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Abstract

Multi-species diffusion/heterogeneous reaction coupled problem in porous media involving a bound-
ary layer problem is studied. The spectral approach developed in our previous work allows to derive
a macroscopic model in the high Damkdhler number regime combining homogenization technique
and spectral approach. Such a homogenized model cannot describe the perturbation at the ex-
ternal boundary where the chemical equilibrium is not necessarily satisfied. We construct herein
a modified model involving additional variables, which are rapidly-decaying functions, to capture
the complex physics in the boundary layer. Numerical simulations underline the accuracy of the
proposed correction in both steady and transient states.

Keywords: Homogenization, Diffusion /reaction problem, Spectral approach, Boundary layer

problem

1. Introduction

Reactive transport of multi-species in porous media, which is of major interest for many appli-
cations in numerous areas such as electrochemical systems, agronomy, geology, etc., has received
considerable attention from the modeling point of view. Macroscopic models involving effective co-
efficients can be rigorously derived from upscaling approaches [1, 2, 3, 4, 5, 6, 7, 8, 9]. A challenging

case refers to the predominant reaction situation when the medium exhibits a complex behavior

*Corresponding author
Email addresses: tien-dung.leQuniv-lorraine.fr (Tien Dung Le), christian.moyneQuniv-lorraine.fr
(Christian Moyne), mohamed-khaled.bourbatache@insa-rennes.fr (Mohamed Khaled Bourbatache),
olivier.milletQuniv-1lr.fr (Olivier Millet )

Preprint submitted to Advances in Water Resources July 3, 2023



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

and the effective coefficients in the macroscopic equations depend on reaction rates [1, 3, 10]. More
sophisticated models are required to accurately describe the non-equilibrium state at very short
times that are of the order of the characteristic reaction time [11, 12]. In spite of the difficulty,
macroscopic models were derived by using the periodic homogenization technique and a spectral
approach in our previous work |13, 14, 15|. However, the homogenization procedure imposes a
spatial periodicity condition at the boundary of the unit cell. In this framework, the physics inside
the porous domain can be accurately captured by the macroscopic models while at the outer surface
of the domain, periodicity conditions cannot be respected. This leads to a boundary layer problem
depending on the boundary condition type.

The boundary layer problems have been widely studied for elastic periodic composites [16, 17],
for elastic beams [18], for elastic shells [19] or in a more general way in [20, 21]. Matine et al.
[22, 23| proposed to extend this approach for thermal problem in periodic structures, to take into
account the edge effects. However, to the best of our knowledge there is practically no work in the
literature addressing the boundary layer problem for the coupling of predominating reaction and
diffusion of multi-species in porous media.

In a sequence of papers, the coupling of diffusion/reaction of two species with different molecular
diffusion coefficients has been studied combining periodic homogenization technique with a spectral
approach [13, 14, 15, 24]. Concentrations of the initial pore-scale problem are expanded into a series
development related to a spectral problem defined in a unit cell, yielding a new local problem to
be homogenized. This approach is able to capture the complex coupling at short times when the
chemical equilibrium is not reached. However, such a macroscopic model cannot provide information
about the boundary layer that develops in the vicinity of the outer boundary due to the boundary
conditions. In this work, corrections are added to the macroscopic model to take into account
the boundary conditions at the outer boundary of the domain. In steady state, terms of the first
order need to be corrected by introducing new variables whereas in transient regime, corrections
at lower order are added to capture the perturbation in the boundary layer at short times. Such a
modification implies new closure variables that must be solved over several unit cells from the edge
of the domain. For larger distances, these decreasing functions vanish.

The paper is organized as follows. In Section 2, the main result of the upscaling procedure based
on the spectral approach and homogenization technique for high Damkohler number is recalled.

Section 3 is devoted to the development of the modified model in order to address the boundary layer
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problem in both steady and transient regimes. Numerical simulations are performed in Section 4 to
validate the proposed model and to underline the importance of the correction terms. Conclusions

are drawn in Section 5.

2. Macroscopic model for high Damkéhler number: a recall

In this section, the main steps and results of the homogenization procedure to derive the macro-
scopic equations for the diffusion-reaction problem, developed in a previous work [14] are recalled.
To simplify the notation, the superscript * indicating dimensional quantities in the preceding ref-
erence is omitted.

