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Abstract—Due to limitations in radiation dose or scanning
conditions, there are instances where CT data can only be
collected within a restricted scanning angle. However, the use
of limited-angle projection data often results in reconstructed
images that exhibit significant noise and artifacts, which can
significantly impact diagnostic accuracy. Conventional iterative
reconstruction algorithms, such as the total variation algorithm,
consume considerable time simulating the cone beam forward
and backward projection processes. Furthermore, these algo-
rithms often struggle to address the challenges of limited-angle
reconstruction due to their inherent limitations. To tackle these
challenges and achieve superior reconstruction outcomes, we
introduce a novel approach known as the Cascaded Prior-
Based Residual Encoder-Decoder Network (Cas-PRED). This
method employs a multi-level cascaded network as its core
architecture, leveraging full-angle CT reconstruction results as
prior information to guide the deep learning network’s training
process. Our approach consistently delivers superior results
compared to existing reconstruction methods, with impressive
performance metrics, including a peak signal-to-noise ratio
(PSNR) of 33.69+0.90 dB, a structural similarity index (SSIM)
of 0.9557+0.0029, and a root mean squared error (RMSE) of
22.73+1.56 for the result of [0, 150°] reconstruction, highlighting
its effectiveness in enhancing image quality and accuracy.

Index Terms—Cone beam CT reconstruction, Limited-angle,
Deep learning, Prior information.
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I. INTRODUCTION

OMPUTED tomography (CT) imaging technology based

on X-ray absorption and attenuation characteristics is
widely used in medical diagnosis [1], [2], [3], safety in-
spection [4], [5], and industrial detection [6], [7], [8]. In
the ideal scenario, CT scanning can provide high-resolution
medical images, which can be used to assist lesion localization,
segmentation [9], [10], and disease diagnosis. However, the
imaging quality will be limited by specific imaging condi-
tions in practical applications. For example, X-ray radiation
harms human cells, so it is necessary to reduce radiation
dose [11]. Standard methods include reducing the tube cur-
rent/voltage [12], using sparse scanning ways, and using
limited-angle scanning ways [13], [14]. Among these three
methods, limited-angle scanning is the most commonly used
method in practical applications. For example, in dynamic
organ imaging, the heart and lungs contract and relax over
time. Since too long scanning can cause motion blur, doctors
use limited-angle scanning to reduce scanning time effectively.
For some imaging scenarios with limited scanning angles, such
as dental examination, breast tomography, and active pipeline
scanning, doctors can only collect data at a limited-angle in
actual scenarios. Although limited-angle imaging can reduce
scanning time and radiation dose, artifact noise will appear
in the reconstructed image and affect the imaging quality.
The artifact noise may cover adequate information, such as
lesions and anatomical structures. In recent years, researchers
have proposed three algorithms for the accurate reconstruction
of CT images: analytic reconstruction algorithm, iterative
reconstruction algorithm, and deep learning algorithm. These
algorithms can address the artifact noise problem described
above to varying degrees.

FDK [15] is a typical analytical algorithm for cone beam
CT reconstruction of complete data sets. It has been widely
used because of its strong stability, simple calculation, fast
speed, and easy implementation. However, this algorithm relies
heavily on the completeness of projection data. For incomplete
data sets, the reconstruction results will contain many noise
artifacts. Therefore, it is generally used as the initial processing
step in the scene of limited-angle CT reconstruction and
then combined with an iterative algorithm or deep learning
algorithm [16], [17], [18].

Iterative reconstruction algorithms can use existing projec-
tion data to bring better results than FDK [19]. In particular, it
has been used to try to solve artifacts in limited reconstruction
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results [20]. In order to improve reconstruction results of in-
complete projection data sets, researchers consider introducing
additional prior information or regular term [21], [22] into
the iterative algorithm. The commonly used regularization
methods include the iterative reconstruction method based on
total variation (TV) or dictionary learning. The sparsity of
the image gradient-domain can be controlled through specific
adjustable parameters [23]. The implementation of the TV
algorithm is relatively simple. The minimization process of
TV iterative reconstruction can take data fidelity and gradient
sparsity into account, which helps obtain a better processing
effect compared with simultaneous iterative reconstruction
(SART) algorithm [24], [25], [26]. In order to avoid block
and gradient artifacts, Wei Yu et al. [27] proposed to use the
LO norm to replace the L1 norm in the TV algorithm, which
improves the processing effect near the edge. Meng Cao et
al. [28] used OMP algorithm [29] to learn two dictionaries
corresponding to effective structures and artifacts, respectively.
The two dictionaries were used to represent low-quality images
sparsely. Xu Moran et al. [30] combined dictionary learning
algorithm with LO norm constraint in image gradient-domain
to further protect image edges and eliminate shadow artifacts.
However, this type of iterative algorithm cannot completely
solve the problem of artifacts in the reconstruction results and
the problem of missing effective information under imaging
conditions where projection data is seriously missing.

With the improvement of computer computing power and
the development of deep learning algorithm, image processing
algorithm based on the convolutional neural network has
achieved good performance in many medical fields, such as
medical lesion segmentation and detection, medical disease
diagnosis, and multimodal medical image registration [31],
[32], [33], [34], [35]. Many researchers have applied deep
learning algorithms to solve limited-angle CT reconstruction
and achieve remarkable results. Hanming Zhang et al. [36]
tried to train a simple full convolution neural network to
process limited-angle CT images directly and proved the
effectiveness of a full convolution network. However, restricted
by the number of network parameters and learning methods, it
can only suppress noise artifacts of limited-angle CT images to
a certain extent. It was inspired by the network structure [37]
proposed by Kaiming He et al, YoSeob Han er al. [38] tried to
solve the problem using residual learning in 2015. The network
obtained competitive results, which showed the promoting
effect of residual learning in limited CT reconstruction. Unlike
natural images, CT reconstruction involves projection and
image domains. Therefore, to fully use the useful information
of different domains, Qiyang Zhang et al. [39] constructed
an end-to-end network combining the projection domain and
image domain. The propagation of the gradient can cross-
domain and realize mutual promotion. However, this method
must realize two large networks simultaneously, and it in-
troduces propagation error in filtered back projection. For
3D cone beam CT reconstruction, the calculation pressure
of the whole process cannot be ignored. The processing of
limited-angle CT image needs to recover the real anatomical
structure of the scanned object from the noise artifact. To
make the reconstruction results closer to the real distribution,

