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RED-Net: Residual and Enhanced Discriminative Network for image
steganalysis in the Internet of medical things and telemedicine

Kai Chen, Zhengyuan Zhou, Yuchen Li, Xu Ji, Jiasong Wu, Gouenou Coatrieux, Senior Member, IEEE ,
Jean-Louis Coatrieux,Life fellow, IEEE , and Yang Chen, Senior Member, IEEE

Abstract— Internet of Medical Things(IoMT) and telemedicine
technologies utilize computers, communications, and medical de-
vices to facilitate off-site exchanges between specialists and pa-
tients, specialists, and medical staff. If the information communi-
cated in IoMT is illegally steganography, tampered or leaked during
transmission and storage, it will directly impact patient privacy
or the consultation results with possible serious medical inci-
dents. Steganalysis is of great significance for the identification
of medical images transmitted illegally in IoMT and telemedicine.
In this paper, we propose a Residual and Enhanced Discrimina-
tive Network(RED-Net) for image steganalysis in the internet of
medical things and telemedicine. RED-Net consists of a stegano-
graphic information enhancement module, a deep residual net-
work, and steganographic information discriminative mechanism.
Specifically, a steganographic information enhancement module is
adopted by the RED-Net to boost the illegal steganographic signal
in texturally complex high-dimensional medical image features. A
deep residual network is utilized for steganographic feature ex-
traction and compression. A steganographic information discrim-
inative mechanism is employed by the deep residual network to
enable it to recalibrate the steganographic features and drop high-
frequency features that are mistaken for steganographic informa-
tion. Experiments conducted on public and private datasets with
data hiding payloads ranging from 0.1bpp/bpnzac-0.5bpp/bpnzac
in the spatial and JEPG domain led to RED-Net’s steganalysis error
PE in the range of 0.0732-0.0010 and 0.231-0.026, respectively. In
general, qualitative and quantitative results on public and private
datasets demonstrate that the RED-Net outperforms 8 state-of-art
steganography detectors.

Index Terms— Telemedicine, the Internet of Medical
Things(IoMT), medical image processing, steganalysis,
deep learning, and medical information protection.
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I. INTRODUCTION

Internet of Medical Things (IoMT) and telemedicine technologies
facilitate the interaction between specialists and medical devices by
transferring data, text, voice, and image data to medical information
networks [1]–[5]. When a medical imaging device scans a patient,
the resulting images are stored in the picture archiving and com-
munication system (PACS) and then transmitted to the workstation
of where a physician can analyze them with other information from
the hospital information system (HIS). These pieces of information
can also be transmitted via IoMT and telemedicine for remote
diagnosis, treatment, and consultation of sick and injured patients,
as in the context of, for example, remote areas with poor medical
conditions, islands, or ships. In such open environments, it is urgent
to strengthen the information security and privacy protection of data
during transmission, storage, and usage.

Watermarking and steganography have been recently proposed to
enhance the protection of medical images. Both are based on data
or information hiding which consists of inserting a message into an
image by imperceptibly modifying its pixel gray level values. Such
modifications are referred to as the watermark or steganographic
signal. Watermarking technology can provide powerful technical
support for knowing where the image comes from, which patient
it belongs to and to detect an image that has been tampered [6]–
[10]. In healthcare, steganography interest is more about protecting
privacy by embedding sensitive patient data into the image [11]–
[15]. As information-hiding technology continues to spread, it has
gradually become a double-edged sword. While it provides security
for people’s communication, it is also used by criminals for personal
gain or terrorist attacks. In 2001, CNN, a mainstream media outlet in
the United States, published a story about the use of steganography to
commit crimes through covert communications [16]. Steganography
has been used in cases such as the 2007 Colombian drug cartel and
the 2011 Almighty God cult. The illegal and malicious use of medical
image steganography is bound to cause medical information leakage.
One malicious user can for instance leak sensitive data through
externalized images. It can also, result in significant medical errors
if images are too heavily modified by the steganographic processes.
Steganalysis is a dual technique of steganography, which can differ-
entiate stego-images from original images or, more clearly, detect the
steganographic signal in steganographic images. Steganalysis models
can be divided into specific and universal methods depending on
the scope of application. Specific steganalysis is a specialized model
designed when the specific steganographic algorithm is known. In
2005, Andrew developed the feature histogram formula (HCF) for
steganalysis stego-signal in grayscale LSB image [17]. Liu et al.
utilized the correlation of the lowest two-bit planes of the image
as a feature to detect the LSBM steganography scheme [18]. Bohme
proposed a dedicated steganalysis algorithm for Jsteg using the LSB
algorithm on frequency domain images [19]. Xia et al. designed a
special steganalysis model for the LSBM steganography algorithm
by analyzing the correlation between adjacent pixels [20]. Gul et al.
[21] and Luo et al. [22]proposed a specialized steganalysis model for
HUGO, respectively. Tang et al. proposed a steganalysis model for
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the WOW embedding algorithm which works both the spatial and
frequency domains [23].

In recent years, deep learning has shown significant advantages
in the medical field [24]–[29] and medical image steganalysis [30]–
[34]. For instance, Lu et al. proposed a framework named DTTSN to
support deterministic low-latency communication for large numbers
of potential customers with real-time medical demands in smart
healthcare application [35]. Tusar et al. used improved preprocess-
ing techniques, an efficient combination of spectral, cepstrum, and
periodic features, and the implementation of a gradient enhancer to
achieve robust and consistent performance across multiple datasets
[36]. Regarding steganalysis, Zeng et al. first proposed a deep
learning-based model for frequency domain images to demonstrate
that the deep learning-based steganalysis model no longer has detec-
tion capability for a single domain [37]. In 2018, Li et al. proposed
a structure called ReST-Net, which incorporates width network ideas
on top of the Xu-Net model [38]. An alternative method for stegano-
graphic analysis of digital images based on convolutional neural
networks (CNNs) was proposed by Ye et al [39]. Tan et al. proposed
a spatial domain enrichment model, which is a well-trained CNN
whose steganalysis performance should be comparable to or even
better than the hand-coded SRM [40]. Federated learning is a learning
mechanism in which multiple data holders collaborate to train a
model without sharing data, and only exchange training parameters
in the intermediate stages, avoiding direct exposure of data to third
parties and providing natural protection of data privacy [41]. Çukur
et al. developed the first federated learning-based personalized MRI
synthesis model for transforming source contrast images into target
contrast images, which contributes to patient privacy preservation
during multi-institutional collaborations [42]. Çukur et al. proposed
Federated Learning for Generating Image Priors (FedGIMP) for MRI
reconstruction to improve patient privacy, performance, and flexibil-
ity in multisite collaboration [43]. Comprehensive experiments on
multi-institutional datasets demonstrate the enhanced performance of
FedGIMP against both centralized and Federated Learning methods
based on conditional models.

