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Abstract

Multi-species di�usion/heterogeneous reaction coupled problem in porous media involving a bound-

ary layer problem is studied. The spectral approach developed in our previous work allows to derive

a macroscopic model in the high Damköhler number regime combining homogenization technique

and spectral approach. Such a homogenized model cannot describe the perturbation at the ex-

ternal boundary where the chemical equilibrium is not necessarily satis�ed. We construct herein

a modi�ed model involving additional variables, which are rapidly-decaying functions, to capture

the complex physics in the boundary layer. Numerical simulations underline the accuracy of the

proposed correction in both steady and transient states.

Keywords: Homogenization, Di�usion/reaction problem, Spectral approach, Boundary layer

problem

1. Introduction1

Reactive transport of multi-species in porous media, which is of major interest for many appli-2

cations in numerous areas such as electrochemical systems, agronomy, geology, etc., has received3

considerable attention from the modeling point of view. Macroscopic models involving e�ective co-4

e�cients can be rigorously derived from upscaling approaches [1, 2, 3, 4, 5, 6, 7, 8, 9]. A challenging5

case refers to the predominant reaction situation when the medium exhibits a complex behavior6
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and the e�ective coe�cients in the macroscopic equations depend on reaction rates [1, 3, 10]. More7

sophisticated models are required to accurately describe the non-equilibrium state at very short8

times that are of the order of the characteristic reaction time [11, 12]. In spite of the di�culty,9

macroscopic models were derived by using the periodic homogenization technique and a spectral10

approach in our previous work [13, 14, 15]. However, the homogenization procedure imposes a11

spatial periodicity condition at the boundary of the unit cell. In this framework, the physics inside12

the porous domain can be accurately captured by the macroscopic models while at the outer surface13

of the domain, periodicity conditions cannot be respected. This leads to a boundary layer problem14

depending on the boundary condition type.15

The boundary layer problems have been widely studied for elastic periodic composites [16, 17],16

for elastic beams [18], for elastic shells [19] or in a more general way in [20, 21]. Matine et al.17

[22, 23] proposed to extend this approach for thermal problem in periodic structures, to take into18

account the edge e�ects. However, to the best of our knowledge there is practically no work in the19

literature addressing the boundary layer problem for the coupling of predominating reaction and20

di�usion of multi-species in porous media.21

In a sequence of papers, the coupling of di�usion/reaction of two species with di�erent molecular22

di�usion coe�cients has been studied combining periodic homogenization technique with a spectral23

approach [13, 14, 15, 24]. Concentrations of the initial pore-scale problem are expanded into a series24

development related to a spectral problem de�ned in a unit cell, yielding a new local problem to25

be homogenized. This approach is able to capture the complex coupling at short times when the26

chemical equilibrium is not reached. However, such a macroscopic model cannot provide information27

about the boundary layer that develops in the vicinity of the outer boundary due to the boundary28

conditions. In this work, corrections are added to the macroscopic model to take into account29

the boundary conditions at the outer boundary of the domain. In steady state, terms of the �rst30

order need to be corrected by introducing new variables whereas in transient regime, corrections31

at lower order are added to capture the perturbation in the boundary layer at short times. Such a32

modi�cation implies new closure variables that must be solved over several unit cells from the edge33

of the domain. For larger distances, these decreasing functions vanish.34

The paper is organized as follows. In Section 2, the main result of the upscaling procedure based35

on the spectral approach and homogenization technique for high Damköhler number is recalled.36

Section 3 is devoted to the development of the modi�ed model in order to address the boundary layer37
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problem in both steady and transient regimes. Numerical simulations are performed in Section 4 to38

validate the proposed model and to underline the importance of the correction terms. Conclusions39

are drawn in Section 5.40

2. Macroscopic model for high Damköhler number: a recall41

In this section, the main steps and results of the homogenization procedure to derive the macro-42

scopic equations for the di�usion-reaction problem, developed in a previous work [14] are recalled.43

To simplify the notation, the superscript ∗ indicating dimensional quantities in the preceding ref-44

erence is omitted.45

A porous medium occupying a macroscopic domain Ω with a characteristic length L, is composed46

of an immobile �uid phase Ωf and of a rigid solid phase Ωs with a solid-�uid interface Γfs. The47

medium is constituted of the repetition of a periodic elementary cell Y = Yf ∪ Ys of characteristic48

length l, composed of the �uid phase Yf and the solid phase Ys together with the solid-�uid interface49

∂Yfs. The boundary ∂Y = ∂Yfs ∪∂Ye is constituted of the �uid-solid interface ∂Yfs assumed to be50

impervious and of the external interface ∂Ye = ∂Yse ∪ ∂Yfe separating two juxtaposed elementary51

cells. The macroscopic and microscopic spatial coordinates are x = (x1, x2, x3) and y = (y1, y2, y3)52

respectively. The scale separation (l ≪ L) allows the introduction of the small parameter ε = l/L.53

Let c1 and c2 be the concentrations of species A and B respectively. The transport is ruled by a54

Fickian process. On the �uid-solid interface Γfs, linear chemical reactions exchange species A and55

