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Multi-species diusion/heterogeneous reaction coupled problem in porous media involving a boundary layer problem is studied. The spectral approach developed in our previous work allows to derive a macroscopic model in the high Damköhler number regime combining homogenization technique and spectral approach. Such a homogenized model cannot describe the perturbation at the external boundary where the chemical equilibrium is not necessarily satised. We construct herein a modied model involving additional variables, which are rapidly-decaying functions, to capture the complex physics in the boundary layer. Numerical simulations underline the accuracy of the proposed correction in both steady and transient states.

Introduction

Reactive transport of multi-species in porous media, which is of major interest for many applications in numerous areas such as electrochemical systems, agronomy, geology, etc., has received considerable attention from the modeling point of view. Macroscopic models involving eective coecients can be rigorously derived from upscaling approaches [START_REF] Allaire | Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media[END_REF][START_REF] Bloch | Upscaling of diusion-reaction phenomena by homogenisation technique: Possible appearance of morphogenesis[END_REF][START_REF] Battiato | Applicability regimes for macroscopic models of reactive transport in porous media[END_REF][START_REF] Boso | Homogenizability conditions for multicomponent reactive transport[END_REF][START_REF] Lugo-Méndez | Upscaling diusion and nonlinear reactive mass transport in homogeneous porous media[END_REF][START_REF] Tartakovsky | Hybrid simulations of reactiondiusion systems in porous media[END_REF][START_REF] Qiu | Upscaling multicomponent transport in porous media with a linear reversible heterogeneous reaction[END_REF][START_REF] Valdés-Parada | On diusion, dispersion and reaction in porous media[END_REF][START_REF] Valdés-Parada | Diusion and heterogeneous reaction in porous media: The macroscale model revisited[END_REF]. A challenging case refers to the predominant reaction situation when the medium exhibits a complex behavior and the eective coecients in the macroscopic equations depend on reaction rates [START_REF] Allaire | Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media[END_REF][START_REF] Battiato | Applicability regimes for macroscopic models of reactive transport in porous media[END_REF][START_REF] Allaire | Homogenization of a convectiondiusion model with reaction in a porous medium[END_REF]. More sophisticated models are required to accurately describe the non-equilibrium state at very short times that are of the order of the characteristic reaction time [START_REF] Bourbatache | Upscaling diusionreaction in porous media[END_REF][START_REF] Mauri | Dispersion, convection, and reaction in porous media[END_REF]. In spite of the diculty, macroscopic models were derived by using the periodic homogenization technique and a spectral approach in our previous work [START_REF] Bourbatache | Upscaling coupled heterogeneous diusion reaction equations in porous media[END_REF][START_REF] Le | A spectral approach for homogenization of diusion and heterogeneous reaction in porous media[END_REF][START_REF] Bourbatache | Homogenized model for diusion and heterogeneous reaction in porous media: numerical study and validation[END_REF]. However, the homogenization procedure imposes a spatial periodicity condition at the boundary of the unit cell. In this framework, the physics inside the porous domain can be accurately captured by the macroscopic models while at the outer surface of the domain, periodicity conditions cannot be respected. This leads to a boundary layer problem depending on the boundary condition type.

The boundary layer problems have been widely studied for elastic periodic composites [START_REF] Dumontet | Study of a boundary layer problem in elastic composite materials[END_REF][START_REF] Koley | Study of boundary layer eects at ply interfaces of laminated composites using homogenization theory[END_REF], for elastic beams [START_REF] Buannic | Higher-order eective modelling of periodic heterogeneous beams. II. Derivation of the proper boundary conditions for the interior asymptotic solution[END_REF], for elastic shells [START_REF] Destuynder | Sur une justication des modèles de plaques et de coques par les méthodes asymptotiques[END_REF] or in a more general way in [START_REF] Allaire | Boundary layer tails in periodic homogenization[END_REF][START_REF] Amar | On the exponential decay for boundary layer[END_REF]. Matine et al. [START_REF] Matine | Modeling of thermophysical properties in heterogeneous periodic media according to a multi-scale approach: Eective conductivity tensor and edge eects[END_REF][START_REF] Matine | Transient heat conduction within periodic heterogeneous media: A space-time homogenization approach[END_REF] proposed to extend this approach for thermal problem in periodic structures, to take into account the edge eects. However, to the best of our knowledge there is practically no work in the literature addressing the boundary layer problem for the coupling of predominating reaction and diusion of multi-species in porous media.

In a sequence of papers, the coupling of diusion/reaction of two species with dierent molecular diusion coecients has been studied combining periodic homogenization technique with a spectral approach [START_REF] Bourbatache | Upscaling coupled heterogeneous diusion reaction equations in porous media[END_REF][START_REF] Le | A spectral approach for homogenization of diusion and heterogeneous reaction in porous media[END_REF][START_REF] Bourbatache | Homogenized model for diusion and heterogeneous reaction in porous media: numerical study and validation[END_REF][START_REF] Bourbatache | Limits of classical homogenization procedure for coupled diusion-heterogeneous reaction processes in porous media[END_REF]. Concentrations of the initial pore-scale problem are expanded into a series development related to a spectral problem dened in a unit cell, yielding a new local problem to be homogenized. This approach is able to capture the complex coupling at short times when the chemical equilibrium is not reached. However, such a macroscopic model cannot provide information about the boundary layer that develops in the vicinity of the outer boundary due to the boundary conditions. In this work, corrections are added to the macroscopic model to take into account the boundary conditions at the outer boundary of the domain. In steady state, terms of the rst order need to be corrected by introducing new variables whereas in transient regime, corrections at lower order are added to capture the perturbation in the boundary layer at short times. Such a modication implies new closure variables that must be solved over several unit cells from the edge of the domain. For larger distances, these decreasing functions vanish.

