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Yuan Gao, Hui Tang, Rongjun Ge, Jin Liu, Xin Chen, Yan Xi, Xu Ji, Huazhong Shu, Jian Zhu, Gouenou
Coatrieux, Senior Member, IEEE, Jean-Louis Coatrieux, Fellow, IEEE, Yang Chen, Senior Member, IEEE

Abstract—Orthopedic spine disease is one of the most common
diseases in the clinic. The diagnosis of spinal orthopedic injury is
an important basis for the treatment of spinal orthopedic diseases.
Due to the complexity of the spine structure, doctors usually need
to rely on orthopedic CT image data for accurate diagnosis. In
some cases, such as poor areas or in emergency situations, it
is difficult for doctors to make accurate diagnoses using only
2D x-ray images due to lack of 3D imaging equipment or time
crunch. Therefore, an approach based on 2D x-ray images is
needed to solve this problem. In this paper, a novel 3D spine
reconstruction technique based on 2D orthogonal x-ray images
(3DSRNet) is designed. 3DSRNet uses a generative adversarial
network architecture and novel modules to make 3D spine
reconstruction more accurate and efficient. Spine reconstruction
CNN-transformer framework (SRCT) is employed to effectively
integrate local bone surface information and long-range relation
spinal structure information. Spine reconstruction texture frame-
work (SRTE) is used to extract spine texture features to enhance
the effect of pixel-level reconstruction. Experiments show that
3DSRNet achieves excellent 3D spine reconstruction results on
multiple metrics including PSNR (45.4666 dB), SSIM (0.8850), CS
(0.7662), MAE (23.6696), MSE (9016.1044), and LPIPS (0.0768).

Manuscript created October, 2022; This work was supported in part by
the State Key Project of Research and Development Plan under Grants
2022YFC2408500 and 2022YFC2401600, in part by the National Key Re-
search and Development Program of China under Grant 2022YFE0116700,
in part by the National Natural Science Foundation of China under Grant
T2225025, in part by the Key Research and Development Programs in Jiangsu
Province of China under Grants BE2021703 and BE2022768, in part by
Jiangsu Province Science Foundation for Youths under Grant BK20220825.

Yuan Gao, Hui Tang, Xin Chen, Xu Ji, Huazhong Shu, and Yang
Chen are with the Lab of Image Science and Technology, Key Lab-
oratory of Computer Network and Information Integration (Ministry of
Education), Jiangsu Provincial Joint International Research Laboratory of
Medical Information Processing, School of Computer Science and En-
gineering, Southeast University, Nanjing 211189, China (e-mail: yuan-
gao@seu.edu.cn, corinna@seu.edu.cn, xinchen@seu.edu.cn, xuji@seu.edu.cn,
shu.list@seu.edu.cn, chenyang.list@seu.edu.cn). Rongjun Ge is with the Col-
lege of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing 211106, China (e-mail: rongjun.ge@nuaa.edu.cn).
Jin Liu is with the College of Computer and Information, Anhui Polytech-
nic University, Wuhu 241000, China (e-mail: liujin@ahpu.edu.cn). Yan Xi
is with the Jiangsu First-imaging Medical Equipment Co., Ltd., Nantong
226100, China (e-mail: yanxi@first-imaging.com). Jian Zhu is with the
Cancer Hospital Affiliated to Shandong First Medical University (Shandong
Cancer Institute, Shandong Cancer Hospital), Jinan 250117, China (e-mail:
zhujian.cn@163.com). Gouenou Coatrieux is with the Information and Image
Processing Department, Institut Mines-Telecom, Telecom Bretagne, Brest
29238, France (e-mail: gouenou.coatrieux@telecom-bretagne.eu). Jean-Louis
Coatrieux is with the Centre de Recherche en Information Biomédicale Sino-
Francais, Inserm, University of Rennes 1, Rennes 35042, France (e-mail: jean-
louis.coatrieux@univ-rennes1.fr).

First author: Yuan Gao, Co-first author: Hui Tang, Corresponding author:
Yang Chen, Co-corresponding author: Jian Zhu.

The opinions expressed here are entirely that of the author. No warranty is
expressed or implied. User assumes all risk.

Index Terms—3D reconstruction, deep learning, spine, CT, x-
ray.

I. INTRODUCTION

SPINE is the axial skeleton of the human body and the
pillar of the body, with functions such as load-bearing,

shock absorption, protection, and movement. Spinal disease is
among the most common conditions in the clinic [1]. When
the spine is damaged due to accidents, diseases, aging, etc., the
diagnosis and treatment of spinal orthopaedic injuries should
be carried out in time. Specific treatment indications are as
follows: 1. Spinal fractures damage the spinal cord and periph-
eral spinal nerves. 2. Burst fractures of the lumbar, thoracic,
and cervical spine cause vertebral or spinal instability. 3. The
fracture is accompanied by dislocation or space-occupying
lesion [2]. Orthopedic spine treatment is a typical and chal-
lenging bone tissue treatment plan, with difficulties such as
high trauma risk and long treatment time [3]. It requires high
doctors’ clinical experience, especially the planning ability
of orthopaedic treatment programs [4]. Doctors usually make
treatment programs based on the spine imaging data, because
imaging scans can reveal detailed information of the spine.