B. The microscopic di�usion/reaction equations at the pore-scale are written as56





∂c1
∂t

−∇ · (D1∇c1) = 0 in Ωf

∂c2
∂t

−∇ · (D2∇c2) = 0 in Ωf

−D1∇c1 · nfs = k1c1 − k2c2 at Γfs

−D2∇c2 · nfs = k2c2 − k1c1 at Γfs

(1)

where D1 and D2 denote the di�usion coe�cients of A and B respectively, k1 and k2 the reaction57

rates. These coe�cients have constant values during the process. nfs is the normal unit vector at58

the solid/�uid interface pointing out of the �uid phase. The microscopic problem is completed by59

the initial conditions for given values of c1(t = 0) and c2(t = 0) and the boundary conditions at60

the outer edges of the domain. In this work, we only consider the Dirichlet conditions in which the61

concentrations are given at the edges.62

3
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The initial model is transformed into a new problem associated with the following periodic63

spectral problem de�ned on the periodic unit cell Y64





−∇ · (D1∇ψ1,n) = λnψ1,n in Yf

−∇ · (D2∇ψ2,n) = λnψ2,n in Yf

−D1∇ψ1,n · nfs = k1 ψ1,n − k2 ψ2,n at ∂Yfs

−D2∇ψ2,n · nfs = k2 ψ2,n − k1 ψ1,n at ∂Yfs

(2)

where ψ1,n(y) and ψ2,n(y) represent the succesive eigenfunctions sharing the same positive eigen-65

value λn ordered in ascending order with n ∈ N. The eigenfunctions ψ1,n(y) and ψ2,n(y) are de�ned66

within a same multiplicative constant, which can be determined according to67

k1
〈
ψ2
1,n

〉f
+ k2

〈
ψ2
2,n

〉f
= k1 + k2 (3)

where ⟨ ⟩f denotes the volume average over the �uid phase.68

For n = 0, λ0 = 0 and the two eigenfunctions are constant satisfying the condition k1ψ1,0 −69

k2ψ2,0 = 0. They are given by70

ψ1,0 =

√
k2
k1
, ψ2,0 =

√
k1
k2

(4)

Finally note that for n ≥ 171

⟨ψ1,n⟩f + ⟨ψ2,n⟩f = 0 (5)

resulting from the compatibility condition of Eqs. (2).72

ci (i ∈ {1, 2}) are then sought in an expansion related to the spectral problem (2) as follows73

ci(t,x,y) =
∞∑

n=0

ψi,n(y) exp (−λnt) vi,n(t,x,y) (6)

with new variables vi,n depending on time and position.74

Let de�ne the macroscopic Damköhler number DaL as the ratio of the macroscopic di�usion75

time to the reaction one76

DaL =
krL

Dr
(7)

where kr and Dr denote reference reaction rate and di�usion coe�cient. In [14], the Damköhler77

number appears naturally through the dimensional analysis which has been skipped in this summary78

4
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of the results. The reference time is chosen as the macroscopic di�usion time tr = L2/Dr. The79

reader can refer to [14] for more details on the procedure.80

It has been shown in [14] that for small Damköhler number of order O(ε), a classical homog-81

enization procedure can correctly predict the macroscopic laws. However, for higher Damköhler82

number of order O(ε0) or O(ε−1), special development is needed to precisely predict the behavior83

of di�usion/reaction mechanism for short time [14]. It should be noted that a slight di�erence84

between the two cases O(ε0) and O(ε−1) comes from the closure problem in solid/�uid interface85

condition. In this work, we deal with the most interesting case of high Damköhler number with86

DaL = O(ε−1). By inserting (6) in the initial problem (1) and making use of the de�nition (7),87

performing a dimensional analysis, the ε-microscopic model for vi,n in dimensional space reads as88





ψ2
1,n

∂v
(ε)
1,n

∂t
= ∇ ·

(
D̃1,n∇v

(ε)
1,n

)
in Yf

ψ2
2,n

∂v
(ε)
2,n

∂t
= ∇ ·

(
D̃2,n∇v

(ε)
2,n

)

−D̃1,n∇v
(ε)
1,n · nfs = ε−1k2 ψ1,n ψ2,n(v

(ε)
1,n − v

(ε)
2,n) at ∂Yfs

−D̃2,n∇v
(ε)
2,n · nfs = ε−1k1 ψ1,n ψ2,n(v

(ε)
2,n − v

(ε)
1,n)

(8)

with D̃1,n = D1ψ
2
1,n and D̃2,n = D2ψ

2
2,n. By collecting the terms in the di�erent powers of ε, one89

leads to the following results.90

• Slow variables: At the leading order, the solution of v is v
(0)
1,n(t,x,y) = v

(0)
2,n(t,x,y) =91

v
(0)
n (t,x).92

• Fluctuation: the solution for v
(1)
1,n and v

(1)
2,n are sought in the following form, to within one93

additive constant v̂
(1)
n depending on t and x1

94

v
(1)
1,n = χ1,n(y) ·∇xv

(0)
n (t,x) + v̂

(1)
n (t,x)

v
(1)
2,n = χ2,n(y) ·∇xv

(0)
n (t,x) + v̂

(1)
n (t,x)

(9)

1This necessary condition comes from the right hand side of the associated boundary conditions in Eqs. (8)

5
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where the vectors χ1,n and χ2,n satisfy the closure problem2
95





0 = ∇y ·
[
D̃1,n

(
I +∇yχ1,n

)]
in Yf

0 = ∇y ·
[
D̃2,n

(
I +∇yχ2,n

)]