Deep learning-based steganalysis methods can not only eliminate
the need for professional researchers to manually design feature
extraction methods but also take advantage of the end-to-end learning
process of deep learning, so that feature extraction and discriminators
can be trained simultaneously. Qian et al. enhanced the learning
ability of steganalysis models for global statistical information by
using traditional steganalysis methods with feature analysis through
a transfer learning approach [44], [45]. But migration learning can
also lead to a lot of limited effects, not only that, due to the small
differences between the carrier image and the densely loaded image.
If the embedding rate is lower, the network structure will likely
have difficulty converging. To solve this problem, Fran et al. were
trained without using the filter kernel of traditional steganalysis as
a preprocessing layer and updating the weights in the preprocessing
layer during the network training process to take advantage of the
powerful fitting ability of deep learning [46]. Notice that, these
methods required longer training time and were more likely to overfit.

Besides these weaknesses, previous works also neglect to high-
frequency feature recalibrating and discrimination which, as we shall
see, are of interest to improve steganographic information detection
errors. In this paper, we focus on illegal steganography detection of
medical images in IoMT and telemedicine networks and make the
following contributions:

• A steganographic information enhancement module(SIEM) has
been designed to boost or amplify the steganographic signal.
This module combines deep learning and manual approaches to
extract horizontal information, vertical information, and diago-

nal high-frequency information from the image and merge them
with the original medical image.

• A steganographic information discriminative mechanism(SIDM)
is proposed for the first time. This one automatically obtains
the importance of each steganographic signal feature channel
to emphasize the high-frequency features of the steganographic
signal through the interdependence of the steganographic signal
feature channels and suppresses the non-steganographic infor-
mation such as the natural noise and tissue anatomical structure
edges.

• A deep residual network consisting of different blocks for
feature enhancement, extraction, compression, and of a classifier
combined with the above SIEM and SIDM modules to perform
steganalysis within 0.1bpp/bpnzac-0.5bpp/bpnzac payloads in
the spatial- and frequency-domain.

• A private dataset of medical images for steganographic analysis
is collected. Eight spatial- and frequency-domain steganography
methods were considered within 0.1bpp/bpnzac-0.5bpp/bpnzac
payloads. Qualitative and quantitative results demonstrate that
the dataset is useful for training, validating, and testing deep
learning-based steganalysis algorithms for medical images.

The paper is organized as follows. Section II comes back to related
works while Section III introduces the principles and advantages of
the steganographic information enhancement module and stegano-
graphic information discriminative mechanism, presenting the details
of our global proposal: RED-Net. Section IV qualitatively and
quantitatively evaluate the results of the comparison and ablation
experiments. Finally, Section V summarizes the work of this paper.

II. RELATED WORKS

With the gradual enhancement of steganographic algorithms and
the emergence of various steganographic algorithms, the generalized
steganalysis model was gradually growing. [47]–[51] were based
on steganalysis methods with a manual computational approach to
feature extraction. The characteristics of these steganalysis methods
were generally calculated by professional researchers relying on their
own a priori experience and continuous heuristic attempts. The SRM
first trained a classifier by extracting the statistical features of the
known images, and then the trained classifier was used to discriminate
whether the unknown images contain secrets or not [48]. The maxS-
RMd2 [49] and PSRM [50] both improved by SRM. Spatial-domain
steganalysis detected whether images embedded secret information by
analyzing the statistical properties of digital images, while frequency-
domain steganalysis discriminated by analyzing the relationship be-
tween Discrete Cosine Transform(DCT) coefficients due to different
DCT and quantization matrices. Two operations could be optimized
at the same time, and it was difficult to reach a heterogeneous
equilibrium state. Universal steganalysis detected whether an image
contains secret information based on unknown carrier images and
steganographic algorithms. With the booming development of deep
learning, steganalysis methods based on deep learning methods could
not only eliminate the need for professional researchers to manually
design the feature extraction method but also took advantage of the
end-to-end learning process of deep learning, which made it possible
to train the feature extraction and the discriminator at the same
time. Deep learning-based models for steganalysis can be mainly
categorized into semi-learning models and full-learning models. The
semi-learn steganalysis model utilized a fixed filter kernel as a
separate preprocessing layer in the steganalysis network, and the
internal weight parameters were not involved in backpropagation,
while the other network layers were optimized by relying on deep
learning methods. Xu et al. employed a 20-layer fully convolutional
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Fig. 1. Medical images transmitted in IoMT and telemedicine suffer from the crisis of illegal steganography.

network to demonstrate that deep learning networks could defeat
feature-based steganalysis methods in complex domains, and also
demonstrated that deep networks can extract steganographic noise
more easily than width networks [52]. Chen et al. [53] also proposed
VNet and PNet with JPEG phase sensing based on Xu-Net. PNet and
VNet learned the a priori knowledge of DCTR and other frequency
domain steganalysis and added a JPEG phase-aware module in the
network framework to learn the signal-to-noise ratio information in
the frequency domain. The parameters in the preprocessing layer
were updated along with the network backpropagation during the
training process of the full-learning network [33], [54], [55].The
SR-Nert utilized the residual network to simulate the process of
traditional SRM in filtering features, which could be applied not
only in the spatial domain but also had good results in the JPEG
domain. Vit exploited a convolutional visual transformer to capture
local and global dependencies between noisy features for spatial
domain information steganography. The full-learning models have
higher detection accuracy than the traditional steganalysis and half-
learning models. However, it takes longer training time and is more
prone to overfitting.

In this work, a steganographic information enhancement mod-
ule based on a deep residual network is exploited to enhance
high-frequency information of medical images containing natural
noise, organizational boundaries, and steganographic information. A
steganographic information discrimination module is employed to
recalibrate the amplified information, keeping the steganographic sig-
nals and eliminating the mis-boosted fake steganographic information
to improve the detection accuracy of RED-Net.

III. METHOD

As shown in Fig.1, hackers and criminals illegally steganography
medical images by hacking into the PACS and HIS in the hospital.
When performing remote diagnosis, they can illegally steganography
medical images by hacking into IoMT, spreading viruses illegally
steganography in medical images to cause crashes in remote diagnosis

and IoMT systems. We proposed a RED-Net as shown in detail
in Fig.2 consisting of a steganographic information enhancement
module, a deep residual network, and a steganographic information
discriminative module. The steganographic information enhancement
module decomposed the original medical image into horizontal
high-frequency information, vertical high-frequency information, and
diagonal high-frequency information. The extracted high-frequency
information was merged with the convolved original image, and the
signal of illegal steganography in medical images is boosted. The
images with extracted high-frequency information were fed to a deep
residual network with the steganographic information discriminative
mechanism for detection.

