Supporting information for "Multi-colony tracking of two pelagic seabirds with contrasting flight capability illustrates how windscapes shape migratory movements at an ocean-basin scale"

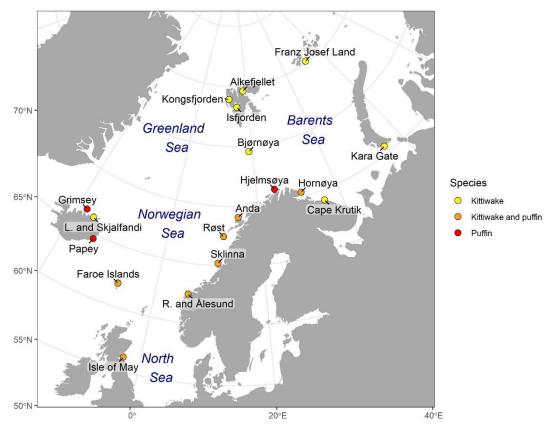
Colony	Country	Longitude	Latitude	Black-legged kittiwake	Atlantic Puffin
Alkefjellet	Norway	18.459	79.585	88	-
Anda	Norway	15.17	69.065	146	48
Bjørnøya	Norway	18.956	74.503	111	-
Cape Krutik	Russia	35.948	69.151	128	-
Faroe Islands	Faroe Islands	-6.798	61.95	145	49
Franz Josef Land	Russia	51.468	80.144	110	-
Grimsey	Iceland	-17.992	66.529	-	55
Hjelmsøya	Norway	24.732	71.113	-	54
Hornøya	Norway	31.15	70.383	107	125
Isfjorden	Norway	15.508	78.253	134	-
Isle of May	United Kingdom	-2.558	56.186	125	109
Kara Gate	Russia	55.021	70.593	41	-
Kongsfjorden	Norway	12.217	78.9	124	-
Langanes and Skjalfandi	Iceland	-15.985	66.18	80	-
Рареу	Iceland	-14.172	64.588	-	74
Runde and Ålesund	Norway	5.874	62.436	103	64
Røst	Norway	11.91	67.447	156	168
Sklinna	Norway	10.995	65.202	136	39
Total				1734	785

Supplementary Table S1: Number of tracks per colony and per species. One track corresponds to the length of ayear, from one breeding season to the next. (-) species absent or no data collected.

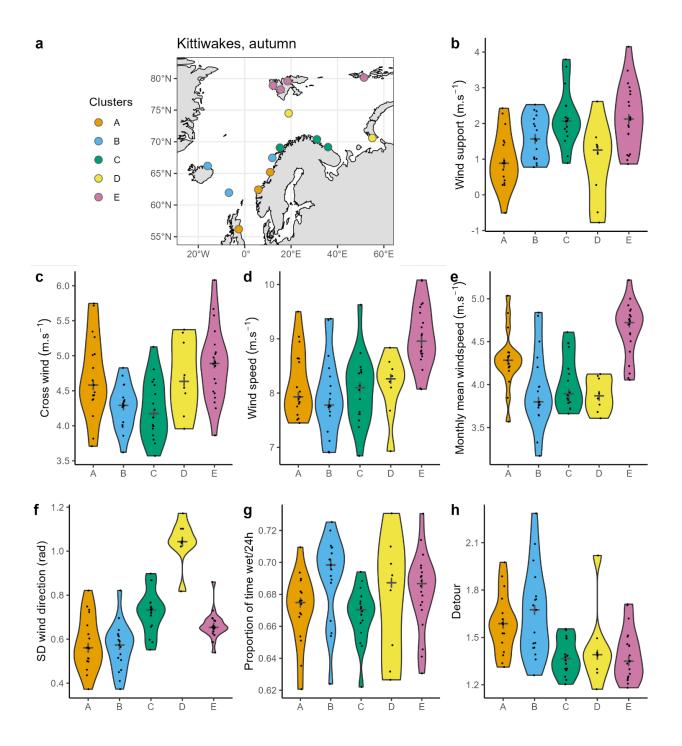
Supplementary Table S2: Number of deployments per species and per logger type.

