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Unsharp Structure Guided Filtering for
Self-Supervised Low-dose CT Imaging

Qianyu Wu, Xu Ji, Yunbo Gu, Jun Xiang, Guotao Quan, Baosheng Li, Jian Zhu, Gouenou Coatrieux,
Senior Member, IEEE , Jean-Louis Coatrieux, Life Fellow, IEEE , Yang Chen, Senior Member, IEEE

Abstract— Low-dose computed tomography (LDCT)
imaging faces great challenges. Although supervised
learning has revealed great potential, it requires sufficient
and high-quality references for network training. Therefore,
existing deep learning methods have been sparingly
applied in clinical practice. To this end, this paper
presents a novel Unsharp Structure Guided Filtering
(USGF) method, which can reconstruct high-quality CT
images directly from low-dose projections without clean
references. Specifically, we first employ low-pass filters
to estimate the structure priors from the input LDCT
images. Then, inspired by classical structure transfer
techniques, deep convolutional networks are adopted to
implement our imaging method which combines guided
filtering and structure transfer. Finally, the structure priors
serve as the guidance images to alleviate over-smoothing,
as they can transfer specific structural characteristics
to the generated images. Furthermore, we incorporate
traditional FBP algorithms into self-supervised training
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to enable the transformation of projection domain data to
the image domain. Extensive comparisons and analyses
on three datasets demonstrate that the proposed USGF
has achieved superior performance in terms of noise
suppression and edge preservation, and could have a
significant impact on LDCT imaging in the future.

Index Terms— Guided filtering, computed tomography
imaging, deep learning, structure transfer.

I. INTRODUCTION

X-ray computed tomography (CT) is a common imaging
modality, which has been widely used in clinical diagnosis,
disease evaluation, and treatment planning. For example, it can
be applied to visualize and target tumors, allowing oncologists
to develop appropriate treatment plans. Despite such benefits,
the inherent radiation exposure of CT may increase the risk
of radio-induced cancers [1]. However, reducing the radiation
dose usually increases the noise level in x-ray measurements,
which may lead to severe degradation of reconstructed images,
affecting diagnostic accuracy [2], [3].

Over the past few decades, various works have been ex-
tensively investigated for low-dose CT (LDCT) imaging, such
as iterative reconstruction [4]–[6] and image post-processing
[7], [8]. Although these methods are capable of reconstructing
high-quality images from low-dose projections, their perfor-
mance is heavily dependent on hand-crafted regularization.
The computing consumption also prevents them from being
deployed to the clinic. In recent years, deep learning (DL)
has shown great potential in medical imaging tasks [9], [10]
and has become the most popular course in the field of CT
imaging. DL-based CT reconstruction is a data-driven method,
which can find the optimal solution without completely relying
on the exact mathematical model. Compared with traditional
algorithms, it is more convenient in algorithm development
and more suitable for clinical practice. However, most ex-
isting DL-based CT reconstruction methods are supervised
learning [11]–[13], which means that the network training
requires accurate and sufficient data pairs, such as normal-
dose CT (NDCT) and LDCT pairs. Clinically, it is impractical
to perform multiple NDCT and LDCT scans on the same
patient. Moreover, clinical datasets are typically limited or
inaccurate, and may not be adequate as the ground truth for
supervised learning. Although some studies have attempted
to restore degraded images without supervision, they highly
rely on supervised pre-training models [14], [15] or unrealistic
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assumptions, e.g., the underlying noise distribution [16], [17].
This is why DL-based methods, while achieving promising
results, are rarely deployed on commercial CT scanners.

To address the above-mentioned problems in clinical prac-
tice, we propose a novel self-supervised learning network that
can reconstruct high-quality CT images directly from low-dose
projections. Considering that traditional DL-based methods
often suffer from content blindness without clean references,
we take inspiration from guided filtering [18]–[22], which can
transfer the structure features of the guidance image to the
target image. As shown in Fig. 1, existing self-supervised
methods deal with noise and structure identically, resulting
in the blurring of salient details.

The core idea of this paper is to implement guided filtering
with convolutional neural networks (CNNs) and introduce
unsharp structures for edge enhancement. Starting from the
classical guided filtering principle, combined with the previous
structure transfer methods, such as unsharp masking [23], [24],
we finally derive a guided filtering formula based on deep neu-
ral networks. Unlike conventional structure transfer methods,
our guidance images are learned from the network instead of
just using a fixed Gaussian filter or box mean filter. Thus,
it allows the network to select appropriate structural features
during inference. In addition, by utilizing the conventional
FBP (filtered back projection) algorithms [25], [26], we can
directly perform image post-processing on the reconstructed
CT images. To evaluate the proposed method, qualitative and
quantitative analyses have been performed based on the 2016
AAPM Low Dose CT Grand Challenge data [27], real mice
data and Siemens head data.

The main contributions of our work can be summarized as
follows: (i) We propose a novel self-supervised learning frame-
work for low-dose CT imaging without any clean reference
and noise assumption. It is suitable for LDCT imaging under
different noise levels in clinical practice. (ii) The proposed
method employs the unsharp structure priors as the guidance
image, and implements the function of guided filtering with
deep neural networks. By doing so, the specific functions of
this framework, i.e., image restoration and structure enhance-
ment, can be intuitively understood. This method has a solid
theoretical rationale. (iii) Experimental results demonstrate
that it is feasible to reconstruct high-quality CT images directly
from low-dose projections using self-supervised learning. (iv)
The proposed method achieves competitive results in terms
of noise suppression, structural fidelity, and visual perception
improvement.

