## Supplementary material

Gain- and loss-of-function GRIA3 variants lead to distinct neurodevelopmental phenotypes

## Tables of Contents

Supplementary methods: Beta-lactamase ( $\beta$-lac) reporter assay and protein modelling.
Supplementary results: Phenotypic analysis of patients with GRIA3 variants.
Supplementary Table S1: Genetic characteristics of GRIA3 missense variants in patients with NDDs.

Supplementary Table S2: Summary TEVC current amplitudes of homomeric GluA3 and heteromeric GluA2/A3 receptors.

Supplementary Table S3: Summary of TEVC data for homomeric GluA3 receptors.
Supplementary Table S4: Summary of TEVC data for heteromeric GluA2/A3 receptors.
Supplementary Table S5: Summary of TEVC data for heteromeric GluA2/A3 receptors.
Supplementary Table S6: Summary of rapid desensitization and deactivation of wild-type and variant GluA3 and GluA2/A3 receptors.

Supplementary Table S7: Extended clinical data for cohort patients
Supplementary Figure S1: Sequence alignment of human and rat GluA3 and GluA2 subunits.
Supplementary Figure S2: Concentration-response curves for glutamate.
Supplementary Figure S3: GRIA3 variants with complete LoF effects have intact receptor cell surface expression.

Supplementary Figure S4: IV relationship for heteromeric GluA2/A3 receptors with GRIA3 variants with LoF effects on current amplitude.

## Suplementary methods

## Beta-lactamase ( $\beta$-lac) reporter assay

HEK293 cells were transiently transfected with cDNA encoding $\beta$-lac-tagged WT GluA3 or GluA3 variants according to the protocol in Stenum-Berg et al. ${ }^{94}$. Non-transfected cells were used as a negative control for surface $\beta$-lac activity. AMPAR inhibitors ( $100 \mu \mathrm{M}$ CNQX, 100 $\mu \mathrm{M}$ perampanel, and $1 \mu \mathrm{M}$ NASPM) were added to the medium during transfection to protect against potential excitotoxicity. After 48 hrs , the transfected cells were rinsed twice with $\operatorname{PBSCM}\left(137 \mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 2 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}, 0.1 \mathrm{mM} \mathrm{CaCl}_{2}, 0.5\right.$ $\mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 7.4)$. For analysis in HEK293T cells, transfected cells were cultured in poly-D-lysine coated clear-bottom 96-well plates for two days. Cells were washed twice in PBSCM, followed by adding nitrocefin to a final concentration of $50 \mu \mathrm{M}$ in a total volume of $100 \mu \mathrm{~L}$ per well. To define total expression levels, cells were rinsed with PBSCM, lysed by adding 50 $\mu \mathrm{L} \mathrm{H}_{2} \mathrm{O}$, and incubated for 30 minutes before adding $50 \mu \mathrm{~L} 2 \times \mathrm{PBSCM}$ containing $100 \mu \mathrm{M}$ nitrocefin. Immediately following nitrocefin addition, plates were placed in a microplate reader (Safire2, Tecan, Maennedorf, Switzerland), and well absorbance at 486 nm was recorded every minute for 60 minutes at $\sim 30^{\circ} \mathrm{C}$. For each well, the absorbance at 486 nm (Abs 486 nm ) was plotted as a function of time using GraphPad Prism v6.01 (GraphPad Software, San Diego, CA, USA), and the rate of nitrocefin conversion per minute was determined by linear regression analysis of the slope of the curve in the linear range.

## Protein modeling

We modeled the flip isoform of the human homomeric GluA3 receptor in the closed apo conformation using the X-ray crystal structure of the homomeric rat GluA2 receptor in complex with the competitive antagonist ZK (PDB ID: 5L1B). Alignment of the rat GluA2 template structures to the GluA3 sequence was aided by sequence alignment of the human and rat
iGluA3 and GluA2 sequences (Supplementary Figure S1). Homology modeling was performed using the modeling software MODELLER (Sali and Blundell, 1993). A total of 100 models were created, and the best model were chosen based on Discrete Optimized Protein Energy (DOPE) scores calculated in MODELLER.

## Supplementary results

## Phenotypic analysis of patient cohort with disease-causing GRIA3 variants

We were able to collect detailed clinical information for 25 patients from 23 unrelated families carrying disease-causing GRIA3 variants. The median age at study inclusion was 9.5 years (range 5 months -39 years of life) (Table 1). Of the 25 patients, clinical data for seven were previously published ${ }^{26,29,33,34}$, but we were able to collect additional clinical data. Notably, 21 patients were unrelated, while M5/M6 and M11/M12 were brothers. Three girls (F5, F7, and F9) passed away prematurely at median age 2 years (range 5 months - $31 / 2$ years). Patient F5 died of respiratory failure during prolonged and treatment-resistant status epilepticus. Patient F7 died at home due to hyperekplexia with apnea. Patient F9 was intubated due to pneumonia. Taking her off ventilation was impossible, and she died of respiratory failure. All patients exhibited cognitive and global developmental delay ranging from borderline to profound. While a single patient carrying the p.(Gln371Argfs*6 variant had a borderline low-normal IQ at 78 , the remainder of developmental outcomes were either mildly to moderately ( $1 / 25$ ), moderately, (9/25), severely (9/25), severe to profoundly (2/25) or profoundly (4/25) affected. Although eight patients remain nonverbal, most can communicate using simple words (5/25) or short sentences (8/25). First words were commonly acquired between 13-36 months of life. A single patient (F2) had mild dyslexia but otherwise spoke almost fluently. There was no data on the present verbal abilities of two patients (F4 and F10). While 10 patients remain nonambulant, most walked independently (14/25) or with support (1/25). Of the 25 patients, 15 displayed behavioral issues that were variable. Stereotypies or further unspecified autistic features were present in five and six patients, respectively. Non-epileptic staring spells were reported in three patients. Nine patients had a low anger threshold with tantrums and occasional aggressive outbursts.

Twelve patients had seizures with median seizure onset around 12 months of age (range 1 day to 27 years). Seizure types included focal motor (6/12), myoclonic (5/12), unknown onset motor (4/12), (atypical) absence (2/12), focal impaired awareness (1/12), and generalized tonicclonic (1/12) or atonic (1/12) seizures. We classified epilepsies based on seizure types; focal onset epilepsy (4/12) was most common, followed by generalized (2/12) and combined focal and generalized epilepsy (1/12). Five patients were reported to have unknown onset seizures that co-occurred with focal or generalized onset seizures in two patients. Eight patients were classified as having developmental and epileptic encephalopathy (DEE), 13 were classified as having developmental encephalopathy without seizures, and four had intellectual disability with epilepsy. None of the patients could be further classified into a specific epilepsy syndrome. Drug-resistant epilepsy with ongoing seizures was seen in $7 / 8$ patients with DEE.

Interestingly, perampanel, a negative allosteric modulator of AMPAR, was only prescribed in a single patient with seizures and congenital muscle hypertonia: Patient F4, carrying the p.(Ser663Pro) variant which leads to a severe GoF, had rigidity and stimulussensitive and spontaneous non-epileptic myoclonus in the neonatal period and developed focal tonic seizures at 2 months of life. Levetiracetam was introduced with partial seizure control. Numerous generalized onset myoclonic seizures started at four months, leading to the introduction of perampanel ( 2 mg nightly; $0.37 \mathrm{mg} / \mathrm{kg} /$ day) that led to a significant reduction in tonic and myoclonic seizure frequency as well as the duration of tonic seizures. The hypertonicity also decreased, and she began making significant developmental progress. Perampanel was eventually increased to 5 mg twice daily by age 18 months of life, but myoclonic seizures persisted, particularly upon awakening. Parents reported a substantial decrease in the frequency and severity of myoclonic seizures with perampanel use. An electroencephalogram repeated after perampanel initiation showed fewer interictal discharges
during wakefulness and sleep, but frequent myoclonic seizures remained. She currently has no rigidity and minimal spasticity.

Limb muscular hypotonia was reported in 12/25 patients. Muscular hypertonia and spasticity were reported in ten and six patients, respectively. Movement disorders were reported in $15 / 25$, with hyperekplexia or non-epileptic erratic myoclonus being the most prevalent features $(8 / 25)$, followed by ataxia $(6 / 25)$.

MRI brain results were available for 18 patients and were reported to be normal in 14. In the remaining 4 patients, there were only nonspecific findings, such as abnormal corpus callosum (1/4), focal cortical dysplasia (1/4), cerebellar vermis hypoplasia (1/4), and signal abnormality in the periventricular white matter (1/4) (Table 1 and Supplementary Table S7).