−D̃1,nnfs ·
(
I +∇yχ1,n

)
= k2ψ1,nψ2,n

(
χ1,n − χ2,n

)
at ∂Yfs

−D̃2,nnfs ·
(
I +∇yχ2,n

)
= k1ψ1,nψ2,n

(
χ2,n − χ1,n

)

(10)

96

The particular case n = 0 corresponds to the eigenvalue λ0 = 0 and to the eigenfunctions (4).97

In this case χ1,0 ≡ χ2,0 ≡ χ and the local problem (10) reduces to the standard closure problem98





∇2
yyχ = 0 in Yf

(I +∇yχ) · nfs = 0 at ∂Yfs
(11)

This leads to99

v
(1)
1,0 = v

(1)
2,0 = v

(1)
0 = χ(y) ·∇xv

(0)
0 (t,x) + v̂

(1)
0 (t,x) (12)

• Macroscopic equation: the macroscopic problem for v
(0)
n is derived as100

∂v
(0)
n

∂t
= ∇x ·

(
Dv,n ·∇xv

(0)
n

)
(13)

where the e�ective di�usion tensor Dv,n is de�ned by101

Dv,n =
k1

k1 + k2

〈
D̃1,n

(
I +

(∇yχ1,n

)T)〉f

+
k2

k1 + k2

〈
D̃2,n

(
I +

(∇yχ2,n

)T)〉f

(14)

For n = 0, the e�ective tensor is given by102

Dv,0 =
k1D2 + k2D1

k1 + k2
⟨I + (∇yχ)

T⟩f (15)

• Macroscopic equations for the concentrations: As discussed in [14], only the two �rst103

eigenvalues λ0 = 0 and λ1 with their corresponding eigenfunctions are considered. In the asymptotic104

2Here, rather than using the tensorial de�nition in [14] in which a transpose operator is needed, the index notation

for the gradient of a vector de�ned in [25] is adopted.
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development (6), the higher order terms can be ignored due to the exponential decay in time. The105

averaged concentrations at the leading order are given by106

⟨c(0)1 ⟩f = ψ1,0 v
(0)
0 + ⟨ψ1,1⟩f exp(−λ1t) v(0)1

⟨c(0)2 ⟩f = ψ2,0 v
(0)
0 + ⟨ψ2,1⟩f exp(−λ1t) v(0)1 (16)

Omitting for the sake of simplicity the subscript (0) related to the scale order, using (13) for n = 0107

and n = 1, and considering the time derivative of (16) and the compatibility condition (5) for n = 1108

result in the following mass conservation equations at the leading order3:109





∂⟨c1⟩f
∂t

−∇x ·
(
k1Dv,1 + k2Dv,0

k1 + k2
·∇x⟨c1⟩f

)

−∇x ·
(
k2(Dv,0 −Dv,1)

k1 + k2
·∇x⟨c2⟩f

)
+ λ1

k1⟨c1⟩f − k2⟨c2⟩f
k1 + k2

= 0

∂⟨c2⟩f
∂t

−∇x ·
(
k1(Dv,0 −Dv,1)

k1 + k2
·∇x⟨c1⟩f

)

−∇x ·
(
k2Dv,1 + k1Dv,0

k1 + k2
·∇x⟨c2⟩f

)
− λ1

k1⟨c1⟩f − k2⟨c2⟩f
k1 + k2

= 0

(17)

Given the e�ective coe�cient tensors Dv,0 and Dv,1, and the initial and boundary conditions, the110

coupled di�usion-reaction Eqs. (17) can be solved to compute the concentration pro�les.111

3. Boundary layer problem112

The macroscopic model based on the homogenization technique relies on the periodic condition113

hypothesis. As a consequence, it cannot capture the boundary layer problem developed in the114

vicinity of the edge of the domain when an outer boundary condition of Dirichlet type is imposed.115

In this section, corrections are made to precisely take into account this boundary layer in the116

upscaled problem.117

Let consider a parallelepiped rectangular porous medium with macro and microscopic coor-118

dinates {x1, x2, x3} and {y1, y2, y3} respectively4. At the inlet boundary x1 = 0 (and y1 = 0),119

3Eqs. (17) are dimensional equations corresponding to Eqs. (49) of [14], where the stars have been omitted.
4It should be noted that the semi-in�nite domain x1 ∈ [0,∞], x2, x3 ∈ [−∞,∞] can be reduced to a parallelepiped

when the periodic conditions in x2 and x3 directions are applied and a �nite region in the vicinity of the boundary

is considered for the boundary layer problem

7
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Dirichlet conditions for the concentrations, c1 = c1D and c2 = c2D are imposed. The most inter-120

esting case is when k1c1D ̸= k2c2D corresponding to a non-equilibrium situation. This leads to121

a thin boundary layer for the concentration pro�les in the vicinity of the interface x1 = 0. Our122

main objective is to incorporate this layer in the upscaled model. To accomplish this task, we �rst123

consider the development (6) with the two �rst orders in ε and the two �rst eigenvalues together124

with the corresponding eigenfunctions:125

c1 =

√
k2
k1

(
v
(0)
0 + v

(1)
0

)
+ ψ1,1(y) exp(−λ1t)

(
v
(0)
1 + v

(1)
1,1

)

c2 =

√
k1
k2

(
v
(0)
0 + v

(1)
0

)
+ ψ2,1(y) exp(−λ1t)

(
v
(0)
1 + v

(1)
2,1

) (18)