II. RELATED WORK

A. Conventional CT Imaging Methods

Among the various conventional CT imaging methods,
analytical reconstruction has achieved much attention due to
its short reconstruction time, e.g., the filtered back-projection
(FBP) methods [26], [30]. However, low-dose and sparse-view
sampling increase the noise level in projection data, which may
lead to the severe degradation of reconstructed images [31].
As a more sophisticated method, iterative reconstruction (IR)
formulates the statistical model of measurements and prior

CVF-SID
USGF (ours)

Guidance

NDCTLDCT N2NN2N

Result

Fig. 1: Motivation of this paper. DL-based unsupervised meth-
ods suffer from content blindness. They deal with noise and
structure identically, resulting in blurred details (e.g., CVF-
SID [28]) or inability to remove noise (e.g., N2N [29]).

knowledge of the unknown object into a cost function, and
then performs iterative optimization. Conventional IR methods
[32], [33] employ a data-fidelity term to represent the forward
imaging model and statistical model of measurements, and a
regularization term to capture prior knowledge. In particular,
extensive efforts have been explored to adopt suitable regular-
izers to model sparse priors, such as dictionary learning [34]
and sparse transform [35]. Although these IR methods have
demonstrated impressive performance, the high computational
complexity severely hinders their clinical practice.

B. Supervised CT Imaging Methods

The tremendous progress of deep learning has made it
increasingly popular in CT imaging. Supervised CT imaging
methods rely on paired data, i.e., LDCT and corresponding
NDCT. A typical approach is to employ CNN to learn the
mapping from LDCT inputs to suitable NDCT outputs in the
image domain. For example, Chen et al. [36] utilized CNN
to suppress the noise of the reconstructed CT images. On this
basis, residual learning [11] was introduced to preserve subtle
details in LDCT images. Some studies have also demonstrated
that adding attention mechanism [37] and adjusting the loss
function [38] significantly improve the reconstruction quality.
Furthermore, projection domain pre-processing methods are
suggested to deal with the problems of limited-angle and
sparse-view CT imaging. Lee et al. [39] employed U-net
to remove artifacts by predicting the missing projections. In
general, the above-mentioned methods based on supervised
learning have achieved superior performance over convention-
al CT imaging methods, and are expected to further improve
the reconstruction accuracy. However, sufficient and accurate
data pairs for network training are not readily available in the
clinical scenarios.
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C. Unsupervised CT Imaging Methods

Recently, attempts have been made to overcome the lim-
itation of supervised learning. For instance, Liao et al. [40]
proposed an artifact disentanglement network (ADN) that does
not require paired clean and degraded images for training.
Lee et al. [41] simplified the structure of the ADN method
and employed the attention mechanism to improve the effi-
ciency of reconstruction. In [42], self-supervised learning was
combined with cyclic adversarial learning for unpaired CT
image denoising. Moreover, some works turned their attention
to reconstructing CT images without clean references [43],
[44]. For example, Liang et al. [44] integrated a model-based
reconstruction method into self-supervised learning networks
to reduce noise without ground-truth information. However,
they also suffered from inefficiency in reconstruction due to
highly complex networks. Furthermore, most existing unsuper-
vised methods focus on processing low-dose CT data in the
image domain. Ignoring the projection information may cause
the network unable to recover the corrupted information in the
projection domain, resulting in the loss of subtle details of the
reconstructed CT image [45], [46].

III. METHODOLOGY

The proposed unsharp structure guided filtering is formed
by an unsharp structure generator and a deep guided filtering
module. As an initial motivation, we expect structural features
in the form of images to guide self-supervised networks for
edge enhancement. In this section, we first outline the filtering
formulation to illustrate how to use the unsharp structure for
guided filtering and structure transfer. Then, we introduce
the proposed self-supervised LDCT imaging network using
guided filtering. Finally, we present our loss function for self-
supervised learning.

A. Unsharp Structure Guided Filtering

Classical guided filtering [18] assumes that there is a local
linear relation between the input image I and the guidance
image G. In this case, the information of G is transferred to
I . Such correlation is defined by the statistics of the inputs.
Supposing that wk is a local window centered at pixel k, the
statistics can be calculated by:

ak =

1
|w|
∑
i∈wk

IiGi − IkGk
σ2
k + ε

, (1)

bk = Ik − akGk, (2)

where Gk and Ik represent the mean of G and I in wk, σ2
k is

the variance of G in wk, |w| represents the number of pixels
in wk, and ε is a regularization term. According to the linear
coefficients ak and bk, the predicted output P can be expressed
as:

Pi = akGi + bk,∀i ∈ wk. (3)

Since the entire image contains multiple windows wk con-
vering pixel i, the filtered results for that point are different.

The final result can be obtained by taking the average of all
values of Pi:

Pi =
1

|w|
∑
k∈wi

(akGi + bk) . (4)

However, traditional guided filtering requires empirical ad-
justment of parameters to obtain the optimal ak and bk,
which greatly limits the denoising performance. Moreover,
estimating two coefficients simultaneously through a self-
supervised learning network may exacerbate the instability of
training, and lead to structure inconsistency in the predicted
images. Therefore, the coefficient bk can be eliminated by
putting Eq. 2 into Eq. 4:

Pi =
1

|w|
∑
k∈wi

akGi +
1

|w|
∑
k∈wi

(
Ik − akGk

)
. (5)

Then, we can obtain the following formulation:

Pi =
1

|w|
∑
k∈wi

ak
(
Gi −Gk

)
+

1

|w|
∑
k∈wi

Ik. (6)

In this paper, a box mean filter is employed to obtain the value
of G∗i . Thus, G∗i is very close to its mean Gk in the window
wi. Then, Eq. 6 can be rewritten as

Pi = a∗i (Gi −G∗i ) + I∗i , (7)

where a∗i=
1
|w|
∑
k∈wi

ak, I∗i = 1
|w|
∑
k∈wi

Ik. It can be ob-
served that (G−G∗) denotes the unsharp structures of the
guidance images. The coefficient a∗ controls the intensity
of structures. Specifically, the term a∗ (G−G∗) allows the
structural information to be transferred to the filtered image
I∗.