Species	Migrate Technology				BAS/Biotrack/Lotek			Total
	c65	c65_super	f100	w65	mk18	mk4083	mk4093	
Atlantic puffin	301	28	167	34	0	76	59	665
Black-legged kittiwake	8	0	62	0	4	1402	39	1515

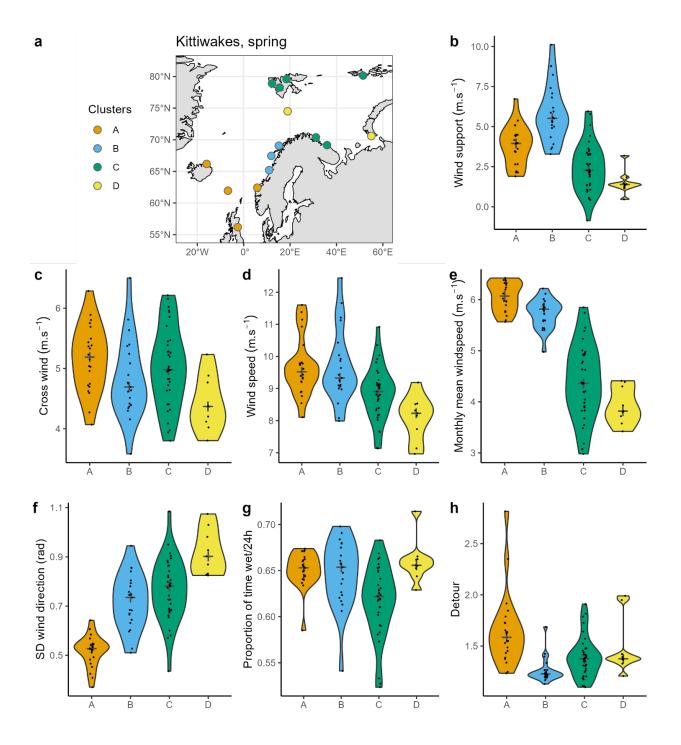
Supplementary table S3: Sampling frequency and recording intervals of light and saltwater immersion data specified for each logger model. For light, the maximum value sampled within a recording interval will be stored and used in subsequent analyses. For the saltwater immersion data, samples are binary (0 = no contact with saltwater; 1 = contact with saltwater) and the recorded value used in subsequent analyses is the accumulated value of samples made within the recording interval.