A porous medium occupying a macroscopic domain €2 with a characteristic length L, is composed
of an immobile fluid phase €2y and of a rigid solid phase Q, with a solid-fluid interface I'y,. The
medium is constituted of the repetition of a periodic elementary cell Y = Yy UY, of characteristic
length [, composed of the fluid phase Y; and the solid phase Y, together with the solid-fluid interface
0Yys. The boundary 0Y = 0Y;, U0Y, is constituted of the fluid-solid interface 0Y}, assumed to be
impervious and of the external interface 0Y, = 0Y,. U 0Y. separating two juxtaposed elementary
cells. The macroscopic and microscopic spatial coordinates are x = (z1,z2,23) and y = (y1, Y2, y3)
respectively. The scale separation (I < L) allows the introduction of the small parameter e = [/L.

Let ¢; and ¢o be the concentrations of species A and B respectively. The transport is ruled by a
Fickian process. On the fluid-solid interface Iy, linear chemical reactions exchange species A and

B. The microscopic diffusion /reaction equations at the pore-scale are written as

8—(;17V~(D1Vc1) =0 in Q
C2 .
2 _ v .- (D = Q
8t v ( QVCQ) 0 mn f (1)
—D1Vcl Nfs = k101 — kQCQ at Ffs
7D2VCQ ‘Nfg = kQCQ — klcl at Ffs

where D; and D> denote the diffusion coefficients of A and B respectively, k1 and ko the reaction
rates. These coefficients have constant values during the process. ny, is the normal unit vector at
the solid/fluid interface pointing out of the fluid phase. The microscopic problem is completed by
the initial conditions for given values of ¢1(t = 0) and c3(¢ = 0) and the boundary conditions at
the outer edges of the domain. In this work, we only consider the Dirichlet conditions in which the

concentrations are given at the edges.
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The initial model is transformed into a new problem associated with the following periodic

spectral problem defined on the periodic unit cell Y

=V (D1VYin) = \tin in Y;

=V (D2Vipzn) = Ath2n in Yy o)
—D1 Vi, -nps = kithrn —kotha, at 0Yp,

~DoVipoy -nps = kothap —k1th1,  at OYys

where 91 ,,(y) and 2, (y) represent the succesive eigenfunctions sharing the same positive eigen-
value \,, ordered in ascending order with n € N. The eigenfunctions ¥4 ,(y) and 12 ,,(y) are defined

within a same multiplicative constant, which can be determined according to

Fr (020 4+ ks (02,0 =k + ks (3)

where ( )f denotes the volume average over the fluid phase.

For n = 0, Ap = 0 and the two eigenfunctions are constant satisfying the condition ki11,0 —

k k
tro=/2, wz,o:\/g @)

<7/’1,n>f + <w2,n>f =0 (5)

kota o = 0. They are given by
Finally note that for n > 1

resulting from the compatibility condition of Egs. (2).

¢; (i € {1,2}) are then sought in an expansion related to the spectral problem (2) as follows

ci(t,x,y) = _tin(y) exp(=Ant) vin(t,x,y) (6)

n=0
with new variables v; ,, depending on time and position.

Let define the macroscopic Damkohler number Dajy, as the ratio of the macroscopic diffusion
time to the reaction one

krL

D (7)

DaL =

where k, and D, denote reference reaction rate and diffusion coefficient. In [14], the Damkohler

number appears naturally through the dimensional analysis which has been skipped in this summary
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of the results. The reference time is chosen as the macroscopic diffusion time ¢, = L?/D,. The
reader can refer to [14] for more details on the procedure.

It has been shown in [14] that for small Damkoéhler number of order O(e), a classical homog-
enization procedure can correctly predict the macroscopic laws. However, for higher Damkdhler
number of order O(e%) or O(e~1), special development is needed to precisely predict the behavior
of diffusion/reaction mechanism for short time [14]. It should be noted that a slight difference
between the two cases O(e?) and O(e71) comes from the closure problem in solid/fluid interface
condition. In this work, we deal with the most interesting case of high Damkdhler number with
Day = O(¢7'). By inserting (6) in the initial problem (1) and making use of the definition (7),

performing a dimensional analysis, the e-microscopic model for v; ,, in dimensional space reads as

©
w%,n ag}" = V. (51,nvvf,,>1> in Yf
90t°) _
8t = e (Paveid) ©

7517nvv§2 . Ilfs
—52)nV’U£?2L . Ilfs

e ka1 1/12,n(vfy)b - Ué,szl) at OYys
571]€1 wl,n 7/’2,n(U§i)l y vga'/)L)

with 151,n = Dlwin and 52,n = Dzwgvn. By collecting the terms in the different powers of €, one

leads to the following results.

e Slow variables: At the leading order, the solution of v is ) (t,x,y) = vé%(t,& y) =

1,n
e (t,x).

e Fluctuation: the solution for vgli and vé,l,)L are sought in the following form, to within one

additive constant @(11) depending on ¢ and x!

ol = xaaly) Veu () + 20 (1) 9)
o = Xen() Vart (1) + 50 (1, x)

IThis necessary condition comes from the right hand side of the associated boundary conditions in Egs. (8)
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where the vectors x; ,, and X, satisfy the closure problem?

