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Abstract—A wideband, wide-scanning-angle and 

high-efficiency 2-bit circularly-polarized (CP) reconfigurable 

reflectarray is presented for two-dimensional (2D) dynamic beam 

control. The reflectarray is achieved using tunable elements based 

on crossed-bowtie patches with annually distributed PIN diode 

loadings. By squeezing two interlaced crossed-bowtie patches into 

a single unit cell and making them strongly coupled, doubled 

phase state and drastically extended element bandwidth are 

simultaneously obtained. In addition, simple biasing circuitry and 

low-loss reconfigurable mechanism are also introduced. The 

fabricated 16×16 two-dimensional beam-scanning reflectarray 

working at X-band demonstrates experimentally a 3-dB gain and 

axial ratio bandwidth of 22%, a peak gain of 24.5 dBic, an 

aperture efficiency of 35%, sidelobe levels of around -20 dB and a 

scanning range up to ±60°. With such well-rounded performances, 

the proposed reflectarray design, which realizes 2D CP beam 

scanning, can be a competitive candidate for space and satellite 

communications. 

 
Index Terms—Beam scanning, circular polarization, high-gain 

antenna, PIN diode, reconfigurable antenna, reflectarray, 

transmitarray. 

 

I. INTRODUCTION 

IGH-gain antenna with dynamic beam control offers a 

great flexibility for many modern wireless communication 

and sensing systems [1]. Meanwhile, achieving 

circularly-polarized (CP) radiation for the steerable pencil 

beams is very attractive in practice due to the potential benefits 

that a CP wave brings about especially when the wireless 

channel becomes unpredictable [2]. 

Reconfigurable CP beam can be launched using traditional 
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high-gain antennas such as parabolic reflectors and the phased 

arrays through mature methodologies. However, these 

solutions often suffer from their own drawbacks including 

bulky size and increased costs. Reflectarray antennas combine 

advantages from both the parabolic reflector and the phased 

array, possessing a spatial feeding configuration, a planar 

radiating surface as well as flexible wave front manipulation [3, 

4]. By incorporating tunable devices or materials into its 

unit-cell, dynamically controllable beams can be obtained in a 

cost-effective way [5, 6]. Among many of the approaches 

implemented to realize electronically reconfigurable 

reflectarrays (RRAs), the use of PIN diodes has attracted the 

most research attentions because of its advantages such as low 

cost, simplicity and the off-the-shelf availability. As revealed in 

[7], a classical way to alter the resonance and hence the 

reflection phase of a microstrip patch reflectarray element 

consists in grounding the patch via a diode-controlled shorting 

pin at its radiating edge. Through switching the state of the PIN 

diode, the resonant frequency of the patch fundamental mode 

can be shifted and the phase value of the back-scattered field 

can be reversed, resulting in an one-bit phase adjustment. This 

idea has been further exploited and applied to enable numerous 

reconfigurable designs that realize single-band or dual-band 

operation with linear or dual-linear polarizations [8-16]. 

However, the realization of RRA can become quite 

challenging when it comes to manipulate electronically a CP 

beam. The design of reconfigurable CP reflectarrays [17-19] 

based on PIN diodes mainly follow the idea of element rotation 

method originally proposed by Huang [20]. In these designs, 

two orthogonal polarizations should be properly perturbed by 

switching the states of the diodes and a radial symmetry is 

established in the element configuration. As a result, the 

element bandwidth shrinks and complexity of the unit-cell 

increases. In particular, for reconfigurable designs that intend 

to realize multiple CP states (i.e., finer than 1-bit phase 

resolution), more diodes with independent control are needed. 

The resultant complex unit-cell would further impose difficulty 

in the practical implementation of the CP RRA, as indicated by 

the reported multi-bit CP RRA element designs [21, 22].  

To date, three approaches have been found in the literature to 

achieve a fully reconfigurable CP reflectarray. Methods using 

PIN diodes [17, 19] and motors [18] are adopted to realize the 

desired element rotation in either an electrical or a mechanical  
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manner. Varactor diodes can also be applied to adjust the 

reflection phase of each orthogonal linear polarization and 

hence manipulate the phase of the reflected CP wave [23]. 