Human skeletal tissues have big density differences and
natural contrasts, which are very suitable for disease inspection
using x-ray imaging [5]. X-ray imaging technology has the
advantages of simple operation, fast imaging and low cost
[6]. However, due to the overlapping of tissue structures in
x-ray images, it is difficult for doctors to accurately complete
the planning of orthopaedic treatment programs [7]. CT imag-
ing technology can provide coronal and sagittal tomographic
images without tissue overlapping [8]. Because CT scanning
equipment is expensive, it is not as popular as two-dimensional
x-ray imaging equipment in poor regions of the world. In terms
of imaging speed, CT scans usually takes several minutes,
while x-ray scans can complete imaging scans in seconds. CT
also hurt patients more than x-ray images in terms of radiation
dose [9]. In some areas that lack 3D CT imaging equipment or
in emergency situations, doctors lack 3D imaging equipment
or lack sufficient time to obtain CT of patients as a basis for
planning preoperative orthopaedic treatment programs [10].
Doctors can only get 2D x-ray spine images, such as the
anteroposterior and lateral images of the spine. It is valuable
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to devise a new method capable of converting 2D spine x-ray
images to 3D spine CT.

For methods of 3D reconstruction, matching surface points
between multiple views is hugely challenging using dense
reconstruction methods due to the transparent nature of x-ray
images [11]. Based on the human spine skeleton with a stable
anatomical structure, a deep learning method of converting 2D
spinal x-ray images into 3D spinal CT images is designed and
named 3DSRNet. Generative adversarial network (GAN) [12]
is adopted as the leading architecture of 3DSRNet. Approaches
employing similar architectures have been used in many
medical imaging tasks [13], [14], [15], [16], [17]. In addition,
x-ray images suffer from the severe overlap of internal body
information. Orthogonal x-ray images are used as input to
the algorithm because they can retain numerous geometric
constraint information based on the dual-view imaging mode.
We improve the reconstruction ability by designing some
deep learning algorithms. Firstly, 3DSRNet adopts transformer
[18] to enhance the learning ability of generator network.
Secondly, this method makes full use of spine texture features
containing local structural information and global statistical
knowledge. Thirdly, some loss functions suitable for the 3D
spine reconstruction application are customized for 3DSRNet.
Overall, 3DSRNet can obtain rich spine feature information to
achieve an excellent performance of 3D reconstruction. The
contributions of this study can be listed as follows:

1. A novel deep learning-based 3DSRNet is designed to
perform 3D spine reconstruction using 2D orthogonal x-ray
images.

2. A CNN combined transformer learnable framework for
spine reconstruction (SRCT) is proposed, which can effec-
tively integrate the advantages of CNN focusing on the local
bone surface information and transformer focusing on the
global skeleton structural information.

3. 3DSRNet extracts pixel-level image texture features that
can be used for spine reconstruction tasks by using a texture
extraction (SRTE) method. It helps to obtain low-level feature
information from spine images.

4. In order to enhance the spine 3D reconstruction capability
of 3DSRNet, some customized loss functions are used that can
help the model achieve sharp reconstruction results and avoid
blurring.

II. RELATED WORKS

3D reconstruction is a process of reconstructing 3D informa-
tion from single-view or multi-view images. This technology
is fundamental to many applications, such as robot navigation,
object recognition, and scene understanding, 3D modeling and
animation, industrial control, and medical diagnosis. In recent
years, some research results have been achieved in the fields
of natural images and medical images.

A. Natural Image

For natural images, the 3D reconstruction based on images
mainly includes Structure from Motion (SfM) and Multi-
View System (MVS). SfM is an overall strategy for 3D
reconstruction from unordered image collections [19]. MVS

estimates the dense representation from overlapping images
and aims to recover the dense 3D structure of a scene from
a set of calibrated images [20]. SfM and MVS are the funda-
mental problems in computer vision and have been extensively
studied for decades, because of their wide applications in 3D
reconstruction, augmented reality, autonomous driving, and
robotics [21].

Related methods for SfM: Cui et al. [22] proposed a hybrid
SfM method to tackle the issues of efficiency, accuracy, and
robustness in a unified framework. This study used an adaptive
community-based rotation averaging method first to estimate
camera rotations in globally. Camera centers were computed
in an incrementally way based on these estimated camera
rotations. Zhu et al. [23] proposed a global SfM to enhance
the efficiency and robustness of large-scale motion averaging.
This study divided all images into multiple partitions that
preserve strong data association for well-posed and parallel
local motion averaging. They proposed an internal signal
averaging that determines cameras at partition boundaries,
and a similarity transformation per partition to register all
cameras in a single coordinate frame. Finally, local and global
motion averaging were iterated until convergence. Cui et
al. [24] proposed a progressive SfM method to tackle the
completeness, robustness and efficiency problems in a united
framework, where two loops are contained. The outer loop is a
feature matching loop, where the orthogonal MSTs (maximum
spanning trees) of the image similarity graph are iteratively
selected to perform the image matching. The inner loop is an
incremental camera calibration loop, where the initial camera
poses in each iteration are inherited from those calibrated
in the last one. Novotni et al. [25] used SfM to generate
a supervisory signal from videos. The approach generated a
partial point cloud and the relative camera parameters based on
a video sequence. The different depth estimates were fused,
using the estimated camera parameters, into a partial point
cloud, which is further processed for completion utilizing a
PointNet [26].