= Y, [P (T4 Vyx.,)] Yy

( )
Yy [Don (T+Vyxa,)]

( )

( )

(10)

k21/11 n¥2n (X1,n — Xon at OYs

s

0
0
~Diang, - (I+Vyxi,)
) = E1riaten (Xom — Xin

_ﬁQ,nnfs . (I + VyXZ,n

The particular case n = 0 corresponds to the eigenvalue A\g = 0 and to the eigenfunctions (4).

In this case x; o = X2,0 = x and the local problem (10) reduces to the standard closure problem

Vix = 0 inYy
yyx f (11)
(I+Vyx) ng, = 0 at 0y,
This leads to
v = v = v = X(y) - Vg (t,%) +96" (8, %) (12)
e Macroscopic equation: the macroscopic problem for v ( ) is derived as
)
o = 9, (D Vo) (13)
ot ’
where the effective diffusion tensor D, , is defined by
k T ! k’z ~ T f
L (Prn (T (Vuxa) ")) + kit ko (Do (1 (Vixa) ")) (14)
For n = 0, the effective tensor is given by
k1D + koD
D, = wg + (Vyx)T)f (15)
k14 ko

e Macroscopic equations for the concentrations: As discussed in [14], only the two first

eigenvalues \g = 0 and A; with their corresponding eigenfunctions are considered. In the asymptotic

2Here, rather than using the tensorial definition in [14] in which a transpose operator is needed, the index notation

for the gradient of a vector defined in [25] is adopted.



development (6), the higher order terms can be ignored due to the exponential decay in time. The

averaged concentrations at the leading order are given by

(@™ =10 v6” + (¥1.1)" exp(—=Ait) v

(") = a0 0" + (2.0) exp(=at) 0" (16)
Omitting for the sake of simplicity the subscript (0) related to the scale order, using (13) for n =0

and n = 1, and considering the time derivative of (16) and the compatibility condition (5) for n =1

result in the following mass conservation equations at the leading order®:

8<Cl>f k)le 1+ kzDv ,0 f
o Ve k1 +ha Valen , ,
v, (kz D, 1) -Vx(02>f) +>\1k1(01> — ka(c2) -0
kl + ]€2 k1 + ko
Nl o (Do —Duy) o (e1)! ()
at v b + ko o ; ;
koD 1+ k1Dy o f> ki(er) — ka(c2)
_v, . (2Pt TMBPeo g et mRele)
( ko + (ea) Ykt ks

Given the effective coefficient tensors D, o and D, 1, and the initial and boundary conditions, the

coupled diffusion-reaction Eqgs. (17) can be solved to compute the concentration profiles.

3. Boundary layer problem

The macroscopic model based on the homogenization technique relies on the periodic condition
hypothesis. As a consequence, it cannot capture the boundary layer problem developed in the
vicinity of the edge of the domain when an outer boundary condition of Dirichlet type is imposed.
In this section, corrections are made to precisely take into account this boundary layer in the
upscaled problem.

Let consider a parallelepiped rectangular porous medium with macro and microscopic coor-

dinates {z1,7o,73} and {y1,y2,y3} respectively?. At the inlet boundary z; = 0 (and y; = 0),

3Egs. (17) are dimensional equations corresponding to Eqs. (49) of [14], where the stars have been omitted.
41t should be noted that the semi-infinite domain x1 € [0, 0], x2, 3 € [—00, 00| can be reduced to a parallelepiped

when the periodic conditions in z2 and x3 directions are applied and a finite region in the vicinity of the boundary

is considered for the boundary layer problem



Dirichlet conditions for the concentrations, ¢; = ¢1p and ¢; = cop are imposed. The most inter-
esting case is when kicip # kaocop corresponding to a non-equilibrium situation. This leads to
a thin boundary layer for the concentration profiles in the vicinity of the interface 1 = 0. Our
main objective is to incorporate this layer in the upscaled model. To accomplish this task, we first
consider the development (6) with the two first orders in € and the two first eigenvalues together

with the corresponding eigenfunctions:

\/E( Y+ 0) + () exp(-Aut) (v + o)
o = \/g( O 4yt ) + ¥2,1(y) exp(—A1t) (Ul (11))

It should be noted that the formal parameter € can be omitted for the calculation of the concentra-

¢

(18)

tions. This is a quasi-exact solution in the domain, except for the boundary layer in the vicinity of

the interface where boundary conditions should be imposed for the variable véo)

in order to solve
the problem (13). Two distinct problems related to the permanent and transient regimes need to

be considered.