It should be noted that the formal parameter ε can be omitted for the calculation of the concentra-126

tions. This is a quasi-exact solution in the domain, except for the boundary layer in the vicinity of127

the interface where boundary conditions should be imposed for the variable v
(0)
0 in order to solve128

the problem (13). Two distinct problems related to the permanent and transient regimes need to129

be considered.130

3.1. Steady state131

In the steady state when t → ∞, only the �rst order variable v
(0)
0 and second order variable132

v
(1)
0 , both related to the zero eigenvalue, play a role in the boundary layer. To take into account133

the boundary layer, the expansion of the concentrations needs to be improved in the sense of134

[20]. Considering Dirichlet conditions, since two boundary values c1D and c2D are given for the135

concentrations and only one variable v
(0)
0 is involved at the interface, it is necessary to introduce136

new boundary variables u
(0)
1BL(x,y) and u

(0)
2BL(x,y) at order O

(
ε0
)
and v

(1)
0,BL at order O

(
ε1
)
as137

c1 =

√
k2
k1

(
v
(0)
0 + v

(1)
0 + v

(1)
0,BL

)
+ u

(0)
1BL

c2 =

√
k1
k2

(
v
(0)
0 + v

(1)
0 + v

(1)
0,BL

)
+ u

(0)
2BL

(19)

It should be underlined that the boundary layer problem needs to be solved in a reduced �uid138

domain Y †
f (with a corresponding solid/�uid interface ∂Y †

fs) composed of the in�nite repetition of139

the unit cell Y in the direction Oy1 perpendicular to the edge.140

8
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3.1.1. Order O(ε0)141

Inserting (19) in the initial problem (1) in steady state, the problem for u
(0)
1BL and u

(0)
2BL in the142

boundary layer at order O(ε−2) in volume and O(ε−1) at the interface reads as143





0 = ∇y ·
(
D1∇yu

(0)
1BL

)
in Y †

f

0 = ∇y ·
(
D2∇yu

(0)
2BL

)

−D1∇yu
(0)
1BL · nfs = k1u

(0)
1BL − k2u

(0)
2BL on ∂Y †

fs

−D2∇yu
(0)
2BL · nfs = k2u

(0)
2BL − k1u

(0)
1BL

(20)

u
(0)
1BL and u

(0)
2BL are periodic in y2 and y3 and satisfy the following boundary conditions144

y1 = 0 c1D =

√
k2
k1
v
(0)
0D + u

(0)
1BL(y1 = 0)

c2D =

√
k1
k2
v
(0)
0D + u

(0)
2BL(y1 = 0)

y1 → ∞ u
(0)
1BL(y1) → 0

u
(0)
2BL(y1) → 0

(21)

where v
(0)
0D is the unknown Dirichlet condition value of v

(0)
0 at y1 = 0. The problem (20) can be145

transformed by introducing the auxiliary variables146

s
(0)
BL = D1u

(0)
1BL +D2u

(0)
2BL

d
(0)
BL = k1u

(0)
1BL − k2u

(0)
2BL

(22)

Inserting the above de�nitions in (20), the problems for s
(0)
BL and d

(0)
BL are separate and given by147





0 = ∆yys
(0)
BL in Y †

f

0 = ∆yyd
(0)
BL

−∇ys
(0)
BL · nfs = 0 on ∂Y †

fs

−∇yd
(0)
BL · nfs =

(
k1
D1

+
k2
D2

)
d
(0)
BL

(23)

s
(0)
BL and d

(0)
BL are also periodic in y2 and y3. In addition, by using the de�nitions (22) of s

(0)
BL and148

d
(0)
BL in (21), one obtains the following boundary conditions149

y1 = 0 s
(0)
BL = D1c1D +D2c2D − k1D2 + k2D1√

k1k2
v
(0)
0D

d
(0)
BL = dD = k1c1D − k2c2D

y1 → ∞ s
(0)
BL(y1) → 0

d
(0)
BL(y1) → 0

(24)

9
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In steady state, the solution of the problem (23) for s
(0)
BL is a constant equal to 0 due to the boundary150

condition (24) at y1 → ∞. From (24), the Dirichlet condition for v
(0)
0 at y1 = 0 reads as151

v
(0)
0D =

√
k1k2

D1c1D +D2c2D
k1D2 + k2D1

(25)

so that at the leading order, the boundary values of the concentrations imposed at x1 = 0 to152

calculate the solution of the inner problem (17) are given by153





c
(0)
1D =

√
k2
k1
v
(0)
0D = k2

D1c1D +D2c2D
k1D2 + k2D1

c
(0)
2D =

√
k1
k2
v
(0)
0D = k1

D1c1D +D2c2D
k1D2 + k2D1

(26)

Inserting (25) into (21) gives the boundary values for u
(0)
1BL and u

(0)
2BL154





u
(0)
1BL(y1 = 0) = D2

k1c1D − k2c2D
k1D2 + k2D1

u
(0)
2BL(y1 = 0) = D1

k2c2D − k1c1D
k1D2 + k2D1

(27)

