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Enhanced BNC Approach for Non-Circular Signals Direction
Finding with Sparse Array in the Scenario of Impulsive Noise

Xudong Dong, Meng Sun, Jun Zhao, Xiaofei Zhang, and Yide Wang

Abstract—Sparse array is popular in the field of array signal
processing. However, in direction of arrival (DOA) estimation,
most research on sparse array assumes Gaussian noise, resulting
in model mismatch in the practical scenarios of impulsive noise.
We investigate the estimation performance of the bounded non-
linear covariance (BNC) matrix based methods, which can be
used to replace the original data covariance matrix of the received
signal and achieve good robustness to the impulsive interference.
We propose an enhanced BNC (EBNC) matrix with non-circular
signal for nested array in the scenario of impulsive noise. The
proposed EBNC matrix can fight against the impulsive noise
outliers and its boundedness and convergence are shown. The
proposed method’s performance is assessed with simulations.
Simulation results indicate that the proposed method provides
better performance in DOA estimation than the classical BNC,
correntropy-based covariance matrix and Gaussian covariance
based methods, especially in highly impulsive noise scenario.

Index Terms—Sparse array, DOA estimation, non-circular
signal, bounded non-linear covariance (BNC), impulsive noise.

I. INTRODUCTION

D IRECTION of arrival (DOA) estimation is an essential
research topic in array signal processing which has been

extensively applied to radar, sonar, wireless communication
and electronic reconnaissance [1]. The conventional subspace-
based DOA estimation methods, like MUSIC [2] and ESPRIT
[3], allow estimation of N −1 incoherent narrowband sources
by utilizing a uniform linear array (ULA) equipped with
N sensors. However, as the number of sources outnumbers
the sensors, DOA estimation becomes an underdetermined
estimation problem, which is of increasing concern.

To address the above issues, several sparse array-based
approaches, such as minimum redundant array (MRA) [4],
co-prime array (CA) [5]–[8], and nested array (NA) [9]–[12],
are proposed to increase the number of detectable sources
and improve the estimation accuracy. Specifically, MRA max-
imizes the number of virtual sensors in a difference co-array,
but there is no closed expression for the array configuration.
By consisting of two parallel ULAs, the co-prime array [5]
increases the number of detectable sources. For a higher
degrees of freedom (DOFs) and better estimation accuracy,
series of CA-based array configurations are proposed [6]–
[8]. However, the difference co-array in the co-prime array
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virtualization method results in the absence of virtual sen-
sors (i.e., holes), which degrades the estimation performance.
Comparatively, the nested array [9] consisting of a dense and
a sparse ULA, whose virtual difference array has no holes.
A nested array equipped with N sensors is then capable
of achieving O(N2) DOFs. Compared to the conventional
nested array, the proposed super nested array and augmented
nested array further improve the DOFs by modifying the dense
subarrays.

Nevertheless, the above mentioned methods only notice the
difference co-array of sparse arrays without the contribution of
sum co-array. Exploiting the non-circular property [13]–[23]
of the signal, combined with the sparse array virtualization
technique [16]–[23] can produce sum-difference co-arrays,
which greatly improve the degrees of freedom and array
aperture, thus enhancing the performance of DOA estimation
methods based on circular signals. However, the approaches
as described above assume that the noise follows a Gaussian
distribution. Impulsive noise is generally defined in litera-
tures as external noise to the system that occupies the time
domain for a sufficiently short time relative to the block
transmission symbol duration and presents impulsive and time-
domain sparse characteristics [24], [25]. Impulsive noise has
a wide range of causes, usually including astronomical noise
generated in the atmospheric space, sparking noise produced
by vehicles, electrical and industrial equipment operation
noise. Moreover, the statistical distribution of impulsive noise
is non-Gaussian distribution, such as α-stable distribution,
Gaussian mixture model (GMM), compound Gaussian model
(CGM) [26] and generalized Gaussian distribution (GGD)
[27]. Among them, elaborate that the α-stable distribution is
the most appropriate to describe impulsive noise [28], [29]. To
combat impulsive noise, the correlation entropy property [30]–
[34], sparse representation [35]–[38], sparse Bayesian learning
(SBL, [26], [39], [40]) and lp-MUSIC based algorithms [27]
are already employed for DOA estimation. By exploiting the
non-circular characteristics of the signal, [41] proposes an
extended MUSIC algorithm based on the covariance property,
which improves the performance of the MUSIC method for
circular signals. Furthermore, the bounded nonlinear covari-
ance (BNC) matrix [42], [43] based methods are proposed,
where the BNC matrix is applied to suppress the outliers of
the impulse noise. Nevertheless, only traditional ULAs are
considered in the above methods, and the introduction of the
sparse array technique is open to further discussion.