The paper is organized as follows. In Section 2, the main result of the upscaling procedure based on the spectral approach and homogenization technique for high Damköhler number is recalled. 

Macroscopic model for high Damköhler number: a recall

In this section, the main steps and results of the homogenization procedure to derive the macroscopic equations for the diusion-reaction problem, developed in a previous work [START_REF] Le | A spectral approach for homogenization of diusion and heterogeneous reaction in porous media[END_REF] are recalled.

To simplify the notation, the superscript * indicating dimensional quantities in the preceding reference is omitted.

A porous medium occupying a macroscopic domain Ω with a characteristic length L, is composed of an immobile uid phase Ω f and of a rigid solid phase Ω s with a solid-uid interface Γ f s . The medium is constituted of the repetition of a periodic elementary cell Y = Y f ∪ Y s of characteristic length l, composed of the uid phase Y f and the solid phase Y s together with the solid-uid interface ∂Y f s . The boundary ∂Y = ∂Y f s ∪ ∂Y e is constituted of the uid-solid interface ∂Y f s assumed to be impervious and of the external interface ∂Y e = ∂Y se ∪ ∂Y f e separating two juxtaposed elementary cells. The macroscopic and microscopic spatial coordinates are x = (x 1 , x 2 , x 3 ) and y = (y 1 , y 2 , y 3 ) respectively. The scale separation (l ≪ L) allows the introduction of the small parameter ε = l/L. Let c 1 and c 2 be the concentrations of species A and B respectively. The transport is ruled by a Fickian process. On the uid-solid interface Γ f s , linear chemical reactions exchange species A and B. The microscopic diusion/reaction equations at the pore-scale are written as

                 ∂c 1 ∂t -∇ • (D 1 ∇c 1 ) = 0 in Ω f ∂c 2 ∂t -∇ • (D 2 ∇c 2 ) = 0 in Ω f -D 1 ∇c 1 • n f s = k 1 c 1 -k 2 c 2 at Γ f s -D 2 ∇c 2 • n f s = k 2 c 2 -k 1 c 1 at Γ f s (1) 
where 

D
               -∇ • (D 1 ∇ψ 1,n ) = λ n ψ 1,n in Y f -∇ • (D 2 ∇ψ 2,n ) = λ n ψ 2,n in Y f -D 1 ∇ψ 1,n • n f s = k 1 ψ 1,n -k 2 ψ 2,n at ∂Y f s -D 2 ∇ψ 2,n • n f s = k 2 ψ 2,n -k 1 ψ 1,n at ∂Y f s (2) 
where ψ 1,n (y) and ψ 2,n (y) represent the succesive eigenfunctions sharing the same positive eigenvalue λ n ordered in ascending order with n ∈ N. The eigenfunctions ψ 1,n (y) and ψ 2,n (y) are dened within a same multiplicative constant, which can be determined according to

k 1 ψ 2 1,n f + k 2 ψ 2 2,n f = k 1 + k 2 (3) 
where ⟨ ⟩ f denotes the volume average over the uid phase.

For n = 0, λ 0 = 0 and the two eigenfunctions are constant satisfying the condition k 1 ψ 1,0k 2 ψ 2,0 = 0. They are given by

ψ 1,0 = k 2 k 1 , ψ 2,0 = k 1 k 2 (4) 
Finally note that for n ≥ 1

⟨ψ 1,n ⟩ f + ⟨ψ 2,n ⟩ f = 0 (5) 
resulting from the compatibility condition of Eqs. [START_REF] Bloch | Upscaling of diusion-reaction phenomena by homogenisation technique: Possible appearance of morphogenesis[END_REF].

c i (i ∈ {1, 2}) are then sought in an expansion related to the spectral problem (2) as follows

c i (t, x, y) = ∞ n=0 ψ i,n (y) exp (-λ n t) v i,n (t, x, y) (6) 
with new variables v i,n depending on time and position.

Let dene the macroscopic Damköhler number Da L as the ratio of the macroscopic diusion time to the reaction one

Da L = k r L D r (7) 
where k r and D r denote reference reaction rate and diusion coecient. In [START_REF] Le | A spectral approach for homogenization of diusion and heterogeneous reaction in porous media[END_REF], the Damköhler number appears naturally through the dimensional analysis which has been skipped in this summary J o u r n a l P r e -p r o o f

Journal Pre-proof of the results. The reference time is chosen as the macroscopic diusion time t r = L 2 /D r . The reader can refer to [START_REF] Le | A spectral approach for homogenization of diusion and heterogeneous reaction in porous media[END_REF] for more details on the procedure.

It has been shown in [START_REF] Le | A spectral approach for homogenization of diusion and heterogeneous reaction in porous media[END_REF] that for small Damköhler number of order O(ε), a classical homogenization procedure can correctly predict the macroscopic laws. However, for higher Damköhler number of order O(ε 0 ) or O(ε -1 ), special development is needed to precisely predict the behavior of diusion/reaction mechanism for short time [START_REF] Le | A spectral approach for homogenization of diusion and heterogeneous reaction in porous media[END_REF]. It should be noted that a slight dierence between the two cases O(ε 0 ) and O(ε -1 ) comes from the closure problem in solid/uid interface condition. In this work, we deal with the most interesting case of high Damköhler number with Da L = O(ε -1 ). By inserting [START_REF] Tartakovsky | Hybrid simulations of reactiondiusion systems in porous media[END_REF] in the initial problem [START_REF] Allaire | Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media[END_REF] and making use of the denition [START_REF] Qiu | Upscaling multicomponent transport in porous media with a linear reversible heterogeneous reaction[END_REF], performing a dimensional analysis, the ε-microscopic model for v i,n in dimensional space reads as

                   ψ 2 1,n ∂v (ε) 1,n ∂t = ∇ • D 1,n ∇v (ε) 1,n in Y f ψ 2 2,n ∂v (ε) 2,n ∂t = ∇ • D 2,n ∇v (ε) 2,n -D 1,n ∇v (ε) 1,n • n f s = ε -1 k 2 ψ 1,n ψ 2,n (v (ε) 1,n -v (ε) 2,n ) at ∂Y f s -D 2,n ∇v (ε) 2,n • n f s = ε -1 k 1 ψ 1,n ψ 2,n (v (ε) 2,n -v (ε) 1,n ) (8) with D 1,n = D 1 ψ 2 1,n and D 2,n = D 2 ψ 2 2,n
. By collecting the terms in the dierent powers of ε, one leads to the following results.