3.1. Steady state

In the steady state when ¢ — oo, only the first order variable v(()o) and second order variable
vé”, both related to the zero eigenvalue, play a role in the boundary layer. To take into account
the boundary layer, the expansion of the concentrations needs to be improved in the sense of
[20]. Considering Dirichlet conditions, since two boundary values ¢;p and cop are given for the

(0)

concentrations and only one variable vy’ is involved at the interface, it is necessary to introduce

new boundary variables v\, (x,y) and u{}); (x,y) at order O (c°) and vo %1, at order O (1) as

k
= 1?2 ( (0 +v(1> S%L) + ugogL
V (19)
o = Bl olh) ol
2
It should be underlined that the boundary layer problem needs to be solved in a reduced fluid

domain Y; (with a corresponding solid/fluid interface BY;S) composed of the infinite repetition of

the unit cell Y in the direction Oy; perpendicular to the edge.



8.1.1. Order O(£%)
Inserting (19) in the initial problem (1) in steady state, the problem for ug , and ugg , in the

boundary layer at order O@(¢~2) in volume and O(¢~!) at the interface reads as

0 .
0 = 9, (Piv,ulf),) ]
0 = V,- (D2Vy“$3>L) (20)
*DlvyugL ‘nfs = kl“gL - kng(gL on OY;S
_D2Vy“ggL ‘nfs = k2“g2L - klu(l(EL
ug%) 1, and ugg ;, are periodic in y, and y3 and satisfy the following boundary conditions
k
m=0  ap =,/ 2vp +uihn=0)
1
k1 (o 0)
C2D = EUOD) + ugBL(yl =0) (21)
v = 00 uyL (41) = 0

“(2(2L(?Jl) —0

where U(()og is the unknown Dirichlet condition value of véo) at y3 = 0. The problem (20) can be

transformed by introducing the auxiliary variables

s = Diuypy + Dauyyy

(0) (0) (0)
dpr = kiujg, —kausypy

(22)

Inserting the above definitions in (20), the problems for sg))L and dg)L are separate and given by

0 = Ays' in v/

0 = AydeB(’))L
Vs npe = 0 on 9Y}, (23)
Vg = (g ) db)

sg)L and dg)L are also periodic in yo and ys. In addition, by using the definitions (22) of sgz and
dg’)/): in (21), one obtains the following boundary conditions
k1Da + koD N0

/kle 0D

y1=0 s%’i = Dicip + Dacap —

dg’i =dp = kicip — kacap
(24)

Y1 — 0 SSBO)L(ZA) —0

) (1) > 0
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In steady state, the solution of the problem (23) for sgz is a constant equal to 0 due to the boundary

(0)
0

condition (24) at y; — co. From (24), the Dirichlet condition for vy’ at y; = 0 reads as

O _ % Dicip + Dacap 95
op = VI D, Dy (%)

so that at the leading order, the boundary values of the concentrations imposed at z; = 0 to

calculate the solution of the inner problem (17) are given by

O \/EU(O) -k Dicip + Dacap

1D oy LOD 2Dy + kD1 26)
RON \/Ev(o) ok Dicip + Dacap

b ko P " k1D + kyDy

Inserting (25) into (21) gives the boundary values for u%)L and USEL

W g —0) = p,FcD —kacp
1BL(1 > }1Dy + ko Dy (27)
(0) _ _ kacop — kicip

uypp (1 =0) =

! k1Ds + koD

It should be noted that the problem for ngL in (23) and (24) is an exponential decay problem-type
involving a thin boundary layer affected by this correction.

To summarize, in steady state, at the order O(¢°), to capture the boundary layer problem when
the Dirichlet conditions for the concentrations do not verify the equilibrium condition, the problems

for vém (Eq. (13) for n = 0) and for U%)L and ”gL (Eq. (20)) must be solved with the boundary

values for véo), ug(g ;, and ugg . given by (25) and (27) respectively. The concentrations c¢; and c;

must be adjusted by a thin boundary layer involving ui(g ;, and u(;g L

8.1.2. Order O(gt)
This correction comes from the fact that in the concentrations given by (18), the term v((,l) is not

uniform in space at the boundary y; = 0. Similarly to the expression (12) for vél), the boundary

correction v(()_’l])gL is sought in the form

1 0
o'y = w- Vol (28)
The vector w periodic in y> and y3 must satisfy the closure

2 _ A
VoW = 0 in Yf

(29)
-Vyw-n = 0 onanTS

10
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At the boundary y; = 0 in order to satisfy the boundary condition v(()l) + vé’lg 1, = 0, we impose

wH+x=0 (30)

where x is the solution of the closure problem (11). In the direction y; of unit vector e, for

y1 — 00, a homogeneous Neuman condition is imposed
Vyw-e =0 (31)

The vector w will reach a constant value at large value of y; resulting from the averaging of the
w = —x values at the interface y; = 0. As this constant value must be 0, the indetermination of
the x problem (11) is exploited subtracting this value from w °.