Previous works have demonstrated the advantages of deep
learning-based guided filtering in image processing. In [47],
Pan et al. employed two trainable deep neural networks to
solve the coefficients in Eq. 3, which is expressed as:

P = Fa (I,G) ∗G+ Fb (I,G) , (8)

where Fa and Fb are two CNNs, ∗ represents element-wise
multiplication. On this basis, Eq. 7 can be rewritten as:

P = Fa (Ius, Gus) ∗Gus + f (I) , (9)

where the function f (·) represents a classical mean box filter,
followed by a 3×3 convolutional layer. Ius = I− f (I), Gus
= G− f (G) are the unsharp structures of the input image
I and guidance image G. From this formula we can clearly
know the rationale of the proposed method.

B. Network Overview
In this section, we introduce how to implement unsharp

structure guided filtering for self-supervised LDCT imaging.
As shown in Fig. 2(a), conventional FBP algorithms [25],
[26] are employed to reconstruct CT from the original low-
dose projection. The reason is two-fold. First, this paper aims
to explore a reconstruction algorithm for clinical application.
Conventional analytic reconstruction is very suitable to be
combined with deep learning due to its simplicity and fast
reconstruction speed. Second, the core idea of the proposed
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(a) Overview of our method for LDCT imaging
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(b) Implementation of unsharp structure guided filtering on CNNs

Fig. 2: The proposed unsharp structure guided filtering for LDCT imaging. (a) is the overview of the method. During training,
the down-sampling module s = (s1, s2) generates two similar but independent images that are half the scale of the original
image. The inference process only includes the FBP operation and the proposed filtering method. (b) is the details of the
proposed unsharp structure guided filtering. The structure generator adopts two box mean filters and convolutional layers to
obtain the unsharp structure Gus and Ius in Eq. 9.

algorithm is to utilize guided filtering for image restoration.
Therefore, the noise and artifacts that may be introduced
by the FBP algorithm are acceptable, which can effectively
demonstrate the reconstruction performance of the proposed
method.

According to [16], [29], we suppose (x, y) is a clean-noisy
image pair, if there exists an image z that is very similar
to y and independent with each other, the network trained
by paired images (y, z) is a reasonable approximate solution
of the supervised training network using (x, y). Detailed
theoretical proof can be found in [29]. Since CT reconstruction
involves the filtering and back-projection operations, there is
a non-negligible correlation between adjacent pixels in the
reconstructed CT image. To this end, pixel-shuffle refinement
strategies [48], [49] are introduced to suppress the correlation
between pixels. Specifically, it first divides the original image
into several regions. Second, each sub-image is refilled with
noise blocks and pixel shuffled separately. Then, they are up-
sampled using convolutional networks to recover the missing
details. Finally, the refilled sub-images are weighted to get the
final result.

In this paper, we adopt the method proposed in [29] to
generate noisy training pairs. The down-sampling module
s = (s1, s2) in Fig. 2(a) generates two sub-sampled images
that are half the scale of the original image. For example,
in each 2×2 pixel unit of the input LDCT (y), two adjacent

pixels are randomly selected as the pixels of s1(y) and
s2(y), respectively. Fig. 2(b) presents the implementation of
unsharp structure guided filtering using deep learning. It can be
observed that the mean box filter and subsequent convolutional
layer represent the function f (·) in Eq. 9. Specifically, we
use two box mean filters with the same radius r to obtain
unsharp structure Gus and Ius. Then, they are concatenated
with each other and serve as inputs of the proposed structure
transfer module. The backbone of this module is U-net [50]
and it contains multiple 3×3 convolutional layers, transposed
convolutional layers and residual blocks [51]. Each convolu-
tional or transposed convolutional layer is followed by a ReLU
activation function.

C. Reconstruction loss

In this section, we explain the theoretical foundation and
optimization method in detail. Fully-supervised methods try
to optimize the following term:

argmin
θ

Ex,y‖fθ (y)− x‖22 (10)

where yθ(z) is a neural network f θ with a noisy input y, x
is the clean target (ground-truth). We assume that y and z are
independent noisy images conditioned on x, and there exists an
ε 6= 0 such that Ey|x (y) = x, Ez|x (z) = x+ ε. If the variance
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of z = σ2
z , we can obtain

Ey|x‖fθ (y)− x‖
2
2

=Ey,z|x‖fθ (y)− z + z − x‖22
=Ey,z|x‖fθ (y)− z‖

2
2 + Ez|x‖fθ (y) z − x‖

2
2

+ 2Ey,z|x (fθ (y)− z)
>
(z − x)

=Ey,z|x‖fθ (y)− z‖
2
2 + σ2

z

+ 2Ey,z|x (fθ (y)− x+ x− z)> (z − x)
=Ey,z|x‖fθ (y)− z‖

2
2 + σ2

z

+ 2Ey,z|x (fθ (y)− x)
>
(z − x) + 2Ez|x (x− z)

>
(z − x)

=Ey,z|x‖fθ (y)− z‖
2
2 − σ

2
z + 2Ey,z|x (fθ (y)− x)

>
(z − x)

=Ey,z|x‖fθ (y)− z‖
2
2 − σ

2
z + 2εEy|x (fθ (y)− x) . (11)

When ε→ 0, which means the difference of the noisy inputs
y, z are small enough. Then, 2εEy|x (fθ (y)− x)→ 0. In this
case, a network trained with noisy image pairs (y, z) can be
used as a reasonable approximation of a supervised training
network.