• Slow variables: At the leading order, the solution of v is v

(0) 1,n (t, x, y) = v (0) 2,n (t, x, y) = v (0)
n (t, x).

• Fluctuation: the solution for v 

n depending on t and

x 1 v (1) 1,n = χ 1,n (y) • ∇ x v (0) n (t, x) + v (1) 
n (t, x) v (1) 2,n = χ 2,n (y) • ∇ x v (0) n (t, x) + v (1) n (t, x) (9) 
J o u r n a l P r e -p r o o f Journal Pre-proof where the vectors χ 1,n and χ 2,n satisfy the closure problem2 

               0 = ∇ y • D 1,n I + ∇ y χ 1,n in Y f 0 = ∇ y • D 2,n I + ∇ y χ 2,n -D 1,n n f s • I + ∇ y χ 1,n = k 2 ψ 1,n ψ 2,n χ 1,n -χ 2,n at ∂Y f s -D 2,n n f s • I + ∇ y χ 2,n = k 1 ψ 1,n ψ 2,n χ 2,n -χ 1,n (10) 
The particular case n = 0 corresponds to the eigenvalue λ 0 = 0 and to the eigenfunctions (4).

In this case χ 1,0 ≡ χ 2,0 ≡ χ and the local problem [START_REF] Allaire | Homogenization of a convectiondiusion model with reaction in a porous medium[END_REF] reduces to the standard closure problem

   ∇ 2 yy χ = 0 in Y f (I + ∇ y χ) • n f s = 0 at ∂Y f s (11) This leads to v (1) 1,0 = v (1) 2,0 = v (1) 0 = χ(y) • ∇ x v (0) 0 (t, x) + v(1) 0 (t, x) (12) 
• Macroscopic equation: the macroscopic problem for v

n is derived as

∂v (0) n ∂t = ∇ x • D v,n • ∇ x v (0) n ( 13 
)
where the eective diusion tensor D v,n is dened by

D v,n = k 1 k 1 + k 2 D 1,n I + ∇ y χ 1,n T f + k 2 k 1 + k 2 D 2,n I + ∇ y χ 2,n T f (14) 
For n = 0, the eective tensor is given by

D v,0 = k 1 D 2 + k 2 D 1 k 1 + k 2 ⟨I + (∇ y χ) T ⟩ f (15) 
• Macroscopic equations for the concentrations: As discussed in [START_REF] Le | A spectral approach for homogenization of diusion and heterogeneous reaction in porous media[END_REF], only the two rst eigenvalues λ 0 = 0 and λ 1 with their corresponding eigenfunctions are considered. In the asymptotic development ( 6), the higher order terms can be ignored due to the exponential decay in time. The averaged concentrations at the leading order are given by

⟨c (0) 1 ⟩ f = ψ 1,0 v (0) 0 + ⟨ψ 1,1 ⟩ f exp(-λ 1 t) v (0) 1 ⟨c (0) 2 ⟩ f = ψ 2,0 v (0) 0 + ⟨ψ 2,1 ⟩ f exp(-λ 1 t) v (0) 1 (16) 
Omitting for the sake of simplicity the subscript (0) related to the scale order, using [START_REF] Bourbatache | Upscaling coupled heterogeneous diusion reaction equations in porous media[END_REF] for n = 0

and n = 1, and considering the time derivative of ( 16) and the compatibility condition [START_REF] Lugo-Méndez | Upscaling diusion and nonlinear reactive mass transport in homogeneous porous media[END_REF] for n = 1 result in the following mass conservation equations at the leading order 3 :

                       ∂⟨c 1 ⟩ f ∂t -∇ x • k 1 D v,1 + k 2 D v,0 k 1 + k 2 • ∇ x ⟨c 1 ⟩ f -∇ x • k 2 (D v,0 -D v,1 ) k 1 + k 2 • ∇ x ⟨c 2 ⟩ f + λ 1 k 1 ⟨c 1 ⟩ f -k 2 ⟨c 2 ⟩ f k 1 + k 2 = 0 ∂⟨c 2 ⟩ f ∂t -∇ x • k 1 (D v,0 -D v,1 ) k 1 + k 2 • ∇ x ⟨c 1 ⟩ f -∇ x • k 2 D v,1 + k 1 D v,0 k 1 + k 2 • ∇ x ⟨c 2 ⟩ f -λ 1 k 1 ⟨c 1 ⟩ f -k 2 ⟨c 2 ⟩ f k 1 + k 2 = 0 (17) 
Given the eective coecient tensors D v,0 and D v,1 , and the initial and boundary conditions, the coupled diusion-reaction Eqs. ( 17) can be solved to compute the concentration proles.

Boundary layer problem

The macroscopic model based on the homogenization technique relies on the periodic condition hypothesis. As a consequence, it cannot capture the boundary layer problem developed in the vicinity of the edge of the domain when an outer boundary condition of Dirichlet type is imposed.

In this section, corrections are made to precisely take into account this boundary layer in the upscaled problem.