Supplementary Table SI. Genetic characteristics of GRIA3 missense variants in patients with neurodevelopmental disorders.

| Variant | Gender | Origin | cDNA | ChrX:g. | CADD ${ }^{\text {a }}$ | SIFT ${ }^{\text {b }}$ | PolyPhen2 ${ }^{\text {c }}$ | gnomAD frequency, $\%^{\text {d }}$ | Source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p.(Phe53Leu) | 1 M | De novo | c.159T>G | g.1223I9733T>G | 23.7 | $\begin{gathered} \text { Deleterious } \\ (0.04) \\ \hline \end{gathered}$ | Prob. Damaging (0.98) | 0 | ClinVar |
| p.(Argl69GIn) | I M | Maternal | c.506G>A | g. 12238739 IG>A | 29.8 | $\begin{gathered} \hline \text { Tolerated } \\ (0.18) \\ \hline \end{gathered}$ | Prob. Damaging (0.99) | 0 | This study |
| p.(Ala248Val) | I F | De novo | c.743C>T | g. $122488807 \mathrm{C}>\mathrm{T}$ | 22.2 | $\begin{gathered} \text { Deleterious } \\ (0.02) \\ \hline \end{gathered}$ | Prob. Neutral (0.074) | 0 | Allen et al. |
| p.(Pro302Ser) | 1 M | De novo | c.904C>T | g. $122528972 \mathrm{C}>$ T | 24.1 | Tolerated (0.4I) | Prob. Damaging $(0.99)$ | 0 | This study |
| p.(lle314Thr) | M | De novo | c.94IT>C | g. $1225325 \mathrm{I} 5 \mathrm{~T}>\mathrm{C}$ | 23.8 | $\begin{gathered} \hline \text { Deleterious } \\ (0.01) \\ \hline \end{gathered}$ | Poss. Damaging $(0.87)$ | 0 | This study |
| $\begin{gathered} \hline \text { p.(Gln37IArgfs* } \\ 6) \\ \hline \end{gathered}$ | 1 M | Maternal | $\begin{gathered} \text { c. } 1112 \_111 \\ \text { 6del } \\ \hline \end{gathered}$ | $\begin{gathered} \text { g. } 122536876 \_122 \\ 536880 \mathrm{del} \end{gathered}$ | ND | ND | ND | 0 | This study |
| p.(Gln37IHis) | F | De novo | c. $1113 \mathrm{~A}>\mathrm{C}$ | g. 122536877 A>C | 23.8 | $\begin{gathered} \hline \text { Deleterious } \\ (0.02) \\ \hline \end{gathered}$ | Poss Damaging $(0.64)$ | 0 | This study |
| p.(Phe408Leu) | 1 M | Maternal | c. $1222 \mathrm{~T}>\mathrm{C}$ | g. $123403448 \mathrm{~T}>\mathrm{C}$ | 2.4 | Tolerated (0.73) | Neutral (0.00) | 0 | This study |
| p.(Arg450GIn) | I M | Maternal | c. $1349 \mathrm{G}>\mathrm{A}$ | g.1225386I4G>A | 22.9 | $\begin{gathered} \text { Deleterious } \\ (0.02) \\ \hline \end{gathered}$ | Neutral (0.20) | 0.0029 | Wu et al. |
| p.(Gly492Ser) | I M | Maternal | c. $1474 \mathrm{G}>\mathrm{A}$ | g. 122538739 G > ${ }^{\text {a }}$ | 28.6 | $\begin{gathered} \hline \text { Deleterious } \\ (0.00) \end{gathered}$ | Prob. Damaging (1.00) | 0 | This study |
| p.(Arg50IThr) | I F | De novo | c. $1502 \mathrm{G}>\mathrm{C}$ | g.12255I254G>C | 32.0 | $\begin{gathered} \text { Deleterious } \\ (0.02) \\ \hline \end{gathered}$ | Prob. Damaging $(0.97)$ | 0 | Powis et al. |
| p.(Ser53ICys) | I F | NA | c. $1592 \mathrm{C}>\mathrm{G}$ | g. $122551344 \mathrm{C}>\mathrm{G}$ | 27.3 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging $(0.95)$ | 0 | This study |
| p.(lle564Thr) | 1 M | De novo | c. 1691 T $>C$ | g. 122551443 T>C | 29.1 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging $(0.92)$ | 0 | This study |
| p.(Ala6I5Val) | 1 M | De novo | $\begin{gathered} \hline \text { c. I844C }> \\ T \\ \hline \end{gathered}$ | g.12255I596C>T | 28.5 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging (0.98) | 0 | Hamanaka, et al. |
| p.(Met6I7Thr) | NA | NA | c. $1850 \mathrm{~T}>\mathrm{C}$ | g. $122551602 \mathrm{~T}>\mathrm{C}$ | 25.7 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging $(0.98)$ | 0 | ClinVar |
| p.(Gly630Arg) | 4 M | Maternal | c. $1888 \mathrm{G}>\mathrm{C}$ | g. $122561802 \mathrm{G}>\mathrm{C}$ | 28.9 | $\begin{gathered} \text { Deleterious } \\ (0.00) \end{gathered}$ | Prob. Damaging (1.00) | 0 | This study; Wu , et al. |
| p.(Arg63ISer) | 1 M | Maternal | c. $1891 \mathrm{C}>\mathrm{A}$ | g.122561805C>A | 26.3 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging (1.00) | 0 | Wu, et al. |
| p.(Ser647Phe) | I F | NA | c. $1940 \mathrm{C}>\mathrm{T}$ | g. $122561854 \mathrm{C}>$ T | 29.8 | $\begin{gathered} \text { Deleterious } \\ (0.00) \end{gathered}$ | Prob. Damaging $(0.99)$ | 0 | Clinvar |
| p.(Ala653Thr) | 2 M | Maternal | c. 1957G>A | g.12256187IG>A | 28.8 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging $(0.98)$ | 0 | Davies, et al. |
| p.(Ala654Pro) | I F | De novo | c. $1960 \mathrm{G}>\mathrm{C}$ | g.12256I874G>C | 28.9 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging (0.99) | 0 | This study |
| p.(Ala654Val) | I F | De novo | c. $1961 \mathrm{C}>\mathrm{T}$ | g. $122561875 \mathrm{C}>$ T | 27.9 | $\begin{gathered} \hline \text { Deleterious } \\ (0.00) \end{gathered}$ | Prob. Damaging (0.92) | 0 | This study |
| p.(Ala654Thr) | I F | De novo | c. I960G>A | g.122561874G>A | 28.9 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging $(0.95)$ | 0 | This study |
| p.(Phe655Ser) | 2 M | Maternal/ mosaic | c. $1964 \mathrm{~T}>\mathrm{C}$ | g. 122561878 T>C | 29.8 | $\begin{gathered} \hline \text { Deleterious } \\ (0.00) \end{gathered}$ | Prob. Damaging (1.00) | 0 | Cherot, et al. |
| p.(Arg660Ser) | I F | NA | c. $1980 \mathrm{G}>\mathrm{C}$ | g.12256I894G>C | 24.9 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging (1.00) | 0 | ClinVar |
| p.(Arg660Thr) | I F | De novo | c. $1979 \mathrm{G}>\mathrm{C}$ | g.122561893G>C | 27.9 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging $(0.99)$ | 0 | Sun, et al. |
| p.(Ser663Pro) | I F | De novo | c.1987T>C | g. 122561901 T>C | 27.9 | $\begin{gathered} \hline \text { Tolerated } \\ (0.28) \\ \hline \end{gathered}$ | Prob. Damaging $(0.96)$ | 0 | This study |
| p.(lle665Thr) | I F | NA | c.1994T>C | g.122561908T>C | 26.9 | $\begin{gathered} \hline \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging $(1.00)$ | 0 | This study |
| p.(Lys70IGlu) | I F | Maternal | c. $2101 \mathrm{~A}>\mathrm{G}$ | g. 122598740 A $>G$ | 26.4 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging (0.99) | 0 | This study |
| p.(Met706Thr) | I M | Maternal | c.2117T>C | g. $122598756 \mathrm{~T}>\mathrm{C}$ | 25.4 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging $(0.97)$ | 0 | Wu, et al. |
| p.(Gly 72 IArg ) | 4 M | Maternal | c. $2161 \mathrm{G}>\mathrm{A}$ | g. $122598800 \mathrm{G}>\mathrm{A}$ | 29.2 | $\begin{gathered} \hline \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging (1.00) | 0 | Hu , et al. |
| p.(Gly730Ala) | NA | NA | c. $2189 \mathrm{G}>\mathrm{C}$ | g. $122598828 \mathrm{G}>\mathrm{C}$ | 27.3 | $\begin{gathered} \hline \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging (0.98) | 0 | ClinVar |
| p.(Met740Thr) | NA | NA | c. $2219 \mathrm{~T}>\mathrm{C}$ | g. $122598858 \mathrm{~T}>\mathrm{C}$ | 23.3 | Tolerated $(0.14)$ | Prob. Damaging $(0.97)$ | 0 | ClinVar |
| p.(Leu774Ser) | I M | NA | c. $232 \mathrm{IT}>$ C | g. $122598960 \mathrm{~T}>\mathrm{C}$ | 27.0 | $\begin{gathered} \hline \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging $(1.00)$ | 0 | ClinVar |