some researchers [40] use the generative adversarial network
(GAN). Compared with simple L1 and L2 loss functions, the
discriminator network can provide better convergence results.
The patch-GAN network was constructed by Zicheng Li et
al. [41] used an encoder-decoder network as a generator. It at-
tempts to recover the missing projection data in the projection
domain. Shipeng Xie et al. [42] used condition GAN network
to solve limited-angle reconstruction in the image domain
instead of the projection domain. This method combined with
various loss functions helps obtain more complete results.
However, several GAN network methods mentioned above
require training two networks at the same time. The training
effects between the two networks will seriously affect each
other. In addition, the training data is also required to be highly
consistent. In the limited-angle dual-energy CT reconstruction
field, Yikun Zhang et al. [43] proposed the PIE-ARNet to
exploit prior information to perform dual-energy computed
tomography (DECT) imaging with two complementary quar-
ter scans, reducing radiation dose, and shortening the scan
time. However, this method only addresses the limited-angle
reconstruction problem of spiral CT, and the limited-angle
reconstruction problem of cone-beam CT requires further
research.

One of the reasons why deep learning algorithms can
achieve excellent performance is that neural networks can
represent a considerable solution space. However, training
a complex neural network for medical image reconstruction
tasks requires elaborate design. Compared with complex type
acquisition scenes of natural images, medical images mainly
collect the scanning data of various human body parts. The
same parts of different people and the symmetrical part of
the same person have similar anatomical structures. Based
on this, we propose a new method named Cas-PRED. To
solve this problem, we introduced Cas-PRED, which uses
prior information to guide the limited-angle reconstruction
task of cone beam CT to better control the training of neural
networks, improve the training effect, reduce blur problems,
and speed up the training process. This solves the problem
that the reconstructed image may be blurry or unclear due to
the low radiation dose during cone beam CT reconstruction
at limited angles. This is critical in the field of medical
imaging, where doctors need accurate images for diagnosis
and treatment planning while reducing radiation damage to
patients. Cas-PRED is an important tool with the potential
to improve the limited-angle reconstruction quality of cone
beam CT, helping to find a better balance between radiation
dose and image quality to meet the needs of the medical
field. The experimental results show that satisfactory results
can be obtained for limited-angle reconstruction. The main
contributions of this paper include the following aspects:

1. Cas-PRED uses a two-stage encoder decoder cascade
network, which can process limited-angle CT images progres-
sively. The cascaded encoder-decoder structure realizes layer-
by-layer processing, avoids the repeated forward projection
and back projection in the traditional iterative algorithm, and
dramatically improves the accuracy of reconstruction results.

2. Cas-PRED extracts prior information to complement the
critical feature extraction capabilities of the reconstruction
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network. The features extracted by the pre-trained encoder will
be used as the prior features of the secondary network to help
get better reconstruction results.

3. A multi-scale loss function is introduced for Cas-PRED
to improve the neural network training effect. A pre-trained
network is used to extract multi-scale features. The multi-
scale features are compared with the features of the cascaded
encoder-decoder network to calculate the multi-scale error.

An overview of this article is as follows. Section II describes
the principles of the cascade network structure, prior informa-
tion selection and extraction, and multi-scale loss functions
used in this method. Section III introduces the data and
illustrates the analysis of the experimental results. Section IV
summarizes the contributions and future developments of this
study. Details are shown below.

II. THEORETICAL DESCRIPTIONS

The cascaded residual encoder-decoder network (Cas-
PRED) is mainly used to solve the problem of cone beam
CT limited-angle reconstruction. The network consists of sev-
eral components: an FDK reconstruction module, a cascaded
encoder decoder module, and a prior information selection and
extraction module. The overall network structure is shown in
Fig. 1.

A. FDK reconstruction module

For the cone beam scanning reconstruction problem, the
FDK algorithm is a common analytical reconstruction al-
gorithm for preliminary reconstruction. The FDK algorithm
transforms the cone beam image reconstruction into a fan
beam image reconstruction problem [15]. The FDK algorithm
can obtain accurate reconstruction results of projection data
simply and quickly. However, the results contain severe arti-
facts and miss information in the case of missing projection
data. In this paper, the FDK algorithm is used as a processing
module for training deep convolutional networks. The FDK
algorithm reconstructs a series of [full-angle image, limited-
angle image] pairs. We use the full-angle image as the training
target and the limited-angle image as the training input.
Case-PRED divides the FDK algorithm into three steps. 1)
projection data preprocessing, 2) preprocessed data filtering,
and 3) weighted inverse projection. The distance from the
reconstructed point determines the weights to the focal point.
The equation for this process is defined as follows.

£(r,6.2) = S ABg(1,2, B ~Ddids (1)
S =rsin(¢ — ) 2)
+ Drcos(¢ — )
T Do) v
2 D
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where [ is the coordinate of projection data on the detector,
Z is the coordinate of projection data on the rotating axis,
B is the rotation angle, D is the focal length, g(I, 2, 8) is
cone beam projection data, h(I" — ) is Hann filter, f(r, ¢, z)
is the reconstruction value obtained at the corresponding
reconstruction point.

B. Cascaded residual encoder decoder module

The reconstruction of cone beam CT limited-angle often
requires to be achieved from a complex neural network. The
disadvantage of a complex network is that the network training
is difficult. In order to solve this problem, multiple cascaded
networks can be used to reconstruct the full-angle image
gradually. The cascaded networks at different stages undertake
different functions in the image reconstruction process to
obtain better processing results. Modular design has been
successfully applied in many deep learning tasks because of its
simple structure, standardized definition, and good processing
effect [44], [45], [46], [47]. In this paper, a two-stage
cascaded residual encoder-decoder network is used. Each stage
of the encoder-decoder structure has different sizes and similar
structures. The encoder performs continuous down-sampling
through max-pooling operation, which can reduce the fea-
ture scale, expand the receptive field, and extract features
of different granularity. The decoder comprises a series of
deconvolution operations, which can recover high-dimensional
features from the encoder’s output results. In the process of
down-sampling and up-sampling, the practical information can
be restored without disturbances and artifacts [47]. At the
same time, to solve the structural distortion caused by the
encoder during continuous down-sampling and up-sampling
[48], a series of residual blocks are introduced to enable the
encoder and decoder to fuse features of different scales. Each
residual block contains a three-layer convolution combina-
tion operation including convolution, batch normalization, and
Leaky relu. The structure of the encoder and decoder is shown
in Fig. 2.

