

as:

C = X−1 (q− qz) (59)

Inserting eq. (59) into eq. (58), we obtain:

Ke q = Q+Q0 (60)

where

Ke = YX−1 (61)

represents the beam element stiffness matrix and

Q0 = Kqz −Rz (62)

corresponds to the nodal forces due to the external loading.

6. Displacement based formulation

In this section, we derive the standard stiffness matrix of the composite beam element

based on selected shape functions that approximate the element’s displacement fields. To do

so, Hermite interpolation functions are adopted for vertical and lateral displacements as well

as for twisting angle, while either linear or quadratic polynomials can be used for the axial

displacements. In 2D composite beams, it has been demonstrated that locking problems

may occur in the displacement-based method if the linear approximation is adopted for
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axial displacements. However, the use of quadratic polynomials resolves this issue [16].

Further details will be discussed in section 7.

Assume that the displacement fields is approximated as:

d = Nq (63)

where N is the shape function matrix. Inserting eqs. (30), (31) and (63) into eq. (22), we

obtain:

δqT [Ke q−Qext] = 0 (64)

where

Ke =

L∫
0

[(
∂̂N
)T

Km∂̂N+
(
∂̂scN

)T
Ksc∂̂scN

]
dx

is the element stiffness matrix and

Qext =

L∫
0

NT∂̃eQedx+Qn

is the element nodal force vector.

7. Locking problem

It has been shown that slip-locking is a numerical issue that impacts the performance of

the displacement-based finite element model of 2D composite beam and can lead to erroneous

results [16, 17, 18]. This issue is mainly related to the use of an inappropriate interpolation

functions to describe the curvature and slip field in case of a highly stiff connection. In this

section, we will demonstrate the roots of slip-locking and how to avoid it. Without losing

generality, a mono-symmetrical composite section with a single row of connectors, placed

along the axis of symmetry, is considered. With high connection stiffnesses, the slips would

tend to zeros. The zero-slip state is characterized by the following:

−∆u0 − h θz = 0

−∆wc + h θx = 0

(65a)

(65b)
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from which we can deduce the followings conditions:

∆ui
0 + hθiz = 0

∆wi
c − hθix = 0

∆wj
c − hθjx = 0

∆θiy + hθix,x = 0

∆θjy + hθjx,x = 0

(66a)

(66b)

(66c)

(66d)

(66e)

where the superscript (•)i and (•)j represent the element end nodes. By adopting Hermi-

tian interpolation functions for the vertical displacement and the twisting angle, and linear

function for axial displacements, ∆u0, θz, ∆wc and θx can be expressed as follows:

∆u0 =
(
1− x

L

)
∆ui

0 +
x

L
∆uj

0 (67a)

θz = −6x

L2
vic +

6x

L2
vjc +

(
1− 4x

L

)
θiz −

2x

L
θjz +

3x2

L2

(
θiz + θjz − 2

vjc − vic
L

)
(67b)

∆wc =

(
1− 3x2

L2
+

2x3

L3

)
∆wi

c −
(
x− 2x2

L
+

x3

L2

)
∆θiy

+

(
3x2

L2
− 2x3

L3

)
∆wj

c −
(
−x2

L
+

x3

L2

)
∆θjy (67c)

θx =

(
1− 3x2

L2
+

2x3

L3

)
θix +

(
x− 2x2

L
+

x3

L2

)
θix,x

+

(
3x2

L2
− 2x3

L3

)
θjx +

(
−x2

L
+

x3

L2

)
θjx,x (67d)

Inserting eq. (67) into eq. (65) gives:

−∆u0 − hθz =
(
−∆ui

0 − hθiz
) (

1− x

L

)
+ 3h

(
x

L
− x2

L2

)(
θiz + θjz − 2

vjc − vic
L

)
= 0 (68a)

−∆wc + hθx =

(
1− 3x2

L2
+

2x3

L3

)(
−∆wi

c + hθix
)
+

(
3x2

L2
− 2x3

L3

)(
−∆wj

c + hθjx
)