Related methods for MVS: Huang et al. [27] proposed a
DeepMVS, a deep convolutional neural network for multi-
view stereo reconstruction. Taking an arbitrary number of
posed images as input, they first produced a set of plane-
sweep volumes and used the proposed DeepMVS network to
predict high-quality disparity maps. Yao et al. [28] suggested
the MVSNet for depth map inference from multi-view images.
In the network, depth visual image features were extracted to
build the 3D cost volume upon the reference camera frustum
via the differentiable homograph warping. 3D convolutions
were applied to regularize and regress the initial depth map,
which was then refined with the reference image to generate
the final output. Chen et al. [29] proposed a Point-MVSNet,
a novel point-based deep framework for multi-view stereo.
This network leveraged 3D geometry priors and 2D texture
information jointly and effectively by fusing them into a
feature-augmented point cloud. It processed the point cloud to
estimate the 3D flow for each point. Chen et al. [30] designed a
3D reconstruction system based on the multi-view technology.
The system takes a variety of views of an object as input, and
finally outputs a 3D model of the object.
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The above methods usually use depth data such as depth
maps, point clouds, voxels, meshes, etc. to solve these 3D
reconstruction problems. All objects appearing in the scene
need to obtain their depth information and establish a global
model of the scene. These 3D reconstruction methods are
generally not suitable for medical reconstruction tasks. For
example, obtaining depth data of a scene requires complex
camera calibration, but it is not convenient to perform accurate
camera calibration for medical imaging scenes.

B. Medical Image

For medical images, 3D reconstruction has been developed
in recent years to aid in medical diagnosis. Tognola et al. [31]
implemented image reconstruction from 2D CT scans to a 3D
model for the mandibular bone for quantitative measurements
on the 3D triangular mesh. Chen [32] proposed a novel FPP-
based equipment to obtain dense 3D point clouds and preserve
tooth details for intraoral 3D points reconstruction. Kasten
et al. [33] designed an end-to-end CNN approach for the
3D reconstruction of knee bones directly from orthogonal x-
ray images. In contrast to the standard statistical modeling
approach, this method can learn the shape distribution of bones
directly from the training images. Shen et al. [34] demon-
strated the reconstruction approach of upper-abdomen, lung,
and head-and-neck via deep learning. It can map projection
radiographs of a patient to the corresponding 3D anatomy and
subsequently generate volumetric tomographic x-ray images
of the patient from a single projection view. Tognola et al.
[35] obtained 3D models of the mandibular and maxilla bones
and of the mandibular nerve by segmenting CT scan images
of patients undergoing maxillofacial surgery. Henzlen et al.
[36] devised a deep CNN method to produce whole 3D skull
volumes. This study proposed firstly to learn a coarse and
fixed-resolution volume which is then fused in a second step
with the input x-ray into a high-resolution volume. Ying et al.
[37] proposed reconstructing lung CT from two orthogonal
x-ray images using a feature fusion framework based on
the generative adversarial network. This novel feature fusion
method was proposed to combine information from two x-ray
images and increase data dimension from 2D to 3D. Aubert
et al. [38] proposed an automated 3D spine reconstruction
method through which a realistic statistical shape model of
the spine is fitted to images using CNN. The CNNs automati-
cally detected the anatomical landmarks controlling the spine
model deformation through a hierarchical and gradual iterative
process. This method is suitable for fast 3D visualization of
spine structures. But a small number of marked locations are
not enough to reveal the intricate details of the spinal surface.
Ge et al. [39] designed the X-CTRSNet that simultaneously
and accurately enables 3D cervical vertebra CT reconstruction
and segmentation directly from orthogonally 2D x-ray images.
This work combined the reciprocally coupled SpaDRNet for
reconstruction, MulSISNet for segmentation, and an RSC
Learning for task consistency. Although each method has its
own characteristics, none of them can produce reconstruction
results to recover the 3D geometry and structure of the spine.

III. METHOD

This paper aims to reconstruct 3D spine CT using 2D
orthogonal projection x-ray images. We adopt a generative
adversarial framework to accomplish the task of 3D spine
reconstruction based on orthogonal 2D X-ray images. In
this cross-modal application scenario, our method allows the
generator and discriminator to compete in the training phase,
which is beneficial to skillfully reconstruct rich spine 3D
details through a self-learning mechanism. The architecture
of the reconstruction network is shown in Fig.1. The human
spine organ has texture differences in different regions. Based
on this essential, SRCT and SRTE are proposed to exploit
global features and low-level texture information, respectively,
to enhance the reconstruction ability. In SRCT, the transformer
is introduced to take full advantage of global skeleton char-
acteristics. In SRTE, the texture extraction is used to enhance
the utilization of spine texture features. These methods help
the 3DSRNet achieve 3D spine reconstruction. The generator
network details are depicted in Fig.2. The detailed description
of these methods is as follows.

A. Generator Architecture

To enhance 3D reconstruction performance, the generator
adopts an encoder-decoder network architecture. The encoder-
decoder network architecture is used in many image tasks,
such as denoising [40], [41], and segmentation [42], [43],
[44]. The encoder-decoder architecture is designed to learn
a feature mapping from 2D input to 3D target. In the encoder
part, CNN’s part of the generator adopts many convolutions
and skip connections for feature extraction of spine images.
Furthermore, as shown in Fig.2, the skip connection uses a
parallel structure that includes atrous spatial pyramid pooling
(ASPP) [45], transformer and texture branches simultaneously
to extract features of 2D input, respectively. For global spine
structure information, the transformer supplements the feature
extraction results of the CNN. The texture branch is used
to complete the extra enhancement work of spine low-level
image feature extraction. The decoder part is composed of 3D
deconvolutions to realize the generation of 3D CT. In addition,
in the connection part between the encoder and the decoder,
the encoder feature extraction results are fused from two inputs
to perform a dimensional transformation on feature maps.
The dimensional shift utilizes a one-dimensional convolution
operation to obtain 3D feature maps from 2D feature maps.