It should be noted that the problem for d
(0)
BL in (23) and (24) is an exponential decay problem-type155

involving a thin boundary layer a�ected by this correction.156

To summarize, in steady state, at the order O(ε0), to capture the boundary layer problem when157

the Dirichlet conditions for the concentrations do not verify the equilibrium condition, the problems158

for v
(0)
0 (Eq. (13) for n = 0) and for u

(0)
1BL and u

(0)
2BL (Eq. (20)) must be solved with the boundary159

values for v
(0)
0 , u

(0)
1BL and u

(0)
2BL given by (25) and (27) respectively. The concentrations c1 and c2160

must be adjusted by a thin boundary layer involving u
(0)
1BL and u

(0)
2BL.161

3.1.2. Order O(ε1)162

This correction comes from the fact that in the concentrations given by (18), the term v
(1)
0 is not163

uniform in space at the boundary y1 = 0. Similarly to the expression (12) for v
(1)
0 , the boundary164

correction v
(1)
0,BL is sought in the form165

v
(1)
0,BL = ω ·∇xv

(0)
0 (28)

The vector ω periodic in y2 and y3 must satisfy the closure166

∇2
yyω = 0 in Y †

f

−∇yω · n = 0 on ∂Y †
fs

(29)
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At the boundary y1 = 0 in order to satisfy the boundary condition v
(1)
0 + v

(1)
0,BL = 0, we impose167

ω + χ = 0 (30)

where χ is the solution of the closure problem (11). In the direction y1 of unit vector e1, for168

y1 → ∞, a homogeneous Neuman condition is imposed169

∇yω · e1 = 0 (31)

The vector ω will reach a constant value at large value of y1 resulting from the averaging of the170

ω = −χ values at the interface y1 = 0. As this constant value must be 0, the indetermination of171

the χ problem (11) is exploited subtracting this value from ω 5.172

In the particular case of a symmetrical unit cell, in the frame of the symmetry axes centered on173

the cell, imposing a null volume average ensures the unicity of χ where the components χi are odd174

relative to yi (and even relative to the other coordinates yj ̸=i). Therefore, if the external surface175

of the medium coincides with the surface of the unit cell Y of normal e1, χ1 is null due to the176

combination of oddness and periodicity. Consequently, ω1 = 0 on the surface y1 = 0 of Y †. Hence177

ω1 is identically null in Y †
f . In conclusion, if the gradient ∇xv

(0)
0 is parallel to e1, the correction178

v
(1)
0,BL is null over Y †

f .179

3.2. Transient state180

In the transient regime, the terms at order O(ε) in (18) must be corrected to better describe the181

complex unsteady non-equilibrium e�ect in the boundary layer. It is important to note that due182

to the large Damköhler number, the physical coupling is a�ected by the boundary condition only183

for short times. Beyond this time, the steady state is established. The O(ε0)-corrective terms for184

the two concentrations u
(0)
1,BL and u

(0)
2,BL are now transient. We also introduce the O(ε)-corrective185

terms v
(1)
1,1BL and v

(1)
2,1BL into the expression of the concentrations (18) as186

c1 =

√
k2
k1

(
v
(0)
0 + v

(1)
0 + v

(1)
0,BL

)
+ u

(0)
1BL + ψ1,1(y) exp(−λ1t)

(
v
(0)
1 + v

(1)
1,1 + v

(1)
1,1BL

)

c2 =

√
k1
k2

(
v
(0)
0 + v

(1)
0 + v

(1)
0,BL

)
+ u

(0)
2BL + ψ2,1(y) exp(−λ1t)

(
v
(0)
1 + v

(1)
2,1 + v

(1)
2,1BL

) (32)

5We recall that the boundary conditions are imposed for c1 and c2 at the main order, that implies according to

(19) that v
(1)
0 + v

(1)
0,BL = 0 at order O (ε).
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3.2.1. Order O(ε0)187

Let de�ne the characteristic short time τ related to the macroscopic time t by τ = ε−2t. The188

transient problem for u
(0)
1BL and u

(0)
2BL depending on y then reads as189





∂u
(0)
1BL

∂τ
= ∇y ·

(
D1∇yu

(0)
1BL

)
in Y †

f

∂u
(0)
2BL

∂τ
= ∇y ·

(
D2∇yu

(0)
2BL

)

−D1∇yu
(0)
1BL · nfs = k1u

(0)
1BL − k2u

(0)
2BL on ∂Y †

fs

−D2∇yu
(0)
2BL · nfs = k2u

(0)
2BL − k1u

(0)
1BL

(33)

where u
(0)
1BL and u

(0)
2BL are periodic in y2 and y3 and satisfy the boundary conditions190

y1 = 0 c1D =

√
k2
k1
v
(0)
0D + u

(0)
1BL(y1=0) + ψ1,1

(y1=0)
exp(−λ1t)v(0)1 (t,x)(y1=0)

c2D =

√
k1
k2
v
(0)
0D + u

(0)
2BL(y1=0) + ψ2,1(y1=0)

exp(−λ1t)v(0)1 (t,x)(y1=0)

y1 → ∞ u
(0)
1BL(y1) → 0

u
(0)
2BL(y1) → 0

t = 0 u
(0)
1BL = u

(0)
2BL = 0

(34)

To solve the boundary problem and the upscaled model, the initial and boundary conditions191

for v
(0)
0 , v

(0)
1 , u

(0)
1BL and u

(0)
2BL must be speci�ed. The boundary values of v

(0)
0 , u

(0)
1BL and u

(0)
2BL192

should verify the steady state being given by (25) and (27). The boundary condition for v
(0)
1 can193

be legitimately adopted as v
(0)
1 (y1 = 0) = 0.194

For the initial condition, owing to the compatibility condition (5) for n = 1, from (16) we obtain195

v
(0)
0 (t = 0,x) =

√
k1k2

k1 + k2

(
⟨c(0)1 ⟩f (t = 0,x) + ⟨c(0)2 ⟩f (t = 0,x)

