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Abstract—This paper proposes a general methodology to en-
hance the efficiency of the direct optimization of the copolar and
crosspolar radiation of large aperture quasi-periodic reflective
surfaces (QPRS) antennas by ensuring the layout continuity
without abrupt geometrical variation. This is done through the
exploitation of the Phoenix cells (PC) properties, by efficiently
parametrizing and interpolating PC lookup tables. In particular,
the proposed parametrization allows the description of the QPRS
layout through continuous functions without losing precision. In-
deed, the description of the QPRS through continuous functions,
namely B-spline functions, allows for to reduction of the large-
scale optimization problem dimensions and naturally ensures the
layout smoothness. A use case of a large faceted contour beam
reflectarray (RA) is presented, showing a remarkable improve-
ment in both the copolar and the crosspolar discrimination levels
compared to classical synthesis techniques and the RA layout
smoothness is practically demonstrated.

Index Terms—Quasi-Periodic Reflective Surfaces, Optimiza-
tion, Reflectarrays, B-Spline Projection, Periodic Lookup Table
Mapping.

I. INTRODUCTION

Contoured beam reflectarrays (RAs) design and optimiza-
tion for high gain antenna applications is a rather complex
process involving a large number of design parameters. Indeed,
RAs are spatially fed quasi-periodic reflective surfaces (QPRS)
composed of hundreds or thousands of unit cells, each one
described by a set of geometrical parameters, defining the
degrees of freedom of the unit cell design.

The layout distribution across the surface can be conceived
by selecting the unit cells one by one, which are able of
reflecting the local incident field according to a target local
aperture field, previously computed. These approaches, tradi-
tionally known as phase-only synthesis, consider the cell as an
ideal phase shifter, without information about cell amplitude
or cross components [1].

On the other hand, the cell distribution can be conceived
at a global level, where all the unit cells are simultaneously
optimized by taking into account the full reflection matrix in
phase and amplitude, with an objective on the scattered far-
field, that usually defines the ultimate target of the design [2],
[3], [4]. Although the first approach is computationally effi-
cient, it presents the inconvenience of leading to sub-optimal
designs. The second approach leads to a more optimal design

in terms of far-field performances [5], but it is computationally
more expensive since at each iteration the cells composing the
layout should be re-characterized or interpolated.

The optimization procedures of large QPRS involve in
general a large number of degrees of freedom (d.o.f.). Some
hypotheses can be done to handle the problem dimension and
complexity. First of all, the local periodicity hypothesis is
done to consider each cell as part of a periodic environment,
by avoiding expensive simulations of the entire layout. This
implies that at a local level the cell must be surrounded by
similar cells in terms of topology. The layout continuity and
smoothness are therefore design constraints that should be
respected [6], [7], [8].

A technique to considerably reduce the optimization prob-
lem dimensions and better handle the optimization variables,
is to use continuous analytical functions, depending on fewer
d.o.f., to describe the geometries of the unit cells composing
the array. In [9], [10] the geometrical variation of square
patch elements is represented through continuous function, e.g.
splines. However, the considered unit cell implied sharp ge-
ometrical variation after a complete geometrical cycle, which
is not well represented by the spline projection of the layout.
As a consequence and, as claimed by the authors, there is a
deterioration of the performance obtained using continuous
functions to represent the elements’ geometries compared
to that of a design where the array elements are directly
optimized. This issue is solved by representing complex field
quantities (aperture field) through continuous functions instead
of the elements’ geometry. The drawback is that the process is
led back to the case in which each cell is chosen individually
to match the optimized field quantities and abrupt layout
variations may occur.

Phoenix cells (PC), originally presented in [11], have the
interesting features of rebirth capability, i.e. the cell’s geometry
loops to its initial configuration after a complete phase cycle
without abrupt geometry variation, with the possibility of
considering mixed order/type [12] to design the PC cycle.
This property is efficiently exploited in [2], [13] for the direct
copolar component optimization using square PCs. In this
work, the RA layout is projected on a spline functions basis
to reduce the optimization problem complexity. The layout
continuity is ensured by the first and second-order square PCs



spherical mapping allowing an efficient spline projection of
the cell geometries composing the layout.

This work is an extension of the technique presented in
[2] to a double circular polarization case. Indeed, square
PCs are not suitable to reduce the crosspolar components.
The aim is to present a general and efficient lookup table
parametrization and interpolation to exploit the rectangular
PCs topology to enable the dual polarization mode, notably by
directly optimizing the copolar and crosspolar components of
the far-field patterns by preserving the layout smoothness. The
optimization problem dimensions are reduced and the layout
smoothness is ensured by projecting the RA layout on B-spline
functions.