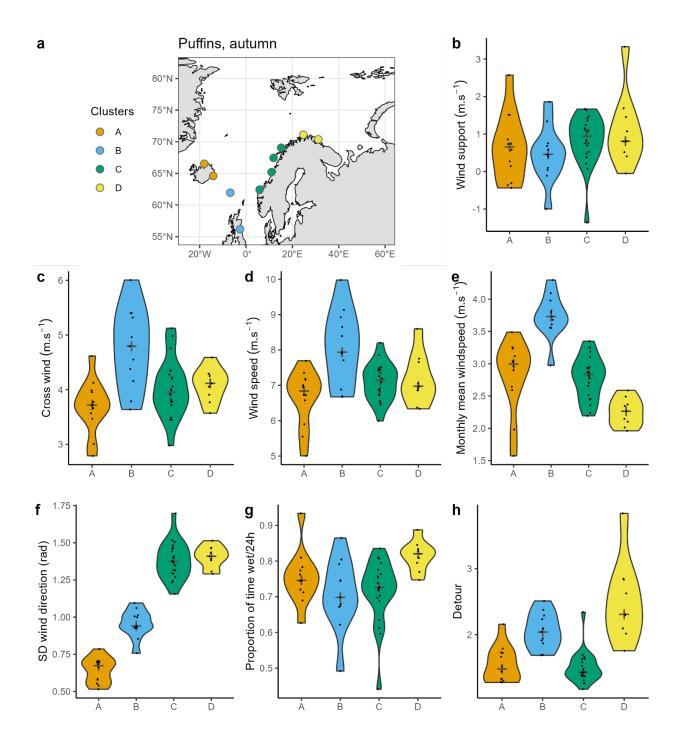

	lig	ht	saltwater immersion		
model	sampling	recording	sampling	recording	
mk18	1 min	5 min	3 sec	10 min	
mk4083	1 min	5 min	3 sec	10 min	
mk4093	1 min	5 min	3 sec	10 min	
f100	1 min	5 min	30 sec	10 min	
c65_super	1 min	5 min	30 sec	10 min	
c65	1 min	5 min	30 sec	10 min	
w65	1 min	5 min	30 sec	10 min	

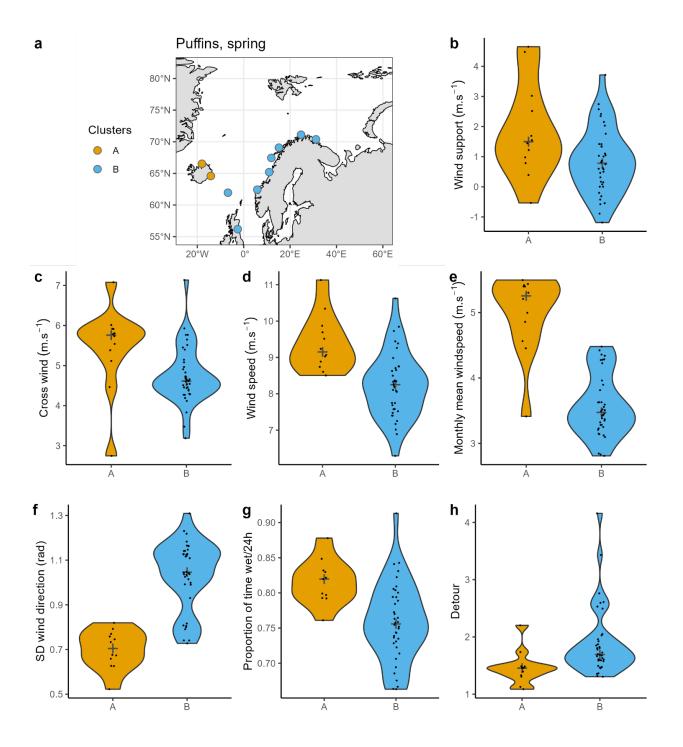
Supplementary Table S4: Number of individuals per species and number of years tracked.


Number of years tracked	Atlantic puffin	Black-legged kittiwake
1	214	345
2	105	187
3	74	121
4	23	78
5	7	36
6	2	27

Supplementary table S5: Definition of the variables used for the cluster analysis. Each variable was obtained at each location (except detour with one value per migratory segment). Variables were aggregated, by calculating, for each season and species, the median value per migratory segment (except for detour), track, year and colony.


Category	Variable	Definition
Daily wind	Wind support	Wind component that is parallel to the bird ground
conditions		speed. The wind support is positive with tailwinds
		and negative with headwinds.
	Cross wind	Wind component that is perpendicular to the birds'
		ground speed. The absolute value was used
	Wind speed	Norm of the wind vector
Expected wind	Mean wind speed	Average wind speed per month over the study period
conditions		(2014-2020)
	Variability of the wind	Standard deviation of the wind direction, per month
	direction	over the study period (2014-2020)
Bird behaviour	Proportion wet per 24h	Proportion of time spent wet per 24h, proxy of time
		spent not flying
	Detour	Distance of the migratory segment divided by the
		distance of the shortest path


Supplementary figure 1: Location of the colonies where geolocator deployments took place. "R. and Ålesund" represents Runde and Ålesund, with kittiwakes breeding in Ålesund and puffins in Runde. "L. and Skjalfandi" represents Langanes and Skjalfandi. Azimuthal equidistant projection centered on the median longitude and latitude of our dataset (Lon: -13.10°E, Lat: 64.27°N).


