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Fine-grained Self-supervision for Generalizable
Semantic Segmentation

Yuhang Zhang, Shishun Tian, Muxin Liao, Zhengyu Zhang, Wenbin Zou, Chen Xu

Abstract—Unsupervised domain adaptative semantic segmen-
tation is a powerful solution for the distribution shift problem
between the source and target domains. However, such methods
need specified target domain data that may be unavailable in
actual applications due to excess expensive collection. Gener-
alizable semantic segmentation as a new paradigm appears in
recent research, which aims to generalize well on distinct unseen
domains only using source domain data. The existing methods
focus on learning domain-invariant features by using global
distribution alignment strategies, which may lead to a decreased
discriminability of the model. To cope with this challenge, we
propose a fine-grained self-supervision (FGSS) framework for
generalizable semantic segmentation that takes into account both
discriminability and generalizability from the perspective of the
intra-class relationship. The FGSS framework contains single-
view and multi-view versions. In the single-view version, we
propose a fine-grained self-supervision strategy to distinguish the
sub-parts of the semantic class for better class discriminability.
In the multi-view version, we propose a class prototype feature
enhancement strategy to generate another view (i.e. another
representation of the original representation). Then, we propose a
multi-view mutual supervision loss to enforce consistency between
different views and further enhance the generalizability of the
model. Experimental results on five widely-used datasets, i.e.,
GTAYV, SYNTHIA, BDD100K, Cityscapes, and Mapillary, demon-
strate that our FGSS framework achieves superior performance
compared to state-of-the-art methods.

Index Terms—Semantic segmentation, Domain generalization,
Fine-grained, Self-supervision, Intra-class relationship

I. INTRODUCTION

Propelled by the swift progress in deep neural networks
[1], Semantic segmentation, a crucial task in computer vision,
has made remarkable progress in recent years relying on large
amounts of annotations and has been broadly used in lots
of applications such as autonomous driving [2], [3]. This
task infers a semantic category for each pixel of an image.
Despite the rapid development of semantic segmentation in
a fully-supervised manner, its drawbacks are also evident.

Y. Zhang, S. Tian, M. Liao, are with Guangdong Key Labo-
ratory of Intelligent Information Processing, College of Electronics
and Information Engineering, Shenzhen University, Shenzhen, 518060,
China (e-mail: zhangyuhang2019 @email.szu.edu.cn, stian@szu.edu.cn, liao-
muxin2020@email.szu.edu.cn).

Z. Zhang is with the National Institute of Applied Sciences, Rennes, France,
and also with the Institute of Electronics and Telecommunications of Rennes
Laboratory (e-mail:zhengyu.zhang @insa-rennes.fr).

W. Zou is with Guangdong Key Laboratory of Intelligent Information Pro-
cessing, Shenzhen Key Laboratory of Advanced Machine Learning and Ap-
plications, Institute of Artificial Intelligence and Advanced Communication,
College of Electronics and Information Engineering, Shenzhen University,
Shenzhen, 518060, China (e-mail: wzou@szu.edu.cn). (Corresponding author:
‘Wenbin Zou.).

C. Xu is with the College of Mathematics and Statistics, Shenzhen
University, Shenzhen 518060, China (e-mail: xuchen@szu.edu.cn).

From coarse to fine —p»
Car
Window Body Chassis

Fig. 1. The illustration of fine-grained segmentation. The pictures from top
to bottom are RGB, the car label (coarse-grained label), and the fine-grained
label of the car. Fine-grained semantic segmentation segments sub-parts of
the coarse semantic category.

First, labeling pixel-level annotation is laborious and time-
consuming. As mentioned in GTAV [4], labeling an image
from real-world datasets CamVid [5] and Cityscapes [6]
takes 60 and 90 minutes, respectively. Consequently, some
virtual datasets leverage the computer simulator to collect
synthetic data containing automatically generated annotations.
The model trained on these synthetic datasets is directly
evaluated in the real-world environment. However, there is a
discrepancy between the distributions of the training set and
the validation set, called the distribution shift problem.

Unsupervised domain adaptation (UDA) technology par-
tially overcomes these drawbacks [7], [8]. Generally, UDA
transfers knowledge from a source domain with annotations to
a target domain without annotations. It addresses not only the
expensive data labeling but also the distribution shift problem
in diverse domains, which yields better performance in the
target domain. Unfortunately, the target domain data may be
unavailable in practical applications. Meanwhile, the UDA
model suffers from a dramatic drop in performance when the
environment changes.

Domain generalization (DG) is another approach to handle
these shortcomings, aiming to transfer knowledge from the
source data to all unseen scenes [9], [10] without utilizing
the target domains at the training stage. In other words, a
DG model is trained using only source domain data and then
evaluated on the target domain data. Based on the number
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of the source domain, DG can be categorized into single-
source DG and multi-source DG, where single-source DG
is more challenging than multi-source DG due to its limited
domain diversity and less training data. This paper focuses
on devising a single-source DG model. Data manipulation
and representation learning are two common approaches for
DG. The former tries to extend the training set and en-
hance domain diversity by changing image style to cover
new possible domains, while the latter focuses on domain-
invariant representation learning. In some circumstances, both
types of approaches are co-existing. For example, DRPC [11]
randomized the style of the images using auxiliary datasets
and then performed pyramid consistency to learn domain-
invariant features. Although some progress have been made
in the DG task, the existing approaches [12], [13] encourage
global distribution alignment, which may lead to the removal
of the discriminative information that helps recognize objects
better [14]. Recently, SAN-SAW [15] proposed a semantic-
aware alignment method to align the distribution for each class
independently, which alleviated the loss of local discriminative
information. More recently, [16] pointed out that intra-class
has various distributions since there are different meaningful
sub-parts in a specific category. Nevertheless, such intra-class
relationships are ignored in the existing DG methods. There-
fore, it is significant to explore the intra-class relationship for
better feature discrimination.