In the particular case of a symmetrical unit cell, in the frame of the symmetry axes centered on
the cell, imposing a null volume average ensures the unicity of )x where the components x; are odd
relative to y; (and even relative to the other coordinates y;;). Therefore, if the external surface
of the medium coincides with the surface of the unit cell Y of normal ey, x; is null due to the
combination of oddness and periodicity. Consequently, w; = 0 on the surface 3, = 0 of Y. Hence
wy is identically null in Y; . In conclusion, if the gradient V,v(()o) is parallel to e;, the correction

v((f];L is null over Y; .

3.2. Transient state

In the transient regime, the terms at order O(e) in (18) must be corrected to better describe the
complex unsteady non-equilibrium effect in the boundary layer. It is important to note that due
to the large Damkohler number, the physical coupling is affected by the boundary condition only

for short times. Beyond this time, the steady state is established. The O(g%)-corrective terms for

the two concentrations uﬂ; ;, and ug,)}g ;, are now transient. We also introduce the O(e)-corrective

terms ”§,11)BL and vé?l)BL into the expression of the concentrations (18) as

k

=y k% (U(()O) + U(()l) + U((),ll)3L> + “%)L +1,1(y) exp(—=Ait) (Ug}) + U§11) + ’USI)BL) (32)
k

o = T R 4 ) s+ a0 (o0 8 ol )

5We recall that the boundary conditions are imposed for ¢; and c2 at the main order, that implies according to

(19) that vél) + vé%L = 0 at order O ().

11



8.2.1. Order O(£%)

Let define the characteristic short time 7 related to the macroscopic time ¢ by 7 = £~2¢. The

transient problem for ug ; and ugg 1, depending on y then reads as

duip, O\ iyt

? = Vy . (DIVyUIBL) m Yf

oull

% = V- (D2Vy“g1]B)L) (33)
fDlvyugL ‘np, = klugL — kzug(gL on BY;S
_D2Vy“g}9)L ‘N = k2“g1)9)L - kl“%L

where ug ; and ué(g ;, are periodic in yo and y3 and satisfy the boundary conditions

k
=0 cap= 1/]??0(()(3 S o) + Vi1, o exp(=Ait)oi” (6,%) (1 0)

kl 0 0 0
C2D = \/ EvéD) + ué};L(M:O) + ¢271(y1:o) eXp(4/\1t)U§ )(t7x)(y1:0)

1= 00wl P, (y1) =0

0
uéEz’L(yl) —0

0 0
t=0 uggL:uég’L:O

(34)

To solve the boundary problem and the upscaled model, the initial and boundary conditions
for v(()o), v@, ugL and uggL must be specified. The boundary values of v(()o), u(l(gL and USB)L

0)
can

should verify the steady state being given by (25) and (27). The boundary condition for vg
be legitimately adopted as vﬁo)(yl =0)=0.

For the initial condition, owing to the compatibility condition (5) for n = 1, from (16) we obtain

iﬂ (1) (6 = 0,50 + (") (¢ = 0,%))

k(e (8 = 0,%) — ka(cs”)T (¢ = 0,%)
(W1, (k1 + k2)

(35)

It is legitimate to adopt that for 7 = 0, no correction is needed leading to u(f};L(T = 0,y) =

ugL T=0,y)=0.