Mechanical tuning method using motor array to control the 

reflectarray elements presents generally encouraging 

performances including a wide bandwidth and low sidelobe 

levels, although the aperture efficiency is not as high as 

expected due to the lower spillover efficiency [18]. However, 

the tuning speed and the high profile of the motor-integrated 

reflector can be the major concerns associated with this 

approach. While electronically reconfigurable CP reflectarray 

with continuous phase adjustment has been demonstrated by 

incorporating varactor diodes [23], the element efficiency and 

the bandwidth of the work are found to be limited. Method 

based on PIN diodes is an overall good candidate for designing 

electrically reconfigurable CP reflectarrays with a moderate 

cost, small insertion loss and low biasing complexity. 

Nonetheless, phase resolution of the reported designs is limited 

to one bit, leading to a relatively low aperture efficiency and 

high sidelobe levels. Besides, improving the bandwidth of the 

microstrip-patch based elements is still challenging. 

In this paper, a 2-bit fully reconfigurable CP reflectarray 

using PIN diode switches is proposed, designed and 

demonstrated. Interlaced and strongly coupled crossed-bowtie 

patches are exploited to realize the 2-bit phase adjustment and, 

at the same time, overcome the narrow bandwidth issue. 

Concerns regarding the practical implementation difficulties 

are well addressed with a simple biasing circuit design. The CP 

RRA also highlights a wide beam scanning range and low 

sidelobes. The paper is organized as follows. Section II 

introduces the configuration and the design of the proposed 

2-bit CP RRA unit cell. Section III describes the 

implementation of the RRA prototype and the experimental 

demonstration of the two-dimensional beam scanning 

capability. Finally, a conclusion is drawn in Section Ⅳ. 

II. 2-BIT RECONFIGURABLE CP UNIT-CELL: DESIGN AND 

ANALYSIS 

The electronically tunable element is designed based on the 

element rotation approach [20], where a CP feed is adopted to 

illuminate the reflector and the phase of the scattered CP wave 

is altered by varying the rotational angle of the element. To 

realize 2-bit phase adjustment, the angular orientation of the 

element needs to be rotated by as much as 135° with a uniform 

step of 45° (because the change in CP reflection phase is twice 

that of the element rotation angle [20]). Since the element in an 

electronically RRA is physically fixed, the states of the 

incorporated PIN diode switches are therefore reconfigured to 

geometrically rotate the element and electronically adjust the 

CP phase. 

A. Unit-cell configuration and analysis 

The proposed element consists of four pairs of bowtie 

patches distributed annularly surrounding the center of the 

unit-cell, as depicted in Fig. 1. The patches are designed to be in 

close proximity to each other, i.e., a small axial gap width (W2) 

is maintained, for creating a strong mutual parasitic effect and 

ultimately broadening the element bandwidth. Four pairs of 

PIN diodes (MADP-000907-14020 from MACOM 

Technologies) are used to serially connect the two arms of the 

bowtie patches. Specifically, the eight diodes are divided into 

two groups, each containing four diodes loaded to bowtie 

patches lie in orthogonal directions, which are then biased by 

two DC sources (the DC voltages A and B in Fig. 1(a)),  
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Fig. 1. Configuration of the proposed 2-bit reconfigurable CP reflectarray unit-cell: (a) exploded view, layout of: (b) the top layer, (c) the second layer, (d) the 

third layer, (e) the fourth layer and (f) the bottom layer as well as (g) a close up view of the diodes orientations. The geometrical parameters are: P=15, L1=5.53, 

L2=1.35, L3=3.2, L4=1.9, L5=0.9, L6=3.2, L7=2, L8=4.86, L9=1.94, L10=4.56, W1=5.05, W2=0.21, W3=0.4, W4=0.66, W5=0.66, W6=0.127, d1=0.25, d2=0.45, 

d3=0.66, d4=1.55, d5=0.55, d6=2, d7=0.85, d8=0.76, R1=3.2, R2=3.6, Lv1=2.02, Lv2=0.34, Lv3=0.45, Lv4=0.55, h1=0.2, h2=0.2, h3=1.52, h4=0.2 (unit: mm). 
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Fig. 2. Simulated reflection coefficients (a) and current distributions (b) of the 

proposed RRA element under x- and y-polarized plane-wave illuminations, 

when the two diodes along the x-direction are activated (see the insert for the 

ideal unit-cell configuration in this case). 