| p.(Thr776Met) | I M | NA | c. $2327 \mathrm{C}>\mathrm{T}$ | g.l226I3916C>T | 21.8 | $\begin{gathered} \hline \text { Deleterious } \\ (0.01) \\ \hline \end{gathered}$ | Prob. Damaging (1.00) | 0 | Turro, et al. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p.(Glu787Gly) | I M | Maternal | c. $2359 \mathrm{G}>\mathrm{A}$ | g. $122599559 \mathrm{G}>\mathrm{A}$ | 31.0 | $\begin{gathered} \hline \text { Deleterious } \\ (0.00) \end{gathered}$ | Prob. Damaging (0.92) | 0 | Rinaldi, et al. |
| p.(Glu787Lys) | $I F+2 M$ | Maternal/ De novo | c. $2360 \mathrm{~A}>\mathrm{G}$ | g. 122599560 A $>G$ | 29.8 | $\begin{gathered} \text { Deleterious } \\ (0.00) \end{gathered}$ | Prob. Damaging (0.99) | 0 | Trivisano, et al. |
| p.(Trp799Leu) | I F | De novo | c. $2396 \mathrm{G}>\mathrm{T}$ | g. $122599596 \mathrm{G}>\mathrm{T}$ | 29.8 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging $(0.99)$ | 0 | This study |
| p.(Gly803Glu) | $2 \mathrm{~F}+\mathrm{l}$ M | De novo | $\begin{gathered} \text { c. } 2408 \mathrm{G}>\mathrm{A} \\ ; \\ \text { c. } 2408 \mathrm{G}>\mathrm{A} \end{gathered}$ | $\begin{gathered} \text { g.I22599608G>A } \\ ; \\ \text { g.I226I3997G>A } \end{gathered}$ | 28.9 | Deleterious (0.01) | Prob. Damaging (1.00) | 0 | This study, Yang, et al. |
| p.(Gly803Ala) | I M | Maternal | c. $2408 \mathrm{G}>\mathrm{C}$ | g.122599608G>C | 26.9 | Tolerated (0.44) | Prob. Damaging $(1.00)$ | 0 | This study |
| p.(Thr8I6lle) | I F | NA | c. $2447 \mathrm{C}>\mathrm{T}$ | g.l22616657C>T | 28.1 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging (0.98) | 0 | Yang, et al. |
| p.(Gly826Asp) | 4 M | Maternal | c. $2477 \mathrm{G}>\mathrm{A}$ | g.122616687G>A | 28.2 | $\begin{gathered} \hline \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging $(0.96)$ | 0 | Pieard, et al. |
| p.(Gly833Arg) | 1 M | Maternal | c. $2497 \mathrm{G}>\mathrm{A}$ | g.122616707G>A | 31.0 | $\begin{gathered} \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging (1.00) | 0 | Wu, et al. |
| p.(Arg856Gly) | I M | NA | c. $2566 \mathrm{C}>\mathrm{G}$ | g.122616776C>G | 23.9 | $\begin{gathered} \hline \text { Deleterious } \\ (0.00) \\ \hline \end{gathered}$ | Prob. Damaging (0.86) | 0 | This study |
| P.(Leu859Phe) | I M | Maternal | c. $2575 \mathrm{C}>\mathrm{T}$ | g.122616785C>T | 24.2 | $\begin{gathered} \hline \text { Deleterious } \\ (0.00) \end{gathered}$ | Neutral (0.19) | 0 | This study |

The table shows genetic information of GRIA3 variants identified in NDD patients included in the study, the resultant change in amino acid, the genomic DNA nucleotide change (GRCh37), and the site of the variants in cDNA sequence for the GluA3 subunit protein (NM_000828.4) along with calculated scores for the predicted deleteriousness of the variants from various programs that predicts whether an amino acid substitution affects protein function. ${ }^{a}$ Sorting Intolerant From Tolerant (SIFT) ${ }^{95}$; ${ }^{b}$ Combined annotation-dependent depletion (CADD) scores ${ }^{96}$; ${ }^{\text {© Polymorphism Phenotyping v2 (PolyPhen2) }}{ }^{96}$. , female; $M$, male; NA, not available; ND: not determined.

Supplementary Table S2. Current amplitudes of homomeric GluA3 and heteromeric GluA2/A3 receptors

|  | Homomeric GluA3 |  |  |  | Heteromeric GluA2/A3 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variant | Glu current, nA [95\% CI] | n | Glu +CTZ current, nA [95\% $\mathrm{Cl}]$ | n | Glu current, nA [95\% CI] | n | $\begin{gathered} \text { Glu + CTZ current, } \\ \text { nA [95\% CI] } \end{gathered}$ | n |
| WT | 93 [57-129] | 175 | 4232 [3240-5224] | 132 | 628 [478-779] | 135 | 6128 [478-7661] | 106 |
| p.(Phe53Leu) | 110 [83-137] | 46 | 2378 [IIII-3646] | 9 | ND |  | ND |  |
| p.(Argl69Gln) | 69 [39-99] | 15 | 2989 [1421-4558] | 8 | ND |  | ND |  |
| p.(Ala248Val) | 141 [86-196] | 20 | 4224 [-606-9054] | 5 | ND |  | ND |  |
| p.(Pro302Ser) | 118 [70-166] | 21 | 6079 [3755-8403] | 11 | ND |  | ND |  |
| p.(lle314Thr) | 122 [68-176] | 14 | 7071 [1128-13010] | 8 | ND |  | ND |  |
| p.(Gln37 IArgss*6) | $0[0-0]^{* * *}$ | 15 | $0[0-0]^{* * *}$ | 15 | ND |  | ND |  |
| p.(Gln37IHis) | 166 [4-327] | 22 | 3633 [-896-8161] | 8 | ND |  | ND |  |
| p.(Phe408Leu) | 227 [72-382] | 23 | 4421 [1526-7317] | 9 | ND |  | ND |  |
| p.(Arg450Gln) | 12 [5-18] ${ }^{* * *}$ | 60 | 742 [510,9-972,3] ${ }^{\text {**** }}$ | 44 | 224 [119-330]**********) | 21 | 8698 [119-12420] | 32 |
| p.(Gly492Ser) | 0 [0-0] ${ }^{* * *}$ | 22 | 0 [0-0] ${ }^{\text {**** }}$ | 22 | 109 [82-135] ${ }^{* * *}$ | 57 | 1422 [82-2260] | 34 |
| p.(Arg50IThr) | 66 [43-88] | 89 | 3199 [1743-4655] | 41 | 1592 [730-2453] | 17 | 15240 [730-20490] | 6 |
| p.(Ser53ICys) | $1[1-1]^{* *}$ | 31 | 2580 [1011-4\|49] | 22 | 629 [195-1063] | 17 | 4543 [195-7253] | 21 |
| p.(lle564Thr) | 154 [71-237] | 29 | 4454 [2089-6818] | 12 | ND |  | ND |  |
| p.(Ala6I5Val) | 294 [221-366]*******) | 31 | 9328 [7146-11510]* | 15 | 3210 [2470-3949]*******) | 22 | 16940 [2470-20740] | 14 |
| p.(Met6I7Thr) | 28 [4-52] ${ }^{\text {*****}}$ | 16 | 462 [332,6-590,9] ${ }^{\text {**** }}$ | 16 | 81 [40-122] ${ }^{\text {+*** }}$ | 24 | 3606 [40-4555] | 26 |
| p.(Gly630Arg) | $0[0-1]^{* * *}$ | 16 | $1[0-1]^{\text {+1** }}$ | 19 | 7 [4-11] ${ }^{* * *}$ | 16 | 54 [4-78] | 33 |
| p.(Arg63ISer) | 1045 [585-1506] | 49 | 2075 [1069-308I] | 23 | 1090 [894-1286]* | 26 | 1320 [894-1558] | 28 |
| p.(Ser647Phe) | 48 [38-58] | 58 | 1357 [797-1918] ${ }^{\text {wa* }}$ | 12 | 2593 [1998-3187]*********) | 54 | 48060 [1998-58180] | 20 |
| p.(Ala653Thr) | 28 [20-35] ${ }^{\text {+e** }}$ | 38 | 831 [487,6-1174] ${ }^{\text {u**** }}$ | 10 | 133 [41-226] ${ }^{\text {we* }}$ | 22 | 7780 [41-11350] | 11 |
| p.(Ala654Prol) | ND |  | ND |  | 101 [46-155] ${ }^{\text {*** }}$ | 20 | 56 [46-81] | 36 |
| p.(Ala654Val) | 5377 [3356-7397]*********) | 27 | 6591 [3974-9209] | 27 | 1728 [891-2566] | 24 | 2354 [891-385I] | 12 |
| p.(Ala654Thr) | 649 [431-867] ${ }^{\text {***** }}$ | 28 | 741 [312-1169]************) | 13 | 3019 [2637-340I] | 13 | 3403 [2637-3837] | 13 |
| p.(Phe655Ser) | $1[0-1]^{* * *}$ | 33 | 68 [45-91] ${ }^{\text {**** }}$ | 66 | 185 [96-274] | 45 | 4497 [96-6925] | 19 |
| p.(Arg660Ser) | 90 [54-126] | 84 | 2309 [1757-2862]* | 35 | 1244 [911-1577] | 60 | 12080 [911-15520] | 26 |
| p.(Arg660Thr) | 592 [430-753 ${ }^{\text {º** }}$ | 43 | 1898 [1433-2364]** | 26 | 1665 [724-2606] | 25 | 6615 [724-9916] | 13 |
| p.(Ser663Pro) | $1102[751-1453]^{* * *}$ | 55 | 7333 [5601-9064]**************) | 32 | 2463 [1923-3003] | 22 | 10260 [1923-13660] | 11 |
| p.(lle665Thr) | 31 [19-43] ${ }^{\text {+*** }}$ | 25 | 489 [280, 1-698,7] ${ }^{\text {***** }}$ | 17 | 496 [399-593] | 18 | 12740 [399-16030] | 9 |
| p.(Lys70IGlu) | 687 [397-977] ${ }^{\text {w*** }}$ | 38 | 42II [2538-5884] | 15 | 2402 [1559-3244] | 57 | 3924 [1559-6558] | 16 |
| p.(Met706Thr) | $1[0-1]^{* * *}$ | 14 | $1[0-1]^{\text {+*** }}$ | 14 | 162 [117-206] | 16 | 3147 [117-5575] | 6 |
| p.(Gly72 I Arg) | $0[0-1]^{* * *}$ | 14 | $1[0-1]^{* * *}$ | 14 | 1 [0-I] | 18 | 10 [-I-12] | 10 |
| p.(Gly730Ala) | 67 [54-80] | 68 | 3047 [2357-3737] | 33 | 225 [105-346] | 25 | 3765 [105-6368] | 7 |
| p.(Met740Thr) | 90 [70-110] | 81 | 5343 [4211-6475] | 39 | 439 [210-669] | 26 | 4528 [210-7754] | 10 |
| p.(Leu774Ser) | 5 [4-7] ${ }^{* * *}$ | 33 | 1430 [1097-1763]*******) | 58 | 376 [311-443] | 80 | 14650 [3II-18570] | 35 |
| p.(Thr776Met) | 30 [21-39]* | 53 | 2214 [1494-2934] | 23 | 259 [173-346] | 21 | 3644 [173-5845] | 10 |