+

(
x− 2x2

L
+

x3

L2

)(
∆θiy + hθix,x

)
+

(
−x2

L
+

x3

L2

)(
∆θjy + hθjx,x

)
= 0 (68b)

Inserting eq. (66) into eq. (68a), the element degrees of freedom are found to be constrained

through the following condition:

θiz + θjz = 2
vjc − vic

L
(69)
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Combining eq. (69) and eq. (67b), the variation of θz along the element, initially described

by a quadratic polynomial, changes into a first-order one. As a result, the beam curvature

becomes constant within the element. This behavior has been referred to curvature or

slip-locking [16, 17, 18].

Besides, it is interesting to note that in contrast to zero longitudinal slip state, the

zero lateral slip (65b) provides no additional kinematic constraint. This difference can be

traced back to the use of Hermite interpolation function for the twisting angle θx and linear

interpolation function for the axial displacements ua
0 and ub

0.

To prevent slip-locking, the composite beam element has been upgraded from 20 degrees

of freedom (DOFs) to 22 DOFs by adding two DOFs at the middle of the element. The

additional DOFs are related to the axial displacements of the beam (a) and (b). Thus, the

interpolation function for the axial displacements can be expressed as:

u0 = ui
0 +

4um
0 − uj

0 − 3ui
0

L
x+

uj
0 − 2um

0 + ui
0

L2
2x2 (70)

where um
0 is the additional degree of freedom associated to the axial displacement at the

middle of the beam. By using the new interpolation function of eq. (70), the zero-slip

constraint will produce the following condition:

∆ui
0 +∆uj

0 + 4∆um
0 =

6

L

(
vic − vjc

)
h (71)

By refining the composite beam element, we removed the constraint imposed by eq. (69) on

the interpolation function for the rotation θz, which results in a locking-free formulation.

8. Examples and comparisons

8.1. Example 1: A cantilever beam subjected to concentrated loads

Schnabl and Planinc [13] derived a closed-form solution for a linear elastic 3D composite

beam. They assumed an Euler-Bernoulli beam theory for both layers and neglected warping

effects. At the contact area, the layers are supposed to be continuously connected using

adhesive bonding with finite stiffness. In addition, the uplift is not allowed. Therefore, the

composite beam can only experience horizontal slip in two directions.
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Figure 5: Cantilever beam subjected to concentrated loading case

We consider a cantilever composite beam consisting of two connected rectangular layers

(see fig. 5) and subjected to a combination of vertical and horizontal point loads at the free

end. A single row of deformable connectors is positioned at the XY -plane of symmetry of

the composite section. The connectors are assumed to be linear elastic with an equivalent

stiffness in two directions.

Table 1: Numerical results of the slip in the XY -plane

−∆u0 − h θz x = 0 x = L/4 x = L/2 x = 3L/4 x = L

[13] 0 0.0876 0.1501 0.1875 0.2 (cm)

DMWW 0 0.0876 0.1501 0.1875 0.2 (cm)

DMNW 0 0.0876 0.1501 0.1875 0.2 (cm)

Table 2: Numerical results of the slip in the XZ-plane

−∆wc + h θx x = 0 x = L/4 x = L/2 x = 3L/4 x = L

[13] 0 0.0717 0.2821 0.6170 1.0369 (cm)

DMWW 0 0.0729 0.2842 0.6201 1.0417 (cm)

DMNW 0 0.0726 0.2836 0.6193 1.0406 (cm)

To assess the influence of warping effects on the composite beam response, two finite ele-

ment models were considered: DMWW (Direct method presented in section 5) and DMNW
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(Direct method without warping presented in Appendix A). As the exact formulation pro-

vides accurate results, a single finite element is sufficient to analyze the response of the

composite beam using the two models.