Although CNN can extract some 2D features, extracted fea-
tures are not enough for 3D spine reconstruction in multi-scale.
The ASPP is introduced to generate multi-scale spine features.
ASPP is designed to concatenate multiple atrous convolutional
features into a final feature representation using different
dilation rates. It can connect multi-scale convolutional layers
to generate features containing the overall structure of the
spine and the tiny details of the vertebrae without significantly
increasing the model size.

B. SRCT

CNN and transformer are different learning paradigms.
CNN relies on local convolution operations, whereas the
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Fig. 1. The generative adversarial architecture is used as the deep learning network framework in this study. Two orthogonal projection x-ray images of
128x128 pixels as the input data. The generator consists of a 2D encoder marked with the solid line and a 3D decoder marked with the dotted line. The 3D
reconstruction result of 128x128x128 pixels is output from the generator. The loss functions include LossG, IGDL3D, FFL3D, and LossD.

Fig. 2. The architectural details of the generator. Two parallel encoders perform feature encoding extraction on two orthogonal input images respectively. The
skip connection adopts three modules (ASPP, SRCT, and SRTE) that can obtain more features of spine images. The fusion of the three modules can assist
the basic generator network in achieving performance improvement. It should be noted that a linear layer marked in white is used to convert 2D feature maps
to 3D feature maps.

Fig. 3. The network architecture of the SRCT. The second to fifth layers of the encoder are merged as the input of SRCT. SRCT adopts multiple basic layers
based on a self-attention mechanism that obtains the global representation of spine data and the up-sampling operation that obtains the same size as input.

transformer is based on long-range self-attention. For the
task of spine reconstruction, the spine not only has global
skeleton structure features, but also has local bone detail
features. A good reconstruction method should consider both
global and local features of spine data. In our framework,
SRCT combines the global receptive field of Transformer

with the local receptive field of CNN to obtain generalized
representation of spine 3D reconstruction information.

The generator network uses a CNN encoder-decoder net-
work, which collects different local features in a hierarchical
manner similar to the pyramid structure. The feature maps
of different layers are concatenated and used as the input
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Fig. 4. The architecture details of the SRTE. The second to fourth layers of the encoder are merged into the input of SRTE. Two parallel branches complete
texture feature extraction by computing the intensity information of feature maps and merging each other using multi-convolution layers. Finally, the feature
map of texture information contacts with the input feature map to obtain the output.

of SRCT to reflect the spatial structure transformation and
long-distance dependencies of the spine data. The feature
maps from the second to fifth layers of the encoder are taken
as input to the SRCT branch to obtain the global receptive
field. The multiple convolution layers with small convolution
kernels, normalization layers, and activation layers are used
to effectively complete transformer operation as shown in
Fig.3. SRCT enables the middle layer of 3DSRNet to have
a larger receptive field, thereby paying more attention to the
key features of global structural information.

For an input image X , the proposed approach takes the
feature maps from the second to fifth layers of the encoder
middle part as input to the transformer branch:

M1 = fCNN (X);M2 = fTransformer(M
middle
1 ) (1)

where the input Mmiddle
1 is with the feature maps of

CNN middle part, M1 and M2 are the prediction feature
map from two networks of CNN (fCNN ), and transformer
(fTransformer), respectively.

Based on the predictions of Mmiddle
1 , the transformer is

combined with the multiple convolution layers with small
convolution kernels, normalization layers, and activation layers
as defined below:

fTransformer(M
middle
1 ) = SoftMax(

QKT

√
d

)V (2)

where Q, K and V are the query, key, and value composed
from Mmiddle

1 , d is the dimension of Q and K. It is worth
mentioning that the transformer is also only used to supple-
ment CNN training, not to produce final predictions alone.

C. SRTE

For spine 3D reconstruction, the high-level feature informa-
tion that mainstream feature extraction deep learning methods
focus on is not enough. Since using only deep convolution
misses some key low-level features, 3D spine reconstruction
results from deep high-level features extracted from large
receptive fields may result in coarse and inaccurate. These
key low-level features in multiple layers provide the image
texture features necessary for 3D reconstruction. Image texture
features contain local detail information and global structural
information [46], [47], [48]. SRTE enables the generator
network to focus on both high-level properties and low-level
information of the image.

SRTE extracts the image texture information of the spine
in the generator network. This is a neural network mechanism
based on convolutional operations that can extract low-level
image information. The feature maps of each convolutional
layer contain texture information of different scales. This
texture information can be extracted by encoding the feature
maps. The encoding of features is performed by calculating
the strength of each convolutional layer feature. To encode
features to utilize image essence information, SRTE is inspired
by [49] to quantitatively represent and extract different feature
channels in a designed module. Matrix calculations are used
in multiple convolutional layers to prevent the generation of
encoding and reduce the effect of noise on the image features.
The architecture is shown in Fig.4.

Specifically, the extracted feature maps I of the first
three layers of the generator’s encoder are concatenated and
downsampled to the same size. Afterward, different scale
texture details of these down sampled features Idown are
extracted through multiple convolutional layers to get the
cosine similarity matrix Mcos in the texture module. Finally,
the original feature maps Mnetwork of the generator’s encoder
are concatenated with the extracted texture feature maps to
obtain Icat which is inputted into the generator network to get
the final 3D reconstruction result. The operation formulas are
defined below:

M i,j
cos =

Idown · Ii,j
∥ Idown ∥ · ∥ Ii,j ∥

(3)

Mn
nor =

max(Mcos)−min(Mcos)

N
× n+min(Mcos) (4)

where the nth level Mn
nor is normalized by equally dividing

N points between the minimum and maximum values of Mcos

which can be quantized into N levels.