| p.(Glu787Lys) | 22 [1-42]* | 21 | 90 [43-137] ${ }^{\text {a** }}$ | 10 | 137 [-8\|-355] | 18 | 144 [-8I-227] | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p.(Glu787Gly) | 0 [0-0] ${ }^{* * *}$ | 10 | $0[0-0]^{* * *}$ | 10 | 72 [42-102] | 25 | 7565 [42-10920] | 17 |
| p.(Trp799Leu) | 34 [20-48] | 32 | 4387 [2323-6452] | 17 | 461 [360-561] | 29 | 12110 [360-15070] | 9 |
| p.(Gly803Glu) | 95 [69-120] | 53 | 9128 [6431-1 1820]* | 47 | 1205 [490-1921] | 43 | 7157 [490-9924] | 9 |
| p.(Gly803Ala) | 80 [0-160] | 35 | 1739 [1139-2339]** | 25 | 310 [202-418] | 26 | 3750 [202-4978] | 15 |
| p.(Thr8I6Ile) | 25 [11-38] ${ }^{*}$ | 18 | 1152 [382-1921] ${ }^{\text {3/w }}$ | 9 | 85 [41-129] | 19 | 2035 [41-3186] | 9 |
| p.(Gly826Asp) | $6[2-9]^{* * *}$ | 21 | 1197 [848-1545] ${ }^{\text {+3** }}$ | 33 | 505 [370-641] | 32 | 14870 [370-18270] | 18 |
| p.(Gly833Arg) | 0 [0-0] ${ }^{* * *}$ | 14 | $9[7-12]^{* *}$ | 13 | 13 [9-17] | 17 | 118 [9-149] | 17 |
| p.(Arg856Gly) | 68 [39-97] | 23 | 5953 [3253-8654] | 13 | ND |  | ND |  |
| p.(Leu859Phe) | 114 [63-165] | 20 | 4739 [1768-7710] | 9 | 232 [86-378] | 19 | 6903 [86-10260] | 9 |

The table shows a summary of the maximal Glu-evoked current amplitudes of WT and GRIA3-variant containing GluA3 and GluA2/A3 receptors at - 40 mV membrane potential measured by TEVC recordings and expressed as mean with $95 \% \mathrm{Cl} . \mathrm{N}$ represents the number of individual cells subjected to experiments. Currents were recorded over a -20 to -100 mV range of holding potential, and transformed to the current amplitude at -40 mV using the equation $I_{-40}=I_{x} * y_{x}$, where $X$ is the holding potential and $y_{x}$ is the conversion factor calculated from IV relationsship of the Glu-evoked current at homomeric GluA3 receptors as $\mathrm{Y}_{-100} 0.07, \mathrm{Y}_{-90} 0.1 \mathrm{I}, \mathrm{Y}_{-80}=0.15, \mathrm{Y}_{-70}=0.22, \mathrm{Y}_{-60} 0.36, \mathrm{Y}_{-50} 0.54, \mathrm{Y}_{-40} \mathrm{I} .00, \mathrm{Y}_{-30} \mathrm{I} .94, \mathrm{Y}_{-20} 4.08$, and at heteromeric $\mathrm{GluA} 2 / \mathrm{A} 3$ receptors as $Y_{-100} 0.44, \mathrm{Y}_{-90} 0.47, \mathrm{Y}_{-80} 0.5 \mathrm{I}, \mathrm{Y}_{-70} 0.58$, $\mathrm{Y}_{-60} 0.67, \mathrm{Y}_{-50} 0.80, \mathrm{Y}_{-40} \mathrm{I} .00, \mathrm{Y}_{-30} \mathrm{I} .34, \mathrm{Y}_{-20} 2.20 . * \mathrm{P}<.05$, **P<.0I,***P<.001 compared to wildtype by one way ANOVA, with Dunnett's multiple comparisons test. ND, not determined as the homomer variant receptor showed neutral phenotype, except in the case of p.(Ala654Pro), due to constitutive activity.

Supplementary Table S3. Summary of electrophysiological data for homomeric GluA3 receptors

| Variant | $\begin{gathered} E C 50, \mu M[95 \% \\ C I] \end{gathered}$ | N | $\begin{gathered} \hline \text { EC50 with } \\ \text { CTZ, } \mu M \\ {[95 \% \text { CI] }} \end{gathered}$ | N | Iglu/Iglu+ctz, \% ${ }^{\text {a }}$ | N | Ika/lglu, \% ${ }^{\text {b }}$ | N | NASPM inhibition, \% | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WT | 29 [27-33] | 94 | 87 [78-99] | 38 | 1.9[1.6-2.2] | 71 | 18 [16-19] | 67 | 88 [84-91] | 45 |
| p.Phe53Leu | 28 [26-30] | 17 | NR |  | 4.4[3.6-5.1] | 9 | 18 [14-23] | 8 | 87 [63-111] | 4 |
| p.Arg169Gln | 33 [29-37] | 18 | NR |  | 1.4[1.1-1.8] | 18 | 19 [17-22] | 15 | 87 [80-93] | 12 |
| p.Ala248Val | 40 [33-46] | 9 | NR |  | 3.5[3.3-3.8] | 5 | 23 [15-30] | 11 | 97 [96-98] | 7 |
| p.Pro302Ser | 34 [29-40] | 7 | NR |  | 1.7[1.3-2.1] | 13 | 17 [\|3-2I] | 7 | 95 [90-101] | 7 |
| p.lle314Thr | 36 [29-42] | 9 | NR |  | 2.1 [1.4-2.7] | 7 | 23 [16-29] | 13 | 82 [72-92] | 6 |
| p.Gln371Argss*6 | ND |  |
| p.Gln37IHis | 77 [68-86]* | 8 | NR |  | 1.3 [1.0-1.6] | 13 | 21 [15-26] | 13 | 83 [76-90] | 8 |
| p.Phe408Leu | 48 [42-53] | 8 | NR |  | 1.8[0.7-2.9] | 12 | 20 [17-23] | 11 | 87 [75-99] | 6 |
| p.Arg450Gln | ND |  | 85 [78-93] | 22 | 1.0[0.8-1.2] | 32 | 19 [17-2I] | 33 | 87 [83-92] | 27 |
| p.Gly492Ser | ND |  | ND |  | ND |  | ND |  | ND | 3 |
| p.Arg50IThr | 12 [11-14]** | 22 | NR |  | 1.4[0.8-1.9] | 34 | 19 [16-2I] | 34 | 86 [81-92] | 33 |
| p.Ser53ICys | ND |  | 1.5 [1.0-2.0]*** | 11 | 0.5[0.3-0.8]* | 15 | 22 [18-26] | 15 | 96 [81-110] | 4 |
| p.lle564Thr | 143 [110-170]*** | 7 | NR |  | 3.4[2.7-4.0] | 15 | 16 [\|I-2I] | 13 | 84 [79-89] | 20 |
| p.Ala6I5Val | 25 [23-28] | 14 | NR |  | 32[26-40]*** | 14 | 33 [26-40]** | 14 | 29 [ $18-41]^{* * *}$ | 17 |
| p.Met6I7Thr | ND |  | $\begin{gathered} \hline 443 \text { [388- } \\ 506]^{* * *} \\ \hline \end{gathered}$ | 8 | 1.2[1.0-1.4] | 14 | $8[5-10]^{* *}$ | 16 | $64[55-73]^{* * *}$ | 14 |
| p.Gly630Arg | ND |  |
| p.Arg63ISer | 10 [8.2-11] ${ }^{* * *}$ | 12 | NR |  | 101[93-109]*** | 22 | 54 [50-57]*** | 20 | 119 [113-126] | 18 |
| p.Ser647Phe | 29 [27-31] | 26 | NR |  | 2.3[1.6-3.0] | 20 | 31 [28-35]*** | 25 | 89 [82-96] | 14 |
| p.Ala653Thr | 39 [36-43]*** | 11 | NR |  | 1.7[1.2-2.3] | 10 | 2 [ $1-2]^{* * *}$ | 10 | 77 [70-84] | 11 |
| p.Ala654Pro | ND |  | ND |  | 75[63-87]*** | 14 | ND | 14 | $\begin{gathered} 30 I[266- \\ 336]^{* * *} \end{gathered}$ | 12 |
| p.Ala654Val | 3.5 [3.2-3.8] | 10 | NR |  | 88[84-92]*** | 27 | 56 [47-65]*** | 27 | 92 [89-95] | 26 |
| p.Ala654Thr | 1.64 [0.79-2.7] | 12 | NR |  | 55[49-60]*** | 13 | 55 [49-61] ${ }^{* * *}$ | 13 | 97 [95-99] | 13 |
| p.Phe655Ser | ND |  | $\begin{gathered} 1258[1198- \\ 1320]^{* * *} \\ \hline \end{gathered}$ | 31 | II.4[9.8-13.1] ${ }^{* * *}$ | 26 | II [10-13]** | 26 | 95 [81-109] | 5 |
| p.Arg660Ser | 10 [9-11]*** | 20 | NR |  | $1.6[1.4-1.8]$ | 35 | $45[42-48]^{* * *}$ | 32 | 89 [84-94] | 14 |
| p.Arg660Thr | 15 [14-17]*** | 20 | NR |  | 28[25-31] ${ }^{* * *}$ | 24 | 43 [39-47] ${ }^{* * *}$ | 21 | 94 [89-99] | 12 |
| p.Ser663Pro | 61 [52-72] | 17 | NR |  | 16.5 [12.8-20.3]*** | 29 | 27 [23-31]** | 23 | 89 [86-93] | 33 |
| p.lle665Thr | 20 [17-239 | 8 | NR |  | 6.3[5.1-7.6] | 9 | 9 [7-10]* | 8 | 84 [69-98] | 7 |
| p.Lys70IGlu | 56 [52-59 | 21 | NR |  | 8.4[6.6-10.1]* | 15 | $8[7-10]^{* *}$ | 15 | 94 [90-98] | 15 |
| p.Met706Thr | ND |  |
| p.Gly72IArg | ND |  |
| p.Gly730Ala | 30 [29-31] | 10 | NR |  | 3.1 [2.5-3.8] | 33 | 17 [15-19] | 34 | 82 [76-88] | 29 |
| p.Met740Thr | 22 [20-24] | 11 | NR |  | 1.4[1.0-1.8] | 42 | 12 [10-13] | 26 | 78 [72-84] | 22 |
| p.Leu774Ser | ND |  | 212 [185-242] | 10 | 0.5[0.3-0.6]*** | 28 | 21 [19-23] | 30 | 84 [75-92] | 14 |
| p.Thr776Met | 217 [199-236] | 10 | NR |  | 0.7[0.5-0.8]* | 22 | 21 [18-23] | 19 | 97 [92-101] | 16 |
| p.Glu787Gly | ND |  |