Let consider a parallelepiped rectangular porous medium with macro and microscopic coordinates {x 1 , x 2 , x 3 } and {y 1 , y 2 , y 3 } respectively 4 . At the inlet boundary x 1 = 0 (and y 1 = 0), 3 Eqs. ( 17) are dimensional equations corresponding to Eqs. (49) of [START_REF] Le | A spectral approach for homogenization of diusion and heterogeneous reaction in porous media[END_REF], where the stars have been omitted. 4 It should be noted that the semi-innite 

domain x1 ∈ [0, ∞], x2, x3 ∈ [-∞, ∞] can
c 1 = k 2 k 1 v (0) 0 + v (1) 0 + ψ 1,1 (y) exp(-λ 1 t) v (0) 1 + v (1) 1,1 c 2 = k 1 k 2 v (0) 0 + v (1) 0 + ψ 2,1 (y) exp(-λ 1 t) v (0) 1 + v (1) 2,1 (18) 
It should be noted that the formal parameter ε can be omitted for the calculation of the concentrations. This is a quasi-exact solution in the domain, except for the boundary layer in the vicinity of the interface where boundary conditions should be imposed for the variable v (0) 0 in order to solve the problem [START_REF] Bourbatache | Upscaling coupled heterogeneous diusion reaction equations in porous media[END_REF]. Two distinct problems related to the permanent and transient regimes need to be considered.

Steady state

In the steady state when t → ∞, only the rst order variable v 

c 1 = k 2 k 1 v (0) 0 + v (1) 0 + v (1) 0,BL + u (0) 1BL c 2 = k 1 k 2 v (0) 0 + v (1) 0 + v (1) 0,BL + u (0) 2BL (19) 
It should be underlined that the boundary layer problem needs to be solved in a reduced uid domain Y † f (with a corresponding solid/uid interface ∂Y † f s ) composed of the innite repetition of the unit cell Y in the direction Oy 1 perpendicular to the edge.

J o u r n a l P r e -p r o o f

Journal Pre-proof

3.1.1. Order O(ε 0 )
Inserting [START_REF] Destuynder | Sur une justication des modèles de plaques et de coques par les méthodes asymptotiques[END_REF] in the initial problem (1) in steady state, the problem for u 

               0 = ∇ y • D 1 ∇ y u (0) 1BL in Y † f 0 = ∇ y • D 2 ∇ y u (0) 2BL -D 1 ∇ y u (0) 1BL • n f s = k 1 u (0) 1BL -k 2 u (0) 2BL on ∂Y † f s -D 2 ∇ y u (0) 2BL • n f s = k 2 u (0) 2BL -k 1 u (0) 1BL (20) u (0) 
1BL and u

(0)
2BL are periodic in y 2 and y 3 and satisfy the following boundary conditions

y 1 = 0 c 1D = k 2 k 1 v (0) 0D + u (0) 1BL (y 1 = 0) c 2D = k 1 k 2 v (0) 0D + u (0) 2BL (y 1 = 0) y 1 → ∞ u (0) 1BL (y 1 ) → 0 u (0) 2BL (y 1 ) → 0 (21) 
where v 

s (0) BL = D 1 u (0) 1BL + D 2 u (0) 2BL d (0) BL = k 1 u (0) 1BL -k 2 u (0) 2BL (22) 
Inserting the above denitions in [START_REF] Allaire | Boundary layer tails in periodic homogenization[END_REF], the problems for s BL are separate and given by

                 0 = ∆ yy s (0) BL in Y † f 0 = ∆ yy d (0) BL -∇ y s (0) BL • n f s = 0 on ∂Y † f s -∇ y d (0) BL • n f s = k 1 D 1 + k 2 D 2 d (0) BL (23) s (0) 
BL and d

BL are also periodic in y 2 and y 3 . In addition, by using the denitions [START_REF] Matine | Modeling of thermophysical properties in heterogeneous periodic media according to a multi-scale approach: Eective conductivity tensor and edge eects[END_REF] of s

BL and

d (0)
BL in [START_REF] Amar | On the exponential decay for boundary layer[END_REF], one obtains the following boundary conditions

y 1 = 0 s (0) BL = D 1 c 1D + D 2 c 2D - k 1 D 2 + k 2 D 1 √ k 1 k 2 v (0) 0D d (0) BL = d D = k 1 c 1D -k 2 c 2D y 1 → ∞ s (0) BL (y 1 ) → 0 d (0) BL (y 1 ) → 0 (24) 
J o u r n a l P r e -p r o o f
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In steady state, the solution of the problem [START_REF] Matine | Transient heat conduction within periodic heterogeneous media: A space-time homogenization approach[END_REF] for s

(0)
BL is a constant equal to 0 due to the boundary condition ( 24) at y 1 → ∞. From ( 24), the Dirichlet condition for v (0) 0 at y 1 = 0 reads as

v (0) 0D = k 1 k 2 D 1 c 1D + D 2 c 2D k 1 D 2 + k 2 D 1 (25) 
so that at the leading order, the boundary values of the concentrations imposed at x 1 = 0 to calculate the solution of the inner problem [START_REF] Koley | Study of boundary layer eects at ply interfaces of laminated composites using homogenization theory[END_REF] are given by

       c (0) 1D = k 2 k 1 v (0) 0D = k 2 D 1 c 1D + D 2 c 2D k 1 D 2 + k 2 D 1 c (0) 2D = k 1 k 2 v (0) 0D = k 1 D 1 c 1D + D 2 c 2D k 1 D 2 + k 2 D 1 (26) 
Inserting ( 25) into [START_REF] Amar | On the exponential decay for boundary layer[END_REF] gives the boundary values for u

1BL and u

(0) 2BL      u (0) 1BL( y 1 = 0) = D 2 k 1 c 1D -k 2 c 2D k 1 D 2 + k 2 D 1 u (0) 2BL( y 1 = 0) = D 1 k 2 c 2D -k 1 c 1D k 1 D 2 + k 2 D 1 (27) 
It should be noted that the problem for d

BL in ( 23) and ( 24) is an exponential decay problem-type involving a thin boundary layer aected by this correction.