 

respectively. Biasing voltages are provided to the innermost 

ends of the diodes using the two plated through-holes (PTHs) 

while the outermost ends of the diodes are all shorted to the 

ground by blind vias that are introduced on the patches. Noted 

that the orientations of the diodes are arranged in such a way 

(see Fig. 1(g)) that the two pairs of diodes in each group always 

have opposite states, i.e., one pair being forward biased and the 

other reverse biased and vice versa. The RF filters and DC 

distributing networks are placed underneath the ground plane 

so that their interference with the RF signal can be minimized. 

 

(a). Design principle of the CP reflectarray element 

As a general design principle, improving the 

cross-polarization discrimination (XPD) is of paramount 

interest for achieving a high-performance CP reflectarray 

unit-cell. Suppressing the cross-polarized CP component, i.e., 

the component that has a reversed handedness from the incident 

CP wave and whose phase does not depend on the element 

rotation, can be realized by introducing a proper degree of 

anisotropy into the unit-cell that gives rise to a 180° difference 

in the reflection phase shift between the two orthogonal linear 

polarizations [20]. Toward this end, a perturbation can be 

introduced by activating the two diodes associated with a single 

pair of patches. This opens a new current path to bridge the two 

halves of the particular bowtie and hence changes the scattering 

property of the corresponding linear polarization. As an 

example, the resonance of the element upon x-polarized normal  
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Fig. 3. Simulated reflection coefficients of the co-polarized and cross-polarized 

CP components for the element under CP wave incidence with different oblique 

angles. 

 

incidence is noticeably altered when the two diodes in 

x-direction are forward biased, as compared to that upon the 

y-polarized illumination (see Fig. 2(a)). The simulated surface 

current distributions in Fig. 2(b) also validate the different 

element behavior and resonance under the two orthogonal 

linear-polarization illuminations. A stable difference of around 

180° in phase shift is observed between the x- and 

y-polarizations in the back-scattered field across a wide 

frequency range. The magnitudes of the reflection coefficients 

for co- and cross-polarized CP components are accordingly 

reported in Fig. 3 (see the solid and dotted blue lines for normal 

incidence). As it is shown, a unit-cell CP bandwidth of over 

20% and an insertion loss mostly within 1.5 dB are achieved.  

The sensitivity of element CP performance to the incident 

angle of the plane-wave excitation is also examined, as 

sketched in Fig. 3. It is observed that the cross-polarization 

level can be suppressed to be at least 10 dB lower than the 

co-polarization over a wide band if the incident angle doesn’t 

exceed 40°, which holds for the most elements across the 

aperture when a 30-degree offset feeding configuration is 

adopted (described later). Performances of the edge elements 

with larger oblique incident angle will be less satisfactory. But 

their influences on the performance of the whole space-fed 

array can be limited [24]. Therefore, the proposed 

crossed-bowtie patch element can be used as a suitable unit-cell 

for designing wideband CP reflectarrays. The optimized 

geometrical specifications of the proposed element are listed in 

the caption of Fig. 1. 

 

(b). Achieving the reconfigurable CP reflection phase 

The element reconfigurability can be obtained by applying 

different sets of DC voltages to the diodes. The orientations of 

the diodes are given in Fig. 1(g). It can be seen that by 

providing a positive or negative DC voltage to either of the two 

biasing lines (denoted in brown and olive in Fig. 1) and 

connecting the antenna ground plane to the DC zero, four 

operation states that demonstrate different angular rotation 

movement of the unit-cell can be achieved. The ideal 

configuration and required DC voltages for each element state 

are provided in Table Ⅰ. The equivalent circuit models of the  
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TABLE Ⅰ 
REQUIRED BIASING VOLTAGES AND THE IDEAL ELEMENT CONFIGURATIONS OF 

DIFFERENT ELEMENT STATES 

Element 

state 

DC  

voltage 

A 

DC  

voltage 

B 

Ideal element 

configuration 

Reflection 

phase 

#1 0 -Vf 

 

0° 

#2 +Vf 0 

 

90° 

#3 0 +Vf 

 

180° 

#4 -Vf 0 

 

270° 

 

Rf = 4.2 Ω 

Lf = 50 pH 

Cp = 42 fF 

Rp = 300 kΩ (b)(a)  
Fig. 4. Equivalent circuit model of the adopted diode in: (a) on and (b) off 

states. 
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Fig. 5. Phases of the reflection coefficients of the co-polarization component 

and magnitudes of the reflection coefficients of the cross-polarization 

component for the four different element states under oblique incidence with an 

angle of 30°. 