8.2.2. Order O(gh)

We now construct the closure problem for the O(el)-corrective terms. First note that the steady

state problem for U((]}])BL remains unchanged. The problem for U§,11>BL and U;,ll)BL to correct the terms

vﬁ and véll) corresponding to the first non zero eigenvalue must be a transient problem. At short

12



202 times, inserting (32) in the initial problem (1) for ¢; and cg, the transient problem of v&)BL and

203 vé?BL has the same form as the problem of vﬁ and 1}5712 given by Eq. (8) written in y coordinates
204 asﬁ
8UﬁBL ~ .
d’%,l ’7_ = V- (Dl-,lvy”&)BL> mn YfT
avzlfBL ~ (1)
V34 éT = V- (Dllvy”z,mL) (36)
B ) — o oyt
11Vyvy ipy, s fs = k2t ¢2,1(01$13L ”2,1BL) On Org,
_D2,1Vy“g;BL ‘nps = kit ¢2,1(U§1>BL - U;,IEBL)
205 Similar to the solution (9) for oY) and 0§, the solution of o), and v{!);, is sought in the
1,1 2,15 1,1BL 2,1BL g
206 form
1 0
e = Q) Vo) -
1 0
vé,l)BL = Coly,7)- Vz“% )(X»t)
207 Inserting (37) into (36), noting that the slow variable Ugo) (x,t) is independent on the short
20 characteristic time 7, gives rise to the local unsteady problem of the vectors ¢; and ¢,
0 ~ .
1/’%,1;71 = Vy- (DLlVyCl) 1 Y;
¢ >
w%,laif = Vy : (D271Vy42> (38)
~Diang. - Vil = katna (¢, —Cy) on Y],
—Daangs - Vyly = kiprav21(C —¢1)
200 complemented by the boundary condition at y; =0
+¢ = 0
X1,1 ¢y (39)
X21tC = 0

210 where X ; and X5 ; are solution of (10) for n = 1. This condition ensures that at the boundary,
2 the terms at order O(e) vanish so that only the terms at O(e®) are considered for the boundary
212 values.

213 Given the solutions of the first order variables v[()o) and v}o) and by solving the closure problems

a1a (29) and (38), the O(el)-correction terms v(()yll)gL, U&)BL and véﬁBL can be computed.

6Starting again from Eq. (8) with the scaling 7 = ¢t on time, we would obtain (36) at order O (g).
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4. Numerical simulations

This section is devoted to the numerical validation of the proposed corrections to the upscaled
model by considering the boundary layer either in steady state or in transient regime. For this
purpose, a comparison between the numerical simulation of the corrected upscaled model and a
direct numerical simulation of the Pore Scale Model (PSM) will be performed.

A porous medium of size L x [ is constituted of N elementary cells of size [, composed of a
solid circular inclusion of radius R located at the center of each unit cell. The radius is constrained
by the porosity ¢. The corresponding effective medium for the simulations of the macroscopic

equations is of the same size (see Fig. 1). At the inlet 27 = 0, Dirichlet conditions are applied

Y2 Pore scale model
o[o[o[e[e[e|0]0o|0[e|0|0|0/0|0[0][0]0[0]0
L=NI""

~

Inlet
! Y2 Homogenized model Outlet
£
L=NI""

Figure 1: Porous medium and homogenized medium used in the numerical simulation.

for the concentrations ¢; = ¢1p and ¢ = cap. A non-equilibrium condition at the boundary
dp = kicip — kecap # 0 is studied. At the outlet z; = L, a zero value is imposed for the
concentrations. In addition, a periodicity condition is considered for the top and bottom boundaries.
The values of the physical parameters used are shown in Table 1. Note that the microscopic

Damkohler numbers that constrain the values of the reaction rates k1 and ko are now defined as

kil kol  Daja
Da; = — Day = — = 4
ay D, and ag Dy 3 (40)

with the ratios o = ko /k1 and 8 = Dy/D;.
The numerical study is carried out using COMSOL Multiphysics software based on the finite

element method.

4.1. Numerical results in steady state

In steady state as t — oo, the corrections for the concentrations ¢; and co are given by (19)
with additional variables ug%), L, and ugg 1, (recall that as mentioned in §3.1.2 for the symmetric cell

considered here the corrective term v(()’l})_cg 1, is identically zero). First, the macroscopic variable v(()o),

14



l N 2 Dl D2 ﬂ Da1 k:l « kg Da2 C1D Ca2D
0.01 20 0.8 1 5D1 2 100 DalDl/l 2 ak1 Dala/,B 1 C1D

Table 1: Parameters used in simulations.

solution of the homogenized diffusion problem (13) in steady state for n = 0 with the homogenized
diffusion tensor given by (15), is computed in the effective medium. A Dirichlet boundary condition

(25) is applied at the inlet whereas v(()o) = 0 is imposed at the outlet. If the concentrations values

imposed at the interface are ¢c;p = cop = 1, the imposed value for v(()o) corresponds to to c§°> (x1 =
0) = 1.5 and c(QO)(zl = 0) = 0.75. Secondly, given the field of véo), the variable v(()l) is determined
from the solution (9) for n =0

/uél) =x- VI/U(()O> (41)
where x is solution of the closure problem (11) solved numerically on the unit cell.