| p.Glu787Lys | ND |  | 51 [38-68] | 6 | ND |  | ND |  | ND |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p.Trp799Leu | 0.57 [0.27-0.87] | 8 | NR |  | 0.1 [0.0-0.1]*** | 18 | 108 [95-122] ${ }^{* * *}$ | 17 | 86 [77-95] | 6 |
| p.Gly803Glu | 0.87 [0.67-0.92] | 10 | NR |  | 1.6[1.1-2.0] | 37 | 48 [43-54]*** | 35 | 97 [90-105] | 13 |
| p.Gly803Ala | 1.3 [I.I-I.5] | 10 | NR |  | 0.3[0.2-0.4]*** | 21 | 25 [22-27]* | 24 | 80 [74-85] | 10 |
| p.Thr816lle | 190 [178-20I] | 10 | NR |  | 0.3[0.2-0.4]* | 8 | 20 [12-28] | 9 | 91 [85-97] | 9 |
| p.Gly826Asp | 187 [180-194] | 8 | NR |  | 0.6[0.4-0.7]* | 14 | 3 [2-4]*** | 21 | 38 [19-58]*** | 9 |
| p.Gly833Arg | ND |  |
| p.Arg856Gly | 60 [48-72] | 12 | NR |  | 0.9[0.7-I.I] | 12 | 13 [10-16] | 12 | 67 [58-76] | 7 |
| p.Leu859Phe | 6.2 [4.4-6.4] | 7 | NR |  | 2.2[1.2-3.2] | 8 | II [8-14] | 9 | 96 [93-99] | 9 |

Data were generated by TEVC recordings with -20 to -100 mV of holding potential, and were expressed as mean $\pm 95 \mathrm{Cl}$. $n$ indicates number of individual cells. ${ }^{a}$ The ratio of current responses to consecutive applications of Glu in absence and presence of CTZ. ${ }^{\text {b }}$ The ratio of current responses to consecutive applications of kainate and glutamate (KA/Glu) determined in the presence of CTZ. $* \mathrm{P}<.05$, **P < . 01 , ***P < . 00 I compared to WT by one-way ANOVA, with Dunnett's multiple comparisons test. ND, not determined, due to no or small current, except in the case of p.(Ala654Pro), due to constitutive activity. $N R$, not relevant.

Supplementary Table S4. Summary of TEVC data for heteromeric GluA2/A3 receptors

| Variant | $\begin{gathered} \mathrm{EC50}, \mu \mathrm{M}[95 \% \\ \mathrm{CI}] \end{gathered}$ | N | $\begin{gathered} \text { EC50 with CTZ, } \\ \mu M[95 \% \text { CI] } \\ \hline \end{gathered}$ | N | Iglu/Iglu+ctz, \% | N | $\mathrm{I}_{\text {ka/ }} / \mathrm{lgLu}$, \% ${ }^{\text {b }}$ | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WT | 23 [26-30] | 55 | 78 [74-83] | 15 | 7.5 [6.6-8.3] | 80 | 32 [31-34] | 73 |
| p.Arg450Gln | 44 [42-47] | 12 | NR |  | 4.4 [2.7-6.1] | 22 | 23 [19-28] | 22 |
| p.Gly492Ser | 36 [34-38] | 24 | NR |  | 6.9 [5.7-8.1] | 25 | 31 [29-33] | 25 |
| p.Ser53ICys | ND |  | 24 [21-28] | 8 | 4.5 [3.4-5.5] | 11 | 31 [28-33] | 11 |
| p.lle564Thr | 40 [37-44] | 8 | NR |  | 6.8 [5.1-8.5] | 10 | 27 [22-33] | 10 |
| p.Ala6I5Val | 31 [30-32] | 7 | NR |  | 19 [17-21] | 14 | 54 [51-58] | 14 |
| p.Met617Thr | 59 [48-73]*** | 13 | NR |  | 4.0 [1.6-6.4] | 17 | 17 [16-19] | 17 |
| p.Gly630Arg | ND |  | 51 [48-55]*** | 11 | 9.2 [5.7-12.6] | 12 | 19 [16-23] | 12 |
| p.Arg63ISer | 25 [23-27] | 10 | NR |  | 76 [70-81]*** | 22 | 54 [50-57] | 20 |
| p.Ser647Phe | 35 [32-38] | 21 | NR |  | 6.9 [5.3-8.5] | 15 | 37 [34-41] | 15 |
| p.Ala653Thr | 52 [50-55]*** | 11 | NR |  | 2.4 [0.9-3.9]** | 11 | 4.7 [3.9-5.4] | 8 |
| p.Ala654Prol | ND |  | ND |  | 130 [113-148]*** | 8 | 65 [63-68] | 8 |
| p.Ala654Val | 20 [19-21]** | 10 | NR |  | 70 [65-76]*** | 11 | 34 [33-36] | 11 |
| p.Ala654Thr | 17 [15-19]** | 13 | NR |  | 89 [85-93]*** | 13 | 51 [48-54] | 12 |
| p.Phe655Ser | 30[26-35] | 23 | NR |  | 1.0 [0.8-1.2] |  | 11 [10-13] | 18 |
| p.Arg660Ser | 17 [16-18]** | 27 | NR |  | 20 [14-25]** | 23 | 53 [46-59] | 22 |
| p.Arg660Thr | 25 [21-28] | 13 | NR |  | 43 [37-49]*** | 13 | 44 [42-47] | 10 |
| p.Ser663Pro | 31 [30-32] | 11 | NR |  | 26 [23-29]** | 10 | 49 [47-52] | 11 |
| p.lle665Thr | 48 [46-52]*** | 9 | NR |  | 4.3 [3.2-5.4] | 9 | 14 [11-17] | 9 |
| p.Lys70IGlu | 33 [31-35] | 25 | NR |  | 27 [21-32]*** | 16 | 31 [26-36] | 14 |
| p.Met706Thr | 55 [52-58]** | 7 | NR |  | 7.0 [4.1-10.0] | 6 | 15 [13-17] | 6 |
| p.Gly72IArg | ND |  | ND |  | ND |  | ND |  |
| p.Leu774Ser | 42 [40-44]*** | 30 | NR |  | $2.7{ }^{[2.2-3.1]}{ }^{* *}$ | 35 | 25 [23-28] | 35 |
| p.Thr776Met | 33 [30-35]** | 15 | NR |  | 4.2 [2.7-5.6] | 24 | 29 [26-31] | 25 |
| p.Glu787Gly | 25 [24-30]*** | 15 | NR |  | 0.5 [0.2-0.8] ${ }^{* * *}$ | 17 | 32 [27-37] | 17 |
| p.Glu787Lys | 72 [63-83] | 1 | NR |  | 6.4 [4.2-8.7] | 8 | 121 [106-137] | 8 |
| p.Trp799Leu | 1.3 3 I.I-I.5]*** | 16 | NR |  | 5.4 [4.5-6.3] | 9 | 56 [52-61] | 9 |
| p.Gly803Glu | 15 [12-17]*** | 15 | NR |  | 4.6 [3.6-5.6] | 15 | 44 [39-49] | 15 |
| p.Gly803Ala | 8.9 [6.8-11] ${ }^{* * *}$ | 10 | NR |  | 5.8 [4.7-7.0] | 15 | 42 [38-46] | 15 |
| p.Thr8161le | 35 [30-39] | 10 | NR |  | 1.9 [1.5-2.4] | 9 | 27 [23-31] | 9 |
| p.Gly826Asp | 29 [27-3I] | 14 | NR |  | 2.7 [1.5-2.3] | 18 | 29 [27-31] | 18 |
| p.Gly833Arg | ND |  | 69 [66-74] | 8 | 14.4 [6.3-22.4]* | 8 | 23 [17-29] | 5 |