A. Steganography information enhancement module

A steganographic signal in a medical image containing illegal
steganographic information is usually considered to be a high-
frequency signal similar to noise. The steganographic information
enhancement module (SIEM) is employed to boost high-frequency
information in the original illegal steganographic medical images.
This high-frequency information is divided into natural noise inherent
in the medical image, edges of tissue anatomy, and illegal stegano-
graphic information. Inspired by the [56]–[60] , the wavelet transform
is adopted in the steganographic information enhancement module to
boost the high-frequency signal. For an arbitrary function or signal,
the wavelet transform is defined as:

Wf (a, b) =
1√
|a|

∫
R
f(x)ψ̄

(
x− b

a

)
dx, (1)

where f(x) denotes a illegal steganography medical image, ψ̄(x) is
the wavelet mother function. a and b are the scale and translation of
the wavelet function. Wavelet series expansion maps a continuously
variable function into a sequence of numbers, and if the function
to be expanded is a sequence of numbers of sampled values of a
continuous function, the resulting coefficients are called the discrete
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Fig. 2. A scheme for medical image steganography analysis in the IoMT and telemedicine. The extracted horizontal, vertical, and diagonal high-
frequency information by the SIEM is merged with the original image and the image with merged high-frequency information is input to a deep
residual network with a SIDM.

wavelet transform. The sequence expansion defined by the continuous
wavelet transform becomes a DWT transform pair as follows:

wφ (j0, k) =
1√
M

∑
x f(x)φj0,k(x)

wψ(j, k) =
1√
M

∑
x f(x)ψj,k(x)

, (2)

for j ≥ j0,

f(x) =
1

√
M

∑
k

wφ (j0, k)φj0,k(x) +
1

√
M

∞∑
j=j0

∑
k

wψ(j, k)ψj,k(x),

(3)
where wφ (j0, k) and wψ(j, k) are the approximation coefficients

and wavelet coefficients, respectively. φj0,k and ψj,k(x) are the
scale function and wavelet function at different scales and locations,
respectively. j is the order of the scale, and the larger j is, the smaller
the scale, which corresponds to a higher frequency and is closer to the
details. k is the offset of the location. The scale function represents
the original signal, and as the scale level decreases, the scale becomes
larger and larger, and the representation of the original signal becomes
more and more inaccurate, we use the wavelet function to represent
the difference between the scale function representation part and the
original signal. The role of the scale function ψ(x) is to roughly
represent the original signal, the scale function by the real numbers,
the square can be a product of the function, the scale function for
the power of 2 expansion and integer times the translation to get the
set of functions

{
φj,k(x) | j, k ∈ Z

}
,

φj,k(x) = 2j/2φ
(
2jx− k

)
, (4)

The wavelet function corrects the difference between the scale
function and the original signal. After a given scale function φ(x),
there must exist a wavelet function ψ(x), similar to the scale function
with a power of 2 scalings and an integer multiple of the translation,
to obtain the function:

ψj,k(x) = 2j/2ψ
(
2jx− k

)
, (5)

In this paper, the following equation is used for the Haar scale
function.

φ(x) =

{
1 if 0 ≤ x < 1
0 otherwise

(6)

The wavelet function corresponding to the Haar scale function is
shown as follows:

ψ(x) =


1 0 ≤ x < 0.5
−1 0.5 ≤ x < 1
0 elsewhere

(7)

The discrete wavelet transform (DWT) of medical images as shown
in Fig.3 is performed with the haar function, and the decomposed hor-
izontal, vertical, and diagonal high-frequency information is merged
with the original medical images. The 1D-DWT is first performed
on each row of the image to obtain the low-frequency component
L and the high-frequency component H of the original image in the
horizontal direction, and then 1D-DWT is performed on each column
of the transformed data to obtain four different frequency bands,
with one approximate component and three detailed components. As
shown in Fig.3, the Haar wavelet transform reduces the resolution of
the image and does not change the high-frequency information such
as the contours of the image. The mean value of the low-frequency
information is transformed slowly and the high-frequency difference
changes faster, storing detailed information about the noise of the
image.

B. Steganography information discriminative mechanism
The steganographic information discriminative mechanism(SIDM)

as shown in Fig.4 [61] is combined with the deep residual network
to improve the performance of RED-Net. After the deep residual
network reduces the dimensionality of the feature map, the SIDM
facilitates the modeling of interdependencies between channels and
adaptively recorrects the intensity of feature correspondences between
channels by the global loss function of the network. The global
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Fig. 3. For two-dimensional medical images Haar wavelet transform
performs low-pass and high-pass filtering from both horizontal and
vertical directions. After one level of Haar wavelet transform, the low-
frequency component A, vertical high-frequency component V, horizon-
tal high-frequency component H, and diagonal high-frequency compo-
nent D of the original images are obtained.
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average pooling of the feature map after the residual block becomes
a 1×1×C feature vector ZC , which embeds the global information
of each channel. A statistic Z ∈ RC is generated by RX by the
spatial dimension W ×H , where the c-th element of Z is calculated
by:

ZC =
1

W ×H

W∑
i=1

H∑
j=1

RX(i, j), (8)

We adopt a sigmoid-activated two-layer fully connected gating mech-
anism:

s = σ(g(z,W)) = σ (W2δ (W1z)) , (9)

where δ and σ represent the ReLU function and the Sigmoid function,
W1 ∈ R

C
r ×C and W2 ∈ RC×C

r . The final output of the SIDM is
obtained by rescaling the transformation output with the activations:

X̃C = Fscale (RC , sc) = sc ·RC , (10)

where X̃C is a feature map of a featured channel of X̃ and sc
is a scalar value in the gating cell vector s. The SIDM relies on
the interrelationship between feature channels, and we adopt a new
feature-recalibrate strategy. Specifically, the importance of each fea-
ture channel is automatically obtained by learning, and then features
that are helpful for the current classification task are promoted and
features that are not relevant for the current classification task are
suppressed based on this level of importance.