To summarize, in steady state, at the order O(ε 0 ), to capture the boundary layer problem when the Dirichlet conditions for the concentrations do not verify the equilibrium condition, the problems for v (0) 0 (Eq. ( 13) for n = 0) and for u This correction comes from the fact that in the concentrations given by ( 18), the term v

(1) 0 is not uniform in space at the boundary y 1 = 0. Similarly to the expression (12) for v

(1) 0 , the boundary correction v

(1)

0,BL is sought in the form v (1) 0,BL = ω • ∇ x v (0) 0 (28) 
The vector ω periodic in y 2 and y 3 must satisfy the closure

∇ 2 yy ω = 0 in Y † f -∇ y ω • n = 0 on ∂Y † f s (29) 
J o u r n a l P r e -p r o o f

Journal Pre-proof

At the boundary y 1 = 0 in order to satisfy the boundary condition v

(1)

0 + v (1) 
0,BL = 0, we impose

ω + χ = 0 ( 30 
)
where χ is the solution of the closure problem [START_REF] Bourbatache | Upscaling diusionreaction in porous media[END_REF]. In the direction y 1 of unit vector e 1 , for

y 1 → ∞, a homogeneous Neuman condition is imposed ∇ y ω • e 1 = 0 (31) 
The vector ω will reach a constant value at large value of y 1 resulting from the averaging of the ω = -χ values at the interface y 1 = 0. As this constant value must be 0, the indetermination of the χ problem ( 11) is exploited subtracting this value from ω 5 .

In the particular case of a symmetrical unit cell, in the frame of the symmetry axes centered on the cell, imposing a null volume average ensures the unicity of χ where the components χ i are odd relative to y i (and even relative to the other coordinates y j̸ =i ). Therefore, if the external surface of the medium coincides with the surface of the unit cell Y of normal e 1 , χ 1 is null due to the combination of oddness and periodicity. Consequently, ω 1 = 0 on the surface y 1 = 0 of Y † . Hence

ω 1 is identically null in Y † f . In conclusion, if the gradient ∇ x v (0) 0 is parallel to e 1 , the correction v (1) 0,BL is null over Y † f .

Transient state

In the transient regime, the terms at order O(ε) in ( 18) must be corrected to better describe the complex unsteady non-equilibrium eect in the boundary layer. It is important to note that due to the large Damköhler number, the physical coupling is aected by the boundary condition only for short times. Beyond this time, the steady state is established. The O(ε 0 )-corrective terms for the two concentrations u 

1,1BL and v

2,1BL into the expression of the concentrations [START_REF] Buannic | Higher-order eective modelling of periodic heterogeneous beams. II. Derivation of the proper boundary conditions for the interior asymptotic solution[END_REF] as 5 We recall that the boundary conditions are imposed for c1 and c2 at the main order, that implies according to

c 1 = k 2 k 1 v (0) 0 + v (1) 0 + v (1) 0,BL + u (0) 1BL + ψ 1,1 (y) exp(-λ 1 t) v (0) 1 + v (1) 1,1 + v (1) 1,1BL c 2 = k 1 k 2 v (0) 0 + v (1) 0 + v (1) 0,BL + u (0) 2BL + ψ 2,1 (y) exp(-λ 1 t) v (0) 1 + v (1) 2,1 + v (1) 2,1BL (32) 
(19) that v (1) 0 + v (1) 
0,BL = 0 at order O (ε). 

2BL depending on y then reads as

                   ∂u (0) 1BL ∂τ = ∇ y • D 1 ∇ y u (0) 1BL in Y † f ∂u (0) 2BL ∂τ = ∇ y • D 2 ∇ y u (0) 2BL -D 1 ∇ y u (0) 1BL • n f s = k 1 u (0) 1BL -k 2 u (0) 2BL on ∂Y † f s -D 2 ∇ y u (0) 2BL • n f s = k 2 u (0) 2BL -k 1 u (0) 1BL (33) 
where u

1BL and u

2BL are periodic in y 2 and y 3 and satisfy the boundary conditions

y 1 = 0 c 1D = k 2 k 1 v (0) 0D + u (0) 1BL(y1=0) + ψ 1,1 (y 1 =0) exp(-λ 1 t)v (0) 1 (t, x) (y1=0) c 2D = k 1 k 2 v (0) 0D + u (0) 2BL(y1=0) + ψ 2,1 (y 1 =0) exp(-λ 1 t)v (0) 1 (t, x) (y1=0) y 1 → ∞ u (0) 1BL (y 1 ) → 0 u (0) 2BL (y 1 ) → 0 t = 0 u (0) 1BL = u (0) 2BL = 0 (34) 
To solve the boundary problem and the upscaled model, the initial and boundary conditions for v

(0) 0 , v (0) 1 , u (0) 
1BL and u

2BL must be specied. The boundary values of v

(0) 0 , u (0) 
1BL and u (0) 2BL

should verify the steady state being given by ( 25) and ( 27). The boundary condition for v (0) 1 can be legitimately adopted as v (0) 1 (y 1 = 0) = 0.