In this paper, a specific down-sampling operation
s = (s1, s2) is used to generate similar and independent
training pairs (s1(y), s2(y)). The proposed self-supervised
optimization problem has become:

argmin
θ

Ex,y‖fθ (s1(y))− s2(y)‖22, (12)

where f θ is the guided filtering based on deep neural network.
Assuming that f θ is trained with clean targets, it should
be an optimal denoising network. And we have fθ (y) = x,
fθ (s (y)) = s (x). Thus, we can exploit the following ideal
constraint:

Ey|x {fθ (s1 (y))− s2 (y)− [s1 (fθ (y))− s2 (fθ (y))]}
=s1 (x)− Ey|x {s2 (y)} − s1 (x) + s2 (x) (13)

The last two subtraction terms are the corrections of the dif-
ference the first two terms. Finally, the optimization problem
is expressed as:

min
θ

Ex,y‖fθ (s1(y))− s2(y)‖22
+αEy|x‖fθ (s1 (y))− s2 (y)− s1 (fθ (y)) + s2 (fθ (y)) ‖22.

(14)

As shown in Fig. 2(a), we denote two images down-
sampled by the LDCT (y) as s1(y) and s2(y), two images
down-sampled by the reconstructed CT as s1 (fθ (y)) and
s2 (fθ (y)), and the filtered s1(y) as fθ (s1(y)). The proposed
self-supervised loss function can be expressed as:

L = ‖fθ (s1(y))− s2(y)‖22
+ α‖fθ (s1 (y))− s2 (y)− s1 (fθ (y)) + s2 (fθ (y)) ‖22.

(15)

where α is used to balance the weight of the regularization
term.

IV. EXPERIMENT AND RESULTS
A. Experimental Datasets

1) AAPM Challenge Data: The AAPM Challenge data [27],
produced by Mayo Clinics, is a low-dose CT dataset con-
taining 6687 LDCT and corresponding NDCT image pairs
from 10 patients. Each CT slice is of size 512×512 pixels.
The proposed network is trained using NDCT images from
8 of the patients, and the rest for testing. In this paper, a
cone-beam scanning geometry is adopted to acquire the low-
dose projections. The distances from the source to detector and
object are set to 100cm and 50cm, respectively. The detector
has 896×400 elements, and each element is 1.5×1.5 mm2.
The pixel dimension of all the CT images is 0.9×0.9 mm2.

2) Real Mice Data: The real mice data is used to evaluate
the robustness of the proposed method to different noise levels.
The tube is Hamamatsu L9421-02. The tube current and
voltage during scanning are 130µA and 60kVp, respectively.
The detector is Dexela1512 which has 944×768 elements, and
each element is 0.072×0.072 mm2. The distances from the
source to detector and object are set to 44 and 22, respectively.
Projections are collected with cone-beam geometry from three
mice (two for training), each containing 1000 projections. The
reconstructed volume for each mouse is 872×872×600 voxels.
The pixel dimension of all the CT images is 0.072×0.072
mm2. Different levels of Poisson noise are added to the real
projections to generate the low-dose projections.

3) Siemens Head Data: The Siemens head data are per-
formed in Nanjing PLA General Hospital, China, with the
approval of the institutional review board and patient consent
forms. The CT images are acquired using a Siemens SO-
MATOM Definition Flash DECT scanner (1569 slices in total).
The high-energy and low-energy of DECT scans were 140kV
and 100kV. In this study, we only use the high-energy data for
validation, and the original helical geometry is converted to the
fan-beam geometry. The distances from the source to detector
and patient are 1085.6 and 595 respectively. The resolution
of the CT images is 512×512 pixels, and the pixel size is
0.4451×0.4451 mm2.

B. Implementation Details
The proposed network was performed on the Pytorch plat-

form with one NVIDIA RTX 3090 GPU. Adam algorithm
was employed to optimize the parameters of our network
and all comparison methods. Two exponential decay rates β1

and β2 for Adam were 0.9, 0.999, respectively. The learning
rate was 1×10−4, and it was reduced to 50 percent every 10
epochs. The batch size was set to 32. We performed K-fold
cross validation, which divided the whole dataset into K folds
equally. One of the folds is used for testing, and the remaining
K−1 folds are used for training. We repeated K times until all
folds are used as the testing set. The final result of the model
is the average of K predictions. According to the number of
cases contained in the AAPM challenge data (10 cases), mice
data (3 cases) and Siemens head data (6 cases), we set the
value of K as 5, 1 and 3 respectively.

Note that LDCT images were first reconstructed from the
raw projections using the FBP algorithm (Ramp-filter), then
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Fig. 3: Visual comparisons of different methods on the AAPM challenge data. The reconstruction results are normalized under
[-160,240] Hounsfield Unit (HU). The zoomed regions marked by the red rectangles are located below the corresponding
images.

noise suppression, artifact reduction, and edge enhancement
were performed on the reconstructed LDCT using the pro-
posed unsharp structure guided filtering. In this case, all the
reconstructed LDCT were randomly cropped to the size of
128×128 to reduce computational cost. The radius of two
box mean filters for Gus and Ius in Eq. 9 was set to r = 3.
The hyper-parameter α in Eq. 15 was set to 0.1. We used
a Poisson noise model [52] to simulate the physical effects
of a monochromatic X-ray source, and its forward projection
process can be expressed as:

Ii ∼ Poisson {I0i · exp (−Pi) + Ei} , i = 1, 2, . . . , N, (16)

where Ii and I0i are the number and intensity of X-ray photons
transmitted along the ith path, respectively. Pi denotes the
attenuation coefficient of X-ray beams and Ei denotes the
inherent electronic noise. In this paper, different values of I0i
were set to simulate low-dose projections. A small value of
I0i results in more severe noise.