An intuitive idea is to distinguish sub-parts of the coarse
semantic class, which belongs to the field of fine-grained
recognization. Similarly, fine-grained semantic segmentation
aims to assign a fine-grained label for each pixel of an
image, where fine-grained labels are sub-parts of the coarse
semantic categories. A concrete example is shown in Fig. 1,
where a car is grouped into windows, bodies, and chassis.
Recently, FGN [17] observed that fine-grained learning is
beneficial to enhance the discrimination of coarse-grained
classification, which is coincidentally consistent with the in-
tuitive idea. To exploit this assumption, we propose a fine-
grained self-supervision (FGSS) framework for generalizable
semantic segmentation considering both discriminability and
generalizability. The FGSS framework contains single-view
and multi-view versions. In the single-view version, we pro-
pose a fine-grained self-supervision strategy (FSS) to enhance
the discriminability of the model. The feature of each coarse
semantic class is clustered into distinct object sub-parts by
online pseudo-label assignment and then supervised by the
fine-grained self-supervision loss. To improve the generaliz-
ability, we extend the single-view version to the multi-view
version with the proposed Class Prototype Feature Enhance-
ment (CPFE) and Multi-View Mutual Supervision (MVMS).
First, CPFE generates an augmented view that can be regarded
as a representation with another style but with the same content
as the original representation. The augmented features are
the intermediate features between the original features and
related class prototypes, which are implicitly pulled close to
corresponding class prototypes to learn a domain-invariant
classifier. Then, MVMS ensures multi-view consistency to
learn a generalized representation. In summary, fine-grained
segmentation serves as an auxiliary task to improve the

generalizability and discriminability for generalized semantic
segmentation. This demonstrates for the first time that incor-
porating fine-grained information is beneficial for generalized
semantic segmentation.

Our contributions can be summarized as follows.

o We propose a fine-grained self-supervision framework for
generalizable semantic segmentation, which ensures both
discriminability and generalizability from the perspective
of the intra-class relationships, with both single-view and
multi-view versions.

o In the single-view version, we propose a fine-grained
self-supervision strategy containing online pseudo-label
assignment and a fine-grained self-supervision loss to
improve the model discriminability.

o In the multi-view version, we propose the class prototype
feature enhancement and multi-view mutual supervision
to improve the model generalizability.

e Our proposed FGSS framework outperforms state-of-the-
art approaches on several challenging datasets, demon-
strating its effectiveness for generalizable semantic seg-
mentation.

The rest of this work is organized as follows. The previous
related works are discussed in Section II. Section III describes
our FGSS framework in detail. Section IV provides lots of
experimental evaluations from many aspects and Section V
concludes this work.

II. RELATED WORK
A. Semantic segmentation

As a dense prediction task, semantic segmentation plays an
important role in computer vision and has emerged in many
applications, such as autonomous driving and robots [18].
Fully convolutional networks (FCNs) [19] and the encoder-
decoder structure [20] are two types of common basic ar-
chitectures of semantic segmentation. To incorporate larger
context information, feature pyramids were explored in PSP-
Net [21] and DeepLab-series [22]-[25]. Additionally, self-
attention extracted the long-range context by aggregating all
pixels of an image, such as DANet [26] and CCNet [27]. More
recently, vision transformer based structures [28], [29] have
been proposed. Such structures split an image into a sequence
of tokens and forward it to Transformer layers for feature ex-
traction. These methods achieved impressive performance but
got drastic performance drops when the environment changed
or with less supervision. Semantic segmentation with less
supervision or the distribution shift problem is still challenging
in the future.

B. Unsupervised domain adaptation

Unsupervised domain adaptation (UDA) aims to achieve
superior performance in the target domain by reducing the
domain gap between the source domain and the target domain
[30], [31]. In order to solve the time-consuming data labeling,
annotations are used only in the source domain and not in
the target domain. The semantic knowledge is transferred
from the source domain to the target domain. The existing
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UDA methods are roughly parted into three categories, namely
appearance adaptation, representation adaptation, and self-
training. Changing the image style from the source domain
to the target domain is the main idea of the appearance
adaptation. Cycada [32] proposed a novel cycle-consistent
adversarial adaptation. FDA [33] replaced the low-frequency
information of the source images with that of the target images
due to the rich domain-invariant information in low-frequency.
DACS [34] performed a cross-domain mixing strategy to
solve the class conflation problem. Representation adaptation
encourages domain adaptation in deep features between the
source and target domains by some domain alignment strate-
gies. ASANet [35] and DAST [36] proposed affinity adversar-
ial adaptation and reweighting adversarial adaptation, respec-
tively. ECCA [37] explored more concentrated and consistent
activation regions with kernel-based channel attention and
mutual information alignment. RCCR [38] proposed a regional
contrastive regularization framework to ensure local regional
consistency. HDL [39] proposed a hybrid domain learning
framework with hybrid domain feature generation and triple
domain alignment. DTST [40] proposed stuff and instance
matching to improve semantic-level alignment. Prototypical
adaptation methods are also the spotlights of representation
adaptation, such as CAG [41] and BAPA-Net [42], which aim
to pull close the samples and their related prototypes. For self-
training, BDL [43] adopted the max probability threshold to
generate pseudo labels. To denoise the pseudo label, ProDA
[44] proposed prototypical pseudo label denoising. Mean-
while, the self-training strategy was utilized with many UDA
methods to furtherly get performance improvements [35], [36],
[40]. In spite of that, in the UDA setting, the target domain is
assumed to be known and available at the training stage. Such
assumptions are indefensible since the target domain is often
variable and unavailable in practice.