In table 1 and table 2, the values of slips in both directions obtained with both models are

compared against the results of Schnabl and Planinc [13]. It can be seen that there is an

excellent agreement regarding the longitudinal slip. Besides, there are some slight differences

in term of lateral slip. Despite ignoring the warping effects in the DMNW model, the lateral

slip obtained are slightly different compared to the presented results in [13]. In fact, these

small differences can be originated from our consideration of a discrete shear connection in

the lateral direction in both models.

(a) All exact shape functions (b) Exact shape functions with low contribution

Figure 6: Twist angle shape functions

To acquire a deeper understanding of the performance of the proposed formulation

(DMWW), we evaluate the contribution of all DOFs responsible for the torsional response

of the composite beam, see Figure 6. It can be seen that apart from θix and θjx, the remaining

DOFs do not contribute significantly. Therefore, the neglecting warping effects is accept-

able for this considered example. Furthermore, referring to fig. 6a, the twist angle can be

approximated using linear interpolation functions.
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8.2. Example 2: Locking problem in displacement-based formulation

In this example, we investigate the influence of connection rigidity on the response of the

composite beam. The previously used composite beam geometry (fig. 5) is adopted. The

objective is to evaluate the performance of the displacement-based formulation (DBM) with

regards to the exact solution (DM), particularly with high connection stiffness. Both DBM

with 20 DOFs (DBM20) and 22 DOFs (DBM22) are evaluated. The analysis is performed

with 5, 10 and 20 elements for DBM20 and DBM22 models, while only one single element

is used for DM model. The evolution of the maximum interlayer slips at the tip of the

composite beam obtained with the exact formulation in function of the connection stiffness

are depicted in fig. 7. It can be seen in fig. 7a that the longitudinal slip is not altered by

the change of the lateral connection stiffness Kz. Similarly, the lateral slip is not impacted

by the longitudinal connection stiffness Kx (see fig. 7b). It can be noted that for values

of Kx and Kz higher than 1010 Pa, both longitudinal and lateral slips approach zero. It is

worth recalling that the connectors are placed along the vertical axis of symmetry where

warping deformations vanish. Consequently, the influence of the connection stiffness in both

directions is uncoupled and can be studied independently.

(a) Longitudinal slip (b) Lateral slip

Figure 7: Maximum inter-layer slips versus connection stiffness

The ratio between the slip obtained with DBM and the maximum slip at the tip obtained
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(a) Formulation with 20 DOFs (b) Formulation with 22 DOFs

Figure 8: The evolution of the relative longitudinal slip for DBM20 and DBM22 formulations

(a) Formulation with 20 DOFs (b) Formulation with 22 DOFs

Figure 9: The evolution of the relative lateral slip for DBM20 and DBM22 formulations

with DM is depicted in Figure 8a. It is worth mentioning that the interpolation functions are

used to evaluate the slip distribution between the element ends. We observe an oscillatory

behavior of the longitudinal slip distribution obtained with DBM20 model when a high

connection rigidity (Kx = 1010 Pa) is considered, see fig. 8a. Using a finer mesh (10 and

20 elements), locking effects are reduced and the response of DBM20 model is gradually

approaching that of the DM model. On the other hand, DBM22 model predictions are in

good agreement with that of the DM model. Regarding the lateral slip, no locking problem
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Figure 10: The curvature of the composite beam in the XY -plane

for Kx = 1015 Pa and Kz = 106 Pa

is observed and the DBM20 and DBM22 models are capable of reproducing accurately

the response of DM model with a finer mesh (above 10 elements), see fig. 9. The lateral

deformation of the DBM20 and DBM22 models, is controlled by the same interpolation

functions and DOFs (see section 7). Thus, the lateral slip evolutions predicted by the

DBM20 and DBM22 models exhibit identical behaviors (see figs. 9a and 9b). Furthermore,

to have a better insight into the locking problem issue, we consider an even higher connection

rigidity (Kx = 1015 Pa). Five DBM20 and DBM22 elements are considered. It results in a

constant curvature θz,x within every DBM20 single element, as depicted in fig. 10. According

to figs. 9b and 10, it is clear that the DBM22 model is capable of reproducing, accurately,

the composite beam curvature while avoiding slip-locking.