Recently, the sparse array techniques are also extended to
the impulsive noise scenario [44], [45]. In [44], the Toeplitz
phased fractional low-order moment method based on co-
prime array is proposed and on this basis, a non-circular
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signal version of this method is proposed in [45], which
obtains better algorithmic performance than [44]. However, the
resistance of the PFLOM method to impulsive interference is
limited. Inspired by the concept of BNC [43] matrix, this paper
proposes an enhanced BNC (EBNC) method for non-circular
signals with sparse array in the scenario of impulsive noise,
the core idea is to replace the data covariance matrix of the
received signal with the EBNC matrix. Since the techniques of
sparse array are all interoperable and the difference lies in their
continuous ULA of the sum or difference co-array, in this pa-
per, we take the nested array as an example. Furthermore, the
reduced dimensional MUSIC (RD-MUSIC) method is applied
to DOA estimation for avoiding the computational complexity
of two-dimensional search. Simulation results indicate that the
proposed method has a stronger resistance to impulsive noise
compared with exiting methods. In the following, the main
contributions of this paper are ummerized as:

• We extend the concept of the sparse array-based tech-
nique to the impulsive noise scenario, which provides a
new perspective for this technique.

• We propose an enhanced bounded non-linear function
(EBNF) and also give an algorithmic concept of an
enhanced BNC (EBNC) matrix based on EBNF to com-
bat the impulsive noise. In addition, the RD-MUSIC
method with nested array is employed to perform DOA
estimation, reducing the computational complexity while
improving the estimation accuracy.

• The proposed method is also extensible to other sparse
array geometries, such as co-prime arrays, super nested
arrays, etc.

The rest of this paper is structured as follows: Section II
presents some backgrounds, including the data model with
nested array and BNC matrix. The proposed EBNC based
method in presence of impulsive noise are described in sec-
tion III. Section IV and V provide the numerical result and
conclusion, respectively.

II. BACKGROUNDS

A. Data model

Co-prime and nested arrays [5], [9] are sparse arrays of
simple geometries with closed-form expression, where the
nested array consists of a dense ULA with sensor spacing
d0 and a sparse ULA with sensor separation (N1 +1)d0. The
sensor locations of the nested array are given by [9]:

L = {md0 |m = 1, · · · , N1 }
∪ {n (N1 + 1) d0 |n = 1, · · · , N2 } ,

(1)

where N1 and N2 are positive integers. Let L =
{l1, l2, · · · , lP }, and an integer set L̄ =

{
l̄1, l̄2, · · · , l̄P

}
is

also available, where l̄p = lp/d0 for p = 1, · · · , P .
We consider K far field incoherent narrowband signals from

θ1, · · · , θK , impinging on a nested array, the array output is

x (t) = As (t) + n (t) , t = 1, · · · , T, (2)

where A = [a (ω1) , · · · ,a (ωk) , · · ·a (ωK)] is the directional
matrix and s(t) = [s1(t), · · · , sk(t), · · · sK(t)]