C. Experimental Results

In this section, we compared our USGF with five methods,
including FBP algorithm, DnCNN [53], RED-CNN [54], CVF-
SID [28] and N2N [29]. DnCNN and RED-CNN are two
well-known image processing methods that adopt supervised
learning. CVF-SID and N2N are two self-supervised learning

methods that can be trained without clean references. Specif-
ically, CVF-SID directly disentangles clean and noise maps
from the input by leveraging various CNNs and self-supervised
loss functions. N2N samples the input and target from the
same noisy image to train the U-net [50] denoiser. In our
experiment, all self-supervised methods do not involve any
references during imaging, and these references are only used
for metric calculation. We used MAE (Mean Absolute Error),
PSNR (Peak Signal to Noise Ratio), and SSIM (Structural
Similarity) to objectively evaluate the proposed method.

TABLE I: Comparison results of different methods on the
AAPM challenge data. P.S.: Paired Supervision. S.S.: Self-
Supervision. The best results for case S.S. are highlighted in
bold.

Type Method PSNR (dB) SSIM (%) MAE (HU)

P.S.
DnCNN 44.75± 1.55 97.02± 0.72 17.27± 2.79

REDCNN 45.10± 1.42 97.58± 0.81 16.42± 2.85

S.S.

FBP 39.99± 1.79 91.79± 2.38 30.19± 5.59

N2N 42.19± 1.57 94.62± 1.66 23.52± 4.39

CVF-SID 42.32± 1.45 95.02± 1.51 23.24± 4.01

USGF (ours) 44.82± 1.38 97.51± 1.08 16.88± 3.66
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Fig. 4: Visual comparisons of different methods on the real mice data with noise level I0 = 5× 104. The reconstruction results
are normalized under [-600,600] Hounsfield Unit (HU). The zoomed regions marked by the red rectangles are located below
the corresponding images.

TABLE II: Comparison results of different methods on the real mice data. The Poisson noise is added to the real normal-dose
projections to generate the low-dose projections. The best results for case Self-Supervision are highlighted in bold.

Dose
Level Index

Method Paired Supervision Self-Supervision
DnCNN REDCNN CLEAR FBP N2N SSDDNet USGF (ours)

5× 104
PSNR(dB) 38.65± 1.07 38.92± 1.11 39.33± 1.13 28.74± 1.08 38.16± 1.03 38.48± 1.09 38.99± 1.04
SSIM(%) 94.47± 1.51 94.83± 1.53 95.05± 1.29 74.33± 5.04 92.98± 1.74 93.90± 1.63 94.95± 1.55
MAE(HU) 6.59± 1.10 5.97± 1.14 5.69± 1.13 20.01± 3.82 6.96± 1.13 6.84± 1.14 6.03± 1.14

7.5× 104
PSNR(dB) 39.26± 1.07 39.63± 1.15 39.87± 1.17 30.38± 1.08 39.14± 1.04 39.12± 1.15 39.42± 1.07
SSIM(%) 94.97± 1.43 95.31± 1.44 95.40± 1.24 78.65± 4.58 95.15± 1.66 94.33± 1.51 95.30± 1.45
MAE(HU) 6.12± 1.06 5.55± 1.12 5.39± 1.09 16.51± 3.18 5.99± 1.07 5.78± 1.10 5.62± 1.09

1× 105
PSNR(dB) 39.24± 1.10 39.79± 1.16 40.14± 1.18 31.52± 1.09 39.29± 1.04 39.74± 1.18 39.55± 1.07
SSIM(%) 95.28± 1.36 95.45± 1.39 95.64± 1.19 81.41± 4.18 94.33± 1.44 94.62± 1.37 95.43± 1.29
MAE(HU) 6.33± 1.06 5.47± 1.08 5.27± 1.05 14.47± 2.81 6.22± 1.07 5.51± 1.06 5.92± 1.09

2.5× 105
PSNR(dB) 41.03± 1.15 41.09± 1.20 41.28± 1.21 34.84± 1.08 39.51± 1.14 40.69± 1.24 40.88± 1.10
SSIM(%) 96.39± 1.10 96.38± 1.12 96.94± 1.02 88.46± 2.81 96.02± 1.11 96.19± 1.12 96.43± 1.13
MAE(HU) 5.01± 0.93 4.75± 0.97 4.50± 1.05 9.83± 1.91 5.83± 0.94 5.09± 0.95 4.80± 0.98

5× 105
PSNR(dB) 41.50± 1.05 42.32± 1.24 42.26± 1.25 36.93± 1.07 41.30± 1.17 41.45± 1.26 41.70± 1.18
SSIM(%) 95.81± 0.87 97.09± 0.81 97.06± 0.93 91.90± 2.03 96.76± 0.93 96.07± 0.93 96.91± 0.95
MAE(HU) 4.77± 0.79 4.14± 0.88 4.18± 0.90 7.72± 1.49 5.58± 0.85 4.84± 0.87 4.50± 0.82

1) AAPM Challenge Data Results: The self-supervised
learning method is proposed to deal with clinical CT imaging
tasks. Note that, the proposed method adopts a conventional
FBP algorithm to reconstruct CT from the original low-dose
projection. Therefore, we denote the results obtained by the
FBP algorithm as LDCT. The quantitative comparisons of
different methods on the AAPM data are listed in Table I. In
general, all methods exhibit different levels of edge-preserving
and denoising performance. Based on the FBP algorithm, the
proposed USGF method improves PSNR and SSIM by 4.84dB

and 5.72%, and MAE is reduced by 13.31. It can be seen that
the performance of our USGF is superior to all self-supervised
methods, as well as the classical supervised learning method
DnCNN. Specifically, the average PSNR and SSIM of USGF
were 2.50dB and 2.49% higher than CVF-SID, respectively,
and the average MAE was reduced by 6.36.