 

PIN diode in both on and off states are extracted from 

measurement [13] and can be found in Fig. 4. 

The co-polarization phases and the cross-polarization 

magnitudes of the scattered field are plotted in Fig. 5 for the 

four states of the unit-cell (oblique incident angle of 30° is 

assumed here). As illustrated, the magnitudes of the reflected 

crossed-polarized CP components remain lower than -13 dB 

over a frequency band from 8.5 to 10.3 GHz. Moreover, as 

desired, four parallel phase responses with a difference of 90° 

are obtained for the co-polarizations, indicating that a 2-bit 

phase adjustment can be achieved by switching the element 

between the four states. It can be inferred that a high 

cross-polarization suppression and a stable 2-bit phase 

adjustment are secured over a fractional bandwidth of 20%. 
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Fig. 6. Simulated reflection coefficients of the co-polarized and cross-polarized 

CP components for different unit-cell configuration, i.e., with and without the 

grounding vias. 

 

8 9 10 11

-80

-60

-40

-20

0

M
ag

n
it

u
d
e 

(d
B

)

Freq (GHz)

 S
31

 y-polarization illumination

 S
21

 y-polarization illumination

 S
31

 x-polarization illumination

 S
21

 x-polarization illumination

  
Fig. 7. Simulated coupling coefficients between the incident Floquet port and 

the ends of the two DC lines that are connected to DC voltages A and B in Fig. 

1(a), port 1 represents the incident floquet port, ports 2 and 3 stand for the open 

ends to DC voltages A and B, respectively. 

 

B. Design of the biasing circuit 

A simple and RF-transparent biasing circuit is designed. 

Only two DC voltages, two DC lines and RF filters are required 

for each element to switch between the four states. 

As depicted in Fig. 1, eight blind vias are utilized to connect 

a DC zero voltage (in this design, it is supplied to the ground 

plane) to the outermost ends of the diodes. With optimized via 

locations, the influence of adding these DC vias, without RF 

filters, on the element scattering performance could be 

negligible. As is evidenced from the performance comparison 

in Fig. 6, the reflection coefficients of the RRA element (in 

element state #1) upon CP wave incidence remain almost 

unchanged when the shorting vias are inserted. If one further 

investigates the surface currents induced on the bowtie patches 

by an x-polarized plane wave excitation (see the inserts in Fig. 

6), it will be identified that the surface currents are weak at the 

points where the vias are placed. Moreover, grounding of the 

patches at these locations will not significantly modify the 

current distribution and hence, the resonance of the element. 

Therefore, the DC zero can be supplied to one end of all the  
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(b) 

Fig. 8. Simulated reflection coefficients of the cross-polarized CP components 

(a) and currents distributions under x-polarized illumination when the 

x-oriented diodes are forward biased (b) for different element configurations, 

i.e., the 1-bit and 2-bit unit-cells with different patch and gap widths (the results 

are all obtained under 30° oblique incidence). 

 

eight diodes by merely some RF-transparent blind vias hidden 

beneath the patches in the antenna layer, which tremendously 

reduces the overall complexity of the biasing circuit. 

In addition, the two DC voltages supplied to the biasing 

networks beneath the ground plane are distributed to the 

innermost ends of the diodes through two PTHs. To achieve 

optimal performance, microstrip low-pass filters are 

respectively designed along with the two biasing lines. As 

shown by the simulated coupling coefficients in Fig. 7, the 

isolation between the incident Floquet port and the two ends of 

the DC lines can be further improved up to 40 dB after adding 

the RF filters, demonstrating an overall good shielding of the 

RF signals. Note that when the filters are not included, coupling 

between the Floquet port and the DC input points would be 

around -15 dB. 