C. Prior information selection and extraction module

Different from the complex and diverse scenes of natural
images, the main scene of medical image research is the
human body. Although the sections of similar positions of
different people are not the same in detail, they still have many
similar structural features. For example, the CT sections of the
lung include the lung, nodules, blood vessels, spine, muscle
and other organs. Since there are currently no conditions to
obtain tomographic images of the same person at different
times, we study the extraction of prior information from full-
angle images of others. Suppose P is a prior image library,
which contains many complete angle prior images. There is a
very high probability that an image has a great similarity with
the image currently processed by the algorithm. By comparing
the MSE value and SSIM value, the closest image can be
selected from P. If an image Pt is selected as the prior image,
we register Pi with the processed image. Through the affine
transformation including translation, rotation and scaling, the
two images have the largest feature similarity. Therefore, the
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Fig. 1.

Cas-PRED network. The network architecture is a two-stage cascaded encoder-decoder network. PRED1 and PRED2 perform coarse-grained and

fine-grained reconstruction, respectively. The prior images are fed into the prior information feature extraction. Each layer of the feature extractor extracts
prior features of different sizes. Layer-by-layer prior features are fed into PRED2 to assist PRED2 to incorporate prior information. In addition, pixel loss is

fused with multi-scale loss to ensure that the network can effectively converge.
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Fig. 2. The structure of encoder and decoder. (a) represents the structure of
encoder. (b) represents the structure of decoder. (c) represents the structure
of residue block.
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full-angle cone beam reconstruction results can be used as
prior information to guide the limited-angle reconstruction of
other patients.

1) Prior information choice: We select the existing full-
angle reconstruction results as the prior database for the
limited-angle image reconstruction task. The 3D cone beam
reconstruction results of CT images include multi-layer slices.
For any limited-angle CT slice to be reconstructed, selecting
the prior slice with the most significant similarity is necessary.
Because the CT images of the same part have certain structure
similarities, it can directly select in the image domain without
using the deep learning network to extract features in higher
dimensions for comparison. We use two indicators, namely
MSE and SSIM, to measure the similarity between the limited-
angle image and the CT image slices in the prior database:

1 M
MSE(z, i) = 37 D (Tm — ym)’ 6)

m—1

(2patry, +c1)(200y, + 2)
(13 + g, + 1) (0F + 03, +¢2)

where z represents the current limited-angle CT image to be
processed, y; represents the i-th full-angle image selected from
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the priori database, fi;, pt,, Tepresents the mean value of image
2 and image y respectively. o,, o, represents the variance
value of image z and image y. o, represents the covariance
of two images. c¢; and co are to maintain the calculation’s
stability and avoid the zero denominator.

The prior image with the highest MSE metric or SSIM
metric can be selected and sent to the prior information
extraction network to extract compelling prior features. After
image comparison, there are specific differences in details
due to scanning position, human structure, and other reasons.
Therefore, the selected prior images need to be registered with
the limited-angle images. The prior images can be adjusted to
the proper size and orientation by image registration includ-
ing amplification, minification, translation, and rotation. The
process of comparison and registering is shown in Fig. 3.

X

_— )

2) Prior information extraction: The prior information ex-
traction network uses the encoder-decoder network structure.
In order to reduce the training difficulty of the prior infor-
mation extraction network and improve the stability of prior
feature extraction, the prior information extraction network is
pre-trained with the following steps: 1. The head and tail
residual connections in the network are removed. 2. Each
image in the prior database is input into the encoder network.
3. Features extracted from each encoder layer are sent to the
decoder to train the whole network. After training, the encoder
of the prior information extraction network is connected in

parallel with the encoder in Cas-PRED to supplement prior
features.

Registration

Fig. 3. Comparison and registration of prior images.

0* = arggnin(Lz(f;%_>D(Ip)aIp)) ®)

Eq. (4) describes the objective function of training, where
fE—>p is the parameter to be optimized. It can encode image
I,,, and then reconstruct it to original images.

D. Multi-scale Loss function

In order to ensure that Cas-PRED can be effectively trained,
a multi-scale loss function is introduced in this paper. Unlike
the commonly used L1 or L2 loss functions, the multi-scale
loss function measures the distance between layer-by-layer
features. Since the traditional loss function can only calculate
the error between the final output and the target result, the fea-
tures of different depths extracted by each layer of Cas-PRED

cannot be fully utilized. The multi-scale loss can measure the
feature error of each layer by calculating the layer-by-layer
feature distance between the target and the output to guide
the network better to learn the correct semantic information.
This approach is similar to the idea proposed by Hamid
Rezatofighi er al. [49]. The computation of multi-scale loss
functions requires both network inference output features and
target features by a pre-trained encoder-decoder network. The
loss function includes three structures: 1. The encoder multi-
scale loss function computes encoder output features. 2. The
decoder multi-scale loss function computes decoder output
features. 3. the encoder-decoder multi-scale loss function that
comprehensively computes encoder-decoder output features.
The multi-scale loss function calculation process is shown in
Fig. 4. Taking the encoder-decoder structure loss function as
an example, its calculation formula is:

Feature
Extraction

S v ——

Encoder

(@ © (b)

Feature
>

Extraction

r
|
!
i
I
I
I
i
I
I
I
i
I
I
I
i

Encoder

(a) Loss(x,y) = Multiscalegpcoqer (X, y) + pixel_loss(x, y)
(b) Loss(x,y) = Multiscalegecoger (X, y) + pixel_loss(x,y)
(c) Loss(x,y) = Multiscaleey_gecoqer (%, ¥) + pixel_loss(x,y)

Fig. 4. The calculation process of multi-scale loss function. (a) represents the
total loss function of Multiscalecncoder(,y). (b) represents the total loss
function of Multiscalegecoder(Z,y). (c) represents the total loss function
of Multiscaleen—decoder (T,Y)-

N
L(z,y) =X Y Luse (f{(@), fI'(y)) + MLuse(z,y)+
=1

XoLssiv(z,y) + AsLyse(H(x), H(y))
9)

where f; is the i-th layer feature extractor, and the last three
parts include: the L ;s g error loss function between the output
image and the target image; the Lggrys between the output
image and the target image; the high-frequency feature loss
function Ly;sg(H) between the output image and the target
image. A\g, A1 A2 and A3 are hyper-parameters that control the
proportion of each loss function, thus ensuring that different
loss function values can be adjusted to a similar scale. In this
study, the values of A\g, A1, A2 and A3 are 1.5, 1, 1000 and
0.2, respectively. Setting the hyper-parameters in this way can
help the network to converge as soon as possible.