For the initial condition, owing to the compatibility condition [START_REF] Lugo-Méndez | Upscaling diusion and nonlinear reactive mass transport in homogeneous porous media[END_REF] for n = 1, from ( 16) we obtain

v (0) 0 (t = 0, x) = √ k 1 k 2 k 1 + k 2 ⟨c (0) 1 ⟩ f (t = 0, x) + ⟨c (0) 2 ⟩ f (t = 0, x) v (0) 1 (t = 0, x) = k 1 ⟨c (0) 1 ⟩ f (t = 0, x) -k 2 ⟨c (0) 2 ⟩ f (t = 0, x) ⟨ψ 1,1 ⟩ f (k 1 + k 2 ) (35)
It is legitimate to adopt that for τ = 0, no correction is needed leading to u

(0) 1BL (τ = 0, y) = u (0) 2BL (τ = 0, y) = 0. 3.2.2. Order O(ε 1 )
We now construct the closure problem for the O(ε 1 )-corrective terms. First note that the steady state problem for v 2,1 given by Eq. ( 8) written in y coordinates

as 6                    ψ 2 1,1 ∂v (1) 1,1BL ∂τ = ∇ y • D 1,1 ∇ y v (1) 1,1BL in Y † f ψ 2 2,1 ∂v (1) 2,1BL ∂τ = ∇ y • D 2,1 ∇ y v (1) 2,1BL -D 1,1 ∇ y v (1) 1,1BL • n f s = k 2 ψ 1,1 ψ 2,1 (v (1) 1,1BL -v (1) 2,1BL ) on ∂Y † f s -D 2,1 ∇ y v (1) 2,1BL • n f s = k 1 ψ 1,1 ψ 2,1 (v (1) 2,1BL -v (1) 1,1BL ) (36) 
Similar to the solution (9) for v

(1)
1,1 and v

(1)
2,1 , the solution of v

(1)
1,1BL and v

(1) 2,1BL is sought in the form v (1) 1,1BL = ζ 1 (y, τ ) • ∇ x v (0) 1 (x, t) v (1) 2,1BL = ζ 2 (y, τ ) • ∇ x v (0) 1 (x, t) (37)
Inserting (37) into (36), noting that the slow variable v 

                 ψ 2 1,1 ∂ζ 1 ∂τ = ∇ y • D 1,1 ∇ y ζ 1 in Y † f ψ 2 2,1 ∂ζ 2 ∂τ = ∇ y • D 2,1 ∇ y ζ 2 -D 1,1 n f s • ∇ y ζ 1 = k 2 ψ 1,1 ψ 2,1 (ζ 1 -ζ 2 ) on ∂Y † f s -D 2,1 n f s • ∇ y ζ 2 = k 1 ψ 1,1 ψ 2,1 (ζ 2 -ζ 1 ) (38) 
complemented by the boundary condition at y 1 = 0

χ 1,1 + ζ 1 = 0 χ 2,1 + ζ 2 = 0 (39) 
where χ 1,1 and χ 2,1 are solution of [START_REF] Allaire | Homogenization of a convectiondiusion model with reaction in a porous medium[END_REF] for n = 1. This condition ensures that at the boundary, the terms at order O(ε) vanish so that only the terms at O(ε 0 ) are considered for the boundary values.

Given the solutions of the rst order variables v 

1,1BL and v The values of the physical parameters used are shown in Table 1. Note that the microscopic Damköhler numbers that constrain the values of the reaction rates k 1 and k 2 are now dened as

Da 1 = k 1 l D 1 and Da 2 = k 2 l D 2 = Da 1 α β (40) 
with the ratios α = k 2 /k 1 and β = D 2 /D 1 .

The numerical study is carried out using COMSOL Multiphysics software based on the nite element method.

Numerical results in steady state

In steady state as t → ∞, the corrections for the concentrations c 1 and c 2 are given by [START_REF] Destuynder | Sur une justication des modèles de plaques et de coques par les méthodes asymptotiques[END_REF] with additional variables u

1BL and u

2BL (recall that as mentioned in 3.1.2 for the symmetric cell considered here the corrective term v

(1) 0,BL is identically zero). First, the macroscopic variable v

(0) 0 , l N φ D 1 D 2 β Da 1 k 1 α k 2 Da 2 c 1D c 2D 0.01 20 0.8 1 βD 1 2 100 Da 1 D 1 /l 2 αk 1 Da 1 α/β 1 c 1D Table 1: Parameters used in simulations.
solution of the homogenized diusion problem [START_REF] Bourbatache | Upscaling coupled heterogeneous diusion reaction equations in porous media[END_REF] in steady state for n = 0 with the homogenized diusion tensor given by [START_REF] Bourbatache | Homogenized model for diusion and heterogeneous reaction in porous media: numerical study and validation[END_REF], is computed in the eective medium. A Dirichlet boundary condition ( 25) is applied at the inlet whereas v 

0 = χ • ∇ x v (0) 0 ( 41 
)
where χ is solution of the closure problem (11) solved numerically on the unit cell.

Finally, the correction variables u

1BL and u

2BL , which are solutions of the local problem [START_REF] Allaire | Boundary layer tails in periodic homogenization[END_REF] with the boundary conditions at the inlet given by ( 27) and a zero-value condition far from the inlet, are solved in the microscopic pore-geometry for at least several unit cells from the inlet due to the exponential-decay behavior of these functions. This point will be proved in the numerical results in the sequel.

Let dene the y 2 -average operator of a function f as Given the solutions for v

⟨f ⟩ y2 = 1 l l 0 f dy 2 (42) 
(0) 0 , v (1) 
0 , u

1BL and u

2BL , knowing that v

(1) 0,BL ≡ 0, the y 2 -averaged concentrations ⟨c i ⟩ y2 of the corrected model can be computed from [START_REF] Destuynder | Sur une justication des modèles de plaques et de coques par les méthodes asymptotiques[END_REF]. In order to compare these results with the solution of the original model, the non-corrected homogenized model (HM) given by the system ( 17) is solved in the eective porous media. To do that, we rst compute the eigenvalue λ 1 and the eigenfunctions ψ 1,1 and ψ 2,1 from the spectral problem (2) for n = 1. Given the eigenfunctions, the closure problem (10) for χ 1,1 and χ 2,1 is solved in the unit cell to compute the eective coecient D v,1 from ( 14) for n = 1. Moreover, the closure problem for χ in [START_REF] Bourbatache | Upscaling diusionreaction in porous media[END_REF] is purely geometric and is solved in the unit cell to give the eective tensor D v,0 from (15).