C. Bandwidth enhancement 

From the analysis of the biasing circuit described in the  

PIN diode

Solder mask

 ( =0 )x ϕ °

 ( =0 )z θ °

 ( =90 )y ϕ °

 
Fig. 9. The fabricated CP RRA prototype: (a) perspective view of the entire 

antenna, (b) close-up view of the top surface and (c) one particular 

reconfigurable element.  

 

previous sub-Section, it is clear that the properly designed DC 

blind vias will not affect the element performance and the RF 

currents are well confined on the bowtie surfaces. This also 

suggests that the bowtie patches themselves (not including the 

grounding vias) are the primary scatters under a plane wave 

excitation. However, in contrast to multi-resonance unit-cells 

reported in the broadband CP reflectarray designs [25-30], the 

crossed-bowtie patch element features single resonance and has 

a comparatively narrow CP operational bandwidth. This is 

confirmed by studying the 1-bit unit-cells modified from the 

proposed 2-bit design, where just one single crossed-bowtie 

patch is adopted [see the element configurations of Element Ⅱ 

and Element Ⅳ in Fig. 8(b)]. The simulated reflection 

coefficients of the 1-bit unit-cells in Fig. 8(a) indicate that the 

element can hardly provide a large CP bandwidth, regardless of 

the change in patch width (L1).  

Although duplicating the 1-bit structure and combining two 

such crossed-bowtie patches together in an interlaced manner 

improves the phase resolution from one bit to two bits. But that 

doesn’t necessarily contribute to an enhancement in element 

bandwidth, as demonstrated by the simulated results of the 2-bit 

unit-cell (Element Ⅲ) with small patch width and hence wide 

axial gap [solid blue line in Fig. 8(a)]. In fact, it can be seen the 

use of the additional crossed-bowtie patch, forming the 2-bit 

CP element (Element Ⅲ), only shifts a bit the operating 

frequency while maintains a similar bandwidth as compared to 

the corresponding 1-bit design (Element Ⅳ) with the same 

small patch width. 

Nonetheless, it is found that the bandwidth of the 2-bit 

design increases with narrower axial gap. A drastically 

enhanced operational bandwidth can be achieved by reducing 

the axial gap width to 0.2 mm (Element Ⅰ), i.e., less than 0.01 

wavelength, as shown by the solid green line in Fig. 8(a). The 

narrow bandwidth issue can therefore be addressed by using a 

strongly coupled configuration of the crossed-bowtie patches. 

To better understand the wideband mechanism, currents 

distributions of the 1-bit and the 2-bit unit-cells with different  
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Fig. 10. The optimized phase compensation scheme (a) and measured and 

simulated radiation patterns (b) of the specular reflection beam in the phi=90° 

plane at the center frequency of 9.5 GHz. 

 

patch and gap widths are plotted and compared in Fig. 8(b). 

Surface currents induced near the patch edges appear to be 

stronger in the proposed wideband 2-bit design where the gap 

width is set small. This indicates that a tight coupling can be 

formed between the neighboring bowtie patches as the gap 

width decreases. Hence, it is believed the two interlaced and 

tightly coupled crossed-bowtie patches become parasitic 

surrounding element for each other and contribute jointly to an 

enhanced element bandwidth. Sated in another way, aside from 

increasing the degree of phase agility, the additionally 

incorporated crossed-bowtie patch also serves to produce a 

strong parasitic effect that leads to wider element CP 

bandwidth. 

III. REFLECTARRAY IMPLEMENTATION AND MEASUREMENT 

A fully reconfigurable CP reflectarray is designed and 

implemented based on the proposed 2-bit unit-cell to validate 

the two-dimensional beam scanning capability. The RRA panel 

is made of 256 reconfigurable unit-cells populated over a 

16×16 square aperture (physical size of 240×240 mm2) and is 

illuminated by a right-hand circularly-polarized (RHCP) horn 

antenna operating at X-band. Offset feeding configuration with 

an oblique angle of 30° is considered to alleviate the feed 

blockage effect. The gain of the feeding horn is about 15 dBic 

at the center frequency of 9.5 GHz, thus leading to a 

focal-to-diameter (F/D) ratio of 1.02 to maintain an edge  
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Fig. 11. Measured and simulated axial ratio versus frequency. 
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Fig. 12. Measured and simulated gain as well as aperture efficiency versus 

frequency. 
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Fig. 13. Simulated element reflection coefficients of the co-polarization 

component: a sensitivity analysis. 