C. The deep residual network

The architecture of the deep residual network introducing the
SIEM and the SIDM for medical image steganalysis is shown in

Fig.5. The deep residual network consists of a feature enhancement
block, a feature extraction block, a feature compression block, and
a classifier. The detail of the network is listed in Tab.I. The
steganographic signal is the high-frequency noise existing in the
steganographic medical image. The goal of SIEM and instance-
norm layers is to reinforce the noise-like steganographic signals
and suppress image content. The proposed RED-Net has taken a
deep residual network (DS-Net) as the base model and then has
introduced a steganography information enhancement module(SIEM)
and a steganography information discriminative mechanism(SIDM) to
enhance its performance in steganalysis. The subsequently introduced
SIEM and SIDM are refined on the noise extraction and feature
compression of DS-Net. The first 7 components of DS-Net mainly
consist of a convolutional layer, a BatchNorm layer, and an activa-
tion layer in series. The average pooling operation is additionally
introduced in the middle 3 components of DS-Net. The difference is
because the pooling operation strengthens the content and suppresses
noise-like steganographic signals by averaging adjacent embedding
variations, which is detrimental to steganography. Average pooling
is used by the middle component to reduce the feature dimensions
for feature compression. The feature map after information fusion is
processed by a 3×3 convolution kernel with step size 1 and padding
1 and then activated by the ReLU function after batchNorm. Two
convolutional layers with a 3×3 convolutional kernel of step 1 and
padding 1 are employed during the feature extraction phase. The
shortcut connections help propagate gradients to the upper layers,
which are the hardest to train because of the vanishing gradient
phenomenon. The SIDM squeezes the feature map obtained by
convolution to obtain the global features at the channel level, then
performs the excitation operation on the global features to learn
the relationship between the channels, while obtaining the weights
of different channels. Essentially, the SIDM works on the channel
dimension by doing the gating operation, which allows the model to
focus more on the most informative channel features and suppress
those unimportant channel features. The feature compression block is
dedicated to reducing the dimensionality of the feature map. Pooling
in the form of 3 × 3 averaging with stride 2 is applied to feature
compression. 512 feature maps of dimension 16× 16 are reduced to
a 512-dimensional feature vector by computing statistical moments
of each 16×16 feature map. This 512-dimensional output enters the
classifier part of the network.

The loss function in the proposed network is designed as follows:

softmax
(
x(i)

)
=

[
p
(
y(i) = 0 | x(i)

)
p
(
y(i) = 1 | x(i)

) ]
=

1∑k
j=1 e

x
(i)
j


ex

(i)
1

ex
(i)
2

...

ex
(i)
k

 ,
(11)

where x(i) is the i − th input and is a k-dimensional vector,
y(i) is the result of the i − th time. 0 is not steganography, 1 is
steganography. x(i)j represents the value of the j − th dimension of

y
(i)
j . The proposed network is essentially designed to solve a binary

classification problem, so k = 2.
The detection performance was measured with the total classifica-

tion error probability on the testing set under equal prior.

PE = min
PFA

1

2
(PFA + PMD) , (12)

where PFA and PMD are the false-alarm and missed-detection
probabilities. The false-alarm probabilities PFA represents the ratio of
the number of cover images that are misclassified as stego images to
the total number of cover images, and can be given by the following
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Fig. 5. The architecture of the deep residual network introducing the SIEM and the SIDM for steganalysis.

TABLE I
THE DETAIL OF THE RED-NET ARCHITECTURE

Part Input � Output shape Layer Information

Feature Enhancement
(256,256,1) � (256,256,1) SIEM,IN

(256,256,1) � (256,256,64) Conv-(N64,K3,S1,P1),BN,ReLu
(256,256,64) � (256,256,16) Conv-(N16,K3,S1,P1),BN,ReLu

Feature Extraction

(256,256,16) � (256,256,16) Conv-(N16,K3,S1),BN,ReLu,Conv-(N16,K3,S1),BN
(256,256,16) � (256,256,16) Conv-(N16,K3,S1),BN,ReLu,Conv-(N16,K3,S1),BN
(256,256,16) � (256,256,16) Conv-(N16,K3,S1),BN,ReLu,Conv-(N16,K3,S1),BN
(256,256,16) � (256,256,16) Conv-(N16,K3,S1),BN,ReLu,Conv-(N16,K3,S1),BN
(256,256,16) � (256,256,16) Conv-(N16,K3,S1),BN,ReLu,Conv-(N16,K3,S1),BN

Feature Compression

(256,256,16) � (128,128,16) SIDM,Conv-(N16,K1,S2,P1),BN
(128,128,16) � (64,64,64) SIDM,Conv-(N64,K1,S2,P1),BN
(64,64,64) � (32,32,128) SIDM,Conv-(N128,K1,S2,P1),BN
(32,32,128) � (16,16,256) SIDM, Conv-(N256,K1,S2,P1),BN

(16,16,256) � 512 Conv-(N512,K3,S1,P1),BN,ReLu,Conv(N512,K3,S1,P1),BN,Global Average Pooling
Classifier 512 � 2 Fully Connection-(N512),Softmax

equation:

PFA =
FP

FP + TN
, (13)

where TN (True Negative) indicates the number of images that
detected the cover as a cover correctly, and FP (False Positive)
indicates the number of images that detected the cover as a stego
incorrectly. The missed-detection probabilities PMD represents the
ratio of the number of stego images that are misclassified as cover
images to the total number of stego images, and can be given by the
following equation:

PMD =
FN

TP + FN
, (14)

where FN (False Negative) indicates the number of images that
detected the stego as a cover incorrectly, and TP (True Positive)
indicates the number of images that detected the stego as a stego
correctly.

IV. ANALYSIS AND EVALUATION OF EXPERIMENTAL
RESULTS

A. Datasets and experiment environment
A private dataset is collected to train and validate our proposed

method. The dataset contains 1639 digital medical images with the
size of 256 × 256 from the Nanjing First Hospital, China, with

the approval of the Institutional Review Board and patient consent
forms. We increased the number of images to 6556 by using data
enhancement with rotation of 90◦, 180◦, and 270◦. Five state-of-the-
art embedding methods [62]–[66] were performed on 6556 images of
illegal information steganographically. These five embedding methods
contained both spatial domain steganography and frequency domain
steganography. 2× 28280 cover and stego images were used as the
training set, 2 × 2000 as the validation set, and 2 × 2500 as the
test set. The public dataset containing 150,000 medical images is
employed to demonstrate the RED-Net’s superior performance. The
dataset is provided by the US National Institutes of Health and all
images are from 30,805 unique patients with an original image size of
1024×1024. The same 5 illegal state-of-the-art embedding methods
and the same dataset generation methods are implemented for the
private dataset. To sum up, 2×125000 cover and stego images were
used as the training set, 2×20000 as the validation set, and 2×5000
as the test set. We first counted the total number of patients in the
public dataset and the private dataset, and then divided these two
datasets into training set, validation set and test set according to the
ratio of 7:2:1 with the number of patients as the basic unit. Then, the
data of the trained set was expanded, and the data before and after
enhancement were used as the total training data, and the validation
and test sets were operated in the same way.