8.3. Example 3: A cantilever composite beam subjected to distributed torsional moment

In the following example, a 2 m cantilever composite beam subjected to a uniformly

distributed torsional moment (100 N.m/m) will be studied. The cross-section is made of an

HEA140 steel profile connected to a 180 × 500 mm concrete slab. The characteristics of the

composite section are presented in fig. 11. The interface connection is provided by two rows

of shear connectors with two directional connection rigidity, Kx = 106 Pa and Kz = 106 Pa.
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Figure 11: I-steel-concrete composite beam

For this specific example, the exact formulation is adopted, using a single finite element.

Except warping, all displacements are prevented at the clamped end. The composite beam

will be analyzed using both DMWW and DMNWmodels in order to evaluate the influence of

warping effects on the beam response. Figure 12 presents the distributed shear forces in the

connector in both directions. It appears that taking warping effects into consideration results

in a significant increase in the connection shear forces. Furthermore, due to warping the

longitudinal slip at the clamped section is not zero, resulting a non zero longitudinal shear

force at clamped section. Additionally, warping also affects the internal forces, particularly

(a) Longitudinal (N/m) (b) Lateral (N/m)

Figure 12: Distributed shear forces in the connectors (N/m)
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the lateral bending moments (see fig. 13). It is due to the fact that the longitudinal shear

force has been augmented when considering the warping effects. To equilibrate this shear

force the lateral bending moment has to be increased. As a result, it is observed that

the highest axial stress in the composite section obtained with DMWW model is more

than doubled compared to that obtained with DMNW model (see figs. 14a and 14b). It

can be seen in figs. 14a and 14b that the axial stress in the concrete slab is much lower

than the one in the steel profile (
σb,max
x

σa,max
x

= 0.74%) which agrees very well with the ratio

of their bending rigidities
EbIby
EaIay

= 75.08. Figures 15a and 15b represent, respectively, the

shear stress distributions in both transverse direction (τxz and τxy). It can be seen that the

torsional shear stress flow for both τxz and τxy is concentrated at both the perimeter of the

concrete slab and the steel profile. Additionally, both τxz and τxy fulfill the contour boundary

conditions. On the other hand, when warping is restrained (warping DOF is blocked) at the

support, the axial stress profile σx exhibits a different behavior. Indeed, the contour plot of

the axial stress σx appears to be similar to the warping-generated axial stresses, as shown in

fig. 16. It is worth noting that the maximum axial stress is ten times greater than the one

obtained with the unrestrained warping case. Furthermore, the maximum axial stress on

the concrete slab σx is comparable to that on the steel profile with a maximum stress ratio

of
σb,max
x

σa,max
x

= 40.34%. It is worth noting that the axial stress distribution is now influenced

not only by lateral bending of the composite section but also by warping deformation (see

fig. 16).

8.4. Example 4: A cantilever composite beam subjected to a torsional moment

In this example, the same composite cantilever beam presented in the example (8.3) is

considered. However, a 5 kNm torsional moment is applied at the free end, see Figure 17.

Using the proposed DMWW model, a parametric study is performed to gain insight into

the complex behavior of the composite beam subjected to a torsional moment. We focus

on the slip distributions and analyze the influence of the connection rigidity as well as the

warping effects on the composite beam response. To do so, we introduced two dimensionless

parameters αuL and αωL
2, representing the connection rigidity in longitudinal and lateral
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(a) Internal forces excluding warping effects (b) Internal forces including warping effects

Figure 13: Internal forces

(a) DMWW model (b) DMNW model

Figure 14: The σx axial stress distribution - unrestrained warping

direction, respectively, where:

α2
u = 2nKx

(
1

EA
+

h2

EI
s

z

)
(72a)

α2
ω = Kz

(
1

EIy
+

h2
c

EI
s

ω

)
(72b)