 

illumination level of -10 dB. Note that circular or elliptical 

shaped aperture could also be selected if further improvement 

in aperture efficiency is desired. The phase compensation 

schemes with 2-bit quantization are optimized by adopting an 

appropriate reference phase to reduce the phase errors [8, 31]. 

The performance of the CP RRA is examined using Ansys 

HFSS with the help of its finite element-boundary integral 

(FE-BI) boundary condition. To avoid producing dense meshes  
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at the bottom layer of the reflectarray and reduce the 

computational time, the long DC lines connected after the RF 

filters are not included in the simulations. The RRA has been 

manufactured with standard PCB technologies, which is 

depicted in Fig. 9. 

The fabricated prototype has been characterized under 

far-field conditions. Radiation patterns of the co- and 

cross-polarizations, gain and the axial ratio (AR) are measured. 

To provide an overall evaluation of the bandwidth performance 

of the beam-scanning RRA, the patterns, gain bandwidth as 

well as AR bandwidth of the specular reflection beam is first 

tested and presented. The optimized phase compensation 

scheme for generating the specular beam and the corresponding 

weighted phase errors are plotted in Fig. 10(a). As presented in 

Fig. 10(b), the expected pencil beam pointing at 30° is well 

formed. The shape of the main lobe and the locations of the 

sidelobes are well predicted. The measured XPD is better than 

20 dB in the main lobe. Benefiting from the finer phase 

adjustment of 2-bit resolution, a low sidelobe level of -22 dB is 

observed, which shows a considerable improvement compared 

to the 1-bit CP RRA designs [17, 19]. The AR bandwidth of the 

proposed CP RRA has been also measured as reported in Fig. 

11. At most frequencies within the operating frequency range, 

the measured AR is lower than 1.5 dB. A 3-dB AR bandwidth  
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Fig. 14. Photograph of the antenna under test: (a) setup for beam scanning in the phi=0° plane, (b) setup for beam scanning in the phi=90°; measured results of 

the scanning patterns: (c) scanning in the phi=0° plane and (d) scanning in the phi=90° plane; measured and simulated gain and AR at the main beam directions: 

(e) scanning in the phi=0° plane and (f) scanning in the phi=90° plane. All results are obtained at the center frequency of 9.5 GHz. 
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Fig. 15. Radiation patterns obtained from full-wave simulation, measurement 

and array theory approach: (a) two selected scanning beams in the phi=0° plane 

and (b) two selected scanning beams in the phi=90° plane. 

 

of 22%, covering from 8.6 to 10.7 GHz, is experimentally 

obtained. Aside from a slight shift in frequency, the measured 

results agree well with those obtained from full-wave 

simulation. The simulated and measured gains and the 

corresponding aperture efficiencies are plotted in Fig. 12. The 

peak gain reaches 24.5 dBic at the frequency point of 9.9 GHz. 

A wide 3-dB gain bandwidth of 28% (from 8.6 to 11 GHz) is 

obtained. The discrepancy between simulation and 

measurement is suspected to be caused by the fabrication 

uncertainties (possibly the deviations of several geometrical 

parameters). We have run a number of parametric studies to 

examine the most sensitive parameters. As can be deduced 

from the discrepancy between simulation and measurement, the 

actual element response at higher frequencies is better than 

prediction and the insertion loss at lower frequencies becomes 

larger. Two critical parameters have been identified 

accordingly, i.e., the gap width between patches (W2) and the 

location of the DC vias (Lv2). The results considering a possible 

combined deviation in both W2 and Lv2 is depicted in Fig. 13, 

which shows a similar frequency shifting tendency as observed 

in the measured results of Fig. 12. An encouraging peak 

aperture efficiency of 35% is realized, owing to the improved 

phase resolution and low insertion loss of the proposed 

reconfigurable unit-cell. Furthermore, the aperture efficiency of 

the RRA remains higher than 30% in a comparatively broad 

frequency range spanning from 8.8 to 10 GHz. 