All deep learning-based algorithms were implemented using the
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Pytorch framework. The batch normalization parameter is learned by
an exponential moving average with a decay rate of 0.9. The weights
of the fully connected layer are initialized using an unbiased Gaussian
model with a mean of 0 and a standard deviation of 0.01. The
networks were trained and tested on a computer with configurations:
CPU is Intel Core i9-9900KF @ 3.60GHz; GPU is NVIDIA RTX
3090 with 24 GB memory. The learning rate was initially set to 0.001
and then decayed to 0.0001 as the network was trained, with a batch
size of 16. The Adamax optimizer with default settings was used.
The proposed network was trained with a total of 457 epochs and
400,000 iterations.

B. Comparison experiment

1) Analysis of spatial domain comparison experiment results:
On both public and private datasets, we compare the performance of
the proposed the RED-Net with the three advanced steganography
detectors, which are maxSRMd2 [49], PSRM [50], SRNet [33], and
Vit [54] in the spatial domain under the payload range of 0.1bpp
to 0.5bpp. Tab.II and Tab.III show the performance of comparison
methods in the spatial domain in terms of PFA, PMD, and PE. From
Tab.II, we can observe that the proposed RED-Net achieves the best
PE tested on the public dataset compared to other spatial domain
steganalysis algorithms. The PSRM algorithm has the worst detection
error on the public and private datasets with 0.1383 and 0.4647,
respectively, at the lowest embedding rate of 0.1bpp. The difference in
detection error between the RED-Net and PSRM algorithm at 0.1bpp
is the most prominent between the RED-Net and other spatial domain
steganography detectors in terms of other embedding rates. Although
Vit achieved the best PFA at 0.1bpp, 0.2bpp, and 0.5bpp, the PMD

at this moment is hundreds of times more accurate compared to
the maximum difference of RED-Net. According to Eq.12 for PE,
RED-Net’s excellent performance in PMD made up the gap with
Vit in PFA. The same results are listed in TableIII. In Tab.III, the
PSRM algorithm achieves the lowest PMD at 0.01 bpp, but PE

is the highest result of all the spatial comparison methods tested
on the private dataset. The reason for this phenomenon is that the
PSRM steganography detector has the highest PFA at 0.1 bpp, and
the proportion of negative samples predicted to be positive to the
total negative samples is the largest of all algorithms. As far as PMD

was concerned, PSRM got the best PMD at 0.1bpp and 0.4bpp, but
at this time the PFA was as high as 90.53% and 18.80%. The PMD

of RED-Net at 0.1bpp and 0.4bpp were 18% and 3.76%, which were
much smaller than the values of PSRM. The detection error PE we
designed takes into account the combined effect of PFA and PMD

on the steganography detector, not one of them alone. The same
phenomenon happened with Vit, where RED-Net’s PFA at 0.1bpp
was nearly 1.8 times that of Vit, but the PMD was a quarter of that
of Vit. Vit and RED-Net achieved about the same PFA at 0.3bpp,
but Vit had more than 3 times the PMD of RED-Net. In general, the
test results on the public dataset appear to be significantly better than
those on the private dataset. This is because the amount of data in
the public dataset greatly exceeds that in the private dataset, and the
performance of the RED-Net is fully developed as it is fully trained.

In Fig.6, we further illustrate the detection error of the steganogra-
phy detector in the spatial domain in the comparison experiment. As
can be seen in Fig.6, the deep learning-based methods, SRNet and the
RED-Net, outperform the traditional maxSRM and PSRM algorithms,
which are based on extracting manual features, in terms of detection
error at each payload rate. The reason is that the SRM algorithm
and maxSRM algorithm only consider the correlation of pixel points
and their neighboring position pixels, without considering the texture

features of the image and without predicting the unknown at the time
of steganography, so there is a certain decrease in the accuracy rate
when analyzing the adaptive steganography method. The detection
errors of SRNet and the RED-Net are very close at 0.2bpp to 0.4bpp
payload on both public and private datasets. The proposed RED-
Net and SRNet perform feature extraction and feature compression
for steganographic noise by employing a residual connection. Since
image steganography is the embedding of a binary bit stream into the
spatial or JPEG domain of a carrier image, it is the same as adding
a weak noise to the carrier image to generate a dense image. Thus
superimposing noise into it changes the correlation of neighboring
pixels in the original image, as well as the residual image, so using
the residual image as the substrate for feature extraction reduces the
impact of image content on feature extraction for steganalysis.

2) Analysis of JEPG domain comparison experiment results:
For the JPEG domain, PNet [53], VNet [53], DCTR [51], and UCNet
[55] for payloads 0.1-0.5bpnzac(bit per non-zero AC DCT coefficient)
are tested for quality factors 75. The results of the JEPG domain
comparison experiment are listed in Tab.IV and Tab.V.

From Tab.V, it can be observed that the DCTR steganalysis
algorithm achieves the best PMD at 0.1bpnzac for the private dataset.
But the PFA is the worst with 94.60%, nearly four times the 28%
achieved by RED-Net at this time. The PFA of UCNet at 0.2bpnzac
and 0.4bpnzac was 11.68% and 2.80%, and the PMD was 28.44%
and 17.12%. The PMD of RED-Net at 0.2bpnzac and 0.4bpnzac
was 14.32% and 3.76%, and the PMD was 13.32% and 5.12%.
Although UCNet performs better than RED-Net in terms of PFA, it
can be seen from Eq.12 that the performance of the model is not
determined by PFA alone but also depends on PMD, and UCNet’s
performance in PMD is much worse than that of RED-Net. The
RED-Net has the largest improvement in detection error of 80% at
0.2bpnzac. The optimal PE is achieved by the RED-Net on both
public and private datasets. In Fig.7, we graphically illustrate the
detection error of the steganalysis algorithm in the frequency domain
comparison test at 0.1 bpnzac to 0.5 bpnzac. We can observe from
Fig.7 that the deep learning-based steganalysis methods outperform
the traditional steganalysis algorithm DCTR on both public and
private datasets. PNet and VNet learn the a priori knowledge of
frequency domain steganalysis such as DCTR and incorporate the
JPEG phase sensing module in the network framework to improve the
steganography detection accuracy. The JPEG phase sensing module is
incorporated into the network framework to learn the signal-to-noise
ratio information in the frequency domain to improve steganography
detection accuracy. Compared to PNet, the architecture of VNet is
smaller and the detection error on the public dataset is worse than that
of PNet. This is because VNet has introduced three additional filter
kernels as a fixed preprocessing layer to learn some steganographic
noise with directional characteristics, and the filter kernels act as a
catalyst in the preprocessing layer. The PNet and VNet depend on a
fixed DCT kernel and a threshold setting for the feature set. The RED-
Net adopts a skip connection structure in the network to prevent too-
deep convolution layers from causing gradient dispersion or gradient
explosion in the network during training. The RED-Net improves
the quality of representation of high-frequency steganographic signal
features by modeling the interdependencies between the network
evolution feature channels through the SE attention mechanism, based
on the wavelet transform preprocessing layer. For this purpose, the
network is allowed to perform feature recalibration of steganographic
signals. Through this mechanism, it learns to use global information
to selectively emphasize valid high-frequency true steganographic
informative features and suppress less reliable false steganographic
features. To further evaluate the performance, the receiver operating
characteristic (ROC) curves and the corresponding area under the
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TABLE II
RESULTS OF COMPARISON EXPERIMENTS IN THE SPATIAL DOMAIN ON THE PUBLIC DATASET