Supplementary figure 2: Result of cluster analysis to investigate similarities in windscapes encountered by kittiwakes from different colonies during autumn migration. Cluster analysis was made with a median value per colony of wind support, cross wind and wind speed (representing encountered wind conditions), mean proportion wet and detour (representing bird behaviour), and standard deviation of wind direction and scalar average wind speed (representing average wind conditions). a) location of the colonies and associated clusters. Violin plots show for each cluster the distribution of the annual median per year and colony of b) wind support (m.s⁻¹), c) cross wind (m.s⁻¹), d) wind speed (m.s⁻¹), e) monthly mean wind speed (m.s⁻¹), f) standard deviation of the wind direction (rad), g) proportion of time wet per 24h, h) detour (migratory segment length divided by the beeline length). Grey crosses represent median for each cluster. Black dots represent median values per colony and per year. Detour is calculated as the ratio of the realised route distance divided the shortest route distance.

Supplementary figure 3: Result of cluster analysis to investigate similarities in windscapes encountered by kittiwakes from different colonies during spring migration. Cluster analysis was made with a median value per colony of wind support, cross wind and wind speed (representing encountered wind conditions), mean proportion wet and detour (representing bird behaviour), and standard deviation of wind direction and scalar average wind speed (representing average wind conditions). a) location of the colonies and associated clusters. Violin plots show for each cluster the distribution of the annual median per year and colony of b) wind support (m.s⁻¹), c) cross wind (m.s⁻¹), d) wind speed (m.s⁻¹), e) monthly mean wind speed (m.s⁻¹), f) standard deviation of the wind direction (rad), g) proportion of time wet per 24h, h) detour (migratory segment length divided by the beeline length). Grey crosses represent median for each cluster. Black dots represent median values per colony and per year. Detour is calculated as the ratio of the realised route distance divided the shortest route distance.

Supplementary figure 4: Result of cluster analysis to investigate similarities in windscapes encountered by puffins from different colonies during autumn migration. Cluster analysis was made with a median value per colony of wind support, cross wind and wind speed (representing encountered wind conditions), mean proportion wet and detour (representing bird behaviour), and standard deviation of wind direction and scalar average wind speed (representing average wind conditions). a) location of the colonies and associated clusters. Violin plots show for each cluster the distribution of the annual median per year and colony of b) wind support (m.s⁻¹), c) cross wind (m.s⁻¹), d) wind speed (m.s⁻¹), e) monthly mean wind speed (m.s⁻¹), f) standard deviation of the wind direction (rad), g) proportion of time wet per 24h, h) detour (migratory segment length divided by the beeline length). Grey crosses represent median for each cluster. Black dots represent median values per colony and per year. Detour is calculated as the ratio of the realised route distance divided the shortest route distance.

Supplementary figure S5: Result of cluster analysis to investigate similarities in windscapes encountered by puffins from different colonies during spring migration. Cluster analysis was made with a median value per colony of wind support, cross wind and wind speed (representing encountered wind conditions), mean proportion wet and detour (representing bird behaviour), and standard deviation of wind direction and scalar average wind speed (representing average wind conditions). a) location of the colonies and associated clusters. Violin plots show for each cluster the distribution of the annual median per year and colony of b) wind support (m.s⁻¹), c) cross wind (m.s⁻¹), d) wind speed (m.s⁻¹), e) monthly mean wind speed (m.s⁻¹), f) standard deviation of the wind direction (rad), g) proportion of time wet per 24h, h) detour (migratory segment length divided by the beeline length). Grey crosses represent median for each cluster. Black dots represent median values per colony and per year. Detour is calculated as the ratio of the realised route distance divided the shortest route distance.