Two-dimensional beam scanning of the proposed CP RRA is 

also validated. Various beams that point at different elevation 

angles in two cutting planes, i.e., the xz- and yz-planes, are 

realized. More precisely, beam scanning in the xz-plane has 

been demonstrated by steering the main beam from -60° to 60° 

with a uniform step of 15°. The corresponding measured 

radiation patterns are shown in Fig. 14(c). In all cases, the beam 

quality is very satisfactory, with the pencil beams well 

generated at the pre-defined angles and the measured sidelobe 

levels around -20 dB below the maximum. The antenna gain 

stays quite stable when the beam is steered within ±30°, 

attaining a gain variation smaller than 1 dB. A wide scanning 

range up to almost 120° is achieved with scanning loss of about 

3.2 dB at ±60°. Moreover, Fig. 14(e) also shows that the 

measured antenna gain is in good agreement with the simulated 

data, and the AR remains below 3 dB over the antenna field of 

view. High-quality CP is especially obtained within the angular 

range spanning from -30° to 30°. 

A number of beam directions have been also selected to 

investigate the beam scanning capability in the yz-plane.  The 

radiation patterns measured for the forward reflection beams 

are all very satisfactory, and the antenna gains agree with those 

predicted by simulations. However in this cutting plane, the 

feed blockage becomes severe, especially for those beams 

pointed at the backward reflection region. As indicated by the 

experimental results in Figs. 13(d) and 13(f), quality of the 

beams pointing at the backward region where the feeding horn 

is situated can be affected: when the beam scans to, or beyond, 

-30°, the radiation pattern becomes noticeably distorted. 

Besides, the antenna gain drops and becomes lower than the 

simulated values. This is caused by the large flange and bulky 

orthomode transducer adopted at the end of this commercial CP 

horn, which are not included in the full-wave simulation. The 

scan loss remains below 3 dB when the beam scans within the 

angular range from -15° to 60°. Moreover, AR value of lower 

than 3dB has been obtained for all the scanning beams in this 

cutting plane. Consequently, the two-dimensional beam 

scanning capability of the CP RRA is properly verified. 

To investigate the effect of quantized phase on the scanning 

performance, the scanning beam patterns of the reflectarray 

have also been calculated based on the array theory approach. 

Two-bit and ideal phase compensations are respectively 

considered. Scanning performances in both planes (by taking a 

scan angle of 30º as an example) have been examined. The 

scanning patterns obtained from full-wave simulation, 

measurement and the array theory approach are compared and 

plotted in Fig. 15. It can be inferred from the plotted scanning 

results that the scanning loss is mainly caused by scanning itself, 

and the 2-bit phase quantization does not introduce extra 

scanning loss. By comparing the results obtained from the array 

theory approach, it is found that the 2-bit phase quantization 

would mainly lead to a decrease in antenna gain. Generally, a  
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TABLE Ⅱ 
PERFORMANCE COMPARISON WITH THE REPORTED CP RECONFIGURABLE REFLECTARRAYS 

Ref. no. Tuning method Phase bit Element BW Array BW Gain (dBic) Aperture Eff. SLL (dB) Scan loss @60° (dB) 

[18] Motor >3 35% 30% 29.2 35% -25 4 

[17] PIN diode 1 20% n.a. 17.5 15% -11 n.a. 

[19] PIN diode 1 7.4% 5.6% 21.8 20% -13 4.5 

[23] Varactor diode >3 n.a. 7.6% 14 13.3% -10 n.a. 

Proposed PIN diode 2 21% 22% 24.5 35% -20 3.2 

Note: [n.a.] = not available, [Array BW] = the common 3-dB gain and 3-dB AR bandwidth of the reflectarray. 

 

gain loss of around 1 dB will be induced as compared to the 

ideal phase compensation case (this agrees with the results 

reported in [32], where the authors show that 2-bit phase 

quantization would cause 0.9 dB gain loss for a similar-size 

reflectarray). The impact on sidelobe and beamwidth by the 

2-bit quantization is not significant. 