These two parameters αu and αω appear in the solution of the governing equations (Equa-

tions (34) and (42)). The same dimensionless parameter (αuL) has been used in [21, 22, 23]

to study partial interaction effects on the planar composite beam response. In the present
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(a) τxz shear distribution (Pa) (b) τxy shear distribution (Pa)

Figure 15: The cross-section shear distribution using DMWW model - unrestrained warping

Figure 16: The σx axial stress distribution using DMWW model - restrained warping

model, a new additional parameter αω representing a semi-rigid connection in lateral direc-

tion, is featured and its effects on the partial interactions in both directions are examined.

The expressions of longitudinal and lateral slips are recalled here:

spx = −∆u0 − hθz − zp∆θy + ωpθx,x (73)

sz = −∆wc + hcθx (74)

Before presenting the slip distributions, the parameters involved in the slip expressions are

studied. It should be noted that one of the parameters αuL or αωL
2 is fixed and the other
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Figure 17: I-steel-concrete composite beam: load configuration

is varied, considering the following set: {1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20}. It is worth

mentioning that a full interaction behavior can be obtained for αuL values exceeding 10 for

2D planar composite beam [21, 22, 23].

8.4.1. Lateral shear force response

(a) Beam (a) lateral shear forces (b) Beam (b) lateral shear forces

Figure 18: Distribution of the composite beam’s lateral shear forces with αωL
2 = 1

The influences of the longitudinal connection stiffness (αuL) on the lateral shear forces

in each layer for a low (αωL
2 = 1) and high (αωL

2 = 12) lateral connection rigidity are

depicted in figs. 18 and 19, respectively. In case of low lateral connection stiffness (see

fig. 18), increasing the longitudinal connection stiffness from αuL = 1 to αuL = 20 results

in a 25% increase of the lateral shear forces values in both layer. However, they increase
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(a) Beam (a) lateral shear forces (b) Beam (b) lateral shear forces

Figure 19: Distribution of the composite beam’s lateral shear forces with αωL
2 = 12

significantly with a high lateral connection stiffness, see fig. 19. It shows that a portion of the

torsional moment is transferred as a couple of lateral shear forces applied at the respective

shear center of each layer. The magnitude of those lateral shear forces are in function of the

rigidity of the connection.

8.4.2. Lateral displacement response

(a) Case of αuL = 1 (b) Case of αuL = 12

Figure 20: Partial interaction effects on the difference of the two lateral displacements −∆wc

Figure 20 illustrates the influence of αωL
2 on the difference of lateral displacements
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(−∆wc = wa
c − wb

c) of the two layers. As expected, when αωL
2 increases, −∆wc decreases.

Besides, it can be seen that with a loose longitudinal connection (see fig. 20a), the lateral

displacement of layer (a) is lesser than that of layer (b). However, with a rigid longitudinal

connection (see fig. 20b), the lateral displacement of layer (a) is greater than that of layer

(b) for a low lateral connection stiffness. Nevertheless, the lateral displacement of layer

(a) becomes smaller than that of layer (b) for a high lateral connection stiffness. It shows

clearly that not only the rigidity of the lateral connection but also the stiffness of longitudinal

connection influences the response of lateral displacement of each layer.

8.4.3. Lateral rotation response

The influence of αuL on the value of ∆θy, in which ∆θy = θby − θay , is presented in fig. 21.

It can be seen that ∆θy increases with increasing value of αuL for both low and high lateral

connection stiffness. However, for a high value of αuL, the distribution of ∆θy with αωL
2 = 1

is completely different from that with αωL
2 = 12. This may be explained by the change of

−∆wc distribution from almost linear for αωL
2 = 1 to non-linear curve for αωL

2 = 12 as

depicted in fig. 20b.