C. Domain generalization

Domain generalization (DG) seeks a robust model to gener-
alize well on all possible unseen domains. The target domain
data does not participate in the training process of the DG
model. Data manipulation and representation learning are two
main types of approaches to improve generalization. For data
manipulation, the source training set is extended as much as
possible to cover all unseen domains at the image level by
data augmentation or data generation. For instance, DLOW
[45] generated a continuous sequence of intermediate domains
from one domain to another. DRPC [11] tried to generate
images with different styles using auxiliary datasets and then
enforced pyramid consistency across data with distinct styles.
FSDR [46] randomized image styles in the frequency space
by spectrum learning. Besides data manipulation-based meth-
ods, the models employing representation learning have been
widely devoted due to their effectiveness. For representation
learning, the DG model is guided to learn domain-invariant
knowledge from different domains or multi-views. IBN-Net
[12] aggregated Instance Normalization and Batch Normal-
ization to capture and eliminate appearance variance. ISW
[13] proposed an instance selective whitening loss to suppress

domain-specific features. SAW-SAN [15] encouraged class-
wise semantic consistency by semantic-aware normalization
and whitening, which enhanced local feature discrimination.
However, the intra-class relationships are ignored in the exist-
ing methods. Therefore, it drives us to explore the intra-class
relationship to better learn discriminative features.

D. Fine-grained classification

Fine-grained image classification [47] targets classified sub-
ordinate categories or sub-parts of the semantic categories.
The subordinate categories are presented from a biological
perspective, e.g., a dog can be a husky or a teddy. The sub-
parts of the semantic classes refer to the different properties
of a semantic category, e.g., a car contains some object parts
such as the wheel and car light. Compared to the typical
category classification, fine-grained classification is more dif-
ficult due to similar visuals between the subordinate categories
or sub-parts of a semantic class. The key to fine-grained
classification is to extract discriminative features. Recently,
FGSN [48] proposed a fine-grained segmentation network
for visual localization in a self-supervised way. HDNN [49]
proposed a hierarchical dilated network with better long-
term information flow. RefineMask [50] fused fine-grained
features to supplement lost details for high-quality prediction.
Chang et al. [17] observed that the fine-grained information
helps to improve performances of the coarse classification,
which inspired us to propose the fine-grained self-supervision
framework. Different from the fine-grained classification task,
the fine-grained label in our task is unavailable and there are
domain gaps between the training set and the validation set.

E. Self-supervision learning

Self-supervised methods learn meaningful features by var-
ious pretext tasks without human annotation to avoid time-
consuming data annotations [51]. Self-supervised learning was
designed initially as the pre-training process for downstream
tasks such as image classification and semantic segmentation.
In recent research, self-supervised methods are also aggregated
in some downstream tasks to improve the performances of
downstream tasks. SEAM [52] proposed an equivariant atten-
tion mechanism for weakly supervised semantic segmentation
to solve the significant inconsistency of different scale images.
SGDepth [53] presented a self-supervised semantically-guided
depth estimation to constrain the relationship between the
camera pose and geometric projection. SAC [54] proposed
a self-supervised augmentation consistency for cross-domain
semantic segmentation, which generated pseudo labels by a
momentum network allowing stable targets for self-supervised
training.

III. FINE-GRAINED SELF-SUPERVISION FRAMEWORK
A. Problem statement

Given a seen source dataset {X;,Y;} € Dy and K unseen
target domains {XF Y/} € DF k € K, these datasets have
a domain gap between each other, where X, and Y, are
the batch images and corresponding labels from the source
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Fig. 2. The pipeline of the proposed FGSS framework containing single-view and multi-view versions. CPFE is class prototype feature enhancement and
OLA refers to online pseudo label assignment. Fine-grained segmentation is an auxiliary task to improve the discriminability of the model. Cubes are the

deep feature.

and target domains. Different from the unsupervised domain
adaptation, the domain generalization task considers the situ-
ation where the target domain is entirely unseen and various.
In other words, the target domain datasets Df, k € K are
evaluated by the DG model and are not used in the training
stage. On the contrary, the source domain data Dy is utilized
as the training data. The purpose of the DG task is to perform
well on all target domains.

B. Framework overview

As demonstrated in Fig. 2, the fine-grained self-supervision
framework has single-view and multi-view versions. Both ver-
sions contain an auxiliary task (i.e., fine-grained segmentation)
to improve the discriminability of the model. In the multi-view
version, the class prototype feature enhancement generates
another view (i.e., representation with different styles but the
same content as the original representation). The objective of
these two versions can be written as:

where L, L¢s, and L, ¢s are the coarse segmentation loss,
single-view fine-grained self-supervision loss, and multi-view
mutual supervision loss, respectively. | is the OR operation.

C. Coarse-grained semantic segmentation

Coarse-grained semantic segmentation has fewer semantic
categories than fine-grained semantic segmentation, which is
our final goal in this paper. Given a batch of data containing
images and labels {z; € X;,ys € Y}, the feature f is first
extracted by the feature extractor F'(-) and then is classified
by the coarse classifier C'. The cross-entropy is used as coarse
segmentation loss L, which can be defined as:

Lo==> >y ™log(C(f™))) )
h,w nEN
where n € N is the coarse semantic class. ygh’w’") is a one-hot

annotation of a pixel at (h,w) position.