Model Evaluation index 0.1bpp 0.2bpp 0.3bpp 0.4bpp 0.5bpp

maxSRMd2
PFA 18.67% 5.26% 2.40% 1.13% 0.83%
PMD 7.53% 3.74% 0.60% 0.2% 0.04%
PE 0.1160 0.0163 0.0048 0.0059 0.0042

PSRM
PFA 14.86% 6.53% 5.93% 2.40% 2.27%
PMD 12.80% 4.80% 0.13% 0.03% 0.01%
PE 0.1383 0.0567 0.0303 0.0032 0.0114

SRNet
PFA 10.63% 5.37% 0.43% 0.49% 0.38%
PMD 8.36% 2.68% 0.78% 0.34% 0.11%
PE 0.0961 0.0412 0.0068 0.0041 0.023

Vit
PFA 7.66% 1.06% 6.50% 4.84% 0.08%
PMD 18.62% 12.88% 0.06% 0.04% 4.68%
PE 0.1314 0.0697 0.0328 0.0244 0.0238

RED-Net
PFA 8.88% 2.12% 0.3% 0.32% 0.16%
PMD 5.76% 0.96% 0.6% 0.2% 0.04%
PE 0.0732 0.0154 0.0045 0.0025 0.0010

TABLE III
RESULTS OF COMPARISON EXPERIMENTS IN THE SPATIAL DOMAIN ON THE PRIVATE DATASET

Model Evaluation index 0.1bpp 0.2bpp 0.3bpp 0.4bpp 0.5bpp

maxSRMd2
PFA 84.93% 23.20% 17.06% 8.67% 4.13%
PMD 5.73% 25.33% 12.40% 11.07% 3.73%
PE 0.4533 0.2424 0.1473 0.0987 0.0393

PSRM
PFA 90.53% 29.06% 17.06% 18.80% 5.20%
PMD 4.80% 20.00% 16.01% 3.87% 3.94%
PE 0.4767 0.2453 0.1653 0.1134 0.0457

SRNet
PFA 20.32% 16.68% 11.61% 6.34% 5.39%
PMD 31.67% 15.20% 11.92% 8.16% 4.21%
PE 0.459 0.1461 0.0094 0.053 0.032

Vit
PFA 10.48% 15.60% 26.80% 4.08% 3.64%
PMD 82.76% 28.60% 7.24% 18.68% 5.52%
PE 0.4662 0.221 0.1702 0.1138 0.0458

RED-Net
PFA 18.2% 14.32% 8.32% 3.76% 3.40%
PMD 28% 13.32% 8.76% 5.12% 1.92%
PE 0.231 0.138 0.085 0.044 0.026
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Fig. 6. Detection error of spatial domain steganography detector at the payload of 0.1bpp to 0.5bpp.(a)Detection errors of the maxSRM, PSRM,
SR-Net, Vit, and RED-Net on the public dataset. (b)Detection errors of the maxSRM, PSRM, SR-Net, Vit, and the RED-Net on the private dataset.

curve shown in Fig.8 and Fig.9 were used. Overall, RED-Net has
a competitive performance compared to other deep learning-based
steganographic detectors.

C. Ablation study

In this section, an ablation study is conducted to investigate the
proposed SIEM and SIDM of the RED-Net. First, a deep residual
network(DS-Net) without a SIEM and a SIDM is considered a
baseline model. Then, the baseline model employs a SIEM to en-

hance steganographic signal extraction. Further, the RED-Net, which
introduces both a SIEM and a SIDM, is employed for steganalysis.

The qualitative results tested on the public dataset and private
dataset are listed in Tab.VI and Tab.VII. As shown in Tab.VI, the
RED-Net, which introduces both the SIEM and the SIDM, achieves
the best detection error PE on the public dataset. The baseline model
DS-Net achieved the lowest Pmd at 0.2 bpp, but at the same time,
it resulted in the highest PFA. As shown in Tab.VI, the RED-Net
achieves satisfactory PMD at relatively large embedding rates. As the
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TABLE IV
RESULTS OF COMPARISON EXPERIMENTS IN JEPG DOMAIN ON THE PUBLIC DATASET