Electrophysiological data were generated by TEVC recordings with -20 to -100 mV of holding potential, and were expressed as mean with $95 \% \mathrm{Cl} . \mathrm{N}$ is the number of experiments on individual cells. ${ }^{a}$ The ratio of current responses to saturating concentration of glutamate (GLU) in absence (IGLU) and presence (lglu/ctz) of block of desensitization by cyclothiazide (CTZ). ${ }^{6}$ The ratio of current responses to consecutive applications of kainate and glutamate ( $\mathrm{I}_{\mathrm{KA}} / \mathrm{I}_{\mathrm{GII}}$ ) determined in the presence of CTZ. $* \mathrm{P}<.05$, $* * \mathrm{P}<.0 \mathrm{I}, * * * \mathrm{P}<.00 \mathrm{I}$ compared to WT by one way ANOVA (analysis of variance), with Dunnett's multiple comparisons test. ND, not determined, due to no or small current. NR, not relevant.

Supplementary Table S5. Summary of the kinetic parameters of wild-type and variant GluA3 and GluA2/A3 receptors

| Variant | Isoform | $\tau_{\text {desens }}$, ms | N | Iss, \% | N | $\tau_{\text {deact, }}$, ms | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WT | Flip | $5.1 \pm 0.3$ | 12 | $1.1 \pm 0.1$ | 16 | $2.1 \pm 0.2$ | 9 |
| + A2 | Flip | $6.9 \pm 0.7$ | 11 | $2.9 \pm 0.1$ | 11 | $2.4 \pm 0.2$ | 10 |
| WT | Flop | $1.6 \pm 0.1$ | 10 | $0.82 \pm 0.30$ | 9 | $1.2 \pm 0.1$ | 12 |
| + A2 | Flop | $3.1 \pm 0.3$ | 9 | $0.66 \pm 0.12$ | 13 | $1.4 \pm 0.1$ | 12 |
| p.(Gly492Ser) | Flip | ND |  | ND |  | ND |  |
| + A2 | Flip | ND |  | ND |  | ND |  |
| p.(Gly630Arg) | Flip | ND |  | ND |  | ND |  |
| + A2 | Flip | ND |  | ND |  | ND |  |
| p.(Ala654Prol) | Flip | ND |  | $100 \pm 1$ | 4 | >20 | 4 |
| + A2 | Flip | ND |  | $100 \pm 1$ | 4 | >40 | 4 |
| p.(Ala654Val) | Flip | $6.5 \pm 1.5$ | 8 | $61 \pm 2^{* * *}$ | 9 | $9.8 \pm 1.0^{* * *}$ | 10 |
| + A2 | Flip | $8.6 \pm 0.2$ | 9 | $70 \pm 4^{* * *}$ | 9 | $8.2 \pm 1.3^{* * * *}$ | 12 |
| p.(Ala654Thr) | Flip | ND |  | $82 \pm 3^{* * *}$ | 9 | $5.3 \pm 1.3^{* * *}$ | 6 |
| + A2 | Flip | $26 \pm 2.0^{* * *}$ | 22 | $18 \pm 2^{* * *}$ | 22 | $1.9 \pm 0.1^{* * *}$ | 16 |
| p.(Phe655Ser) | Flip | ND |  | ND |  | ND |  |
| + A2 | Flip | ND |  | ND |  | ND |  |
| p.(Arg660Thr) | Flip | $12.9 \pm 1.4^{a}$ |  | $28.1 \pm 5.2^{\text {a }}$ |  | $6.3 \pm 0.3^{a}$ |  |
| + A2 | Flip | $12.8 \pm 0.9^{a}$ |  | $12.6 \pm 2.6^{\text {a }}$ |  | $1.5 \pm 0.2^{a}$ |  |
| p.(Ser663Pro) | Flip | $10.4 \pm 1.0^{* * *}$ | 10 | $7.0 \pm 1.0^{* * *}$ | 10 | $2.5 \pm 0.2$ | 8 |
| + A2 | Flip | $10.7 \pm 0.8{ }^{* * *}$ | 11 | $5.6 \pm 0.8^{* * *}$ | 11 | $2.0 \pm 0.1$ | 16 |
| p.(lle665Thr) | Flip | ND |  | ND |  | ND |  |
| + A2 | Flip | $4.8 \pm 0.3$ | 10 | $2.2 \pm 0.4^{*}$ | 9 | $1.9 \pm 0.1$ | 8 |
| p.(Lys70IGlu) | Flip | $13 \pm 1.1{ }^{* * *}$ | 8 | $6.8 \pm 1.5^{* * * *}$ | 11 | $4.5 \pm 0.4^{* * *}$ | 12 |
| + A2 | Flip | $15 \pm 1.0{ }^{* * *}$ | 10 | $6.2 \pm 0.8^{* * * *}$ | 11 | $4.5 \pm 0.3^{* * *}$ | 12 |
| p.(Glu787Gly) | Flop | ND |  | ND |  | ND |  |
| + A2 | Flop | ND |  | ND |  | ND |  |
| p.(Glu787Lys) | Flop | ND |  | ND |  | ND |  |
| + A2 | Flop | ND |  | ND |  | ND |  |
| p.(Trp799Leu) | Flop | ND |  | ND |  | ND |  |
| + A2 | Flop | $2.9 \pm 0.1$ | 16 | $0.7 \pm 0.2^{* * *}$ | 11 | $1.3 \pm 0.1$ | 12 |
| p.(Gly803Glu) | Flip | $7.3 \pm 0.9$ | 9 | $2.2 \pm 0.6$ | 9 | $5.0 \pm 0.4^{* *}$ | 10 |
| + A2 | Flip | $9.1 \pm 0.6$ | 11 | $1.6 \pm 0.2$ | 11 | $4.7 \pm 0.4$ | 11 |
| p.(Gly803Ala) | Flip | $5.6 \pm 0.6$ | 10 | $2.1 \pm 0.4$ | 10 | $4.6 \pm 0.6$ | II |
| + A2 | Flip | $9.6 \pm 1.0$ | 10 | $1.8 \pm 0.3$ | 10 | $3.5 \pm 0.3$ | 10 |

Data were generated by patch-clamp recordings with -40 to -80 mV of holding potential, and were expressed as mean $\pm$ SEM (n). ${ }^{a}$ From Sun, et al. (202I). ND, not determined, due to no or small current, except for p.(Ala654Pro), p.(Ala654Thr), and p.(Trp799Leu), which showed current waveforms that did not permit reliable fitting of the desensitization and deactivation phases due to profoundly slowed (p.(Ala654Pro) and p.(Ala654Thr)) or accerlerated (p.(Trp799Leu)) kinetics.

Supplementary Table S7. Extended clinical and genetic information of patients with neurodevelopmental disorders carrying a loss- or gain-of-function variants in GRIA3, part A.