)

v
(0)
1 (t = 0,x) =

k1⟨c(0)1 ⟩f (t = 0,x)− k2⟨c(0)2 ⟩f (t = 0,x)

⟨ψ1,1⟩f (k1 + k2)

(35)

It is legitimate to adopt that for τ = 0, no correction is needed leading to u
(0)
1BL(τ = 0,y) =196

u
(0)
2BL(τ = 0,y) = 0.197

3.2.2. Order O(ε1)198

We now construct the closure problem for the O(ε1)-corrective terms. First note that the steady199

state problem for v
(1)
0,BL remains unchanged. The problem for v

(1)
1,1BL and v

(1)
2,1BL to correct the terms200

v
(1)
1,1 and v

(1)
2,1 corresponding to the �rst non zero eigenvalue must be a transient problem. At short201

12
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times, inserting (32) in the initial problem (1) for c1 and c2, the transient problem of v
(1)
1,1BL and202

v
(1)
2,1BL has the same form as the problem of v

(1)
1,1 and v

(1)
2,1 given by Eq. (8) written in y coordinates203

as6204





ψ2
1,1

∂v
(1)
1,1BL

∂τ
= ∇y ·

(
D̃1,1∇yv

(1)
1,1BL

)
in Y †

f

ψ2
2,1

∂v
(1)
2,1BL

∂τ
= ∇y ·

(
D̃2,1∇yv

(1)
2,1BL

)

−D̃1,1∇yv
(1)
1,1BL · nfs = k2 ψ1,1 ψ2,1(v

(1)
1,1BL − v

(1)
2,1BL) on ∂Y †

fs

−D̃2,1∇yv
(1)
2,1BL · nfs = k1 ψ1,1 ψ2,1(v

(1)
2,1BL − v

(1)
1,1BL)

(36)

Similar to the solution (9) for v
(1)
1,1 and v

(1)
2,1, the solution of v

(1)
1,1BL and v

(1)
2,1BL is sought in the205

form206

v
(1)
1,1BL = ζ1(y, τ) ·∇xv

(0)
1 (x, t)

v
(1)
2,1BL = ζ2(y, τ) ·∇xv

(0)
1 (x, t)

(37)

Inserting (37) into (36), noting that the slow variable v
(0)
1 (x, t) is independent on the short207

characteristic time τ , gives rise to the local unsteady problem of the vectors ζ1 and ζ2208





ψ2
1,1

∂ζ1

∂τ
= ∇y ·

(
D̃1,1∇yζ1

)
in Y †

f

ψ2
2,1

∂ζ2

∂τ
= ∇y ·

(
D̃2,1∇yζ2

)

−D̃1,1nfs ·∇yζ1 = k2 ψ1,1 ψ2,1(ζ1 − ζ2) on ∂Y †
fs

−D̃2,1nfs ·∇yζ2 = k1 ψ1,1 ψ2,1(ζ2 − ζ1)

(38)

complemented by the boundary condition at y1 = 0209

χ1,1 + ζ1 = 0

χ2,1 + ζ2 = 0
(39)

where χ1,1 and χ2,1 are solution of (10) for n = 1. This condition ensures that at the boundary,210

the terms at order O(ε) vanish so that only the terms at O(ε0) are considered for the boundary211

values.212

Given the solutions of the �rst order variables v
(0)
0 and v

(0)
1 and by solving the closure problems213

(29) and (38), the O(ε1)-correction terms v
(1)
0,BL, v

(1)
1,1BL and v

(1)
2,1BL can be computed.214

6Starting again from Eq. (8) with the scaling τ = ε−2t on time, we would obtain (36) at order O (ε).
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4. Numerical simulations215

This section is devoted to the numerical validation of the proposed corrections to the upscaled216

model by considering the boundary layer either in steady state or in transient regime. For this217

purpose, a comparison between the numerical simulation of the corrected upscaled model and a218

direct numerical simulation of the Pore Scale Model (PSM) will be performed.219

A porous medium of size L × l is constituted of N elementary cells of size l, composed of a220

solid circular inclusion of radius R located at the center of each unit cell. The radius is constrained221

by the porosity φ. The corresponding e�ective medium for the simulations of the macroscopic222

equations is of the same size (see Fig. 1). At the inlet x1 = 0, Dirichlet conditions are applied

Pore scale model

Homogenized model

Figure 1: Porous medium and homogenized medium used in the numerical simulation.