To validate the proposed corrections in steady state, a direct numerical simulation of the porescale model (PSM) given in Eq. ( 1) is performed with the pore-scale geometry of Figure 1 to obtain the concentration elds which are averaged over the y 2 direction. Figure 3 

c i y2 k2 k1 (v (0) 0 + v (1) 0 ) + u (0) 1BL y2 k1 k2 (v (0) 0 + v (1) 0 ) + u (0) 2BL y2 c1 y2 HM c2 y2 HM c1 y2 PSM c2 y2 PSM k2 k1 (v (0) 0 + v (1) 0 ) + u (0) 1BL y2 k1 k2 (v (0) 0 + v (1) 0 ) + u (0) 2BL y2 c1 y2 HM c2 y2 HM c1 y2 PSM c2 y2 PSM
1,1 and v

2,1 can be computed from the solution (9).

The rst-order corrections u (0) in the general case and vanishes for symmetric elementary cells, which is the case here. Far from the boundary, only the rst-order variable v (0) 0 diers signicantly from zero. In Figure 7b, the terms corresponding to n = 1 are plotted. The uctuations are due to the periodic solution of the eigenfunction ψ 1,1 . Due to exponential decay, the terms disappear over time. We observe that the time-dependent correction terms at this order are very small and can be neglected. The boundary layer problem for the coupled diusion/reaction process for high Damköhler number in porous media has been studied. The macroscopic mass conservation law derived from the homogenization technique and based on a spectral approach represents a quasi-exact solution within the domain but fails to describe the physics in a thin layer near the surface when a nonequilibrium Dirichlet boundary condition is imposed. In this context, corrective terms have to be added to the concentrations for both steady state and transient regime.

In steady state, two corrective functions are introduced to adjust the rst order variable corresponding to the null eigenvalue to capture the non-equilibrium state in the boundary layer. These terms decay exponentially from the boundary and need to be solved only on a few unit cells adjacent to the boundary. Numerical simulations prove that this correction is in excellent agreement with the direct numerical simulation of the pore-scale model.

In transient regime, the O(ε)-variables need to be corrected with additional terms whose solutions involve new closure problems. Numerical results show a small contribution of these terms.

Section 3

 3 is devoted to the development of the modied model in order to address the boundary layer problem in both steady and transient regimes. Numerical simulations are performed in Section 4 to validate the proposed model and to underline the importance of the correction terms. Conclusions are drawn in Section 5.

  1 and D 2 denote the diusion coecients of A and B respectively, k 1 and k 2 the reaction rates. These coecients have constant values during the process. n f s is the normal unit vector at the solid/uid interface pointing out of the uid phase. The microscopic problem is completed by the initial conditions for given values of c 1 (t = 0) and c 2 (t = 0) and the boundary conditions at the outer edges of the domain. In this work, we only consider the Dirichlet conditions in which the concentrations are given at the edges. The initial model is transformed into a new problem associated with the following periodic spectral problem dened on the periodic unit cell Y

  are sought in the following form, to within one additive constant v

  be reduced to a parallelepiped when the periodic conditions in x2 and x3 directions are applied and a nite region in the vicinity of the boundary is considered for the boundary layer problem J o u r n a l P r e -p r o o f Journal Pre-proof Dirichlet conditions for the concentrations, c 1 = c 1D and c 2 = c 2D are imposed. The most interesting case is when k 1 c 1D ̸ = k 2 c 2D corresponding to a non-equilibrium situation. This leads to a thin boundary layer for the concentration proles in the vicinity of the interface x 1 = 0. Our main objective is to incorporate this layer in the upscaled model. To accomplish this task, we rst consider the development (6) with the two rst orders in ε and the two rst eigenvalues together with the corresponding eigenfunctions:

  related to the zero eigenvalue, play a role in the boundary layer. To take into account the boundary layer, the expansion of the concentrations needs to be improved in the sense of [20]. Considering Dirichlet conditions, since two boundary values c 1D and c 2D are given for the concentrations and only one variable v (0) 0 is involved at the interface, it is necessary to introduce new boundary variables u (0) 1BL (x, y) and u (0) 2BL (x, y) at order O ε 0 and v (1) 0,BL at order O ε 1 as

  boundary layer at order O(ε -2 ) in volume and O(ε -1 ) at the interface reads as

  is the unknown Dirichlet condition value of v (0) 0 at y 1 = 0. The problem (20) can be transformed by introducing the auxiliary variables

2 .

 2 given by[START_REF] Bird | Transport Phenomena[END_REF] and (27) respectively. The concentrations c 1 and c 2 must be adjusted by a thin boundary layer involving u Order O(ε 1 )

2 ,

 2 BL are now transient. We also introduce the O(ε)-corrective terms v

3. 2 . 1 .