II. ELEMENTARY CELLS LOOK-UP TABLE
PARAMETRIZATION

A. Periodic feature of PC and PC cycle

The selection of the cells composing the QPRS layout
must satisfy at least two main constraints: realize a suitable
phase delay of the local reflected field, therefore being able
to supply a complete (or almost) 360◦ phase shift by varying
the cell geometry and have a topology very similar to those
of the surrounding cells. This section aims to present how
to efficiently construct a lookup table that can suitably be
employed in the QPRS design process by facilitating and
improving the fast access to the scattering properties of the cell
during the optimization process and simultaneously reducing
the number of degrees of freedom, through the parametrized
layout projection on B-splines.

By combining different PC types and order one can design
a periodic cycle where the geometry after a complete phase
cycle comes back to its initial geometry. A basic square
PC cycle comprises first-order inductive and capacitive cells
whose aperture and patch, respectively, grow from zero until
a maximum size [14]. As reported in this work, the advantage
of using a first-order cell’s PC cycle resides in the fact that the
geometric variation is very smooth, and the rebirth capability
of the cell is highlighted. Nevertheless, it presents the main
disadvantage: the phase shift range presents a gap of more
than 50◦, that is non-negligible in the lookup table conception,
i.e., the cells are not able to cover the whole [−180◦; 180◦]
reflection phase range. To make the realizable phase shift
cycle larger, we should consider the patch/slots’ maximum
dimensions very close to the lattice dimensions. This is, in
practice, not feasible, since it would make the cell unstable
(small geometry variations are accompanied by step reflection
matrix variation). Another solution could be to change the
lattice size, but in this and in previous works in which PCs
are employed, the lattice size is always fixed to d0 = λ

3 , since
this value allows the avoidance of grating lobes apparition and
the avoidance of Wood anomalies [15]. Moreover, such a small
lattice allows a homogenization impedance of the QPRS [8]
with reduction of the quantization effects due to abrupt con-
tiguous cells geometry variation. Solutions to overcome this
inconvenience have been proposed in [14], where meandered
inductive grids have been introduced to complete the phase

cycle. However, to exploit the asymmetry of the cell for double
circular polarization purposes [16], square PCs, to be deformed
into rectangles, would be preferable.

Therefore, it is necessary to consider higher-order cells to
conceive an adapted lookup table conveniently. The first and
second-order inductive PCs are considered to overcome this
issue. The square loop/slot periodic cycle on the bottom of
figure 1 is considered. Figure 1 shows the behavior of the
cells as a function of the auxiliary periodic variable ξ defined
as follows:

ξ(d1, d2) =

{ −π + π d1
d1max

, if d2 = 0

π d2
d2max

, if d1 = d1max

(1)

The inverse relation is easily derivable. Figure 1 shows the
phase of the reflection evolution of the proposed PCs cycle
at central frequency f0 = 2.33 GHz, with dielectric substrate
εr = 1.07− j3.5 ·10−3 and normal incidence. The lattice size
is set to d0 = λ

3 ≈ 43 mm, while the substrate height is set
to τ = λ

4 ≈ 30 mm. The maximum slot/patch size is set to
d1max = 41 mm. The geometrical parameters d1 and d2 are
shown in the inset of figure 1, while the maximum values are
set to avoid geometries that would not be realizable. The phase
gap present in the first-order PC cycle has been reduced to
27◦. Since we are dealing with direct optimization, the effect
of such a small phase gap would not affect the QPRS design
process’s effectiveness. In general, we can mix higher-order
cells to obtain new PC cycles when lower profile cells are
required [17].

Fig. 1: The phase of the reflection coefficient of the PC
cycle proposed (on the bottom) a as function of the periodic
parameter ξ describing the geometry.

To have more flexibility in the QPRS design when dealing
with double circular polarization, we introduce non-symmetric
cells, in which the degrees of freedom are the horizontal and
vertical size of the patch and slots. The unit cells can exhibit
therefore dix 6= diy . This allows to control of the impinging
wave delay and compensate for depolarization [16].