The calculation formula of the multi-scale loss function
of the other two structures is similar. The difference is that
the number of features and levels involved are different.
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Features at different levels have different granularities of
abstraction. Low-dimensional features are generally image
color, grayscale, edge, corner, and other features. As the depth
deepens, the features are gradually abstract and complex. Loss
functions of different scales, numbers, and levels may prompt
the network to focus on learning features at different levels of
abstraction and then express this difference in the final result.
In order to allow the network to learn the maximum number
of layers and features, Cas-PRED uses the encoder-decoder
structure loss function as the multi-scale loss function.

E. Network design

The whole limited-angle CT image processing algorithm
can be divided into three stages: data preparation stage,
training stage and testing stage. The stage of data preparation
is mainly to reconstruct by FDK method. The main work of
the training phase is to use the data in the training set to train
the designed network architecture. The main architecture of
the network is a two-stage residual network, supplemented by
a small encoder network that provides prior information. In
the test phase, the test set data is sent to the trained network,
and processed layer by layer to obtain the cone beam limited
angle CT reconstruction results. The process is shown in Fig. 5
and as outlined in Algorithm 1.

S / --------------------------------
Project data { Training set ( esting set
Trainable . .
3D FDK PREDI1 ‘ Extraction Trained PRED1 ‘
reconstrcution l ]

Trainable Prior .
PRED2 1 information i Trained PRED2
i Full-angle Limited- i

data angle data
Loss function Result

Data preparation Training Testing /""

Fig. 5. The flowchart of Cas-PRED.

Algorithm 1 Cas-PRED
Require: The limited angle projection data I.
x = FDK(l) Calculate image domain data.
repeat
21 = PRED1(x)
f = Registration(z) Select full angle data f that is
closest to x.
p = Prior(f) Extract prior features from f.
T final = PRED2(zxq,p) Combine feature p to enhance
the reconstruction.
loss = CalCUlatelossfunction (xfinala y)
until converged

The Cas-PRED consists of a two-stage encoder-decoder
network. The first stage network takes the cone beam limited-
angle CT image generated by the FDK algorithm as input.
The second stage network takes the output of the first stage
network as the input. The prior characteristics of the full-angle
images selected from the prior database can be integrated into
the Cas-PRED. The training objectives of the whole network
are:

6
. . o;
91 = a?‘getmn L(fjl ([input)7 Itarget) (10)
1
0; = aTgGT*nmL(f?; (Ilalprior)ajtarget) (11)

2

In Eq. (5), ffI and ff% indicate the parameters in the
first level and the second level that need to optimize. [1;,pue,
Tiarget] s a pair of input and target images. I; and Ip.i0r
respectively represent the output result of the first stage and
the complete angle CT image selected from the priori database
for extracting prior features. L is the loss function to train the
network. The two-level network uses the same loss function,
namely:

L(z,y) =pizel_loss(z,y)+

12
multiscaléen —decoder (SU, y) (12

pizel_loss(xz,y) =Lyse(z,y) + M Lssim(x,y)+
NeLyse(H(x), H(y))

mUltiscaleen—decodeT (l‘, y) =

13)

N
Mo Y Luse (fi(@), £ (1) + Luse(z, y)+ (14)
i=1

A1L;SIM(I, Y) + XoLyse(H(x), H(y))

where H is a high-frequency information extraction operator,
which is used to extract high-frequency information in image
x and image y, such as edges, corners, etc., so that more high-
frequency features can be retained and generated in the final
processing results.

III. RESULTS AND DISCUSSION
A. Experimental conditions

We use three CT datasets in our experiments. The lung
data are obtained from the AAPM dataset (from the low-
dose CT challenge) and the LIDC-IDRI dataset (from the
National Cancer Institute). The leg data are obtained from
real patients in hospitals. The dataset consists of 23 human
lung scans and 42 human leg scans. Among them, 50 sets
are used as training sets, 10 sets are used as test sets,
and 5 set is used as prior image data sets as shown in
Table. I. The resolution of each data is 512x512x512. For
the evaluation, we conduct five-fold cross-validation. In order
to verify the effectiveness of the proposed algorithm in cone
beam CT limited-angle reconstruction, we generate cone beam
projection data of the two datasets. The scanning geometry
parameters include: the detector size is 960x960, each detector
unit is 0.45x0.45mm?2. On the basis of collecting the same
number of projection data, the research goal is to obtain the
highest quality limited-angle image. The full scan angle is
360°. A total of 600 projections are collected. We simulated
and generated CBCT images reconstructed by several different
limited-angle scanning methods. Taking the 90° limited angle
as an example, we collect 150 sets of projections evenly
spaced. The reconstruction data size is 512x512x512. The
algorithm is compared and verified on [0,150°], [0,120°],
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TABLE I
DETAILS OF TRAINING AND TESTING DATA SETS.

Category Training/slices
Lung 8704
Leg 16896

Testing/slices Prior/slices
2560 512
2560 2048

[0,90°] limited-angles. In order to reduce the burden of GPU
training, the image is trained by the slice.

All experiments are implemented using Tensorflow on one
NVIDIA Tesla K80 GPU. FDK is completed with MATLAB
on NVIDIA GeForce GTX1080-Ti GPU. Limited by the
available GPU memory, the batch size is set to 16. The total
epoch is set to 100. When the data set is enlarged, the initial
value of the learning rate can be appropriately increased. In
this study, the initial learning rate is set to 10~3 based on
experience. The learning rate decreases slowly as the training
epoch increases from 1073 to 107°. The Adam optimizer
is used for training with setting 51 = 0.9, S = 0.999.
The filter used by the FDK algorithm is the Hann filter.
In order to verify the effectiveness of the algorithm in this
paper, the experimental results are compared qualitatively and
quantitatively with FDK, total variation (TV), DDNet [50], and
DCR [51]. DDNet is an encoder-decoder network. The encoder
is a DenseNet and the decoder is a simple deconvolution layer.
The DCR algorithm consists of two parts: first preliminary
processing with the UNet network, and then reprocessing with
the TV algorithm. For a fair comparison, all the competing
methods were tuned according to the original papers to reach
the best performance.