Ei,j,n = 1− ∥ Mn
nor −M i,j,n

cos ∥ (5)

Icat = Cat(F (Cat(Mnor, E)),Mnetwork) (6)

where Ei,j,n is the encoding value of the Mnor and Mcos.
Mnor and E are fused by function F . Cat denotes concate-
nation operation. F contains multiple convolutional layers and
a ReLU activation layer.

D. Loss Functions

To train the 3D spine reconstruction model efficiently and
stably, several loss functions are customized to constrain the
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training of 3DSRNet. These loss functions can calculate the
error between actual values and predicted values from multiple
perspectives in the gradient, frequency, and image domains.
The detailed description is as follows.

Inspired by enhancing underwater imagery [50], a loss
function is applied to penalize the 3D reconstruction model by
directly computing the image gradient differences. This strat-
egy can achieve sharpening the spine reconstruction results
and avoiding the blurring problem. The 3D image gradient
difference loss is chosen as the objective function and is given
by Eq (7):

LIGDL3D(Xg, Xr) =
∑
k

∑
i,j

(||Xg
i,j,k −Xg

i−1,j,k|

− |Xr
i,j,k −Xr

i−1,j,k||a

+ ||Xg
i,j−1,k −Xg

i,j,k|
− |Xr

i,j−1,k −Xr
i,j,k||a)

(7)

where Xr is the real CT volume of the spine, Xg is the
generated data of the spine, a is an integer greater than or
equal to 1. The loss function uses i, j and k to iterate over
the entire data by length, width, and height.

The differences exist between the real and generated spine
images, especially in the frequency domain. Narrowing the
frequency domain difference can improve spine image re-
construction quality. A focal frequency loss function [51]
is introduced, which allows the network to adaptively focus
on difficult-to-synthesize frequency components. This loss
function is complementary to the existing spatial loss and
provides a large resistance to the loss of important frequency
information due to the inherent bias of neural networks. We
modify it to make it capable of 3D data calculation as follows:

F (u, v, w) =

M−1∑
x=0

N−1∑
y=0

O−1∑
z=0

f(x, y, z)e−i2π(ux
M + vy

N +wz
O ) (8)

W (u, v, w) = |Fr(u, v, w)− Ff (u, v, w)|a (9)

LFFL3D =

1

MNO

M−1∑
u=0

N−1∑
v=0

O−1∑
w=0

W (u, v, w)|Fr(u, v, w)− Ff (u, v, w)|2

(10)

where f(x, y, z) is the pixel value of the spine data,
Fr(u, v, w) is the spatial frequency value at spectrum coor-
dinate (u, v, w) of the real data, Ff (u, v, w) means the fake
reconstruction result and a is the scaling factor for flexibility.
FFL3D is used to calculate the weighted average of frequency
distance between the real data and the fake reconstruction
result.

Since the learning process of 2D x-ray images to 3D CT
is a non-linear mapping, the generated 3D results should
be consistent with the semantic information provided by the
input 2D x-ray images. The learning process of 3DSRNet
is an adversarial process, where the discriminator D and
the generator G compete. To avoid vanishing gradient in
training stage, the mean squared error (MSE) loss function
is introduced. The loss function is defined as follows:

LGAN (G) =
1

2n

∑
∥ yn −G(xn) ∥2 (11)

where x is the input of 2D x-ray images, and y is the 3D CT
volume.

To optimize the final 3D reconstruction results, we ef-
fectively fuse all loss functions of the generator. The total
generator loss function is formulated as follows:

Ltotal(G) = w1LGAN (G)+w2LIGDL3D+w3LFFL3D (12)

where w1, w2 and w3 mean the weight factors controlling the
different generator loss functions. In this study, the values of
w1, w2 and w3 are 0.5, 0.25 and 0.25, respectively.

The discriminator loss function is formulated as follows:

LGAN (D) =

1

2n

∑
∥ D(y|x)− 1 ∥2 + 1

2n

∑
∥ D(G(x)|x) ∥2

(13)

IV. EXPERIMENTALS AND RESULTS

A. Experiments Settings

(a) (b)
Fig. 5. CT separation preprocessing. It can effectively remove the soft tissue
and preserve the skeletal tissue. (a) The original spine CT without separation
preprocessing. (b) The separation preprocessing effect of the spine CT.

1) Data: For the accurate CT, we introduce some public
datasets including the VerSe’20 [52], VerSe’19 [52], Meli-
hAslan [53], and BenMicrosoft [54]. A total of 729 spine
CT scans were selected from these datasets. Since CT and x-
ray data are difficult to obtain simultaneously in clinical, the
projection processing of real CT is used to obtain simulated
2D x-ray images. Digital Reconstructed Radiograph (DRR)
method [55] from the Insight Toolkit [56] is used to obtain
1458 simulated projection x-ray images. Each pair of orthog-
onal x-ray images and the corresponding CT serve as training
data for the spine reconstruction algorithm. We collect 585
sets of data for training, 72 sets of data for validating, and 72
sets of data for testing.

2) Metrics: The peak signal-to-noise ratio (PSNR) [57],
structural similarity index (SSIM) [58], Cosine Similarity
(CS), mean absolute error (MAE), mean squared error (MSE)
[59], and Learned Perceptual Image Patch Similarity (LPIPS)
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[60] are calculated to evaluate the reconstruction performance
of the model. PSNR is used to measure the difference between
two data and calculated as below:

MSE =
1

MNO

M,N,O∑
m=1,n=1,o=1

[Fm,n,o
real − Fm,n,o

fake ]
2 (14)

PSNR(Freal, Ffake) = 10× log10

(
MaxV alue2

MSE

)
(15)

where MSE means squared error of two data and MaxV alue
is the maximum value of the image pixel.