Finally, the correction variables ug 1, and u(;g » which are solutions of the local problem (20)
with the boundary conditions at the inlet given by (27) and a zero-value condition far from the
inlet, are solved in the microscopic pore-geometry for at least several unit cells from the inlet due
to the exponential-decay behavior of these functions. This point will be proved in the numerical

results in the sequel.

Let define the ys-average operator of a function f as

l
(Fva = % /0 fdys (42)

Figure 2(a) displays the variation of the yo-averaged variables (up L>y2 and (udp L>y2 with respect
to the position x1/L. We can observe that the correction u{z; (respectively u9pz;) decreases
(respectively increases) rapidly and decays towards zero after several unit cells in the vicinity of the
inlet. Thus, this correction only affects a thin layer (boundary layer) from the edge whose thickness
depends on the Damkéhler numbers. The variation of the difference (d% L>y2 with respect to z1/L
is plotted in Figure 2(b). It is clearly observed that a non-equilibrium state where <d% L>y2 #0is
established in a thin boundary layer.
: ; 0 @ 0 (0) : (O }
Given the solutions for vy, vy ’, u;p, and uyp;, knowing that vy 5, = 0, the yp-averaged

concentrations (c;),, of the corrected model can be computed from (19). In order to compare

these results with the solution of the original model, the non-corrected homogenized model (HM)

15
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Figure 2: Variation of (a): <u(1)BL>y2 and <ugBL>y2 and (b): (d%L>y2 versus z1/L for Da; = 100.

given by the system (17) is solved in the effective porous media. To do that, we first compute the
eigenvalue \; and the eigenfunctions v 1 and 5 ; from the spectral problem (2) for n = 1. Given
the eigenfunctions, the closure problem (10) for x; ; and x5 ; is solved in the unit cell to compute
the effective coefficient D, ; from (14) for n = 1. Moreover, the closure problem for x in (11) is
purely geometric and is solved in the unit cell to give the effective tensor D, o from (15).

To validate the proposed corrections in steady state, a direct numerical simulation of the pore-
scale model (PSM) given in Eq. (1) is performed with the pore-scale geometry of Figure 1 to obtain
the concentration fields which are averaged over the yo direction. Figure 3 displays the ys-averaged
concentration profiles of (c1),, and (), obtained from the corrected model (continuous line), the
original HM without correction (dotted line) and the PSM (line-marker). An excellent agreement
between the corrected model and the PSM is observed, which satisfactorily validates the proposed
model. The original HM solution fails to capture the complex physics in the boundary layer and
leads to an inaccurate prediction of the concentration fields in the entire domain. We can also
observe that (c1),, (respectively (c2),,) increases (respectively decreases) quickly in the boundary

layer to attain a transition point delimiting the boundary zone.
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ks (0) (1) (0)
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0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0
Xl/L

Figure 3: yz-averaged concentrations versus z1/L for Da; = 100 obtained by the corrected model (line), the original

HM (dotted line) and the PSM (line-marker).

4.2. Numerical results in transient regime

The corrected solution for the concentrations involving additional variables at order O(e!) in
transient regime is given by Eq. (32). To compute the concentrations, first we solve the transient
problems for the first-order variables véo) and v§°) given by (13) with the initial conditions (35). In
addition, the Dirichlet boundary condition for 'u(()o) (25) is imposed at the inlet and v(()o) =0 at the
outlet whereas for vf’), the zero value is imposed on both boundaries. Given the fields of v(()o) and
v§0), the O(e!)-variables vél), vﬂ) and véll) can be computed from the solution (9).

The first-order corrections ug% ;, and ué?j)g ;, for the unsteady state in (33) can be solved on
several unit cells adjacent to the boundary with a boundary condition similar to that given in the
steady state and with a zero initial value. To compute the O(g!)-correction variables, as v(()}])BL =
accounting for the symmetry of the elementary cell considered (see section 3.1.2), for determining
v&)BL and vé}fBL given by (37), one has to solve the unsteady closure problem (38) for ¢, and ¢,

with the corresponding boundary condition (39).

17



In order to validate the proposed corrected model, a direct numerical simulation of the PSM
(Eq. 1) is numerically solved in the pore-scale geometry in transient regime. Initial values of the
concentrations are imposed as ¢;(t = 0) = co(t = 0) = 0.1, which corresponds to a non-equilibrium
initial state. Parameters used in the simulation are given in Table 1. Moreover, macroscopic
equations without correction (17) are also numerically solved in the same geometry.