The cells contained in the lookup table described in the
previous figure 1 are now parametrized through two auxiliary
variables (ξ, h) that allow the description of the rectangular PC
geometries through continuous mapping. A similar concept has
been proposed in [2]. The lookup table 2D mapping of first and
second-order capacitive/inductive PCs was performed aiming
at the enlargement of the RA bandwidth.

Being d =
[
d1x d1y d2x d2y

]
the patch and slot

dimensions along the vertical and the horizontal axis, the
lookup table linear parametrization is the following:

ξ(d) =



−π + π
d1x
d1max

, if d2 = 0, d1x > d1y

−π + π
d1y
d1max

, if d2 = 0, d1x < d1y

π
d2x
d2max

, if d1 = d1max
, d2x > d2y

π
d2y
d2max

, if d1 = d1max
, , d2x < d2y

(2)

h(d) =



d1y − d1x
d1y − d1max

, if d2 = 0, d1x > d1y

d1x − d1y
d1max

− d1x
, if d2 = 0, d1x < d1y

d2y − d2x
d2y − d2max

, if d1 = d1max , d2x > d2y

d2x − d2y
d2max

− d2x
, if d1 = d1max , d2x < d2y

(3)

The inverse relations can be easily derived.
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𝜋 −𝜋 0 

𝒉 

−1 

1 

0 

Fig. 2: Cylindrical lookup table representation. ξ represent the
periodic dimension while h the cylinder height.

As shown in figure 2, this parametrization leads to a
cylindrical mapping of the geometries stored in the lookup
table, in which the ξ variable represents the periodic angle,
varying between [−π, π], representing the cells geometrical
index, while h, non-periodic and bounded between [−1, 1],
is the axial coordinate or height that indicates the degree
of cell distortion into rectangles (figure 2). This implies that

in an optimization process the continuous variable ξ is left
unbounded, while h is bounded.

B. Advantages of lookup table continuous and periodic de-
scription: B-spline projection of the QPRS parametrized layout

The continuous mapping of the lookup table has a direct
link to how the cell distribution on the QPRS layout can
be represented. Indeed, the QPRS can be described by two
parametric surfaces ξm,n(xm,n, ym,n) and (hm,n(xm,n, ym,n),
being m,n the indices of the cells position on the surface.

In a QPRS optimization problem formulation, as general
principle, the optimization variables are represented by the
geometrical parameters of each cell composing the layout, i.e.
d(xn,m, yn,m). This means that being N ×M the QPRS cells
grid dimensions, and i the number of geometrical parameters
describing the cells

[
d1 d2 ... di

]
, the total number of

d.o.f. is

Nd.o.f. = N ×M × i. (4)

If we consider the cells contained in the lookup table de-
scribed in this paper, in which the cells geometry is described
through the vector d =

[
d1x d1y d2x d2y

]
, the number

of d.o.f. is equal to Nd.o.f = N × M × 4. The cylindrical
parametrization of the cells geometries through the variables
ξ and h, reduces the number of d.o.f. to half of the latest
Nd.o.f = N ×M × 2.

Another advantage of the cells parametrization is that it is
possible to describe the QPRS layout through continuous and
derivable functions, such as tensorial bi-cubic splines. To do
so, the optimization variables are defined by tensors of splines
coefficients ∆Ξkx,ky , ∆Hkx,ky describing a variation with
respect to an initial parameter distribution ξinitial(xn,m, yn,m)
and hinitial(xn,m, yn,m). The smooth surface distribution of
the parameters ξ and h defining the QPRS is then given by:

ξ(xn,m, yn,m) = ξinitial(xn,m, yn,m)+cn,mkx
∆Ξkx,kycn,mky

(5)
h(xn,m, yn,m) = hinitial(xn,m, yn,m)+cn,mkx

∆Hkx,kycn,mky

(6)
This representation presents two main advantages: the spline

description of the variation with respect to an initial layout
distribution ensures the layout parametric surface continuity
and derivability (i.e. layout smoothness) at each iteration, and,
the number of degrees of freedom in the optimization problem
is radically reduced. Being Kx×Ky the dimension of the knots
grid along the x, y directions, the number of d.o.f. depends on
the number of the spline knots considered:

Nd.o.f = (Kx + k − 2)× (Ky + k − 2)× 2, (7)

where k is the knots multiplicity on the knots grid domain
borders, for bi-cubic splines k = 4 [18]. In general, few knots
are sufficient to accurately describe a QPRS Kx,y � M,N .
The presented optimization problem description allows us to
continuously modulate the surface cell geometries to attain



objectives on the far field by avoiding layout discontinu-
ities. Usually, a gradient-based multi-objective algorithm is
employed where the initial guess design is the one obtained
through phase-only synthesis [2], [3].