The quantitative comparison refers to three indicators:
peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM), and root mean square error (RMSE). PSNR is used
to measure the difference between two data and calculated as

below:
M

1

MSE(z,y) = 17 D (m — ym)’ (15)
m=1

PSNR(z,y) = 10log(L?/MSE) (16)

where M SE means squared error of image x and image y,
and L is the maximum gray value of the image pixel.

SSIM is used to measure the similarity of two data in
brightness, contrast, and structure. Its formula is defined
below:

(2papiy + 1)(202y + c2)
(1% + g+ c)(0f + 0f + c2)

SSIM (x,y) = (17)

where 1 means average value, o> means variance value, o
means covariance value, and ¢ means variables to stabilize the
division with a weak denominator.

RMSE is the algorithmic square root of MSE. Among the
three indicators, the larger the result value of PSNR and SSIM,
the higher the image quality. RMSE is the opposite.

B. Evaluation for reconstruction result

For limited-angle reconstruction, a lot of effective informa-
tion in CT images will be damaged by artifacts and noise,

and the original texture information will be lost. We use five
algorithms (FDK, TV, DDNet, DCR, Cas-PRED) to process
three cone beam CT reconstruction results with limited-angle.
The processing results of some test data are shown in Fig. 6,
Fig. 7, and Fig. 8. In order to more intuitively compare the
effects of different algorithms, we calculate the mean and
variance of PSNR, SSIM, and RMSE indicators of test results
for each algorithm. The quantitative calculation results are
shown in Table. II and Table. IIl. Regarding indicators, the
processing results of any limited-angle FDK method are the
worst. TV method is based on the traditional iterative method.
Compared with the FDK method, it can retain the image
details to a large extent. The processing results of DDNet
can generally obtain high SSIM values. The DCR method
first uses the UNet network for processing and then the TV
iterative method for secondary processing of the processed
results. The down-sampling in UNet better suppresses noise
artifacts and loses some practical information. Therefore, DCR
achieves relatively close results with the TV method regarding
indicators. Among the several methods, the Cas-PRED has the
best processing effect. In the [0, 150°] limited-angle scanning
scenario, compared with the FDK algorithm, the PSNR is
increased by about 13dB, the SIMM is increased by about 0.2,
and the RMSE is reduced by about 200HU. In other scenarios,
although it is not superior to [0, 150°], it still achieves the best
reconstruction effect among the several algorithms. It is proved
that our algorithm effectively solves the problem of cone beam
limited-angle reconstruction.

1) Evaluation for reconstruction result of [0,150°]: Fig. 6
shows the processing results of 150° limited-angle data (al)-
(f1). (a2)-(f2) are the full-angle images. By comparing (al)-
(f1) and (a2)-(f2), it can be found that the location of artifacts
is related to the location of missing projection data. For the
reconstruction problem with a scanning angle of [0, 150°], the
limited-angle artifacts mainly exist in the lower right corner
of the image. Among several algorithms, the reconstruction
effect of FDK is the worst. The image edge in the lower right
corner is blurred and divergent. The reconstruction algorithm
based on TV has some improvement effects. The image
contrast is clearer. The edge divergence artifact has a certain
inhibition effect but still cannot get a clear edge. Several
algorithms based on deep learning can restore image edges.
The DDNet method in Fig. 6(d1) can reconstruct clear edges
and restore the bone tissue area covered by artifacts to a certain
extent, although some divergent artifacts are still near the
edges. The DCR method in Fig. 6(el) can effectively suppress
the divergent artifacts near the edges from the perspective
of the artifact suppression effect. The artifacts covered on
the pulmonary blood vessels have also been effectively sup-
pressed, which can clearly show the details of blood vessels.
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TABLE I

QUANTITATIVE INDICATORS OF FIVE ALGORITHMS WITH DIFFERENT LIMITED-ANGLES.

Angle Indictor FDK TV DDNet DCR Cas-PRED
PSNR/dB 20.58+0.76 24.73+0.34 28.93+0.17 29.49+0.55 33.69+0.90
150° SSIM 0.7831+0.0083 0.8595+0.1090 0.9060+0.0020 0.8130+0.0220 0.9557+0.0029
RMSE/HU 221.93+£2.48 69.52+1.51 68.16+1.33 63.96+4.44 22.73£1.56
PSNR/dB 17.96+0.76 21.11+0.40 20.26+1.11 22.35+0.39 25.63+0.81
120° SSIM 0.6775+0.0131 0.7722+0.0132 0.7738+0.0148 0.7095+0.0126 0.8325+0.0050
RMSE/HU 249.20+3.34 102.32+2.70 117.71£3.09 108.78+1.78 50.79+1.62
PSNR/dB 15.86+0.60 18.75+0.54 18.274£0.94 18.34+0.44 24.96+0.82
90° SSIM 0.5681+0.0101 0.6985+0.0134 0.6993+0.0175 0.5930+0.0204 0.8069+0.0077
RMSE/HU 278.77+4.11 134.81+4.19 167.75+3.59 147.78+1.69 59.67+3.73

Target FDK vV

DDNet DCR

Fig. 6. Reconstruction result of [0,150°]. (al) and (a2) are the target images. (b1) and (b2) are the FDK reconstruction results. (c1) and (c2) are the TV
reconstruction results. (d1) and (d2) are the DDNet reconstruction results. (el) and (e2) are the DCR reconstruction results. (f1) and (f2) are our Cas-PRED

reconstruction results.

However, the internal edges are not clear. The bone tissue
has not been effectively recovered, which exists in the form
of brighter artifacts in the image. Fig. 6(f1) and Fig. 6(f2)
are the results of the Cas-PRED algorithm proposed in this
paper. The reconstructed image is richest in detail. The lung
blood vessels have obtained processing results comparable to
the reference image. The severely damaged bone tissue has
also been effectively restored. The image edges are sharper
compared to other algorithms. Fig. 6(f1) is from the LIDC-
IDRI dataset, which is the processing result of human lungs.
Fig. 6(f2) is from the AAPM data set, the human upper
abdomen processing result. Comparing the results of the two
test sets in Fig. 6(f1) and Fig. 6(f2), it can be shown that
Fig. 6(f2) has a relatively better effect. This is because most
of the samples in the training data are lung scanning images,
while there are few abdominal images in the training samples.
Our proposed Cas-PRED algorithm is the best comprehensive
performance among the four methods. Several issues in finite-
angle reconstruction: bright artifacts, edge divergence artifacts,
and vitreous lung artifacts, can be resolved.