 21 Order O(ε 0 ) Let dene the characteristic short time τ related to the macroscopic time t by τ = ε -2 t. The transient problem for u

1

 1 corresponding to the rst non zero eigenvalue must be a transient problem. At short J o u r n a l P r e -p r o o f Journal Pre-proof times, inserting (32) in the initial problem (1) for c 1 and c 2 , the transient problem of v has the same form as the problem of v

  , t) is independent on the short characteristic time τ , gives rise to the local unsteady problem of the vectors ζ 1 and ζ 2

  solving the closure problems (29) and (38), the O(ε 1 )-correction terms v

( 1 ) 2 ,Figure 1 :

 121 Figure 1: Porous medium and homogenized medium used in the numerical simulation.

  is imposed at the outlet. If the concentrations values imposed at the interface are c 1D = c 2D = 1, the imposed value for v 1 = 0) = 0.75. Secondly, given the eld of v

Figure 2 (

 2 Figure 2(a) displays the variation of the y 2 -averaged variables u 0 1BL y2 and u 0 2BL y2 with respect to the position x 1 /L. We can observe that the correction u 0 1BL (respectively u 0 2BL ) decreases (respectively increases) rapidly and decays towards zero after several unit cells in the vicinity of the inlet. Thus, this correction only aects a thin layer (boundary layer) from the edge whose thickness depends on the Damköhler numbers. The variation of the dierence d 0 BL y2 with respect to x 1 /L is plotted in Figure 2(b). It is clearly observed that a non-equilibrium state where d 0 BL y2 ̸ = 0 is established in a thin boundary layer.

Figure 2 :

 2 Figure 2: Variation of (a): u 0 1BL y 2 and u 0 2BL y 2 and (b): d 0 BL y 2 versus x1/L for Da1 = 100.

displays the y 2

 2 -averaged concentration proles of ⟨c 1 ⟩ y2 and ⟨c 2 ⟩ y2 obtained from the corrected model (continuous line), the original HM without correction (dotted line) and the PSM (line-marker). An excellent agreement between the corrected model and the PSM is observed, which satisfactorily validates the proposed model. The original HM solution fails to capture the complex physics in the boundary layer and leads to an inaccurate prediction of the concentration elds in the entire domain. We can also observe that ⟨c 1 ⟩ y2 (respectively ⟨c 2 ⟩ y2 ) increases (respectively decreases) quickly in the boundary layer to attain a transition point delimiting the boundary zone.

Figure 3 :

 3 Figure 3: y2-averaged concentrations versus x1/L for Da1 = 100 obtained by the corrected model (line), the original HM (dotted line) and the PSM (line-marker).

4. 2 .1 1 ,

 21 Numerical results in transient regimeThe corrected solution for the concentrations involving additional variables at order O(ε 1 ) in transient regime is given by Eq. (32). To compute the concentrations, rst we solve the transient problems for the rst-order variables v given by[START_REF] Bourbatache | Upscaling coupled heterogeneous diusion reaction equations in porous media[END_REF] with the initial conditions (35). In addition, the Dirichlet boundary condition for v (0) 0[START_REF] Bird | Transport Phenomena[END_REF] is imposed at the inlet and v the zero value is imposed on both boundaries. Given the elds of v

Figure 4 :

 4 Figure 4: Concentration variation of (a) ⟨c1⟩y 2 and (b) ⟨c2⟩y 2 with time for dierent positions x1 = [l/4, 2l, 3l],obtained from the corrected model (dashed line-marker), PSM (line) and the original HM (dotted line-marker).

Figures 5 and 6 display the y 2 -Figure 5 : 20 J

 2520 Figures 5 and 6 display the y 2 -averaged concentration proles of ⟨c 1 ⟩ y2 and ⟨c 2 ⟩ y2 with respect to x 1 /L obtained from the three models at dierent times t. Small uctuations in the concentrations obtained by the corrected model are observed at the beginning of the process due to the periodic variation of the eigenfunctions, which vanish with time. Again, the corrected model is in very good agreement with the PSM while the original HM fails to reproduce the boundary layer behavior correctly. As a result, this error propagates with time away from the boundary, leading to inaccurate prediction of concentration proles.

Figure 6 : 21 J

 621 Figure 6: Concentration ⟨c2⟩y 2 versus x1/L for dierent times. 21 J o u r n a l P r e -p r o o f

Figure 7 :

 7 Figure 7: Corrective term proles for dierent times.

This necessary condition comes from the right hand side of the associated boundary conditions in Eqs.[START_REF] Valdés-Parada | On diusion, dispersion and reaction in porous media[END_REF] 

Here, rather than using the tensorial denition in[START_REF] Le | A spectral approach for homogenization of diusion and heterogeneous reaction in porous media[END_REF] in which a transpose operator is needed, the index notation for the gradient of a vector dened in[START_REF] Bird | Transport Phenomena[END_REF] is adopted.

Starting again from Eq. (8) with the scaling τ = ε -2 t on time, we would obtain (36) at order O (ε).

J o u r n a l P r e -p r o o f
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Journal Pre-proof

In order to validate the proposed corrected model, a direct numerical simulation of the PSM (Eq. 1) is numerically solved in the pore-scale geometry in transient regime. Initial values of the concentrations are imposed as c 1 (t = 0) = c 2 (t = 0) = 0.1, which corresponds to a non-equilibrium initial state. Parameters used in the simulation are given in Table 1. Moreover, macroscopic equations without correction [START_REF] Koley | Study of boundary layer eects at ply interfaces of laminated composites using homogenization theory[END_REF] are also numerically solved in the same geometry.

Figure 4 shows the variation of the y 2 -averaged concentrations ⟨c 1 ⟩ y2 and ⟨c 2 ⟩ y2 with time at dierent positions x 1 = [l/4, 2l, 3l], obtained from the corrected model, the original homogenized model (HM) and the direct numerical simulation of the pore-scale model (PSM). Excellent agreement is obtained between the PSM and the corrected model for the three observation points located at dierent x 1 positions, which satisfactorily validates the proposed transient model. At very short times when the local chemical reaction dominates the transport mechanism and the boundary layer is located very close to the surface, all three models predict the same results at the observation points. However, for longer times, when the boundary layer propagates through the domain, a dierence between the original HM and the PSM appears and this is all the earlier as the position of the point is close to the surface at the left boundary.
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