SSIM is used to measure the similarity of two data in
brightness, contrast, and structure. Its formula is defined
below:

SSIM(Freal, Ffake) =

(2µrealµfake + c1)(2τrealτfake + c2)

(µ2
real + µ2

fake + c1)(σ2
real + σ2

fake + c2)

(16)

where µ means average value, σ means standard deviation
value, τ means covariance value, and c means variables to
stabilize the division with a weak denominator.

CS measures the similarity between two data by calculating
the cosine value of the angle between them. The formula can
be defined as below:

CS(Freal, Ffake) = cos (θ)

=
Freal · Ffake

∥ Freal ∥ × ∥ Ffake ∥

=

n∑
i=1

F i
real × F i

fake√√√√ n∑
i=1

(F i
real)

2 ×

√√√√ n∑
i=1

(F i
fake)

2

(17)

where F i
real and F i

fake represent the components of data Freal

and Ffake, respectively.
LPIPS measures the similarity of image data by extracting

deep convolution features. Deep features outperform other
metrics on many datasets [60]. LPIPS obtains the distance
between reference and distorted patches x, x0 with network
F . The deep features ŷl,ŷl0 are extracted from layers L.
The activations channel-wise are scaled by the vector wl to
compute the l2 distance. Finally, LPIPS averages spatially and
sums channel-wise as below:

LPIPS(x, x0) =∑
l

1

HlWl

∑
h,w

∥ wl ⊙ (ŷlhw − ŷl0hw) ∥22
(18)

3) Implementation Details: Due to the use of different
image acquisition devices in different datasets, the image
pixel values at similar bone positions in different datasets
will be different. For this cross-dataset situation, our research
performs Gamma correction on the input image during data
preprocessing to automatically avoid the above problems. The
formulation of the Gamma correction is shown as follows:

Vout = AV γ
in (19)

γ =
log10 0.01

log10(m/255)
(20)

where Vout is the output result, Vin is the input image, A is a
constant, γ is the value of gamma, and m is the average value
of the processed image.

A CT separation preprocessing is employed to separate
skeletons from the original CT data for this study. Specifi-
cally, CT data contains many soft tissues without skeletons.
Because 3DSRNet is aimed at assisting skeletal diagnosis
and treatment, retaining only the skeletons in the CT data is
beneficial for 3DSRNet to complete accurate reconstruction. A
K-means clustering algorithm is used to complete the skeletal
separation preprocessing. A comparison example of separation
preprocessing results is shown in Fig.5. After the separation
preprocessing, DRR technology generates the orthographic
projection images from CT volumes.

All data is randomly divided into the training set, the
validation set, and the test set at 8:1:1. The projection images
and CT are resized to 128×128 and 128×128×128 pixels. All
experiments are implemented using PyTorch on one NVIDIA
3090 GPU. We train 3DSRNet for 200 epochs and validate it
every 10 epochs. In the training stage, the stochastic gradient
descent (SGD) optimizer with a weight decay of 0.001 and a
momentum of 0.9 is used to optimize all models. The batch-
size is 2 on GPU. The learning rate starts at 0.01 and reduces
by a factor of 10 after 80 and 140 epochs.

B. Evaluation on Spine Dataset

To validate the performance of 3DSRNet, four mainstream
algorithms are selected to implement the comparison exper-
iments, including PSR [34], SIT [36], X2CT [37], and ETE
[33]. PSR and SIT are based on a single x-ray as the input
data, while X2CT and ETE use orthogonal x-ray images as
the input data in the same way as our method.

1) Quantitative Results: Experiments were performed on
the spine dataset for all methods. According to the char-
acteristics of the 3D reconstruction task, we are committed
to fully concentrating the advantages of SRCT and SRTE
methods in the generator of 3DSRNet. The data in Table I
show that 3DSRNet achieves the best performance of 3D spine
reconstruction from 2D x-ray images in all evaluation metrics.
The reconstruction performance of 3DSRNet yielded PSNR of
45.4666 dB, SSIM of 0.8850, CS of 0.7662, MAE of 23.6696,
MSE of 9016.1044, and LPIPS of 0.0768 in the test dataset.
Experimental results show that 3DSRNet can reconstruct ex-
cellent 3D spine CT results to provide image assistance for
orthopedic surgeons during diagnosis. Furthermore, since our
algorithm has the most complex structure, FLOPs are the
largest compared to other algorithms. The performance metrics
and the runtime metric (FLOPs) of all methods are presented
in Table I.

Compared with X2CT and ETE, 3DSRNet can achieve
better results based on orthogonal x-ray images for all indica-
tors. The main architecture of 3DSRNet adopts a generative
adversarial network structure, which ensures the adaptability
of the reconstruction network to this cross-modal task. In
terms of spine reconstruction information extraction capability,
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(a) (b) (c) (d) (e) (f)
Fig. 6. 3D visualization results on spine dataset. These results demonstrate that 3DSRNet has good performance in 3D spine reconstruction. (a) represents
the ground truth. (b), (c), (d), (e), and (f) represent the visualization results obtained via 3DSRNet, PSR, SIT, X2CT, and ETE, respectively. The first row to
the fifth row respectively represents a 3D view, a partially enlarged 3D view, an axial view, a sagittal view, and a coronal view.