2) Evaluation for reconstruction result of [0, 120°]: Further,
we processed the scanning reconstruction results with fewer
limited-angle, i.e., [0,120°]. The smaller the scan angle, the
less projection data is obtained. Due to the severe loss of

practical information in the projection data, the reconstruction
processing of the algorithm becomes more difficult. As shown
in Fig. 7(bl), the FDK reconstruction results contain severe
noise artifacts, especially in the lower left and upper right
corners, ribs, and surrounding muscle tissues.

Fig. 7 shows the reconstruction results of [0,120°] limited-
angle. Compared with the case of 150°, the semantic infor-
mation is severely missing, and the reconstruction results of
120° have more serious artifacts and noise. The bones at the
lower right are almost completely covered up. The lungs also
have serious artifacts. Several methods other than FDK can
restore image information to some extent. Compared with the
FDK algorithm, although the TV method in Fig. 7(b1) requires
repeated forward and back projection and takes a long time, the
image quality is greatly improved, and some divergent artifacts
can be removed. Processing algorithms based on deep learning
perform relatively well. DDNet shows certain advantages in
edge processing, but the effect of artifact suppression is worse
than other deep learning algorithms. The DCR method showed
good suppression of lung artifacts but could not solve the
problem of high-density artifacts. In addition, since DCR
needs to use the TV method for reprocessing, there are similar
time-consuming drawbacks to the TV method.

Reconstruction methods usually only measure pixel-by-
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Target FDK ™V DDNet DCR Cas-PRED

Fig. 7. Reconstruction result of [0, 120°]. (al)-(a5) are the target images. (bl)-(b6) are the FDK reconstruction results. (c1)-(c6) are the TV reconstruction
results. (d1)-(d6) are the DDNet reconstruction results. (e1)-(e6) are the DCR reconstruction results. (f1)-(f6) are our Cas-PRED reconstruction results. The
second and fifth rows are each algorithm’s output results under the bone window width and window level. The third and sixth rows are the residual map
between the output of each algorithm and the target image.

TABLE III
QUANTITATIVE INDICATORS WITH THE [0, 60°] LIMITED-ANGLE FOR LEG DATA.

Angle Indictor FDK DDNet DCR Cas-PRED
PSNR/dB 21.9240.23 36.93+1.72 37.75+1.69 37.73£1.27
60° SSIM 0.4975+0.0106 0.9342+0.0270 0.9419+0.0530 0.9524+0.0130

RMSE/HU 160.40+4.13 29.12+7.03 26.43+5.36 26.25+4.02
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Target FDK vV DDNet DCR Cas-PRED

Fig. 8. Reconstruction result of [0,90°]. (al)-(a5) are the target images. (b1)-(b6) are the FDK reconstruction results. (c1)-(c6) are the TV reconstruction
results. (d1)-(d6) are the DDNet reconstruction results. (el)-(e6) are the DCR reconstruction results. (f1)-(f6) are our Cas-PRED reconstruction results. The
second and fifth rows are the output results of each algorithm under the bone window width and window level. The third and sixth rows are the residual map
between the output of each algorithm and the target image.

TABLE IV
QUANTITATIVE INDICATORS OF DIFFERENT NETWORK STRUCTURES.

Indictor FDK REDI1 Cas-RED Cas-PRED
PSNR/dB 15.86+0.60 23.74+0.77 25.18+0.66 24.96+0.82
SSIM 0.5681+0.0101 0.7368+0.015 0.8064+0.013 0.8069+0.0077

RMSE/HU 278.77+4.11 69.03+5.82 58.49+4.27 59.67+3.73
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FDK

Target

DDNet

DCR Cas-PRED

Fig. 9. Reconstruction leg result of [0, 60°]. (a) is the target image. (b) is the FDK reconstruction result. (c) is the DDNet reconstruction result. (d) is the
DCR reconstruction result. (e) is the Cas-PRED reconstruction result. The second row is the output results of each algorithm under the bone window width
and window level. The third row is the residual map between the output of each algorithm and the target image.

TABLE V
QUANTITATIVE INDICATORS OF DIFFERENT NETWORK STRUCTURES.

PSNR/dB SSIM RMSE/HU

FDK 15.86+0.60 0.5681+0.0101 278.77+4.11

L2-loss 24.86+1.45 0.8055+0.0208 60.91+3.96

encoder-loss 24.61£1.32 0.8064+0.0155 63.62+3.45

decoder-loss 24.90+1.29 0.8089+0.0212 60.22+3.27

encoder-decoder-loss 24.96+0.82 0.8069+0.0077 59.67+£3.73
TABLE VI

COMPUTATIONAL COMPLEXITY OF DIFFERENT DEEP LEARNING METHODS.

Method DDNet
Time(s) 0.04
Paramaters(M) 0.16
FLOPs(G) 41.3

DCR Cas-PRED
0.06 0.12
2.76 0.74
117.1 101.2

pixel errors, resulting in low generalization, while Cas-PRED
can use both pixel-by-pixel errors and feature errors to make
it easier for the network to learn semantic information with
better universality. Among several processing methods, the
Cas-PRED algorithm has the best effects. The pulmonary
vascular structure can be completely restored without the
glass artifacts. Outlines are sharp and correct, without high-
density over-brightness artifacts in the image. The inner and
outer boundaries of the chest are clear. The texture of the
blood vessels in the lungs is similar to the reference image.
Fig. 7(a2)-(f2) shows the processing results of the algorithm
under the same slice bone window width and window level. It
can be seen that Cas-PRED has a specific inhibition effect on
the high-density artifacts near the bone structure in Fig. 7(f2).

In the enlarged ROI on Fig. 7(f2), Cas-PRED has achieved
a better noise suppression effect than other reconstruction
algorithms. The bones covered by artifacts can be restored
to a certain extent, while the other methods can only get a
mass of fuzzy highlight artifacts.