D. Fine-grained semantic segmentation

Fine-grained segmentation refers to recognizing the sub-
parts or subordinate categories of the semantic categories. The
subordinate categories are not applicated in our case. On the
contrary, the sub-parts of semantic categories are used reason-
ably since the object can be divided into different meaningful
sub-parts in an image [16]. For example, the person consists
of the head, the hand, and the leg visualized in Fig. 8. (c).
As pointed out in [17], the fine-grained information helps
to improve the discriminability of the coarse segmentation.
Consequently, fine-grained semantic segmentation is treated
as an auxiliary task to assist the coarse segmentation with a
standard cross-entropy L s, which can be defined as:

h,w,n w
Lro==> 3" 4™ og(Cp(fm)))

hwnyENp

3)

where ny € Np is the fine-grained class and C' is the fine-
grained classifier. However, fine-grained annotations is not
provided in datasets. To tackle this issue, the fine-grained self-
supervision strategy (FSS) is proposed to supervise the feature
by fine-grained pseudo-label. Thus, the Equation (3) can be
rewritten as:

Lro==2" D" auslyesl )" Olog(Cr(£)) )

hwnyENpg

where fine-grained labels ¥, ; are encoded as posterior distribu-
tions ¢ss(yss|f) by online pseudo-label assignment described
in the following paragraph.

E. Online pseudo label assignment

The annotation assignment is an instance of the optimal
transport (OT) problem due to the lack of fine-grained an-
notation. First, the fine-grained predicton P € RZXWxNs jg
extracted by the fine-grained classifier C'y to represent the cost
of assigning features f("*) to n ¢ class, which can be defined
as:

P = Cs(f) = p(Conv(3(BN (Conv(f))))) (5

where ¢ and § are the Softmax operation and ReLU operation,
respectively. Conv and BN are the convolution and batch
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on P™ to get the label assignment matrix Q™ of coarse class . Third, all {Q™,n € N} € Q matrixes are converted to the final fine-grained label ¢, ¢ for

self-supervision.

normalization, respectively. To distinguish different sub-parts
of each coarse category, the fine-grained prediction belonging
to n category P" is used to perform OT, which is obtained
by the element-wise multiplication between the fine-grained
prediction and the coarse-grained label. It is denoted as:

Pn — P(haw)]]_(ygh’w’n> == ]_) (6)

where 1 refers to the indicator function. Then, this OT problem
can be fastly solved by the Sinkhorn-Knopp algorithm [55],
[56] to guarantee online label assignment at the training stage,
where the energy function E7), with entropic constraints can
be denoted as:

= (@, ~logP") + T KL(@"||Rre")

n1 K" 1 N, n\Tq4N. __ 1 K™

st. Q"1 _Ncl ,(Q™M'1 = Zon

where Q" € RV-*K" is the label assignment matrix. r and ¢
are the marginal projections respectively onto its clusters and
feature indices. N, is the number of clusters for each coarse
class, i.e., the number of sub-parts for a coarse class. K™ is the
pixel number of n class. (-) is the Frobenius dot-product and
KL is the Kullback-Leibler divergence. R is a permutation
matrix matching clusters to marginals, which represents an
arbitrary prior distributions, since the occupied frequencies of
the object sub-parts in an image are different [57]. o is a
constant. With the entropic regularization term, the solver in
Equation (7) can be rewritten as:

Q" = Diag(u)(P™)? Diag(v) ®)

(7

where u and v are two renormalization vectors for scaling.
After a few iterations, the renormalization vectors are updated
to obtain the final assignment matrix Q™. Finally, the fine-
grained label g5y in Equation (4) is converted by these label
assignment matrices, which can be denoted as:
neN
gsf = Z Reshape(Q™ + N. x n) 9)

n=0

where Reshape operation is to match the resolution of the
deep feature. Note that the label assignment process does not
involve back-propagation. To understand this process clearly,
the structure of the online pseudo-label assignment is pre-
sented in Fig. 3.

FE. Class prototype feature enhancement

The above self-supervised strategy is performed in a single
view. Inspired by the DRPC [11] that generated and aligned
multi-view data (i.e., representations with different styles but
the same content) for better learning domain-invariant features,
the multi-view version of the FGSS framework is extended.
Generally, another view is often generated by the photometric
transform at the image level as SAC [54] does. However,
such methods occupy double memory due to feature extraction
twice compared to the single view. To reduce memory cost,
we propose the class prototype feature enhancement (CPFE)
to generate a new view, which focuses on performing pertur-
bation on the original feature rather than on the image level.

1) Class prototypes generation: Class prototypes should be
calculated first before conducting feature enhancement. Class
prototypes refer to the class-wise feature centroids and are
generated online [44]. Given a mini-batch source image x; €
X, and a CNN-Based feature extractor F(-), we can obtain
the deep feature of an image F'(x). After that, the prototype
of n class p™ can be initialized as:

Z E F w h,w,n
pn - ISEXS h Zw (xs)(h7 )]]_(yg ) o 1)
E § E : hyaw,n
rs€Xg h w]l(yg ) — 1)

To obtain more powerful and generalized class prototypes,

the class prototypes are updated using the moving average in
two mini-batches, which are defined as,

P A (1= M)p™ (11)

where p," is the mean feature of class n calculated by Equation
(10) at the current training state and A is the momentum term
that equals 0.9.