To further analyze the effectiveness of our method, the
visual comparisons of different methods are illustrated in Fig.
3. We present the zoomed regions of interest marked by red
rectangles, as shown below each image. The reconstruction
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Fig. 5: Visual comparisons of different methods on the Siemens head data with noise level I0 = 5× 104. The reconstruction
results are normalized under [-100,400] Hounsfield Unit (HU). The zoomed regions marked by the red rectangles are located
below the corresponding images.

TABLE III: Comparison results of different methods on the Siemens head data. The Poisson noise is added to the real normal-
dose projections to generate the low-dose projections. The best results for case Self-Supervision are highlighted in bold.

Dose
Level Index

Method Paired Supervision Self-Supervision
DnCNN REDCNN CLEAR FBP N2N SSDDNet USGF (ours)

5× 104
PSNR(dB) 36.91± 3.17 37.20± 3.30 37.56± 3.33 22.37± 5.19 36.80± 3.10 37.01± 3.25 37.19± 3.19
SSIM(%) 94.01± 3.77 94.31± 3.72 94.48± 3.62 69.53± 8.50 93.25± 3.71 93.34± 3.67 93.78± 3.69
MAE(HU) 3.61± 1.85 3.31± 1.82 3.15± 1.73 21.86± 10.85 3.37± 1.79 3.28± 1.79 3.23± 1.77

7.5× 104
PSNR(dB) 37.51± 3.23 38.03± 3.36 38.31± 3.46 23.88± 5.30 37.41± 3.26 37.69± 3.27 37.91± 3.36
SSIM(%) 94.09± 3.30 94.85± 3.45 94.98± 3.31 71.62± 7.47 93.82± 3.39 94.47± 3.37 94.78± 3.36
MAE(HU) 3.62± 1.67 3.08± 1.71 2.91± 1.63 18.46± 9.83 3.07± 1.66 2.99± 1.64 3.01± 1.66

1× 105
PSNR(dB) 38.25± 3.39 38.43± 3.43 38.85± 3.52 24.94± 5.36 38.33± 3.32 38.45± 3.29 38.60± 3.44
SSIM(%) 95.07± 3.24 95.13± 3.22 95.29± 3.13 73.07± 6.92 95.16± 3.19 95.03± 3.15 95.20± 3.11
MAE(HU) 3.03± 1.62 2.91± 1.62 2.79± 1.57 16.36± 8.55 2.96± 1.59 2.85± 1.57 2.83± 1.58

2.5× 105
PSNR(dB) 39.93± 3.55 40.28± 3.65 40.52± 3.74 28.14± 5.44 39.99± 3.49 39.71± 3.37 40.31± 3.65
SSIM(%) 96.17± 2.56 96.28± 2.51 96.35± 2.47 77.45± 6.14 96.24± 2.49 96.29± 2.50 96.32± 2.48
MAE(HU) 2.57± 1.39 2.39± 1.37 2.35± 1.28 11.27± 7.33 2.53± 1.35 2.52± 1.38 2.37± 1.36

5× 105
PSNR(dB) 41.05± 3.63 41.39± 3.72 41.71± 3.86 30.24± 5.40 41.13± 3.58 41.28± 3.75 41.22± 3.25
SSIM(%) 96.90± 2.08 96.96± 2.06 97.04± 2.02 80.55± 5.79 95.21± 2.62 96.50± 2.04 96.77± 1.66
MAE(HU) 2.33± 1.26 2.13± 1.22 2.07± 1.20 8.80± 5.72 2.24± 1.21 2.12± 1.05 2.22± 1.19

results are normalized under [-160,240] Hounsfield Unit (HU)
for a better visual effect. It can be noticed that the images
produced by N2N and CVF-SID are severely degraded, as
pointed by the yellow arrows in Fig. 3(e2) and Fig. 3(f2). The
supervised-learning methods DnCNN and REDCNN suffer
from the blurring effect, as pointed by the yellow arrows
in Fig. 3(c2) and Fig. 3(d2). Moreover, by integrating the
unsharp structure priors to the self-supervised framework, US-

GF demonstrates promising performance in structural fidelity
and has better visual perception compared to DnCNN and
REDCNN. For instance, the zoomed region of Fig. 3(g2) has
richer texture details compared to other methods.

2) Real Mice Data Results: In real data experiments, the
Poisson noises with different intensities were added to the real
normal-dose projections to generate the low-dose projections.
Specifically, the I0i in Eq. 16 was set to 5.0×104, 1.0×105
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Fig. 6: Visual comparisons of different methods on the AAPM challenge data with noise level I0i = 5× 104. The reconstruction
results are normalized under [-160,240] Hounsfield Unit (HU). The zoomed regions marked by the red rectangles are located
below the corresponding images.

TABLE IV: Comparison results of different methods on the AAPM challenge data with different noise levels. The Poisson noise
is added to the simulated AAPM projections to generate the low-dose projections. The best results for case Self-Supervision
are highlighted in bold

.