C. Fast access to unit cell reflection matrices

The cells samples composing the lookup table are fully
characterized in reflection by exploiting an industrial in-house
spectral domain Method of Moments software, proven to be
very fast and accurate with respect to full-wave software
[19], [20]. The cells are characterized on a regular grid of
incidence samples (θinc, φinc), selected posterior of the QPRS
architecture analysis. Usually θ ∈ [0◦, 40◦] with a 5◦ interval,
and φ ∈ [−180◦,−90◦] with a 15◦ interval (by exploiting
the rectangular symmetry it is sufficient to characterize for
incidences φ comprised in just one angular quadrant). The
incidence grid is therefore composed of 9× 7 incidence sam-
ples, sufficient to have a very accurate bilinear interpolation to
derive the phase and the amplitude of each cell comprised in
the lookup table. Being (m,n) the cell position on the surface,
the lookup tables are interpolated on the actual cell incidence
at (θincm,n, φ

inc
m,n). This means that for every cell position on the

QPRS, a complete lookup table is stored.
By characterizing a limited set of samples (in this case,

roughly 631 samples), it is possible to have rapid access to
the scattering matrix of an arbitrary cell by local bi-cubic
interpolation of the phase and amplitude of each reflection
matrix component. Local cubic interpolation of scattering
coefficients grants a high accuracy while maintaining a low
computational effort [5]. In Figure 3 are mapped the amplitude
and phases of the direct reflection matrix terms at central
frequency f0 = 2.33 GHz.

III. USE CASE: LARGE DEPLOYABLE RA OPTIMIZATION

The presented methodology is applied to the direct opti-
mization of a very large multi-facet RA composed of 22434
cells in S-band for direct broadcast GEO satellite. Without
entering the details of the RA architecture, we show here a
comparison of the RA obtained with phase-only (PO) synthesis
and the RA obtained with the direct copolar and crosspolar
optimization (DO) for the two circular polarizations. The
results are shown in terms of minimum gain on the coverage
region, minimum crosspolar discrimination (XPD), and of
percentage of ground stations violating the constraints on
XPD. Results for North America coverage (CONUS),with a
total of 1600 stations, are presented in table I. The DO leads
to a notably enhanced design compared to PO. The obtained
RA is shown in figure 4, highlighting the RA layout continuity
and the absence of sharp transitions. Moreover, the advantages
of the proposed methodology are evident when comparing the
problem dimensions of a classical optimization compared to
the one described in this work. With reference to the previous
section II-B, the original RA optimization problem dimension
is 22434 × 4 = 89736 d.o.f.. With the PC parametrization
and spline projection of the parametrized layout on a knots

(a) Amplitude of Γxx (b) Phase of Γxx

(c) Amplitude of Γyy (d) Phase of Γyy

Fig. 3: Mapping over the cylinder of the principal scattering
matrices terms Γxx and Γyy at normal incidences calculated
by local cubic interpolation.

grid 20 × 20, the problem dimension has been reduced to
22× 22× 2 = 968 d.o.f..

TABLE I: RAs performances comparison

GCOmin
XPDmin % < XPDmin

requirements 25.00 dB 25.00 dB < 5%

PO (LHCP) 25.05 dB 22.16 dB 10.5 %

DO (LHCP) 27.18 dB 27.00 dB 0%

PO (RHCP) 26.13 dB 21.27 dB 13.5 %

DO (RHCP) 27.35 dB 27.02 dB 0%

Fig. 4: Layout issued from direct optimization.

IV. CONCLUSION

This paper presents an innovative lookup table mapping and
interpolation scheme for efficient QPRS direct optimization.
The methodology presented is namely an extension of the



spherical mapping presented in [2] to the double circular
polarization case. It exploits the rebirth capability of the PC
to map the lookup table periodically and the parametrization
proposed allows to map of rectangular PCs to have more
flexibility in the QPRS far-field polarization control. The
methodology is applied to a concrete case of a large-scale
optimization problem of a large multifaceted RA for direct
broadcast satellite showing remarkable improvements in the
performances with respect to classical synthesis techniques.
The presented methodology allows obtaining RA layout with-
out any sharp geometrical transition, thus respecting the local
periodicity of the RA layout. Future works would include the
generalization of the procedure to different periodic geometric
cycles for RA cells.
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