(10)
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Fig. 4. The structure of the class prototype feature enhancement. The feature
combination fills the prototype to a corresponding position according to the
ground truth.

2) Feature enhancement: As pointed out in [58], [59], the
latent feature contains style and content information. Since the
deep feature of the n class f™ and the prototype of n class
p™ share the same category, their content information is the
same. The discrepancy between them is the style information.
Thus, the interpolation between f™ and p™ stands for a new
representation (i.e., a new view) with different styles but the
same category compared to f", which can be denoted as:

tug = AaF () Ly == 1)+ (1= Aa)p" (12)

aug

where f7,, is the augmented feature of n class and A, is

the random value in the range [0-1]. Finally, the augmented
feature is put into the coarse classifier C' and supervised by
the cross-entropy loss as with Equation (2). The structure of
the CPFE strategy is shown in Fig. 4.

The reasons for adopting the interpolation to generate
another view are as follow. The deep neural network excels
at linearizing the feature and decoupling different potential
variables linearly [60]-[62]. Meanwhile, the style and semantic
information can be linearly separable in deep features [39].
The augmented feature can be regarded as the intermediate
feature between the feature and its corresponding prototype.
The original feature is augmented toward the class prototype
rather than toward a non-meaningful direction. The effect of
the CPFE strategy is twofold. For one thing, similar to DLOW
[45], this strategy generates the intermediate feature with
various styles that plays a data augmentation role. For another,
the augmented feature is another view of the same image,
which is expected to provide the same content information as
the original feature. The deep features of two views are utilized
to perform the multi-view mutual supervision introduced in the
following paragraph.

G. Multi-view mutual supervision

Fine-grained self-supervision illustrated in Section III. B
can be directly used in multi-view, i.e., the label assignment

6
Algorithm 1 Fine-grained self-supervision framework
Initialize: 0,0., 0., max_iter, N., MultiV
iter = 0, Init_Proto =0
Input: Samples { (X;,Y;)}
1: for iter < max_iter do
2 Extracts feature to get f.
3 if Init_Proto==1 then
4 Update prototype by Eq 10 and Eq 11.
5: else
6 Initilize class prototype by Eq 10.
7 Init_Proto =1
8 if MultiV ==1 then
9: Perform CPFE by Eq 12 to get fqug.
10 Perform coarse supervision using f,,4 by Eq 2.
11: Perform fine-grained prediction using f and fg.4
by Eq 5.
12: n=0.
13: for n <N —1do
14: Obtain fine-grained predictions P™ and Py,
by Eq 6.
15: Obtain label assignment maps Q" and Qg,,, by
Eq 8.
16: n—+ +.
17: Obtain fine-grained labels g5y and ¢ by Eq 9.
18: Perform MVMS by Eq 14.
19: else
20: Perform coarse supervision by Eq 2.
21: Perform fine-grained prediction by Eq 5.
22: n=0.
23: for n <N —1do
24: Obtain P™ by Eq 6.
25: Obtain label assignment map Q™ by Eq 8.
26: n+ +.
27: Obtain the fine-grained label by Eq 9.
28: Perform fine-grained supervision by Eq 4.

29: Update 0y, 0., 0.
30: iter + +.
31: Return: 0¢,0.,0¢..

program is performed in two views and then the features
of two views are supervised using the fine-grained label
generated by themselves respectively. Such naive multi-view

self-supervision loss L}, .. can be denoted as:

anfs = Lfs(‘]?}lga faug) + Lfs(q‘sfv f)
where gy and g are the pseudo label generated from the
original feature f and augmented feature f,,4, respectively.
However, the label assignment maps of two views may be
inconsistent, which may affect performance. Related experi-
ments are provided in Section IV. D. To handle this issue,
a multi-view mutual supervision (MVMS) loss is proposed.
The original feature and augmented feature are two views to
finish this process. The fine-grained label assignment program
is conducted twice to get the label assignment maps of two
views, respectively. After that, the fine-grained label of one

13)
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TABLE I
PERFORMANCE COMPARISON ON RESNET-50 BACKBONE. GTAV (G), BDD (B), SYNTHIA (S), CITYSCAPES (C), AND MAPILLARY (M) ARE ADOPTED
AS THE SOURCE DATA IN TURN AND EVALUATED AT OTHER DATASETS. RIGHT ARROW — REPRESENTS GENERALIZING TO ANOTHER DATASET. BOLD
REPRESENTS THE BEST PERFORMANCE AND UNDERLINE REPRESENTS SECOND-BEST PERFORMANCE. AVG REFERS TO THE AVERAGE MIOU OF ALL

EVALUATION SETTINGS.

Methods Model

Avg

Trained on GTAV (G)

Trained on SYNTHIA (S)

Trained on Cityscapes (C)

Trained on BDD (B)

Trained on Mapillary (M)

—-C 5B M =S| 5C =B —-5M =G| 9B M G S | G =S —=C —o5M | -G S —C 5B

IBN [12] ResNet-50 342 | 339 323 378 279 | 320 306 322 269 | 486 57.0 45.1 26.1 290 254 411 26.6 307 27.0 428 310

SW [63] ResNet-50 322 | 299 275 297 276 | 282 271 263 265 | 485 558 449 261 277 254 409 258 285 274 407 305

DRPC [11] ResNet-50 358 | 374 321 34.1 28.1 357 315 327 288 | 499 563 456 266 | 332 298 413 31.9 330 296 462 329

GTR [64] ResNet-50  36.1 | 37.5 338 345 282 | 368 320 329 280 | 508 572 458 265 | 333 306 426 30.7 | 329 303 458 326