223

for the concentrations c1 = c1D and c2 = c2D. A non-equilibrium condition at the boundary224

dD = k1c1D − k2c2D ̸= 0 is studied. At the outlet x1 = L, a zero value is imposed for the225

concentrations. In addition, a periodicity condition is considered for the top and bottom boundaries.226

The values of the physical parameters used are shown in Table 1. Note that the microscopic227

Damköhler numbers that constrain the values of the reaction rates k1 and k2 are now de�ned as228

Da1 =
k1l

D1
and Da2 =

k2l

D2
=

Da1α

β
(40)

with the ratios α = k2/k1 and β = D2/D1.229

The numerical study is carried out using COMSOL Multiphysics software based on the �nite230

element method.231

4.1. Numerical results in steady state232

In steady state as t → ∞, the corrections for the concentrations c1 and c2 are given by (19)233

with additional variables u
(0)
1BL and u

(0)
2BL (recall that as mentioned in �3.1.2 for the symmetric cell234

considered here the corrective term v
(1)
0,BL is identically zero). First, the macroscopic variable v

(0)
0 ,235

14
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l N φ D1 D2 β Da1 k1 α k2 Da2 c1D c2D

0.01 20 0.8 1 βD1 2 100 Da1D1/l 2 αk1 Da1α/β 1 c1D

Table 1: Parameters used in simulations.

solution of the homogenized di�usion problem (13) in steady state for n = 0 with the homogenized236

di�usion tensor given by (15), is computed in the e�ective medium. A Dirichlet boundary condition237

(25) is applied at the inlet whereas v
(0)
0 = 0 is imposed at the outlet. If the concentrations values238

imposed at the interface are c1D = c2D = 1, the imposed value for v
(0)
0 corresponds to to c

(0)
1 (x1 =239

0) = 1.5 and c
(0)
2 (x1 = 0) = 0.75. Secondly, given the �eld of v

(0)
0 , the variable v

(1)
0 is determined240

from the solution (9) for n = 0241

v
(1)
0 = χ ·∇xv

(0)
0 (41)

where χ is solution of the closure problem (11) solved numerically on the unit cell.242

Finally, the correction variables u
(0)
1BL and u

(0)
2BL, which are solutions of the local problem (20)243

with the boundary conditions at the inlet given by (27) and a zero-value condition far from the244

inlet, are solved in the microscopic pore-geometry for at least several unit cells from the inlet due245

to the exponential-decay behavior of these functions. This point will be proved in the numerical246

results in the sequel.247

Let de�ne the y2-average operator of a function f as248

⟨f⟩y2 =
1

l

∫ l

0

fdy2 (42)

Figure 2(a) displays the variation of the y2-averaged variables
〈
u01BL

〉
y2

and
〈
u02BL

〉
y2

with respect249

to the position x1/L. We can observe that the correction u01BL (respectively u02BL) decreases250

(respectively increases) rapidly and decays towards zero after several unit cells in the vicinity of the251

inlet. Thus, this correction only a�ects a thin layer (boundary layer) from the edge whose thickness252

depends on the Damköhler numbers. The variation of the di�erence
〈
d0BL

〉
y2

with respect to x1/L253

is plotted in Figure 2(b). It is clearly observed that a non-equilibrium state where
〈
d0BL

〉
y2

̸= 0 is254

established in a thin boundary layer.255

Given the solutions for v
(0)
0 , v

(1)
0 , u

(0)
1BL and u

(0)
2BL, knowing that v

(1)
0,BL ≡ 0, the y2-averaged256

concentrations ⟨ci⟩y2
of the corrected model can be computed from (19). In order to compare257

these results with the solution of the original model, the non-corrected homogenized model (HM)258

15
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Figure 2: Variation of (a):
〈
u0
1BL

〉
y2

and
〈
u0
2BL

〉
y2

and (b):
〈
d0BL

〉
y2

versus x1/L for Da1 = 100.

given by the system (17) is solved in the e�ective porous media. To do that, we �rst compute the259

eigenvalue λ1 and the eigenfunctions ψ1,1 and ψ2,1 from the spectral problem (2) for n = 1. Given260

the eigenfunctions, the closure problem (10) for χ1,1 and χ2,1 is solved in the unit cell to compute261

the e�ective coe�cient Dv,1 from (14) for n = 1. Moreover, the closure problem for χ in (11) is262

purely geometric and is solved in the unit cell to give the e�ective tensor Dv,0 from (15).263

To validate the proposed corrections in steady state, a direct numerical simulation of the pore-264

scale model (PSM) given in Eq. (1) is performed with the pore-scale geometry of Figure 1 to obtain265

the concentration �elds which are averaged over the y2 direction. Figure 3 displays the y2-averaged266

concentration pro�les of ⟨c1⟩y2
and ⟨c2⟩y2

obtained from the corrected model (continuous line), the267

original HM without correction (dotted line) and the PSM (line-marker). An excellent agreement268

between the corrected model and the PSM is observed, which satisfactorily validates the proposed269

model. The original HM solution fails to capture the complex physics in the boundary layer and270

leads to an inaccurate prediction of the concentration �elds in the entire domain. We can also271

observe that ⟨c1⟩y2
(respectively ⟨c2⟩y2

) increases (respectively decreases) quickly in the boundary272

layer to attain a transition point delimiting the boundary zone.273
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0 + v(1)
0 ) + u(0)

1BL y2

k1
k2 (v(0)
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c1 y2 PSM
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Figure 3: y2-averaged concentrations versus x1/L for Da1 = 100 obtained by the corrected model (line), the original

HM (dotted line) and the PSM (line-marker).