| Family | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID number | MI | M2 | M3 | $\begin{gathered} \text { M4 (brother of } \\ \text { M5) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { M5 (brother of } \\ \text { M4) } \\ \hline \end{gathered}$ | M6 | FIO | M7 | M8 | M9 |
| Age | 18 y | 39 y | $15 y$ | 14 y | 12 y | 5.5 y | 28 y | 21 y | 4.5 y | 6 y |
| Previously published | No | No | No | $\begin{aligned} & \hline \text { Yes (PMID } \\ & 35697757) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { Yes (PMID } \\ & 35697757 \text { ) } \\ & \hline \end{aligned}$ | No | No | $\begin{aligned} & \hline \text { Yes (PMID } \\ & 3473 \mathrm{I} 330) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { Yes (PMID } \\ & 32977175) \\ & \hline \end{aligned}$ | No |
| DNA change <br> (NM_007325.5) | c. 1112 _II \| 6 del | c. $1474 \mathrm{G}>\mathrm{A}$ | c. $1888 \mathrm{G}>\mathrm{C}$ | c. $1888 \mathrm{G}>\mathrm{C}$ | c. I $888 \mathrm{G}>\mathrm{A}$ | c. $1888 \mathrm{G}>\mathrm{C}$ | c. $1994 \mathrm{~T}>\mathrm{C}$ | c. $2360 \mathrm{~A}>\mathrm{G}$ | c. $2359 \mathrm{G}>\mathrm{A}$ | c. $2359 \mathrm{G}>\mathrm{A}$ |
| Protein change | p.(Gln37IArgss*6) | p.(Gly492Ser) | p.(Gly630Arg) | p.(Gly630Arg) | p.(Gly630Arg) | p.(Gly630Arg) | p.(lle665Thr) | p.(Glu787Gly) | p.(Glu787Lys) | p.(Glu787Lys) |
| Genetic test | TRIO WES | NGS panel for ID genes | WES | Quadruple-WES | QuadrupleWES | WES | WGS | WES | WES | WES |
| Inheritance | Maternally inherited | De novo | Unknown | Maternally inherited | Maternally inherited | Maternally inherited |
| Functional effect of variant | Severe loss-offunction |
| Degree of global developmental delay | Borderline (IQ 78) | Moderate | Severe | Mild-moderate | Moderate | Moderate | Moderate | Severe | Profound | Severe |
| Age of sitting/walking | $8 \mathrm{mo} / 13 \mathrm{mo}$ | NA / 24 mo | l y/ 27 mo | NA / 30 mo | $1 \mathrm{y} / 30 \mathrm{mo}$ | $2 \mathrm{y} / 3 \mathrm{y}$ | NA / 4 y | NA / 13 mo | NA / NA | Non-ambulant |
| Present motor skills | Independent walking | Independent walking, running | Independent walking | Independent walking, running | Independent walking, running | Independent walking, stairs with suppport, long distances wheelchair dependent | Non-ambulant | Independent walking | Non-ambulant, unable to hold head or sit | Non-ambulant, unable to hold head or sit |
| First words | 3 y | NA | 2.5 y | 2.5 y | 27 m | NA | NA | 1 y | Nonverbal | Nonverbal |
| Present verbal ability | Short sentences, dysartria | Short sentences | Simple words | Unknown but able to read and write | Short sentences | Short sentences, dysartria | NA | Short sentences, dysarthria | Nonverbal | Nonverbal |
| Neurologic findings | Dysarthria | Muscular hypotonia, hyporeflexia | Muscular hypotonia, hyporeflexia | Muscular hypotonia | Muscular hypotonia | Muscular hypotonia, hyporeflexia | $\begin{gathered} \text { Brisk tendon } \\ \text { reflex, limb } \\ \text { spasticity, gait } \\ \text { dyspraxia } \\ \hline \end{gathered}$ | Muscular hypotonia, hyporeflexia | Muscular hypotonia, hyporeflexia | Muscular hypotonia, hyporeflexia |
| Movement disorders | No | No | No | No | No | Ataxia | Dystonic head posturing | Ataxia, intention tremor, nonepileptic erratic myoclonus | No | No |
| Epilepsy diagnosis | No | No | Yes | No | No | No | No | Yes | Yes | Yes |
| Age at onset of seizure | NR | NR | Yes (17 mo) | NR | NR | NR | NR | Yes (29 mo) | Yes (16 mo) | Yes ( l y) |


| Seizure type | NR | NR | FTS, FBTCS | NR | NR | NR | NR | FCS, generalized onset My, My status epilepticus. | AtypAS with eyelid My, My, non-convulsive SE | Generalized My, tonic, and TCS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Treatment resistant seizures | NR | NR | Yes | NR | NR | NR | NR | Until $14 y$, then seizure-free on ESM and CLZ | Yes | Yes |
| EEG findings | NA | Interictal EEG <br> with poor <br> background activity, <br> bilateral frontal epileptic discharges regions; ictal discharges consisted of bilateral frontal or diffuse spike and wave | EEG showed <br> poor background with multifocal discharges | Generalized slow wave with spike or spike wave discharges |
| Brain MRI | Normal (ly) | NA | Normal (2 y) | NA | NA | Signal abnormality in the periventricular white matter on the right, suggestive of gliosis and (1.2 y and 2.5 y ) | NA | Cerebellar vermis hypoplasia, focal cortical dysplasia | Normal (l y) | $\begin{aligned} & \text { Normal (I7 } \\ & \text { mo) } \end{aligned}$ |
| Behavioural issues | No | NA | Stereotypies, anxiety, AO, ASD | $\begin{gathered} \text { Echolalia, AO, } \\ \text { ASD } \end{gathered}$ | Stereotypies, echolalia, AO, ASD | Echolalia, difficulties with self-regulation, self-harming, stereotypies, reduced attention span. | ASD | AO | No | No |
| Sleep disorders | No | No | Yes (long wakefulness) | Yes (long wakefulness, nocturnal awakening) | Yes (long wakefulness, nocturnal awakening) | Yes (nocturnal awakening) | Yes (long wakefulness) | NA | Yes (long wakefulness) | No |

Supplementary Table S7. Extended clinical and genetic overview of patients with neurodevelopmental disorders carrying a loss- or gain-of-function variants in GRIA3, part B.

| Family | 10 | 11 | 12 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID number | FII | MIO | $\begin{gathered} \hline \text { MII (brother of } \\ \text { MI2) } \\ \hline \end{gathered}$ | $\begin{array}{\|c} \hline \text { MI2 (brother of } \\ \text { MII) } \\ \hline \end{array}$ | F9 | MI3 | M14 | FI | F2 | F3 |
| Age | 13 y | 12 y | 38 y | 33 y | ```2 y (deceased due to a pneumonia and respiratory failure)``` | 7.5 y | 9.5 y | 30 y | 8 y | $5 y$ |
| Previously published | No | No | $\begin{aligned} & \hline \text { Yes (PMID } \\ & 29016847) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { Yes (PMID } \\ & 29016847) \\ & \hline \end{aligned}$ | No | No | No | No | No | No |
| DNA change (NM_007325.5) | c. $2359 \mathrm{G}>\mathrm{A}$ | c. 1964T>C | c. 1957G>A | c.1957G>A | c. $2396 \mathrm{G}>\mathrm{T}$ | c. $2408 \mathrm{G}>\mathrm{C}$ | c. $2408 \mathrm{G}>\mathrm{C}$ | c. $2408 \mathrm{G}>\mathrm{A}$ | c. $2408 \mathrm{G}>\mathrm{A}$ | c. $2101 \mathrm{~A}>\mathrm{G}$ |
| Protein change | p.(Glu787Lys) | p.(Phe655Ser) | p.(Ala653Thr) | p.(Ala653Thr) | p.(Trp799Leu) | p.(Gly803Ala) | p.(Gly803Glu) | p.(Gly803Glu) | p.(Gly803Glu) | p.(Lys70IGlu) |
| Genetic test | WES | WES | WGS | WGS | WES | WES | Trio WES | WES | Trio WES | WES |
| Inheritance | De novo | Maternally inherited | Maternally inherited | Maternally inherited | De novo | Maternally inherited | De novo | De novo | De novo | De novo |
| Functional effect of variant | Severe loss-offunction | Severe loss-offunction | Mild loss-offunction | Mild loss-offunction | Mild loss-offunction | Mild gain-offunction |
| Degree of global developmental delay | Severe | Severe | Severe | Severe | Severe/profoun d | Severe/profound | Severe | Profound | Moderate | Moderate |
| Age of sitting/walking | $6 \mathrm{mo} / 1.4 \mathrm{y}$ | Non-ambulant | NA / 3.5 y | $3 \mathrm{y} / 7 \mathrm{y}$ | Non-ambulant | $9 \mathrm{mo} / 27 \mathrm{mo}$ | Non-ambulant | $18 \mathrm{mo} / 24 \mathrm{mo}$ (aided) | $6 \mathrm{mo} / 16 \mathrm{mo}$ | $2 \mathrm{y} / 18 \mathrm{mo}$ with walker |
| Present motor skills | Independent walking | Non-ambulant. Able to roll, unable to sit | Independent walking and running (balance problems) | Independent walking and running (balance problems) | No motor skills, unable to hold head or sit | Independent walking | No motor skills, unable to hold head or sit | Wheelchair bound after operation for scoliosis | Independent walking, running, swimming | Sits unsupported, walks w/ walker, not running or climbing stairs |
| First words | NA | Nonverbal | 13 m | 14 mo | Nonverbal | 3 y | Nonverbal | 1 y | 18 mo | 1 y |
| Present verbal ability | Short sentences | Nonverbal | Simple words | Simple words | Nonverbal | Simple words | Nonverbal | Short sentences | Almost fluent, mild dyslexia | Simple words |
| Neurologic findings | Muscular hypotonia, hyporeflexia | Muscular hypotonia, hyporeflexia | Muscular hypotonia, hyporeflexia | Muscular hypotonia, hyporeflexia | Muscular hypertonia | Brisk deep tendon reflexes | Muscular hypertonia, limb spasticity, brisk deep tendon reflexes | Muscular hypertonia, limb spasticity, brisk deep tendon reflexes | Muscular hypertonia | Muscular hypertonia, limb spasticity, brisk deep tendon reflexes |
| Movement disorders | Ataxia | No | Ataxia, tremor | Ataxia, tremor | Excessive startle (less present over time), tremor, dyskinesia, dystonia (onset 5 mo ). | Ataxia | Dystonia, hyperekplexia, chorea | NA | Intention tremor | Hyperekplexia, reflex nonepileptic myoclonia during neonatal age |