ISW [13] ResNet-50 364 | 366 352 403 283 | 358 316 308 27.7 | 50.7 58.6 450 262 | 327 305 435 31.6 334 302 464 326

SAN-SAW [15]  ResNet-50 385 | 398 373 419 30.8 | 389 352 345 292 | 53.0 598 473 283 | 348 31.8 449 332 | 340 31.6 487 346

PinMem [65] ResNet-50 41.0 | 41.2 352 394 289 | 382 323 339 321 50.6 579 451 294 | 424 29.1 548 51.0 | 44.1 30.8 559 47.6

Ours ResNet-50 429 | 445 365 443 314 | 392 298 335 345 | 520 58.1 451 300 | 47.0 30.8 562 555 | 46.7 355 574 498
view is used to supervise another view. The multi-view mutual TABLE 11

supervision loss L,, s can be defined as:

mes = LfS(QSfafaug) + Lfs(qg}tq7f)

The MVMS loss implicitly performs alignment between the
original and the augmented views to learn more generalized
representation. More details of both versions of the FGSS
framework are provided in Algorithm 1.

IV. EXPERIMENT

In this section, we evaluate the effectiveness of our FGSS
framework. First of all, the experimental datasets and imple-
mented detail are introduced. Then, the state-of-the-art meth-
ods of generalized semantic segmentation are compared to our
method. Meanwhile, ablation studies are conducted to verify
the influence of proposed components. Finally, segmentation
visualization and cluster visualization are provided.

A. Dataset

With the goal of single-domain generalization, the perfor-
mances of unseen multi-domains need to be evaluated. Five
datasets used in the experiments consist of synthetic datasets
(GTAV [4] and SYNTHIA [66]) and real-world datasets
(Cityscapes [6], BDD100K [67] and Mapillary [68]).

Synthetic datasets: Several synthetic datasets are created
to avoid the amount of human effort in labeling. The GTAV
dataset collected 25k images from the computer game Grand
Theft Auto V with a high resolution of 1914 x 1052. The
SYNTHIA dataset contains 9,400 1280 x 760 images. 19 and
16 common categories with Cityscapes are used in the GTAV
and SYNTHIA datasets, respectively.

Real-world datasets: The Cityscapes dataset is a real-world
street scene dataset widely used in the semantic segmentation
task, which contains 2975 training and 500 validation images
with the resolution of 2048 x 1024. The BDD100K driving
scene dataset contains 7000 training and 1000 validation
images with HD resolution (i.e., 1280 x 720). The Mapillary
dataset contains 25k with at least FHD resolution (i.e., 1820 x
1080), which is captured in various environments such as
different weathers and seasons. Both BDD100K and Mapillary
datasets adopt 19 overlapped classes with the Cityscapes.

PERFORMANCE COMPARISON ON THE TASK G — {C, B, M} oN
SHUFFLENET-V2 AND MOBILENET-V2 BACKBONE NETWORKS. AVG
REFERS TO THE AVERAGE MIOU OF ALL EVALUATION SETTINGS.

14

Model Method —-C —B —M | Avg
Baseline 256 222 286 | 254
IBN-Net [12] | 27.1 31.8 349 | 31.3
ShuffleNet-V2 ISW [13] 31.0 321 353 | 328
DIRL [72] | 319 326 361 | 335
Ours 353 331 37.6 | 353
Baseline 259 257 265 | 260
IBN-Net [12] | 30.1 27.7 27.1 | 283
MobileNet-V2 ISW [13] 309 301 307 | 30.5
DIRL [72] | 347 328 343 | 339
Ours 358 332 36.0 | 350

TABLE III

PERFORMANCE COMPARISON ON THE TASK C — {G, B, S} ON
SHUFFLENET-V2 AND MOBILENET-V2 BACKBONE NETWORKS. AVG
REFERS TO THE AVERAGE MIOU OF ALL EVALUATION SETTINGS.

Model Method —B | =S | -G | Avg
Baseline 38.1 | 21.3 | 36.5 | 319

IBN-Net [12] | 41.9 | 23.0 | 409 | 353

ShuffleNet-V2 ISW [13] 419 | 22.8 | 40.2 | 35.0
DIRL [72] 42.6 | 23.7 | 41.2 | 358

Ours 44.1 | 275 | 403 | 37.3

Baseline 40.1 | 21.6 | 37.3 | 33.0

IBN-Net [12] | 45.0 | 23.2 | 41.1 | 36.4

MobileNet-V2 ISW [13] 452 | 229 | 412 | 364
DIRL [72] 47.6 | 233 | 414 | 374

Ours 46.6 | 27.6 | 42.3 | 38.8

B. Implementation Details

The FGSS framework is implemented by the Pytorch li-
brary. Three backbones including ResNet-50 [69], ShuffleNet-
v2 [70], MobileNet-v2 [71] with DeepLabv3+ architecture
[25] are evaluated. The Intersection-over-Union (IoU) of each
class and their mean IoU are used as the metric for seg-
mentation accuracy. The model optimization utilizes an SGD
optimizer with an initial learning rate of le-2, weight decay
of 5e-4, and momentum of 0.9. The images are resized to
768 x 768 resolution and the model is trained in a batch size
of 4 with 40k iterations. The cluster number [V, is set to 3 and
the related hyperparameter experiment is conducted in Section
IV. E. The fine-grained classifier is implemented as a sequence
containing 3 X 3 convolution, batch normalization, ReLU, and
1 x 1 convolution.
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Fig. 5. Qualitative examples. The single-view (SVFGS) and multi-view (MVFGS) versions of the FGSS framework have more right areas in visual.