Model Evaluation index 0.1bpnzac 0.2bpnzac 0.3bpnzac 0.4bpnzac 0.5bpnzac

DCTR
PFA 35.32% 20.30% 15.64% 15.33% 15.94%
PMD 73.44% 12.46% 4.36% 8.36% 17.25%
PE 0.2133 0.1638 0.0995 0.0763 0.0812

PNet
PFA 13.30% 13.04% 6.22% 1.86% 4.26%
PMD 22.48% 12.62% 7.66% 9.24% 4.76%
PE 0.1789 0.1282 0.0694 0.0537 0.0451

VNet
PFA 20.56% 12.28% 12.18% 6.84% 6.21%
PMD 18.60% 17.14% 5.68% 4.66% 4.58%
PE 0.1958 0.1471 0.0893 0.0575 0.0529

UCNet
PFA 11.64% 3.36% 0.60% 1.12% 0.36%
PMD 8.86% 3.40% 2.48% 0.92% 0.90%
PE 0.1025 0.0338 0.0154 0.0102 0.0063

RED-Net
PFA 8.88% 2.12% 0.3% 0.32% 0.16%
PMD 5.76% 0.96% 0.6% 0.2% 0.04%
PE 0.0732 0.0154 0.0045 0.0025 0.0010

TABLE V
RESULTS OF COMPARISON EXPERIMENTS IN JEPG DOMAIN ON THE PRIVATE DATASET

Model Evaluation index 0.1bpnzac 0.2bpnzac 0.3bpnzac 0.4bpnzac 0.5bpnzac

DCTR
PFA 94.60% 54.32% 59.31% 43.73% 40.34%
PMD 8.00% 37.08% 45.39% 35.68% 39.14%
PE 0.4996 0.4583 0.3927 0.3692 0.391

PNet
PFA 23.92% 47.36% 10.88% 22.96% 25.04%
PMD 69.88% 29.08% 55.84% 28.12% 15.12%
PE 0.4690 0.3822 0.3336 0.2554 0.2008

VNet
PFA 50.8% 30.84% 19.52% 16.48% 13.32%
PMD 45.28% 32.20% 25.72% 12.28% 11.64%
PE 0.4804 0.3152 0.2262 0.1438 0.1248

UCNet
PFA 78.64% 11.68% 14.40% 2.80% 3.64%
PMD 17.24 28.44% 13.20% 17.12% 5.52%
PE 0.4794 0.2006 0.138 0.0996 0.0458

RED-Net
PFA 18.2% 14.32% 8.32% 3.76% 3.40%
PMD 28% 13.32% 8.76% 5.12% 1.92%
PE 0.231 0.138 0.085 0.044 0.026
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Fig. 7. Detection error of JEPG domain steganography detector at the payload of 0.1bpnzac to 0.5bpnzac.(a)Detection errors of the DCTR, PNet,
VNet, UCNet, and the RED-Net on the public dataset. (b)Detection errors of the DCTR, PNet, VNet, UCNet, and the RED-Net on the private dataset.

embedding rate decreases, the PMD of the RED-Net gets worse, and
consequently, the PFD slowly gets better. The increasingly improved
PFA metrics can compensate for the continuously deteriorating PMD,
so DS-Net+SIEM+SIDM can achieve the best detection error PE. As
shown in Tab.VII, DS-Net+SIEM+SIDM achieved the best detection
error PE in the range of 0.1bpp-0.5bpp on the private dataset.
Different from the public dataset, the PMD of DS-Net+SIEM+SIDM
becomes worse as the embedding rate decreases, but the PFA

becomes better as the embedding rate decreases. At the worst PMD

of 0.1 bpp, the PFA of DS-Net+SIEM+SIDM is the lowest. The

trend of getting better PFA counteracts the effect of increasingly
poor PMD on detection error. As can be observed in Fig.10, the
PE of each method in the ablation experiment decreases as the
embedding rate increases. This is because the larger the capacity
of the illegal information embedded in the carrier, the easier it is
to be detected by the steganography detector. The baseline network
DS-Net has the worst detection error PE both on the public and
private datasets. With the introduction of SIEM alone, the original
medical image and its high-frequency information are superimposed
and enhanced, reinforcing all the high-frequency information in the
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Fig. 8. Comparison of test accuracies of RED-Net with other deep learning-based methods on the public datasets. (a) Test accuracy of RED-Net
with SRNet, PNet, VNet, UCNet, and Vit at 0.1bpp/bpnzac payload. (b) Test accuracy of RED-Net versus SRNet, PNet, VNet, UCNet, and Vit at
0.2bpp/bpnzac payload. (c) Test accuracy of RED-Net with SRNet, PNet, VNet, UCNet, and Vit at 0.3bpp/bpnzac payload. (d) Test accuracy of
RED-Net with SRNet, PNet, VNet, UCNet, and Vit at 0.4bpp/bpnzac payload. (e) Test accuracy of RED-Net with SRNet, PNet, VNet, UCNet, and
Vit at 0.5bpp/bpnzac payload.

TABLE VI
RESULTS OF ABLATION EXPERIMENTS ON THE PUBLIC DATASET

Model Evaluation index 0.1bpp 0.2bpp 0.3bpp 0.4bpp 0.5bpp

DS-Net
PFA 12.06% 7.14% 1.32% 1.2% 0.84%
PMD 7.68% 0.4% 1.02% 0.24% 0.12%
PE 0.0987 0.0377 0.0117 0.0072 0.0048

DS-Net+SIEM
PFA 10.98% 4.14% 1.4% 0.06% 0.14%
PMD 7.94% 0.78% 0.26% 1.02% 0.18%
PE 0.0946 0.0246 0.0083 0.0054 0.0016

DS-Net+SIDM
PFA 12.66% 5.02% 1.08% 0.46% 0.32%
PMD 4.72% 0.92% 0.3% 0.44% 0.06%
PE 0.0869 0.0297 0.0069 0.0045 0.0019

DS-Net+SIEM+SIDM(RED-Net)
PFA 8.88% 2.12% 0.3% 0.32% 0.16%
PMD 5.76% 0.96% 0.6% 0.2% 0.04%
PE 0.0732 0.0154 0.0045 0.0025 0.0010
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Fig. 9. Comparison of test accuracies of RED-Net with other deep learning-based methods on the private dataset. (a) Test accuracy of RED-Net
with SRNet, PNet, VNet, UCNet, and Vit at 0.1bpp/bpnzac payload. (b) Test accuracy of RED-Net versus SRNet, PNet, VNet, UCNet, and Vit at
0.2bpp/bpnzac payload. (c) Test accuracy of RED-Net with SRNet, PNet, VNet, UCNet, and Vit at 0.3bpp/bpnzac payload. (d) Test accuracy of
RED-Net with SRNet, PNet, VNet, UCNet, and Vit at 0.4bpp/bpnzac payload. (e) Test accuracy of RED-Net with SRNet, PNet, VNet, UCNet, and
Vit at 0.5bpp/bpnzac payload.

TABLE VII
RESULTS OF ABLATION EXPERIMENTS ON PRIVATE DATASET

Model Evaluation index 0.1bpp 0.2bpp 0.3bpp 0.4bpp 0.5bpp

DS-Net
PFA 35.76% 10.8% 7.24% 12.4% 2.80%
PMD 54.24% 27.6% 20.3% 6.92% 3.68%
PE 0.450 0.193 0.138 0.096 0.033

DS-Net+SIEM
PFA 51.84% 12.88% 8.68% 4.48% 2.96%
PMD 37.96% 14.76% 9.06% 7.32% 3.28%
PE 0.449 0.139 0.088 0.059 0.032

DS-Net+SIDM
PFA 32.88% 14.24% 6.4% 5.8% 3.04%
PMD 27.48% 15.44% 9.76% 6.44% 3.20%
PE 0.302 0.149 0.083 0.060 0.032

DS-Net+SIEM+SIDM(RED-Net)
PFA 18.2% 14.32% 8.32% 3.76% 3.40%
PMD 28% 13.32% 8.76% 5.12% 1.92%
PE 0.231 0.138 0.081 0.044 0.026
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Fig. 10. Detection error of steganography detector in ablation experiment method at the payload of 0.1 to 0.5 bpp. (a)Detection errors of the DS-
Net, DS-Net+SIEM, DS-Net+SIDM, and DS-Net+SIEM+SIDM(RED-Net) on the public dataset. (b)Detection errors of the DS-Net, DS-Net+SIEM,
DS-Net+SIDM, and DS-Net+SIEM+SIDM(RED-Net) on the private dataset.

medical image. As can be seen in Fig.10, the steganographic signal
enhancement capability of SIEM is more effective than SIDM in
improving the RED-Net steganalysis performance for relatively small
payloads. As the payload is increasing, the high-frequency informa-
tion of medical images containing illegal steganographic information
becomes more and more prominent. The high-frequency signals that
include steganographic information, natural noise in medical images,
and edges in tissue anatomy are increasingly detected. In the load
0.2bpp-0.5bpp, the SIDM can boost the high-frequency features of
the steganographic signal by the interdependence between the channel
steganographic signal channels, suppress and remove the edges of
the natural medical image noise and tissue anatomical structures that
RED-Net misidentified as steganographic signals, and perform the
steganographic high-frequency feature recalibration.