Figure 4 shows the variation of the yp-averaged concentrations (c1)y, and (cz)y, with time at
different positions x; = [I/4,2l, 3], obtained from the corrected model, the original homogenized
model (HM) and the direct numerical simulation of the pore-scale model (PSM). Excellent agree-
ment is obtained between the PSM and the corrected model for the three observation points located
at different x; positions, which satisfactorily validates the proposed transient model. At very short
times when the local chemical reaction dominates the transport mechanism and the boundary layer
is located very close to the surface, all three models predict the same results at the observation
points. However, for longer times, when the boundary layer propagates through the domain, a
difference between the original HM and the PSM appears and this is all the earlier as the position

of the point is close to the surface at the left boundary.
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(a) (c1)y, versus time. (b) (c2)y, versus time.
Figure 4: Concentration variation of (a) (c1)y, and (b) (e2)y, with time for different positions =1 = [l/4, 2, 3],

obtained from the corrected model (dashed line-marker), PSM (line) and the original HM (dotted line-marker).

Figures 5 and 6 display the ys-averaged concentration profiles of (c1),, and (cz),, with respect to
21/L obtained from the three models at different times ¢. Small fluctuations in the concentrations
obtained by the corrected model are observed at the beginning of the process due to the periodic
variation of the eigenfunctions, which vanish with time. Again, the corrected model is in very good
agreement with the PSM while the original HM fails to reproduce the boundary layer behavior
correctly. As a result, this error propagates with time away from the boundary, leading to inaccurate

prediction of concentration profiles.
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Figure 5: Concentration (c1)y, versus z1/L for different times.
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Finally to quantify the role of each term in the solution (32), Figure 7a shows the profiles of the

terms corresponding to n = 0 at very short times. The correction ugoj):e ;, tends towards zero rapidly

from the boundary as shown previously and dominates the correction vé% 1» which is of order O(e)
in the general case and vanishes for symmetric elementary cells, which is the case here. Far from
the boundary, only the first-order variable véo) differs significantly from zero. In Figure 7b, the
terms corresponding to n = 1 are plotted. The fluctuations are due to the periodic solution of the

eigenfunction % ;1. Due to exponential decay, the terms disappear over time. We observe that the

time-dependent correction terms at this order are very small and can be neglected.

— ) E(d") — EW) — uf}
1.50 t=107° t=10" t=10""
0.2 0.2 0.2
0.1 0.1 0.1
1.00 0.0 0.0 0.0
0.75 —0.1 0.1 —0.1
0.50 —0. —0.2 —0.
7 $00 005 010 0.00 005 0.10 $00 005010
0.25
0.00 l ) A
—0.25
—0.50
000 02 050 075 100 000 025 050 075 100 000 025 050 075 100
/L zy/L /L
(a)
— puen-x) (o) — duep=xn) (o) — e (of] )
0.04
) 0.02 ,7
t=10"" t=10"2 0
0.02 0.02 /\ t=10
0.00
000 e v _+ MWVWWWWWWWWAWWWWWIYWY
—0.02 —0.02
—0.02 Fooo 0.025 0,050 o0 0.0 0050 0,005+
—0.04 0.0001
~0.005
—0.06
o 00960 005 0.10
000 02 050 075 100 000 025 050 075 100 000 025 050 075 100
/L xy/L a1/L
(b)

Figure 7: Corrective term profiles for different times.
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5. Conclusion

The boundary layer problem for the coupled diffusion/reaction process for high Damkohler
number in porous media has been studied. The macroscopic mass conservation law derived from
the homogenization technique and based on a spectral approach represents a quasi-exact solution
within the domain but fails to describe the physics in a thin layer near the surface when a non-
equilibrium Dirichlet boundary condition is imposed. In this context, corrective terms have to be
added to the concentrations for both steady state and transient regime.

In steady state, two corrective functions are introduced to adjust the first order variable corre-
sponding to the null eigenvalue to capture the non-equilibrium state in the boundary layer. These
terms decay exponentially from the boundary and need to be solved only on a few unit cells adjacent
to the boundary. Numerical simulations prove that this correction is in excellent agreement with
the direct numerical simulation of the pore-scale model.

In transient regime, the O(e)-variables need to be corrected with additional terms whose solu-

tions involve new closure problems. Numerical results show a small contribution of these terms.
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Boundary layer problem of diffusion/reaction process in porous media is studied
Macro-model derived from homogenization technique and spectral approach is recalled
Corrective terms are introduced to modify the concentration’s expansion

These terms decay rapidly from the boundary and are solved on several unit cells
Numerical simulations highlight the role of the corrective terms in boundary layer
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