T is the source
signal vector, T denotes the number of snapshots and (·)T is

the transpose, n (t) = [n1 (t) , · · · , nP (t)]
T is an impulsive

noise term and the direction vector a (ωk) is

a (ωk) =
[
e−jl̄1ωk , e−jl̄2ωk , · · · , e−jl̄Pωk

]T
, (3)

where ωk = (2πd0 sin θk)/λ with λ the carrier wavelength.
In this paper, we adopt the following assumptions:

A1: The signal s(t) = Φs0 (t) in Eq. (2) are strict
non-circular signal (for example, binary phase shift keying
(BPSK) and amplitude modulation (AM) signals). Φ =
diag

{
e−jφ1 , · · · , e−jφK

}
with φk the non-circular phase,

s0 (t) = [s01(t), · · · , s0k(t), · · · , s0K(t)]
T .

A2: In practical scenarios, the noise consists of irregular
pulses or spikes of short duration and large amplitude, where
the traditional second-order statistics are no longer applicable.
n (t) is a sequence of independent identically distributed (IID).
isotropic complex symmetric α stable (SαS) [24] random
variables with characteristic exponent 0 < α ⩽ 2, which is
independent of the signals. And the complex SαS process
can be expressed as

np (t) ∼ CS (· |α, γ ) , p = 1, · · · , P, (4)

where CS (· |α, γ ) is the isotropic complex SαS process with
characteristic exponent α and dispersion parameter γ. The
probability density function (PDF) of complex SαS process
hasn’t closed-form expression when α ̸= 1 and α ̸= 2, but the
characteristic function can be given as

ϕ(t) = exp (−γα|t|α) ,

when α = 2, it becomes a Gaussian distribution and it turns
into a Cauchy distribution at α = 1.

A3: By exploiting the non-circular property of the signals,
the Eq. (2) can be extended as:

y (t) =

[
x (t)
x∗ (t)

]
= Âs0 (t) +

[
n (t)
n∗ (t)

]
, (5)

the new directional matrix Â can be obtained by

Â =

[
AΦ
A∗Φ∗

]
= [â (θ1, φ1) , · · · , â (θK , φK)] , (6)

â (θk, φk) =

[
a (θk) e

−jφk

a∗ (θk) e
jφk

]
, (7)

where (·)∗ is the conjugate operation.

B. Bounded non-linear covariance (BNC) matrix
1) Bounded non-linear function (BNF): To effectively fight

against the impulsive noise, the bounded nonlinear function
(BNF) proposed in [43] can be expressed as:

g (x) =


f (x) x ⩾ x0

l (x) x ∈ (−x0, x0)

f (x) x ⩽ −x0

, (8)

where f(x) and l(x) are odd functions. Meanwhile, l (x) ≈ x
and f(x) satisfies max|f(x)| ⩽ f0, where f0 > x0 > 0 is a
positive constant.

Obviously, g(x) is a bounded odd function. Therefore it
is nonlinear outside the interval (−x0, x0), while g(x) =
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l(x) ≈ x is approximately considered as linear in the interval
(−x0, x0). It can represent the original value of the variable
x by linear transformation and suppress the outliers of the
variable x by nonlinear boundedness.

The Cauchy score function is a typical BNF, which can be
expressed as

score (x) =
2λ4x

1 + (λ3x)2
, (9)

where λ3 and λ4 are tunable parameters for adjusting the
almost linear region of the signal. A Taylor’s expansion of
score(x) at x = 0 yields

score (x) = 2λ4x+ o(x2). (10)

According to (10), we know that score(x) = x when λ4 =
0.5 within the range around x = 0.

2) Bounded non-linear covariance (BNC) matrix: When
array signal processing is involved, the (i, j)-th element of the
BNC matrix RBNC of the nested array output y(t) is defined
as

rBNC
ij = BNC(yi(t), yj(t)) = E

(
g (yi(t)) g

H (yj(t))
)
, (11)

where (·)H is the conjugate transpose and yi(t) denotes the
i-th element of y (t).