Dose
Level Index

Method Paired Supervision Self-Supervision
DnCNN REDCNN CLEAR FBP N2N SSDDNet USGF (ours)

5× 104
PSNR(dB) 29.57± 1.32 29.87± 1.31 29.96± 1.26 18.24± 1.32 28.03± 1.47 29.63± 1.53 29.96± 1.59
SSIM(%) 86.81± 2.55 87.01± 2.36 88.18± 1.58 66.86± 4.38 81.42± 3.01 84.10± 2.54 86.92± 2.63
MAE(HU) 6.94± 1.27 6.78± 1.25 6.67± 1.14 26.21± 4.85 8.83± 1.17 7.53± 1.21 6.48± 1.29

7.5× 104
PSNR(dB) 29.52± 1.09 30.06± 1.25 30.71± 1.39 19.70± 1.34 29.61± 1.36 30.32± 1.33 30.29± 1.37
SSIM(%) 85.93± 1.89 87.35± 2.20 88.54± 2.31 69.85± 4.09 86.55± 3.13 87.81± 3.21 87.91± 3.07
MAE(HU) 7.60± 1.13 7.04± 1.18 6.28± 1.20 22.11± 4.13 7.30± 1.22 6.65± 1.18 7.02± 1.23

1× 105
PSNR(dB) 30.70± 1.39 31.05± 1.43 31.44± 1.32 20.75± 1.36 29.64± 1.40 30.79± 1.81 30.95± 1.27
SSIM(%) 88.81± 1.97 89.44± 2.08 90.44± 1.92 72.06± 3.86 85.11± 2.76 89.19± 2.07 88.93± 2.14
MAE(HU) 6.33± 1.12 5.95± 1.15 5.72± 1.18 19.59± 3.68 7.72± 1.20 6.71± 1.28 6.09± 1.14

2.5× 105
PSNR(dB) 32.02± 1.39 32.27± 1.24 32.78± 1.10 23.94± 1.35 30.86± 1.30 31.07± 1.48 31.20± 1.28
SSIM(%) 90.74± 1.54 92.84± 1.34 93.01± 1.41 79.02± 2.99 87.07± 2.62 90.01± 1.55 91.45± 1.52
MAE(HU) 5.98± 0.82 5.33± 0.94 5.20± 0.87 13.53± 2.53 6.63± 1.15 6.01± 1.17 5.18± 1.09

5× 105
PSNR(dB) 33.10± 1.45 33.32± 1.35 33.40± 1.38 26.06± 0.06 32.02± 1.23 32.36± 1.50 32.88± 1.45
SSIM(%) 91.46± 1.30 93.39± 1.16 93.64± 1.19 83.52± 0.24 90.82± 2.24 92.55± 1.25 92.65± 1.21
MAE(HU) 5.17± 0.90 4.66± 0.85 4.56± 0.86 10.58± 0.12 5.58± 1.03 5.89± 0.87 5.42± 0.85

and 5.0×105, respectively. The quantitative results are listed
in Table II. It can be seen that the proposed USGF method
outperforms other self-supervised learning methods at five
noise levels. For example, USGF surpasses N2N by an average
PSNR of 0.83dB, and has an average SSIM gain of about
1.97% over N2N when the noise of I0i = 5× 104. Moreover,
as the noise level increases, the performance of our method
gradually exceeds that of the supervised learning method

REDCNN. The reason is two-fold. First, supervised learning
methods usually minimize the Euclidean distance between
LDCT and NDCT images, which can lead to the blurring
effect and subtle structural distortion when there is severe
noise near tissue edges. Second, the proposed method employs
the unsharp structure priors as the guidance, which greatly
preserves details such as edges and textures in the original
image.
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TABLE V: Influence of unsharp structure guidance on the AAPM challenge data with different noise levels. (w/o: without)

Dose Level Index
Method

FBP USGF (w/o guidance) USGF

5× 104

PSNR(dB) 18.24± 1.32 28.94± 1.49 29.96± 1.59

SSIM(%) 66.86± 4.38 80.36± 2.97 86.92± 2.63

MAE(HU) 26.21± 4.85 8.16± 1.33 6.48± 1.29

1× 105

PSNR(dB) 20.75± 1.36 30.12± 1.30 30.95± 1.27

SSIM(%) 72.06± 3.86 86.53± 2.25 88.93± 2.14

MAE(HU) 19.59± 3.68 6.64± 1.20 6.09± 1.14

5× 105

PSNR(dB) 26.06± 0.06 31.81± 1.52 32.88± 1.45

SSIM(%) 83.52± 0.24 91.48± 1.28 92.65± 1.21

MAE(HU) 10.58± 0.12 5.74± 0.92 5.42± 0.85

The reconstruction results of real mice data with noise
level I0i = 5× 104 are present in Fig. 4. It can be observed
that the images produced by FBP were seriously polluted by
the noise, especially in Fig. 4 (b2). Although the REDCNN
method can suppress the noise well, the edges pointed by
yellow arrows cannot be well preserved, as illustrated in
Fig. 4 (d2). The N2N method prevents edge degradation but
introduces slight artifacts, as marked in yellow circles in Fig.
4 (e2). Compared with these methods, the proposed USGF can
effectively suppress noise and preserve sharp edges.

3) Siemens Head Data Results: The other was discussed to
evaluate the proposed method. In this study, the original geom-
etry helical geometry was converted to the fan-beam geometry.
The different levels of Poisson noises were also added to the
simulated projections to generate the low-dose projections.
Visual comparisons of different methods are show in Fig. 5. It
can be seen that USGF and CLEAR can effectively preserve
the edge details of the tissue. In contrast, the details of the
images generated by DNCNN, N2N, and SSDDNet methods
are severely damaged, as marked by the red rectangles in Fig.
5 (c2), Fig. 5 (f2) and Fig. 5 (g2). The quantitative results are
listed in Table III. Among all the self-supervised methods, the
effect of our method is closest to the new emerging supervised
method. However, due to the lack of clean images, although
the quantitative results of our USGF exceeds DNCNN, it still
falls short of the latest supervised learning method CLEAR.