C. Results

We compare our approach to the other state-of-the-art meth-
ods on three backbone networks (i.e., ResNet-50, MobileNet-
V2, ShuffleNet-V2). The GTAV, BDD100K, SYNTHIA, Map-
illary, and Cityscapes datasets are denoted as G, B, S, M, and
C, respectively. In the ResNet-50, these five datasets are taken
turns as the source domain for training and the datasets except
the source domain are used for evaluation, which is grouped
intoG — {C,B,M, S},S — {G,B,M, C},C — {G, B, S, M},
B — {G, C, S, M}, and M — {G, B, C, S}. The right arrow

— refers to “generalizing to”. The performance comparison is
shown in Table I and the reported results adopt the model
of the multi-view version by default. The performance of
our method substantially outperforms the second-best methods
[65] by 1.9% in terms of average mloU among the above
five generalization settings. In the 20 evaluation settings,
our FGSS framework achieves 13 best and 3 second-best
performances. Compared with ISW [13], our method achieve
17 better performances in 20 generalization evaluation settings.
These results show that our FGSS framework learns a more
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TABLE IV
ABLATION STUDIES ON EACH COMPONENT CONTAINING CPFE, FSS,
MVMS. THE GTAV DATASET IS USED AS THE SOURCE DOMAIN WITH
THE RESNET-50 BACKBONE. AVG REFERS TO THE AVERAGE MIOU OF
ALL EVALUATION SETTINGS.

Method CPFE FSS MVMS| »C —B —M —S Avg
Baseline 36.6 352 403 283 35.1
FSS v 41.3 38.9 39.8 329 382
CPFE v 38.8 36.0 40.0 312 365
CPFE + FSS VR 403 36.9 399 323 37.4
CPFE + MVMS| v v |44.5 365 443 314 392

TABLE V
COMPLEXITY ANALYSIS ON EACH COMPONENT CONTAINING CPFE, FSS,
MVMS. MEMORY REFERS TO THE OCCUPIED MEMORY IN THE TRAINING
STAGE, AND TIME IS THE ITERATION TIME FOR ONE IMAGE.

Method Memory (m) Time (s)
Baseline 8515 0.30
FSS 8877 0.32
CPFE 8985 0.31
CPFE + FSS 9217 0.39
CPFE + MVMS 9407 0.36

generalized semantic segmentation model. Furthermore, we
conduct G — {C, B, M} and C — {G, B, S} on MobileNet-
V2 and ShuffleNet-V2 backbone networks. Related results are
shown in Table II and Table III. In the task of G — {C, B,
M}, both backbone networks achieve the best performance
in 3 evaluation settings and outperform the second-best by at
least 1.1% in terms of average mloU. In the task of C —
{B, S, G}, compared with DIRL [72], our approach achieves
37.3% and 38.8% average mloU with a gain 1.5% and 1.4%
in the ShuffleNet-V2 and MobileNet-V2 backbone networks,
respectively.

Some qualitative examples of different settings (G—C,
G—B, G—S, and G—M) are provided in Fig. 5. Some
segmentation errors in the Baseline are eliminated in two
versions of the FGSS framework. Meanwhile, the multi-view
version performs better than the single-view version.

D. Ablation studies

Next, the ablation studies are conducted to investigate
the influence of the proposed components including fine-
grained self-supervision strategy (FSS), class prototypes fea-
ture enhancement (CPFE), and multi-view mutual supervision
(MVMS). The single-view version of the FGSS framework
(SVEFGS) represents FSS. The multi-view version of the FGSS
framework (MVFGS) consists of CPFE and MVMS. As shown
in Table IV, SVFGS has a clear improvement with a 3.1% in
terms of average mloU compared with the Baseline [13]. Since
CPFE generates a new view with various styles and the same
semantics as the original view to enlarge available domains,
the model improves 1.4% in average mloU compared with the
Baseline. The performance of CPFE + FSS (i.e., naive multi-
view self-supervision loss in Equation (13)) is slightly lower
than the SVFGS. It is consistent with the opinion illustrated in
Section III. E that inconsistent label assignments may affect
performance when the FSS strategy is directly used in two

-=- G2M
G2S -==- G2B

—— Average

42
40 1
38 1
36 1

MioU

34
32
30

28 A

1 2 3 4 5 6
cluster number

Fig. 6. The effect of the cluster number for each coarse class (i.e., the number
of sub-parts for a coarse class).

TABLE VI
PERFORMANCE COMPARISON ON OTHER FEATURE AUGMENTATION
METHODS.
Method —-C =B —M —S Avg
Baseline 36.6 35.2 40.3 28.3 35.1
Mixstyle (random) [73]|37.2 35.5 37.5 30.1 35.1
Mixstyle (cross) [73] 36.8 36.2 39.6 31.0 35.9
Edfmix (random) [74] |38.8 36.3 38.7 30.8 36.2
Edfmix (cross) [74] 40.0 37.5 41.0 32.7 37.8
Ours 44.5 36.5 44.3 314 39.2

views (CPFE + FSS). MVFGS (CPFE + MVMS) achieves
39.2% in average mloU with a 1.0% gain compared with the
SVFGS, which indicates that MVMS learns domain-invariant
representation from multi-view.

In addition, the model complexity analysis is also provided.
The training time and occupied memory are adopted to analyze
the model complexity. As shown in Table V, the multi-view
version of the FGSS framework cost 892m memory more
and 0.06s more in the training time than the Baseline while
getting a 4.1% gain in terms of average mloU. Note that our
framework and the Baseline share the same testing time since
the fine-grained branch of our FGSS framework is not used in
the evaluation stage. Our method gets significant improvement
at low consumption.