3) Evaluation for reconstruction result of [0,90°]: Fig. 8
shows the reconstruction results of [0,90°]. This fewer recon-
struction angles result in more noise and severe loss of image
information. According to the reconstruction results of the
FDK algorithm, it can be seen that the boundary artifacts are
serious, especially in the upper left corner and the lower right
corner, and the clear boundary cannot be seen. The muscle part
has high-density artifacts caused by the influence of bones
in a large range. The TV processing method can partially
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Fig. 10. The three different structures of network. (a) represents the structure
of RED network. (b) represents the structure of Cas-RED network. (c)
represents the structure of Cas-PRED network.

reconstruct the image boundary and suppress the high-density
artifacts to a certain extent but cannot restore the covered
anatomical structure. The boundaries of the processing results
of DDNet are relatively clear. However, the artifacts around
the border still need to be fixed. DDNet also fails to address
lung artifacts. Although the DCR method can reconstruct
the boundary, a certain gap exists between the reconstructed
boundary and the real results. Because parts of the muscle
tissue are wrongly considered artifacts by the DCR method,
the result of the DCR method has a boundary contraction. Cas-
PRED, which incorporates prior information and is trained
with multi-scale loss, has better noise suppression effect.
There are no obvious streak artifacts in the foreground, and
boundaries are most consistent with the target image.

The muscle and bone texture of the FDK reconstruction
results wholly disappeared under the bone window width and
window level. DDNet and DCR methods can only recover
blurred blobs. Among the five methods, the Cas-PRED per-
forms best, especially the skeletal part can be reconstructed.
However, because the gray values of different tissues in the
muscle are too close, it is difficult for the Cas-PRED method
to reconstruct the utterly correct muscle texture. As shown
in the enlarged ROI in Fig. 8(f2), there is still some detail
gap between the muscle texture around the bone and the
real texture. Fig. 8(b3)-(f3), Fig. 8(b6)-(f6) are the residual
maps between the processing results of each method and the
target image. The grayscale residual effect of Cas-PRED is
better. Only the upper left and lower right corners have minor
mistakes in the reconstructed images of Cas-PRED.

4) Evaluation for reconstruction result of [0,60°]: Fig. 9
shows the reconstruction results of [0,60°]. Fig. 9(bl) and
(b2) depict the outcomes of the FDK reconstruction algorithm
at both normal window width and window level, and bone
window width and window level within the same slice. In
Fig. 9(b3), we observe the disparity between the 60° limited
angle reconstruction and the full angle reconstruction. In this
context, the standard outer contour of the leg data transforms
into an approximately hexagonal shape. Noticeably, severe
artifacts manifest in the image’s foreground and background,
along with the appearance of hexagonal bright spots near
the bones. Fig. 9(cl) and (c2) illustrate the results achieved
with DDNet. Here, we can discern that the leg’s outline

has been successfully restored and appears relatively clear.
Furthermore, artifacts in the foreground and background have
been effectively suppressed, though a noticeable background
artifact remains present in the upper right corner. Fig. 9(dl)
and (d2) showcase the results of the DCR algorithm. The DCR
algorithm demonstrates superior background artifact removal
compared to the other algorithms. However, a minor presence
of strip artifacts can be noted in the foreground. Fig. 9(el)
and (e2) represent the results obtained using Cas-PRED,
exhibiting the most effective artifact suppression. Within the
same scenario, the training results from Cas-PRED surpass
those from other algorithms.

C. Ablation Experiments

As mentioned above, some innovative components are
utilized, including cascaded network structure (Cas), prior-
based residual encoder-decoder network structure (PRED), and
multi-scale loss function. To validate the effectiveness of each
component, we implement a series of ablation experiments on
Cas-PRED in different settings. The ablation experiments are
divided into two categories: the network structure experiments
and the loss function experiments. The network structure
experiments are shown in Fig. 10, Fig. 11, and Table. IV. The
loss function experiments are shown in Fig. 12 and Table. V.

1) Evaluation for network structure: This section uses
limited-angle data of [0, 90°]. The three structures for com-
parison are the first-stage residual encoder-decoder (RED)
network structure only, the cascaded residual encoder-decoder
(Cas-RED) network structure without introducing prior infor-
mation, and the complete Cas-PRED network structure. The
flow of each structure is shown in Fig. 10. Fig. 10(a) only
performs the first processing stage. Fig. 10(b) is a two-level
cascaded residual encoder-decoder network removing the step
of introducing prior information. Fig. 10(c) is the complete
Cas-PRED network structure.

As shown in Fig. 11(c1), the RED network processing effect
is relatively ambiguous. It can be seen that a RED network
can roughly reconstruct the outline of the image. There are still
block artifacts in the lower right corner and the background. In
addition, the image details are blurred. For example, the bone
tissue damaged by the artifact is restored as a blurred bright
spot. The effect of the two-level cascaded network shown in
Fig. 11(d1) is significantly improved. The outline of the image
is clear and clump artifacts are removed. Some vascular details
in the lungs can also be basically reconstructed. However,
the skeletal tissue in the muscle in the lower left corner is
relatively vague and has a large gap from the original structure.
As shown in the enlarged skeleton in Fig. 11(d2), the shape of
the middle part is blurred and the muscle texture is completely
erased. After adding prior information, the visual effect of the
result shown in Fig. 11(el) is closer to the original image. The
bone shape is closest to the actual reconstruction result. The
muscle texture can be partially reconstructed. In the enlarged
image of the ROI area in Fig. 11(e2), the processing result
of the entire Cas-PRED network is closer to the actual image
than the processing results of other network structures.

PSNR, SSIM, and RMSE metrics of different network
structures are computed and shown in Table. IV. The recon-
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Target FDK

RED1

Cas-PRED

Fig. 11. Reconstruction result of different network structures with [0, 90°]. The second rows is the output results of each algorithm under the bone window
wide window level. The box in the lower right corner is the enlarged image of the ROI area.

Target L2-loss

decoder-loss encoder-decoder-loss

encoder-loss

Fig. 12. Reconstruction result of different loss functions with [0, 90°]. The second rows is the output results of each algorithm under the bone window wide
window level. The box in the lower left corner is the enlarged image of the ROI area.

struction results of RED are greatly improved to that of the
FDK algorithm. Although the processed images have problems
such as unclear edges and clump artifacts, compared with the
results of FDK, most artifacts can be suppressed. The two
cascaded structures, Cas-RED and Cas-PRED, achieve better
results than the RED network. It shows that the cascaded
structure can improve the processing effect of the algorithm.
The Cas-RED achieves slightly better statistical results on
both metrics, while the Cas-PRED method achieves a higher
SSIM metric. The difference in PSNR is about 0.2dB. The
difference in RMSE is about 1HU. Cas-PRED introduces
high-dimensional semantic information using prior informa-
tion. High-dimensional semantic information can help images
achieve better visual effects. For pixel-by-pixel PSNR and

RMSE metrics, introducing high-dimensional semantic infor-
mation improves slightly. Since SSIM measures the structural
similarity between images, Cas-PRED achieves more stable
and better computational results on this metric.