(a) Distribution of ∆θy : case of αωL2 = 1 (b) Distribution of ∆θy : case of αωL2 = 12

Figure 21: Partial interaction effects on the response of ∆θy
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8.4.4. Torsional rotation and its derivative response

Figures 22 and 23 shows the partial interaction effects on the response of θx and θx,x,

respectively. It can be seen that the distribution of torsional rotation θx is almost linear and

insignificantly influenced by the connection stiffness. As a result, its derivative θx,x is nearly

constant.

(a) Case of αuL = 1 (b) Case of αuL = 12

Figure 22: Partial interaction effects on the response of θx

(a) Case of αωL2 = 1 (b) Case of αωL2 = 12

Figure 23: Partial interaction effects on the response of θx,x
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8.4.5. Longitudinal relative slip s̄rx

Figure 24 illustrates the effects of the connection rigidity on the distribution of the

relative longitudinal slip at the connector C1 (see fig. 11). It is worth mentioning that the

two graphs represent two parametric studies and in each graph, the slip is normalized with

respect to the highest value obtained for each parametric study. For a low lateral connection

(a) case of αωL2 = 1 (b) case of αωL2 = 12

Figure 24: Distribution of the relative longitudinal slip

stiffness (αωL
2 = 1, see fig. 24a), the maximum longitudinal slip is obtained at the free end

of the composite beam when a loose longitudinal connection is considered (αuL = 1). With

a high longitudinal connection stiffness, the longitudinal slip at the free end decreases and

tends to zero. However, regardless of the longitudinal connection rigidity, it maintains nearly

the same non-zero value at the support where only warping is allowed. It shows clearly that

the cross-sectional warping has an effect on the distribution of the longitudinal slip. When

a high lateral connection rigidity is considered (αωL
2 = 12, see fig. 24b), the distribution

of the longitudinal slip exhibits a different behavior. The maximum longitudinal slip is

obtained at the intermediate point between support and free end of the composite beam.

It is interesting to note that even with higher longitudinal connection stiffness (αuL = 20),

significant values of s̄rx are still observed along the beam length. In fact, with a higher

lateral connection rigidity, a larger lateral shear force is produced at the shear center of the

43



layer, see figs. 18 and 19. Due to different cross-section rigidities of the layers and different

distances of the shear centers to the connection surface, the difference of lateral rotations

∆θy is obtained, see fig. 21. As a result, the longitudinal slip is produced, see eq. (73).

8.4.6. Lateral relative slip s̄rz

The effects of partial interaction on the lateral slip response are illustrated in fig. 25.

For a low longitudinal connection stiffness (αuL = 1), s̄rz experiences a rapid decrease as

the parameter αωL
2 increases. In fact, a 95% decrease in the value of s̄rz at the tip of the

cantilever is recorded for αωL
2 = 8 (see fig. 25a). Furthermore, a full lateral connection is

nearly achieved for αωL
2 = 20, with some small values for s̄rz near the support region. In

case of a high longitudinal connection rigidity (αuL = 12), the distribution of s̄rz exhibits

a different response with increasing αωL
2. Even with a high lateral connection stiffness

(αωL
2 = 20), a non-zero value for s̄rz is still observed at the beam’s free end, as well as

near the support region. By recalling eq. (74), the combination of −∆wc and θx defines the

(a) case of αuL = 1 (b) case of αuL = 12

Figure 25: Distribution of the relative lateral slip

evolution of the lateral slip. Referring to figs. 20a and 20b, a strong correlation between

s̄rz and −∆wc is observed. Actually, a linear behavior of torsional rotation θx is noted

and is relatively identical for all the considered connection stiffness (see figs. 22a and 22b).

Therefore, s̄rz is directly influenced by the distribution of ∆wc. Similarly to ∆θy, the presence
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of −∆wc can only be explained by the existence of the lateral shear forces whose intensities

are functions of the connection stiffness.