4) Robustness to Noise: In this section, we evaluate the ro-
bustness of our method to different noise levels on the AAPM
data. The Poisson noises with different intensities were added
to the simulated projections acquired by a cone-beam imaging
scanning geometry. As listed in Table IV, the proposed method
outperforms other self-supervised learning methods on five
noise levels, significantly improving the reconstruction quality
without clean references. Moreover, our method can not only
preserve richer subtle textures in the case of severe noise, but
also mitigate the blurring effect and maintain a better visual
perception. Fig. 6 presents several examples that demonstrate
the edge-preserving capability of the proposed method. For
example, the edge indicated by the yellow arrow in Fig. 6 (b1)
is degraded by noise. Compared with REDCNN and DnCNN,

the image reconstructed by the proposed USGF contains finer
textures, as shown in Fig. 6 (g1).

USGF
(w/o guidance)

LDCT
Guidance

USGF (with guidance)

(a1)

(a2)

(c1)

(c2)

(b1)

(b2)

(d1)

(d2)

Result

Fig. 7: Visual results of the AAPM challenge data (noise level
I0i = 5× 104) with and without guidance images. The recon-
struction results are normalized under [-160,240] Hounsfield
Unit (HU). The zoomed regions marked by the red rectangles
are located below the corresponding images. (w/o: without)

D. Ablation Study

The inherent property of self-supervised learning makes
them suffer from content blindness, which means that they
treat noise and structures identically, resulting in the blurring
of edge details. In this section, we analyze the impact of
unsharp structure priors on the final LDCT imaging and
edge preservation. For convenience, we removed the structure
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generator in Fig. 2(b). That is, the unsharp structure images
were replaced by the original noisy images. It can be observed
that the reconstruction results were improved after introducing
the guidance images. Furthermore, when the noise becomes
heavier, the unsharp structure priors can improve the recon-
struction results more significantly. Specifically, The SSIM
metric improved by only 1.17% at I0i = 5× 105, and by
6.56% at I0i = 5× 104.

Fig. 7 presents the visual results of the AAPM challenge
data with and without the guidance of the unsharp sturcture
information. The zoomed regions in the red rectangle are
present below the corresponding images. It can be seen that
the guidance images produced by our method have sharp
tissue edges, as pointed by the yellow arrow in Fig. 7(b2).
However, the edges of the same region in LDCT are difficult
to distinguish, e.g., Fig. 7(a2). Therefore, the reconstructed
image without the guidance of unsharp structure priors may
lose subtle details, especially in Fig. 7(c2).

E. Sensitivity Analysis of the Reconstruction Loss
The parameter α in Eq. 15 is used to balance the weight of

the regularization term. The sensitivity analysis on the AAPM
challenge data with noise level I0i = 5× 104 is shown in Fig.
8. It can be seen that when α=0.1, the model can be trained
stably. As α increases, the network training is more likely to
suffer mode collapse. Therefore, we select a smaller value,
i.g., α=0.1.
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Fig. 8: Sensitivity analysis of the reconstruction loss on the
AAPM challenge data with noise level I0i = 5× 104.

V. DISCUSSIONS AND CONCLUSION

In the field of low-dose CT imaging, existing deep learning
methods have achieved satisfactory results. However, limited
by training data, most of them are rarely deployed in the clinic.
In this paper, we have shown the proposed self-supervised
learning method capable of reconstructing CT images from
low-dose projections without clean references. Inspired by
traditional guided filtering, we employ deep neural networks
to implement unsharp structure guided filtering (USGF). This

method has a clear theoretical basis. By introducing structural
priors as guidance, tissue edges and other subtle details in
the guidance image can be transferred into the reconstruction
results for edge enhancement.

As an extension of N2N [29], the proposed USGF method
significantly improves the reconstruction performance and
restores more realistic anatomical details. There are two main
reasons. First, the proposed method introduces additional
unsharp structure priors to recover accurate edge features.
Second, N2N requires pairs of independent noisy images,
while the filtered back-projection operation leads to the corre-
lation between pixels of reconstructed CT images. Our method
employs the pixel-shuffle refinement strategy to suppress the
correlation between pixels. In addition, USGF also outper-
forms the classical supervised learning methods DnCNN and
REDCNN on partial quantization metrics when the images are
severely affected by noise. Experimental results show that the
unsharp structure priors contribute to improving image quality
and statistical properties. Compared to DnCNN and REDCNN,
we can see that the USGF framework helps to suppress the
excessive blurring effect that may be caused by supervised
learning [55], [56]. Other supervised learning strategies also
can be used to reduce noise at the cost of losing critical
features. The associated PSNR and SSIM metrics are slightly
increased compared to LDCT, but they are much lower than
the results produced by our method. In theory, self-supervised
learning often suffers from content blindness and may produce
images that are severely distorted or blurry in detail. This is
why structure priors should be added for edge enhancement.

It should be noted that we did not perform additional
processing on the projection data to ensure its integrity. The
strong fitting ability of neural networks should be applied to
the projection domain to further improve the performance.
In addition, the proposed self-supervised learning relies on
rich structure prior knowledge. The structure priors generator
based on mean box filtering may not be able to remove severe
artifacts, resulting in the transfer of artifacts from the guidance
image to the reconstructed image. This could be the next step
in our work.
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