The performance of the proposed 2-bit CP RRA is 

summarized in Table Ⅱ and compared with the state-of-the-art 

CP RRA designs. The proposed design shows the advantage of 

wide element and array bandwidths of over 20% as compared 

to the designs based on PIN diodes and varactor diodes. A high 

aperture efficiency of 35% has been achieved, which 

outperforms not only the reported electronically RRA but also 

the mechanical-tuning design with a phase adjustment of finer 

than 3 bits. The low sidelobe level of -20 dB and large scanning 

range covering almost ±60° are both attractive features that 

distinguish the proposed design with others. 

When comparing to a similar phased array, the proposed design 

also shows advantages in cost and efficiency. The major 

differences between a phased array and the reconfigurable 

reflectarray lie in their feeding and the phase adjustment 

mechanisms. These differences will mainly affect the aperture 

efficiency and the element phase error. For designing the 

phased array, most commercially available phase shifters can 

provide 3-bit phase adjustment, which means a gain 

improvement of around 0.7 dB comparing to the 2-bit 

quantization adopted in the proposed antenna. But losses from 

the feeding network (~2 dB) and the insertion loss of the phase 

shifter (~3dB) are relatively high. On the other hand, the 

proposed reconfigurable reflectarray is spatially fed and uses 

diodes to manipulate the element phase. The spillover 

efficiency and tapered illumination efficiency are around -1.1 

dB and -0.7 dB, respectively. Element insertion loss is roughly 

1.5 dB as can be seen from the unit-cell simulation. Total loss is 

around 4 dB for the proposed reflectarray. 

Finally, a few technical concerns regarding the switching 

time of the array, the possibility of extending the proposed 

design to higher frequency and increasing the element phase 

resolution, are clarified here. Concerning the switching time, 

because currently a switch array is adopted to manually supply 

each element with the desired DC voltage and configure the 

element state, we are unfortunately not able to provide a 

measured data. But the response time of a reconfigurable 

reflectarray using the same PIN diode has been reported in [8], 

which provides some valuable information regarding this point. 

It has been revealed the time for the diodes themselves to 

change the state is negligible (only several nanoseconds), and 

the primary factors that determine the total response time are 

the clock rate of the FPGA and the wiring mechanism for 

controlling the array. When considering moving towards higher 

frequency, the fabrication tolerance of the standard PCB 

technology will be a stranglehold. As clarified, the element 

performance can be sensitive to several parameters when the 

gap width is small (i.e., for achieving enhanced element 

bandwidth). To ensure the desired wideband performance and 

minimize the possible frequency shift caused by manufacturing 

uncertainties, the design is carried out at X band. But if 

bandwidth enhancement is not the primary concern (i.e., one 

can accept a bit sacrificed bandwidth and allow the use of wider 

gaps), it is believed that this design can be extended to Ka band 

with acceptable performance (as the narrower-bandwidth 

element would be much less sensitive to the fabrication 

uncertainties and the PIN diode has been validated for 

operating up to 30 GHz [13]). As for the potential increase in 

the number of phase states, it is a trade-off between complexity 

and performance. The 2-bit phase quantization has been 

selected in our design. The first reason for this selection is that, 

as far as the array performance is concerned (including aperture 

efficiency, sidelobe levels), 2-bit design provides reasonably 

good results that are close to those of a 3-bit design, as has also 

been depicted in [32]. The other reason is that increasing the 

element phase states (e.g., from 2-bit to 3-bit quantization) 

means not only doubled number of PIN diodes, independent 

DC voltages, more PCB layers but also placing stricter 

geometrical constraints on the element, which leads to less 

degree of design freedom and possibly narrower bandwidth. 

 

IV. CONCLUSION 

A wideband, wide-scanning-angle and high-efficiency 2-bit 

CP RRA has been presented using unit-cells based on the 

interlaced and strongly-coupled crossed-bowtie patches. Aside 

from squeezing two interlaced structures into one unit-cell to 

increase the phase resolution, the proposed broadband 

technique, simple biasing circuitry and low-loss reconfigurable 

mechanism designs are important contributions of this work. 

The antenna prototype has demonstrated a 3-dB bandwidth of 

22% (in terms of both antenna gain and AR), a peak gain of 

24.5 dBic and an aperture efficiency of 35%. Wide beam 

scanning range coving from - 60° to 60° has been also archived 

with the scan loss of up to around 3 dB. 
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