9. Conclusions

In this paper, a new formulation has been developed to study mono-symmetric composite

beams with deformable connection under general load conditions considering a non-uniform

torsion. The assumption that shear connection has no influence on the warping of each

subsection of the composite section has simplified significantly the formulation. In fact, the

governing equilibrium equations in the primary plane (XY) become uncoupled from that of

secondary plane (XZ). As a result, the closed-form solution can be obtained. Additionally,

the direct stiffness method has been fully detailed accounting for the contributions of warp-

ing generated forces, as well as the interface shear forces in two directions. It has been shown

that if the warping effects are neglected, it can significantly underestimate the composite

beam’s internal forces. Besides, a displacement-based formulation has been suggested as an

alternative to the direct stiffness method. In case of a high shear connection, slip-locking

occurs, when using a linear shape function for axial displacement fields, and the curvature

becomes constant within the element. To overcome this issue, the axial displacement dis-

tributions were refined by additional two degrees of freedom at the middle of each layer.

In addition, the connection stiffness has been found to affect the slip distribution at the

interface, especially, when considering warping effects on the composite beam response.

For future developments, the effect of the connection stiffness on the warping shape of the

composite section should be taken into account in order to account for the coupling between

the displacement fields in the longitudinally symmetric plan and the orthogonal transverse

plan, as well as the warping contribution to the stress resultants of each subsection.
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Appendix A. Composite beam theory without warping

Similarly to the development of section 5, the non-consideration of warping deforma-

tion will further simplify the governing equilibrium equations and the determination of the

stiffness matrix of the element. Therefore, the system of eq. (32) becomes:

EaAaua
0,xx −

2n∑
p=1

Kpx (−∆u0 − h θz) + na
x = 0

EbAbub
0,xx +

2n∑
p=1

Kpx (−∆u0 − h θz) + nb
x = 0

(
EaIaz + EbIbz

)
θaz,xxx +

2n∑
p=1

hKpx (−∆u0,x − h θz,x) = qay + qby

EaIay θ
a
y,xxx −Kz (−∆wc + hcθx) +

2n∑
p=1

z2pKpx∆θy,x + qaz = 0

EbIbyθ
b
y,xxx +Kz (−∆wc + hcθx)−

2n∑
p=1

z2pKpx∆θy,x + qbz = 0

(GaJa +GaJa) θx,xx − hcKz (−∆wc + hcθx) +mx = 0

(A.1a)

(A.1b)

(A.1c)

(A.1d)

(A.1e)

(A.1f)

The equations (A.1a, A.1b, A.1c), are exactly the same as in case of non-uniform-torsion,

therefore, the system solution in XY -plane will be the same as introduced in section 5.1.1.

Using the last equations (A.1d, A.1e, A.1f), the compact format of the XZ-plane can be

formulated as follows:

GJ
s

hcKz

θ(6)x −

(
hc +

Kx

hcKz

GJ
s

EIy

2n∑
p=1

z2p

)
θ(4)x +

(
GJ

s

EIyhc

+
Kx

EIy
hc

2n∑
p=1

z2p

)
θ(2)x

+
1

hcEIy
mx +

qbz
EbIby

− qaz
EaIay

= 0

(A.2)

Consequently, the system’s solution can be written in the following format:

θx = C9e
r1x + C10e

r2x + C11e
r3x + C12e

r4x + C13e
r5x + C14e

r6x + θpx (A.3)

where

θpx =
−1

GJ
s
+Kxh2

c

2n∑
p=1

z2p

x2

2

(
mx + hc

EIyq
b
z

EbIby
− hc

EIyq
a
z

EaIay

)
(A.4)
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is the particular solution of the twist angle function and r1, r2, ..., r6 are the roots of the

following characteristic equation:[
GJ

s

hcKz

r4 −

(
hc +

Kx

hcKz

GJ
s

EIy

2n∑
p=1

z2p

)
r2 +

(
GJ

s

EIyhc

+
Kx

EIy
hc

2n∑
p=1

z2p

)]
r2 = 0 (A.5)

Using the expression of θx both wa
s and wb

s can be derived on the basis of the built relation-

ships in eq. (A.1). The determination of the element stiffness matrix is obtained similarly

to the one introduced in section 5.3.
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