2) Evaluation for loss function: The multi-scale loss func-
tions of three different structures include encoder-loss (multi-
scale loss function integrated into encoder features), decoder-
loss (multi-scale loss function integrated into decoder fea-
tures), encoder-decoder-loss (multi-scale loss function inte-
grated into encoder-decoder features). In order to verify the
effect of multi-scale loss functions with different structures,
we perform verification on the [0,90°] limited-angle recon-
struction results.

The experimental results are shown in Fig. 12. From the
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Fig. 13. Multi-scale feature heat maps between Cas-PRED and ground truth
in [0, 90°] scenario. The first row is the multi-scale loss output result of Cas-
PRED. The second line is the multi-scale loss output result of ground truth.
The first two columns are the encoder outputs of the multi-scale loss. The
last two columns are the decoder outputs of the multi-scale loss.

overall visual effect of the image, the effects of Fig. 12(c)-(f)
are relatively close. However, for the enlarged ROI area, it can
be found that the reconstruction effect of only using the L2
loss function is not ideal without using the multi-scale loss
function. As shown in the enlarged ROI area in Fig. 12(f),
muscle tissue appears absent as circular holes. The processing
results of training with several multi-scale loss functions can
obtain the outer contour consistent with the target image. As
shown by the ROI region pointed by the arrow, the muscle
texture can be partially reconstructed using the multi-scale
loss function. In contrast, the texture is blurred in the simple
network processing result without multi-scale loss.

Fig. 13 illustrates the distinction between Cas-PRED results
and Ground Truth when calculating multi-scale losses. The
feature heat map shows that after introducing multi-scale loss,
the network can measure the error between the network output
result and the target result in the multi-scale feature dimen-
sion. With the same network architecture as a foundation,
the network’s ability to suppress artifacts is enhanced. For
instance, within a scene constrained to a 90° angle, there is
minimal differentiation between the Cas-PRED outcome and
the feature heat map from Ground Truth during multiscale loss
calculations. This substantiates that the utilization of multi-
scale loss leads to more convergent results in network training.

In order to further compare the reconstruction effects of
different loss functions, various index values are calculated and
shown in Table. V. The decoder-loss incorporating the decoder
features achieves the highest SSIM. The encoder-decoder-loss
incorporating the encoder-decoder features achieves the high-
est PSNR and the smallest RMSE. Since the multi-scale loss
function measures the error between features, the advantage
of the multi-scale loss function lies in processing semantic
information to obtain the most comprehensive features.

D. Computational Complexity

The average computational times required for different
deep learning are summarized in Table. VI, along with the
parameters counts and FLoating-point OPerations (FLOPs).
The computational time includes the I/O operations. Due to
the large gap between the reconstruction effect of traditional
algorithms and deep learning algorithms, traditional algorithms

have not been included in the comparison of computational
complexity. The Cas-PRED can bring good results within an
appropriate time. In real-time experimental comparisons, Cas-
PRED, while slightly more time-consuming, consistently de-
livers superior reconstruction performance. Notably, CasPRED
can effectively meet real-time requirements when utilized on
computing setups that are comparable in performance to the
experimental configuration. It should be noted that the table
only includes the time spent on the network calculations, but
did not include the time spent on the additional forward pro-
jection and reconstruction processes of the proposed method.

IV. SUMMARY

CBCT technology boasts numerous advantages, including
swift imaging, precise reconstruction of anatomical structures,
and a non-invasive approach. It has unequivocally become
an indispensable part of medical diagnostics. Nevertheless,
certain scenarios present challenges in collecting a sufficient
amount of projection data to produce clear images. Factors
such as radiation dose constraints or the need to image
dynamic organs often restrict us to acquiring projection data
from limited angles. In the realm of CBCT reconstruction,
restrictions related to radiation dose and the physical scanning
environment frequently confine scans to angles typically below
180°. This limitation inevitably gives rise to pronounced arti-
facts in the resulting reconstructed images, rendering the task
of reconstructing precise anatomical information a formidable
one and, consequently, impairing diagnostic accuracy. Existing
methods are constrained by their learning and representation
capabilities, which hinder a complete resolution of this issue.
In contrast, Cas-PRED employs a cascaded prior-based resid-
ual encoder-decoder architecture to learn from an expansive
solution space through continuous training, thereby achieving
high-quality limited-angle CBCT reconstructions. Cas-PRED
uses full-angle CT images from a prior database to extract
useful prior information. It can borrow the existing full-angle
CT image features to guide the reconstruction of limited-angle
tasks. The residual cascaded encoder-decode network structure
used by Cas-PRED enables progressive image restoration for
the limited-angle reconstruction task. The multi-scale loss
function is introduced. The multi-scale loss function can
measure the layer-by-layer feature error in the encoding and
decoding to force the Cas-PRED to focus on more semantic
information. Since the existing clinical limited-angle data is
difficult to obtain the patient’s full-angle data at the same
time, the limited-angle reconstruction data by the method in
this paper cannot be directly compared with the real full-
angle reconstruction data. But in terms of the visibility of
the reconstruction result, the reconstruction result has rich
textures and details. The effectiveness of the Cas-PRED has
also been verified in various limited-angle experiments such

s [0, 150°], [0, 120°], [0, 90°], and [0, 60°]. In general,
the algorithm proposed in this paper can achieve limited-
angle reconstruction, and have a good prospect in clinical
applications.

Although the proposed method has significant advantages
compared with other advanced methods, some problems still
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need to be addressed. 1) Although the similarity between CT
images is greater than that of natural images, there is still a
large gap between CT slices of different people and different
locations. In the future, we are committed to extracting more
general and abstract prior information, which can be combined
with convolutional features to facilitate network training. 2)
Due to the limited-angle projection data obtained by scanning
is the most direct information about the actual anatomical
structure of the object, we will focus on integrating the
projection data into the algorithm more fully while considering
the calculation pressure of cone beam scanning. 3) Cone
beam CT reconstruction is a three-dimensional reconstruction
problem. Each CT data contains multiple slices, and there are
rich semantic relationships between different slices. However,
limited by the constraints of computing performance, this
paper only studies the processing of two-dimensional images.
Decomposing the computational pressure and realizing a three-
dimensional processing network is a problem worthy of further
research. 4) In future work, we will focus on collecting clinical
limited-angle data corresponding to full-angle data to improve
our method.
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