E. Cluster number validation

Another concern is the cluster number of each coarse class
N.. Fig. 6 shows the effect of the cluster number. Note that
N, = 1 represents the performance of the Baseline. As shown
in Fig. 6, the model achieves the best generalizability when
N, equals 3, where the G—B and G—M achieve the best
performances compared with other cluster number settings.
When N, is greater than 3, the average mloU has a decreasing
tendency and the performance of the model generalizing on
different domains is not stable enough. For example, the
performance of G—B is lower than the Baseline when N, =
5. Moreover, the average mloU of our framework in different
cluster number settings have a performance improvement
compared with the Baseline, which shows the effectiveness
of our method.
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GTAV—Cityscapes GTAV—BDD100K

GTAV—Mapillary

Fig. 7. Confusion matrices comparison on the task of GTAV generalizing to
{C, B, M} using ShuffleNet-V2 backbone.
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Fig. 8. Some cluster results for different classes. The clustering results
with different classes are consistent with human cognition from the visual
perspective.

F. Compared with other feature augmentation methods

To verify the advantage of the proposed CPFE, the per-
formance comparison of the feature augmentation methods
is shown in Fig. VI. The proposed CPFE achieved the best
performance. The augmentation methods designed for the clas-
sification task [73], [74] get unsatisfactory performance since
semantic segmentation is a pixel-level task simultaneously
including several classes in an image instead of including only
a class. Directly performing the feature augmentation using
the features in the whole spatial location may lead to the
class confusion problem. On the contrary, the proposed CPFE
generates augmented features at the class level to solve the
class confusion problem. The results show the effectiveness
of our augmented method.

G. Discrimination validation

As illustrated in Section III, our proposed FGSS framework
captures more class discriminative information by distinguish-
ing sub-parts of the semantic categories. An effective manner
to verify this viewpoint is to observe the confusion matrix.
The confusion matrices generalizing from G to C, B, and M
using ShuffleNet-V2 are presented in Fig. 7. The high diagonal
value represents the high accuracy of our class predictions.
Therefore, the diagonal value is employed as a metric to
evaluate the discrimination. Compared with the Baseline, our
method achieves 14, 12, and 13 better performances at 19
classes in G—C, B, and M settings. Our proposed FGSS

TABLE VII
PERFORMANCE ON THE EXTREME CASE (EC).

Method —C —B
Baseline 36.6 35.2
EC 40.6 35.5
SVFEGS (Ours) |41.3 38.9
MVEFEGS (Ours) |44.5 36.5

—M
40.3
414
39.8
44.3

—S Avg
28.3 35.1
31.1 37.1
32.9 38.2

314 39.2

framework performs better in varying categories, showing
that our fine-grained self-supervision can enhance the feature
discrimination.

H. Cluster visualization

We also present some clustering results with different
classes in Fig. 8. The clustering results with different cate-
gories are consistent with human cognition from the visual
perspective. For example, persons can be divided into head,
body, and leg as shown in Fig. 8. (c). Another case is that cars
in Fig. 8. (e) consist of windows, bodies, and chassis. The sub-
parts of semantic classes are extracted by label assignment
and fine-grained self-supervision is performed to enhance
feature discrimination. The visualization of clustering results
shows that the FGSS framework can capture the intra-class
relationship and ensure discriminability.

1. Extreme case analysis

Given a feature F € RHXWXC and related annotation

y € REXWXN “the cluster number N7 of the coarse class n
equals the pixel number IV of coarse class n in the extreme
case, where Ziv N;‘ = H x W. At this time, the clustering
operation lost its meaning and cannot be conducted because
the feature of each spatial position can be treated as a fine-
grained label index. Meanwhile, the fine-grained classifier con-
tains large parameters and greatly reduces the efficiency of the
algorithm, which is unreasonable and unfeasible. Concretely,
the fine-grained classifier is a mapping function from the
original feature F' € RH* WxC (o the fine-grained prediction
P e RHX WxHxXW) " which cannot be implemented due
to resource limitations. But we still can try to analyze this
situation.

For the single-view version of our proposed method, as we
cannot capture the intra-class relationship using clustering, the
auxiliary loss cannot work and even hurt performance.

For the multi-view version of our proposed method, if we
remove the fine-grained classifier (i.e., the feature of a view
directly guides the feature of another view), our proposed
method degenerates into the feature distribution alignment of
different views. As shown in Table VII, the multi-view version
of our proposed method in the extreme case still achieves
competitive performance with a clear improvement compared
to the Baseline.

V. CONCLUSION

In this paper, we designed a fine-grained self-supervision
(FGSS) framework for generalizable semantic segmentation,



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

which considered both the generalizability and discriminability
of the model from the intra-class relationship. The FGSS
framework consists of single-view and multi-view versions.
In the single-view version, we proposed a fine-grained self-
supervision strategy which treated the fine-grained segmen-
tation as an auxiliary task to improve feature discrimination.
In the multi-view version, we furtherly proposed class pro-
totype feature enhancement to generate another view from
the feature space, where the augmented feature is close to
the related prototype forcing the classifier to capture more
domain-invariant information. Moreover, we proposed multi-
view mutual supervision loss in the fine-grained segmentation
task for the label inconsistency problem in two views to
implicitly reduce the gap between different views. Extensive
experimental results showed that our method achieved superior
performance compared to other state-of-the-art methods.
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