Remark 1: Note that x in Eq. (8) is a real number, but
in array signal processing, Eq. (5) belongs to the complex
domain. Therefore, we use a real-virtual partial calculation in
the calculation of the BNC matrix in Eq. (11), i.e. g (yi(t)) =
g (real (yi(t)))+j×g (imag (yi(t))). Furthermore, according
to the properties of the odd function g(x), we have

g (y∗i (t)) = g (real (y∗i (t))) + j × g (imag (y∗i (t)))

= g (real (yi(t)))− j × g (imag (yi(t)))

= g∗ (yi(t))

= gH (yi(t)) ,

where real(c) and imag(c) are the real and imaginary parts
of the complex number c, respectively.

III. PROPOSED ENHANCED BNC BASED METHOD IN
PRESENCE OF IMPULSIVE NOISE

A. Construction of BNC matrix

In DOA estimation, the mean value of the signal is generally
zero. The signal is more resistant to impulsive noise inter-
ference in the range around zero mean, which can achieve
a better DOA estimation. Based on the suppression ability
and boundedness of BNC matrix, we propose a new DOA
estimation method, called as NA-NC-BNC, and the BNC
matrix for non-circular signals can be expressed as

RBNC = BNC (y (t) ,y (t)) =

[
R1

BNC R2
BNC

R3
BNC R4

BNC

]
, (12)

where the (i, j)-th elements of these four sub-matrices are

r1ij = BNC (xi (t) , xj (t)) = E
(
g (xi(t)) g

H (xj(t))
)

r2ij = BNC
(
xi (t) , x

∗
j (t)

)
= E

(
g (xi(t)) g

H
(
x∗
j (t)

))
r3ij = BNC (x∗

i (t) , xj (t)) = E
(
g (x∗

i (t)) g
H (xj(t))

)
r4ij = BNC

(
x∗
i (t) , x

∗
j (t)

)
= E

(
g (x∗

i (t)) g
H
(
x∗
j (t)

)) (13)

From [43], the BNC matrix (12) can be also expressed as

RBNC = ÂRBNC
s0 ÂH + Γ, (14)

where RBNC
s0 = diag (κ01, · · · , κ0k, · · · , κ0K) is a diagonal

matrix of signal s0(t), in which κ0k = BNC (s0k (t) , s0k (t)).
Γ = σ2

nI2P , σ2
n is the approximate variance of impulsive noise

and I2P is the identity matrix of dimensions 2P . Appendix A
gives the proof of Eq. (14).

B. Construction of enhanced BNC matrix

Unfortunately, the performance of BNC method degrades
at low GSNR and highly impulsive scenarios. To address this
issue, we propose an enhanced bounded nonlinear covariance
(EBNC) matrix, which will have an improved resistance to
impulsive interference in the highly impulsive scenarios.

Definition 1: In this paper, the enhanced bounded nonlinear
function (EBNF) is defined as

G(x) =


f
(
|x|p−2 × x

)
x ⩾ x0

l
(
|x|p−2 × x

)
(−x0, 0) ∪ (0, x0)

f
(
|x|p−2 × x

)
x ⩽ −x0

, (15)

where 0 < p ⩽ 2 is a order moment constant. It can be seen
that |x|p−2 is an bounded even function, so G(x) still satisfies
the boundedness condition. Obviously, EBNF degenerates to
BNF when p = 2.