| Epilepsy diagnosis | Yes | No | No | No | Yes | Yes | Yes | Yes | No | No |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age at onset of seizure | Yes (3y) | NR | NR | NR | Yes (9 mo) | Yes ( l y) | Yes (I d) | Yes (27 y) | NR | NR |
| Seizure type | Absences, unknown onset My, unknown onset BTCS. SE | NR | NR | NR | Focal clonic seizures (face and limb) | Focal migrating seizures. <br> Unknown onset brief (few seconds) impaired awareness seizures | Unknown onset tonic and atonic seizures | Unknown onset TCS | NR | NR |
| Treatment resistant seizures | Yes | NR | NR | NR | Seizure free on levetiracetam and oxcarbazapine) | Yes | Yes | ```No (only 2 seizures, treatment not initiated)``` | NR | NR |
| EEG findings | NA | NA | NA | EEG showed poor background with multifocal discharges (occasional spikes and separate slow waves mainly right anterior quadrant) | At 9 months EEG showed poor background with multifocal sharp waves | NA | Day I: Burst suppression pattern. Day 7: no burst suppression, discontinuous asynchronous EEG with multifocal sharp waves. I mo: abnormal awake and asleep EEG due to bilateral posterior spikes indicating regions of cortical irritability, diffuse beta background activity | NA | NA | NA |
| Brain MRI | Normal (12 y) | NA | Normal (19 y) | NA | Normal (5 mo) | Normal (4 y) | Normal (2 m) | NA | Normal (5 mo) | Rathke's cyst $(2 \mathrm{y})$ |
| Behavioural issues | Stereotypies, hyperactivity, AO | Stereotypies, non-epileptic staring spells | Stereotypies, nonepileptic staring spells | Stereotypies, nonepileptic staring spells | No, but difficult to assess due to age. | Stereotypies, anxiety, AO, ASD | NA | OCD | Mild anxiety | No |
| Sleep disorders | Yes (long wakefulness) | NA | Yes (long wakefulness) | Yes (long wakefulness) | Yes | Yes (long wakefulness) | No | No | No | No |

Supplementary Table S7. Extended clinical and genetic overview of patients with neurodevelopmental disorders carrying a loss- or gain-of-function variants in GRIA3, part C.

| Family | 19 | 20 | 21 | 22 | 23 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ID number | F4 | F5 | F6 | F7 | F8 |
| Age | 9 mo | $\begin{gathered} 3.5 \mathrm{y} \\ \text { (deceased) } \end{gathered}$ | 9 y | 5 mo (deceased at home due to apnea with hyperekplexia) | 5 y |
| Previously published | No | No | No | No | $\begin{aligned} & \hline \text { Yes (PMID } \\ & 34161333) \end{aligned}$ |
| DNA change (NM_007325.5) | c. $1987 \mathrm{~T}>\mathrm{C}$ | c. $1961 \mathrm{C}>$ T | c. $1960 \mathrm{G}>\mathrm{C}$ | c.1960G>A | c.1979G>C |
| Protein change | p.(Ser663Pro) | p.(Ala654Val) | p.(Ala654Pro) | p.(Ala654Thr) | p.(Arg660Thr) |
| Genetic test | WES | WES | WES | WES | WGS |
| Inheritance | De novo |
| Functional effect of variant | Severe gain-offunction |
| Degree of global developmental delay | Moderate | Profound | Moderate. Development largely plateaued. | Severe | Profound |
| Age of sitting/walking | NA /NA | Non-ambulant | > 1 y / 26 mo | NA / NA | Non-ambulant |
| Present motor skills | Can briefly hold her head, sits supported | Non-ambulant, unable to hold head or sit | Independent walking (poor balance, narrow gate). Runs unsteady. | No motor skills, unable to hold head or sit | Non-ambulant, unable to hold head or sit |
| First words | NA | Nonverbal | 3 y | Nonverbal | Nonverbal |
| Present verbal ability | NA | Nonverbal | Can say long sentences but mostly they are short and repetitive | Nonverbal | Nonverbal |
| Neurologic findings | Muscular hypertonia | Muscular hypertonia, brisk deep tendon reflexes | Muscular hypertonia, limb spasticity, brisk deep tendon reflexes | Muscular hypertonia | Muscular hypertonia, limb spasticity, brisk deep tendon reflexes |
| Movement disorders | Hyperekplexia, reflex nonepileptic myoclonia | Hyperekplexia, reflex nonepileptic myoclonia, tremor | NA | Hyperekplexia, non-epileptic myoclonus | Hyperekplexia, reflex nonepileptic myoclonia |


| Epilepsy diagnosis | Yes | Yes | No | No | Yes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Age at onset of seizure | Yes (2 mo) | Yes (I0 d) | NR | NR | Yes (l d) |
| Seizure type | FTS, generalized My | FTS. FBTCS with apnea | NR | NR | Unknown onset My and unknown onset TCS |
| Treatment resistant seizures | No (Initiation of PER at 5 mo of life; no FTS after initiation and reduced frequency and severity of My) | Yes (partial seizure free on a combination of LMT, VPA and CLZ) | NR | NR | Yes |
| EEG findings | NA | NA | NA | NA | NA |
| Brain MRI | Normal (2 mo) | Normal ( 1 mo ) | Normal (3 y) | Normal (8 d) | Hypoplastic CC (neonatal age) |
| Behavioural issues | NA | Crying spells, irritability | AO, ASD,reduced <br> attention span | NA | NA |
| Sleep disorders | No | Yes | Yes (long wakefulness, nocturnal awakening) | NA | NA |

The table shows clinical and genetic information for patients MI-MI4 and FI-FII. Abrrevations used are: Abbreviations: AO = aggressive outburst; ASD = autism spectrum disorder; AtypAS = atypical absences; BTCS = bilateral tonic clonic seizures; CC = corpus callosum; CLZ = clonazepam; ESM; ethusuximide; FBTCS: focal to bilateral tonic clonic seizures; $\mathrm{FCS}=$ focal clonic seizure; ID $=$ intellectual disability; LMT = lamotrigine; LEV = levetiracetam; mo = months; MRI = magnetic resonance imaging; My = myoclonia; NA: not available; NGS = next generation sequencing; NR = not relevant; OCD = obsessive compulsive disorder; OXC = oxcarbazapine; PER = perampenal; SE = status epilepticus; VPA = valproate; $y=$ years; WES = whole exome sequencing; WGS = whole genome sequencing.

Supplementary Figure S1. Amino acid sequence alignment of human and rat GluA3 and GluA2 subunits used for homology modelling of the human GluA3 receptor


Protein sequence aligment of human GluA2 (GRIA2_HUMA), rat GluA3 (GRIA2_RAT), human GluA3 (GRIA3_HUMA), and rat GluA3 (GRIA3_RAT) subunits. Dashes indicate gaps in the alignment. Shading of residues in the alignment is applied to provide overview of the level and pattern of residue conservation in the subunit sequences: Black color indicate residue identity among all subunits, dark gray color indicate identity among three subunits, and light gray indicate identity among two subunits. Note that no shading can also indicate identity among two subunits. The location of the NTD segment (light purple), the ABD segments (blue), and the transmembrane regions M1 to M4 (magenta) are depicted on top of the alignment.

## Supplementary Figure S2. Concentration-response curves for glutamate





Composite concentration-response curves for Glu for homomeric GluA3 and heteromeric GluA2/A3 receptors for WT and receptors containing the variant-encoded genetic changesin GluA3. Each graph show curves for the indicated mutant ( $\bullet$ ) and WT (○). CTZ ( $100 \mu \mathrm{M}$ ) was included for homomeric GluA3 receptors with the R450Q (Arg450*), S531C (Ser531Cys), M611T (Met611Thr), F649S (Phe649Ser), E787K (Glu787Lys), W799L (Trp799Leu), T810I (Thr810Ile), and G826D (Gly826Asp), and G833R (Gly833Arg) variants and for heteromeric GluA2/A3 receptors with the R450Q (Arg450*), S531C (Ser531Cys), G630R (Gly630Arg), and G833R (Gly833Arg) variants to increase response amplitude. Data in all composite concentration-response curves are mean $\pm$ SEM.

## Supplementary Figure S3. Current-voltage relationships of heteromeric GluA2/A3 with loss-offunction variants



IV relationships of Glu-evoked currents from oocytes expressing heteromeric WT GluA2/A3 (white circles) and variant-containing GluA2/A3 (black circles) receptors. The current amplitude at the different holding potentials is normalized to the current at -40 mV . Data points represent the mean from 3 to 6 oocytes. Error bars indicate the SEM and are shown when larger than the symbol size. In all panels, variants are labelled with single-letter amino acid codes.

## Supplementary Figure S4. GRIA3 variants with complete LoF effects have intact receptor cell surface expression


(A) Representative plots of nitrocefin conversion measured as absorbance at $465 \mathrm{~nm}\left(\mathrm{OD}_{465}\right)$ as a function of time are shown for live intact HEK293 cells grown in 96-well plates and transfected with WT blac-tagged GluA3 or blac-tagged GluA3 subunit (blac-GluA3, gray circles) with genetic changes encoded by GRIA3 missense variants that showed little or no current response to Glu in the fastapplication patch-clamp experiments. Nitrocefin conversion rates for non-transfected cells (control; white circles) measured in parallel are shown. Solid lines show linear regression fits to determine the nitrocefin conversion rates that represent blac-activity. Each data point represents the mean $\pm$ SEM from 4 wells. (B-C) Summary of expression levels of blac-GluA3 carrying the variant-encoded genetic changes relative to WT blac-GluA3. The rates were measured at intact cells that represent surface expression levels (B), and at lysed cells that represent total expression (C). The nitrocefin conversion rates were averaged ( $\mathrm{n}=3-5$ independent experiments) and are shown as percentages of the rates for WT determined in parallel. Data are expressed as the mean $\pm$ SEM from the indicated individual experiments. (D) Ratio of surface-to-total expression.