TABLE I
QUANTITATIVE RESULTS. THE QUANTITATIVE COMPARISON PERFORMANCE OF 3DSRNET AS SHOWN IN THE LAST ROW OF TABLE I. THE

PERFORMANCE OF THE METHOD IS POSITIVELY CORRELATED WITH THE METRICS OF PSNR, SSIM, AND CS, AND NEGATIVELY CORRELATED WITH THE
METRICS OF MAE, MSE, LPIPS AND FLOPS.

Method PSNR SSIM CS MAE MSE LPIPS FLOPs
PSR 35.2928 0.759 0.6203 37.2106 15509.27 0.2169 111.631G
SIT 33.2308 0.7669 0.581 37.9719 16118.3614 0.1541 123.674G

X2CT 43.699 0.8692 0.6966 27.1507 12251.6784 0.0948 623.345G
ETE 43.958 0.8546 0.6466 29.8947 14428.335 0.1229 208.175G

3DSRNet 45.4666 0.885 0.7662 23.6696 9016.1044 0.0768 785.979G

TABLE II
ABLATION EXPERIMENTS OF ALGORITHMS. THE ABLATION STUDY OF 3DSRNET FOR ALGORITHMIC MODULES. THE SYMBOL ’+’ AND ’-’ ARE USED

TO REPRESENT ADDING AND REMOVING.

ASPP SRCT SRTE PSNR SSIM CS MAE MSE LPIPS
+ + + 45.4666 0.885 0.7662 23.6696 9016.1044 0.0768
- + + 43.9712 0.87 0.7117 27.3234 12235.5622 0.1047
+ - + 42.8017 0.8522 0.6480 30.4998 14604.7407 0.1059
+ + - 43.3599 0.8594 0.6634 29.577 14501.7391 0.1095
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TABLE III
ABLATION EXPERIMENTS OF LOSS FUNCTIONS. THE ABLATION STUDY OF 3DSRNET FOR LOSS FUNCTION. THE SYMBOL ’+’ MEANS ADDING THIS

LOSS FUNCTION. THE SYMBOL ’-’ MEANS REMOVING THIS LOSS FUNCTION.

IGDL3D FFL3D PSNR SSIM CS MAE MSE LPIPS
+ + 45.4666 0.885 0.7662 23.6696 9016.1044 0.0768
- + 44.072 0.8642 0.6811 28.5959 13466.5542 0.0993
+ - 44.2018 0.8691 0.7068 27.9719 12194.5319 0.1031

(a) (b) (c) (d) (e) (f) (g) (h) (i)
Fig. 7. 3D visualization of the evaluation of algorithms. These comparison cases show that ASPP, SRCT, and SRTE can improve the reconstruction ability,
respectively. (a), (d), and (g) represent the ground truth of different original CT. (b), (e), and (h) represent 3DSRNet. (c), (f), and (i) represent the results of
removing ASPP, SRCT, and SRTE, respectively. The first row to the fifth row respectively represents a 3D view, a partially enlarged 3D view, an axial view,
a sagittal view, and a coronal view.

3DSRNet implements multi-scale feature extraction to im-
prove reconstruction accuracy, benefiting from the use of an
encoder-decoder generator network equipped with SRCT and
SRTE. Compared with PSR and SIT which use a single x-ray
image as model input, the reconstruction ability of 3DSRNet is
better due to exploiting more geometric constraint information
from orthogonal x-ray input images.

2) Qualitative Results: 3DSRNet provides 3D spine re-
construction results based on orthographic projection images.
We qualitatively evaluate the 3D spine reconstruction results
as shown in Fig.6, where visualization images are used to
show the difference between the proposed method and other
methods. Fig.6 (a) demonstrates the ground truth of the
experimental target. Fig.6 (b) is the result of our proposed
method. Fig.6 (c) to Fig.6 (f) are the results of comparison
methods. There are missed skeleton image details and false
skeleton structure information in the results of comparison
methods. To demonstrate the effect of spine reconstruction,
3D, axial, sagittal, and coronal views of the reconstruction
results are visualized. Areas with significant differences have
been marked with dashed lines.

Compared with other methods, 3DSRNet has better recon-
struction performance, as shown in Fig.6. For the dual-input
methods including X2CT and ETE, 3DSRNet can obtain a
more complete and flatter surface in terms of spine skeleton
details shown in the second row of Fig.6. For single-input
methods including PSR and SIT, 3DSRNet has apparent
advantages in visual performance, including sharpness and
detail integrity shown in the last three rows of Fig.6. Overall,
the reconstruction effect of the proposed method is the best
because it focuses on richer texture details and more intact
spine structure information.

C. Ablation Experiments

As mentioned above, some innovative components are uti-
lized including ASPP, SRCT, SRTE, IGDL3D, and FFL3D. To
validate the effectiveness of each component, we conduct a se-
ries of ablation experiments on 3DSRNet in different settings.
For better presentation, the ablation experiments are divided
into two categories, including the algorithm experiments and
the loss function experiments, as shown in Table II and Table
III, respectively.
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(a) (b) (c) (d) (e) (f)
Fig. 8. 3D visualization of the evaluation of loss functions. These comparison cases show that the loss function of IGDL3D and FFL3D can improve
reconstruction capabilities, respectively. (a) and (d) represent the ground truth. (b) and (e) represent 3DSRNet. (c) and (f) represent the results of removing
the IGDL3D and FFL3D, respectively. The first row to the fifth row respectively represents a 3D view, a partially enlarged 3D view, an axial view, a sagittal
view, and a coronal view.