TABLE VIII
MODEL COMPLEXITY AND COMPUTATIONAL TIME OF DIFFERENT DEEP

LEARNING-BASED METHODS(G: GIGA, M: MILLION, S: SECOND)

Method FLOPs(G) Parameter(M) Time(S)
SRNet 193.3596 4.779618 20.8290
PNet 12.3069 0.031882 41.4546
VNet 13.4528 0.302698 40.0894
Vit 230.1247 1.117296 21.8836

UCNet 106.9785 51.434498 16.6707
RED-Net 243.0435 4.790895 16.8874

D. Algorithmic Complexity
Three universally used metrics, floating-point operations(FLOPs),

number of parameters, and throughput, were adopted to compare
the complexity of different DL-based steganalysis algorithms. The
results listed in Tab.VIII were calculated on the public dataset. PNet
and VNet are the two methods with lower model complexity among
all deep learning-based methods. Because PNet and VNet are semi-
learned steganalysis models based on wide networks, they utilize a
fixed filter kernel as an independent preprocessing layer, and the
internal weight parameters do not participate in backpropagation,
while the other network layers rely on deep learning methods for
optimization. They also take the longest time to process the data due
to the presence of fixed complex filter kernels. Among the remaining
four fully-learned steganalysis models, the networks of UCNet and
RED-Net are more complex than those of SRNet and Vit. The main
reason for this is that RED-Net introduces SIEM and SIDM on a

basic residual network similar to SRNet. Compared to UCNet, RED-
Net has a much smaller number of network parameters, and the
test time is essentially the same as its. In terms of steganography
performance, the detection performance of UCNet is inferior to that
of RED-Net, which shows that blindly adding the number of network
layers and parameters does not improve the fitting effect and detection
accuracy of the network. Taking into account the model complexity
and steganography detection accuracy of RED-Net, RED-Net is still
the most cost-effective steganography detector once trained compared
to the other methods in this paper.

V. CONCLUSION AND DISCUSSION

Recently, numerous methods [33], [49]–[51], [53] have been de-
veloped to deal with the problem that illegal steganography and they
have achieved remarkable achievements in steganography analysis.
However, none of these methods are explored and exploited for
specific steganalysis of medical image steganography. The proposed
RED-Net incorporates a steganographic information enhancement
module and a steganographic information discriminative mechanism
based on a deep residual network to perform steganographic analysis
of medical images. A joint hand-designed and deep-learning stegano-
graphic information enhancement module(SIEM) merges the horizon-
tal high-frequency information, vertical high-frequency information,
and diagonal high-frequency information of the original medical
images with the medical images containing illegal steganographic in-
formation to boost the high-frequency information. A steganographic
information discriminative mechanism(SIDM) that can rely on the re-
lationship of the steganographic signal feature channels to distinguish
between the steganographic signal in the high-frequency information
extracted from medical images and the noise of natural medical
images and the edges of tissue anatomical structures is introduced in
the deep residual network. This deep residual network can perform
steganographic signal feature extraction, feature compression, and
steganographic analysis on illegal steganographic medical images.
In the comparison experiments, we tested RED-Net in the spatial
domain and JEPG on public and private datasets, respectively. For the
public dataset, RED-Net’s steganalysis error PE are 0.0732, 0.0154,
0.0045, 0.0025. For the private dataset, RED-Net’s steganalysis error
PE are 0.231, 0.138, 0.085, 0.044, and 0.026. The proposed RED-
Net is compared with 8 state-of-art detections in the spatial and JEPG
domain in the payload range of 0.1bpp/bpnzac to 0.5 bpp/bpnzac, and
the test results of both private and public datasets show that RED-Net
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outperforms steganalysis. The results of the ablation experiment ver-
ified the effectiveness of SIEM and SIDM. The SIEM can effectively
boost the high-frequency information of medical images containing
steganographic signals within the payload range of 0.1bpp-0.2bpp,
and the SIDM can discriminate the steganographic signals from the
natural noise and the edges of tissue anatomy in the medical images
within the payload range of 0.2bpp-0.5bpp.

Although the RED-Net demonstrates encouraging improvement in
the steganalysis of medical images, some limitations are still to be no-
ticed. (1) Although a private medical image steganalysis dataset was
designed, the quality and quantity of this dataset still have significant
space for improvement due to practical reasons. (2) We only perform
medical image illegal steganography detection for the proposed RED-
Net in the payload range of 0.1bpp/bpnzac-0.5bpp/bpnzac, and further
research should be devoted to improving the performance of the
algorithm to cope with lower load steganography algorithms. (3)
The speed of fitting needs to be improved. Deep learning-based
steganalysis network has uncertainty in the process of training the
network due to a large number of network parameters and is very
dependent on the training of the network parameters, and the number
of rounds of training of the network itself is relatively long. (4) At this
stage, RED-Net can only be applied to the steganography detection
of png format medical images containing 2D medical information.

Future research will be devoted to as follows: (1) It is necessary
to analyze not only whether the image content is steganographic
or not, but also the possible steganographic methods, the region
modified by steganography, and finally, the secret information is
intercepted by speculating the steganographic methods and the lo-
cation of steganography. (2) Complementing the effects of SIEM
and SIDM in the existing loss function and designing a new multi-
level loss function to enhance the medical image detection accuracy.
(3) Guaranteeing excellent steganography detection and avoiding
overfitting based on small-scale dataset training. (4) Considering
RED-Net as a discriminator for CycleGan combined with federated
learning to develop a medical image steganography method. (5) We
will work on extending the application of RED-Net to steganography
containing 3D medical image information in the future.
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steganography: dead ends challenges, and opportunities,” in Proceedings
of the 9th workshop on Multimedia & security, 2007, pp. 3–14.

[66] V. Holub, J. Fridrich, and T. Denemark, “Universal distortion function
for steganography in an arbitrary domain,” EURASIP Journal on Infor-
mation Security, vol. 2014, no. 1, pp. 1–13, 2014.

ACCEPTED MANUSCRIPT / CLEAN COPY