4.2. Numerical results in transient regime274

The corrected solution for the concentrations involving additional variables at order O(ε1) in275

transient regime is given by Eq. (32). To compute the concentrations, �rst we solve the transient276

problems for the �rst-order variables v
(0)
0 and v

(0)
1 given by (13) with the initial conditions (35). In277

addition, the Dirichlet boundary condition for v
(0)
0 (25) is imposed at the inlet and v

(0)
0 = 0 at the278

outlet whereas for v
(0)
1 , the zero value is imposed on both boundaries. Given the �elds of v

(0)
0 and279

v
(0)
1 , the O(ε1)-variables v

(1)
0 , v

(1)
1,1 and v

(1)
2,1 can be computed from the solution (9).280

The �rst-order corrections u
(0)
1,BL and u

(0)
2,BL for the unsteady state in (33) can be solved on281

several unit cells adjacent to the boundary with a boundary condition similar to that given in the282

steady state and with a zero initial value. To compute the O(ε1)-correction variables, as v
(1)
0,BL ≡ 0283

accounting for the symmetry of the elementary cell considered (see section 3.1.2), for determining284

v
(1)
1,1BL and v

(1)
2,1BL given by (37), one has to solve the unsteady closure problem (38) for ζ1 and ζ2285

with the corresponding boundary condition (39).286
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In order to validate the proposed corrected model, a direct numerical simulation of the PSM287

(Eq. 1) is numerically solved in the pore-scale geometry in transient regime. Initial values of the288

concentrations are imposed as c1(t = 0) = c2(t = 0) = 0.1, which corresponds to a non-equilibrium289

initial state. Parameters used in the simulation are given in Table 1. Moreover, macroscopic290

equations without correction (17) are also numerically solved in the same geometry.291

Figure 4 shows the variation of the y2-averaged concentrations ⟨c1⟩y2
and ⟨c2⟩y2

with time at292

di�erent positions x1 = [l/4, 2l, 3l], obtained from the corrected model, the original homogenized293

model (HM) and the direct numerical simulation of the pore-scale model (PSM). Excellent agree-294

ment is obtained between the PSM and the corrected model for the three observation points located295

at di�erent x1 positions, which satisfactorily validates the proposed transient model. At very short296

times when the local chemical reaction dominates the transport mechanism and the boundary layer297

is located very close to the surface, all three models predict the same results at the observation298

points. However, for longer times, when the boundary layer propagates through the domain, a299

di�erence between the original HM and the PSM appears and this is all the earlier as the position300

of the point is close to the surface at the left boundary.301
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(a) ⟨c1⟩y2 versus time.
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(b) ⟨c2⟩y2 versus time.

Figure 4: Concentration variation of (a) ⟨c1⟩y2 and (b) ⟨c2⟩y2 with time for di�erent positions x1 = [l/4, 2l, 3l],

obtained from the corrected model (dashed line-marker), PSM (line) and the original HM (dotted line-marker).

Figures 5 and 6 display the y2-averaged concentration pro�les of ⟨c1⟩y2 and ⟨c2⟩y2 with respect to302

x1/L obtained from the three models at di�erent times t. Small �uctuations in the concentrations303

obtained by the corrected model are observed at the beginning of the process due to the periodic304

variation of the eigenfunctions, which vanish with time. Again, the corrected model is in very good305

agreement with the PSM while the original HM fails to reproduce the boundary layer behavior306

correctly. As a result, this error propagates with time away from the boundary, leading to inaccurate307

prediction of concentration pro�les.308
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Figure 5: Concentration ⟨c1⟩y2 versus x1/L for di�erent times.
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Figure 6: Concentration ⟨c2⟩y2 versus x1/L for di�erent times.
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Finally to quantify the role of each term in the solution (32), Figure 7a shows the pro�les of the309

terms corresponding to n = 0 at very short times. The correction u
(0)
1,BL tends towards zero rapidly310

from the boundary as shown previously and dominates the correction v
(1)
0,BL, which is of order O(ε)311

in the general case and vanishes for symmetric elementary cells, which is the case here. Far from312

the boundary, only the �rst-order variable v
(0)
0 di�ers signi�cantly from zero. In Figure 7b, the313

terms corresponding to n = 1 are plotted. The �uctuations are due to the periodic solution of the314

eigenfunction ψ1,1. Due to exponential decay, the terms disappear over time. We observe that the315

time-dependent correction terms at this order are very small and can be neglected.316
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Figure 7: Corrective term pro�les for di�erent times.
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5. Conclusion317

The boundary layer problem for the coupled di�usion/reaction process for high Damköhler318

number in porous media has been studied. The macroscopic mass conservation law derived from319

the homogenization technique and based on a spectral approach represents a quasi-exact solution320

within the domain but fails to describe the physics in a thin layer near the surface when a non-321

equilibrium Dirichlet boundary condition is imposed. In this context, corrective terms have to be322

added to the concentrations for both steady state and transient regime.323

In steady state, two corrective functions are introduced to adjust the �rst order variable corre-324

sponding to the null eigenvalue to capture the non-equilibrium state in the boundary layer. These325

terms decay exponentially from the boundary and need to be solved only on a few unit cells adjacent326

to the boundary. Numerical simulations prove that this correction is in excellent agreement with327

the direct numerical simulation of the pore-scale model.328

In transient regime, the O(ε)-variables need to be corrected with additional terms whose solu-329

tions involve new closure problems. Numerical results show a small contribution of these terms.330
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- Boundary layer problem of diffusion/reaction process in porous media is studied 

- Macro-model derived from homogenization technique and spectral approach is recalled 

- Corrective terms are introduced to modify the concentration’s expansion  

- These terms decay rapidly from the boundary and are solved on several unit cells  

- Numerical simulations highlight the role of the corrective terms in boundary layer 
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