1) Evaluation For Algorithmic Modules: We compare the
effects of ASPP, SRCT, and SRTE as shown in Table II and
Fig.7. By using ASPP, the CNN branch can use multiple
parallel atrous convolutional layers with different sampling
rates. Multi-scale spine information is extracted by using
convolution layers with various receptive fields. Compared
with 3DSRNet, if we remove ASPP, the performance is worse
by 3.4%, 1.72%, 7.66%, 15.44%, 35.71%, and 36.33% on
PSNR, SSIM, CS, MAE, MSE, and LPIPS, respectively. By
using SRCT, it can be observed that using the transformer
can reconstruct richer spine image details. It demonstrates
that the joint training of CNN and transformer can promote
the overall learning effect in the 3D reconstruction model.
Removing SRCT decreases performance by 5.86%, 3.71%,
15.43%, 28.86%, 6.2%, and 37.89% on PSNR, SSIM, CS,
MAE, MSE and LPIPS, respectively. By using SRTE, low-
level texture features can be extracted to generate 3D spine
results. It complements the generator’s extraction of textured
structures. Compared with 3DSRNet, removing SRTE can

reduce the performance by 4.63%, 2.94%, 13.42%, 24.96%,
60.84%, and 42.58% on PSNR, SSIM, CS, MAE, MSE, and
LPIPS, respectively.

2) Evaluation For Loss Function: We compare the loss
function effect of IGDL3D and FFL3D as shown in Table
III and Fig.8. The loss function of IGDL3D is used to
directly penalize the difference in image gradient predictions
in the generator to sharpen the generated results. Compared
with 3DSRNet, if the IGDL3D is removed, the performance
is worse by 3.07%, 2.35%, 11.11%, 20.81%, 49.36%, and
34.24% on PSNR, SSIM, CS, MAE, MSE, and LPIPS, respec-
tively. The loss function of FFL3D directly optimizes the 3D
spine reconstruction training stage in the frequency domain.
It adaptively focuses the model on frequency components to
improve the quality of the generator’s reconstruction results.
Compared with 3DSRNet, if the FFL3D is removed, the per-
formance is worse by 2.78%, 1.8%, 7.75%, 18.18%, 35.25%,
and 34.24% on PSNR, SSIM, CS, MAE, MSE, and LPIPS,
respectively.
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(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 9. 3D visualization results on the clinical data sample. The algorithm can reconstruct the rich bone structure and details of the spine. (a) and (b) represent
clinical spine x-rays. (c) and (d) represent the regions marked in yellow and used as input data for 3DSRNet. (e) represents a 3D view of the result. (f-h)
represent the results of an axial view, a sagittal view, and a coronal view.

D. Evaluation on Clinical Spine X-rays

In addition to experiments on the spine dataset, the exper-
iment on clinical spine x-ray sample is also performed. The
frontal and lateral images of real spine x-rays are shown in Fig.
9(a) and (b). Due to the large size of the clinical x-ray image,
a part of the image is intercepted as the input data of the algo-
rithm. Regions marked in yellow are resized to 128×128 pixels
and used as input data for 3DSRNet. Clinical x-rays contain
a large amount of non-skeletal image information, which is
meaningless for the 3D reconstruction of spine. The skeletal
separation is used to remove non-skeletal image information,
as shown in Fig. 9(c) and (d). The reconstructed 3D results
are shown in Fig. 9(e)-(h). Since the existing clinical x-ray
image is difficult to obtain the patient’s 3D CT reconstruction
data at the same time, the 3D spine reconstructed by the
method in this paper cannot be directly compared with the
real 3D CT reconstruction data. But in terms of the visibility
of the reconstruction result, the reconstruction result has rich
bone shape and details. In general, the algorithm proposed in
this paper can achieve 3D reconstruction of spinal bones, and
have a good prospect in clinical applications related to spine
orthopedics. In future work, we will focus on collecting 3D
CT data corresponding to clinical x-ray data to improve our
method.

V. CONCLUSIONS

This study proposed a 3DSRNet using 2D projection x-
ray images to reconstruct 3D spine CT based on deep learn-
ing. 3DSRNet can use some designs to capture rich feature
information based on the generative adversarial architecture.
Its generator integrates the benefits of many components,
including SRCT, SRTE, IGDL3D, and FFL3D. SRCT is used
to obtain rich information about the spine. There are properties
that CNN can effectively capture the local features of the
bone images and transformer can extract the global structural
relationships of the spine skeleton. These properties of CNN
and transformer can complement each other learnedly during
the training stage of SRCT. SRTE is devised to extract low-
level features of the spine surface textures. The texture presents
irregularities in the local area of the bone, but continuous
regularity in the overall spine bone. SRTE can integrate these
properties, which are useful for assisting 3D reconstruction
into the model. The IGDL3D and FFL3D compose the loss
function of 3DSRNet to obtain the spine reconstruction details

more effectively. The IGDL3D sharpens 3D reconstruction
predictions by directly penalizing differences in image gradient
predictions in the generator. FFL3D enables 3DSRNet to
optimize image 3D reconstruction directly in the frequency
domain.

Experimental results show that these designs can improve
the 3D spine reconstruction performance. The reconstruction
performance indicators of 3DSRNet achieve PSNR of 45.4666
dB, SSIM of 0.8850, CS of 0.7662, MAE of 23.6696, MSE
of 9016.1044, and LPIPS of 0.0768. Compared with many
mainstream algorithms, the proposed method exhibits a better
performance in the 3D reconstruction effect. Ablation exper-
iments show that 3DSRNet suffers performance degradation
in 3D reconstruction on experimental samples after removing
different designs. In the future, we hope to collect more
data to train the model to explore performance improvements.
Furthermore, we also hope that 3DSRNet will be evaluated
for application value in further clinical studies.
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