Definition 2: If X and Y are two real random variables,
the EBNC can be denoted as rEBNC, i.e.

rEBNC(X,Y ) = E
[
G(X)GH(Y )

]
. (16)

Based on the definitions of EBNF and EBNC, the EBNC
matrix of stochastic vector X = [X1, X2, · · · , XP ]

T is de-
noted as REBNC and its (i, j)-th element can be defined as

rEBNC
ij = E

{
G (Xi)G

H (Xj)
}
. (17)

The REBNC can be regarded as an approximation of the
traditional second-order covariance matrix, while the bound-
edness and nonlinearity of REBNC can also suppress the large
outliers of impulsive noise. Appendix B and C provide the
boundedness proof of EBNF and the convergence of EBNC,
respectively. We propose the NA-NC-EBNC method by replac-
ing the EBNC matrix with the BNC matrix, and the choice of
p is given in section IV.

Remark 2: We multiply the BNF by |x|p−2, where 0 <
p ⩽ 2. As the absolute value of x becomes larger, the
|x|p−2 becomes smaller, which corresponds to a secondary
suppression of impulsive noise interference, resulting in the
EBNC matrix REBNC based on the array output y(t) and its
(i, j)-th element can be expressed as

rEBNC
ij = E

(
G (y′i(t))G

H
(
y′j(t)

))
(18)

where G (y′i(t)) = G (real (y′i(t)))+j×G (imag (y′i(t))) and
y′i(t) = |y′i(t)|p−2y′i(t).

In the following subsection, the index BNC in RBNC, the in-
dex EBNC in REBNC, are dropped for notational convenience.
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C. Nested array approach

1) Sum co-array and difference co-array: According to
[20], the virtual sensors set of difference co-array and sum
co-array can be denoted as

D =
{
l̄i − l̄j

∣∣ l̄i, l̄j ∈ L̄
}
, (19)

and
S = S+ ∪ S−

S+ =
{
l̄i + l̄j

}
S− =

{
−l̄i − l̄j

}. (20)

Fig. 1 illustrates the co-array of nested arrays, where N1 =
N2 = 3. and (a) is a difference co-array with sensors contin-
uously located in ⟨−11, 11⟩ d0, (b) is a positive sum co-array
with successive positions of ⟨0, 14⟩ d0 and (c) is the negative
sum co-array and its consecutive locations are ⟨−14, 0⟩ d0.
According to [9], when N1 and N2 are given, the consecutive
positions of the difference co-array are ⟨−M1,M1⟩ d0, and
the sum co-arrays are continuously distributed on ⟨−M2, 0⟩ d0
and ⟨0,M2⟩ d0, respectively, where M1 = N1N2+N2−1 and
M2 = N1N2 +N1 +N2 − 1.

(a)

0 14d0

(b)

0-14d0

(c)

0-11d0 11d0

Virtual array Hole

Fig. 1: co-array of nested arrays with N1 = N2 = 3. (a) difference co-array D, (b)
positive sum co-array S+, (c) negative sum co-array S−.

2) Vectorization: By vectorizing the equivalent covariance
matrix (include RBNC and REBNC matrices, we take RBNC as
an example), then we have

z = vec (R) =
(
Â∗ ⊙ Â

)
p+ vec (Γ) , (21)

where p is a vector of RBNC
s0 ’s diagonal elements, and the k-th

vector of H =
(
Â∗ ⊙ Â

)
= [h (θ1, φ1) , · · · ,h (θK , φK)] is

[19] [20]

h (θk, φk) = â∗ (θk, φk)⊗ â (θk, φk)

=

[
a∗ (θk) e

jφk

a (θk) e
−jφk

]
⊗

[
a (θk) e

−jφk

a∗ (θk) e
jφk

]
, (22)

where ⊗ and ⊙ denote Kronecker and Khatri-Rao products,
respectively. Multiplying Eq. (22) by the row transformation
matrix J, we can obtain

h̃ (θk, φk) = Jh (θk, φk)

=


a∗ (θk)⊗ a (θk)

a∗ (θk)⊗ a∗ (θk) e
2jφk

a (θk)⊗ a (θk) e
−2jφk

a (θk)⊗ a∗ (θk)

 ,
(23)

with

J =


[
J1

J2

]
02P 2

02P 2

[
J1

J2

]
 ∈ R4P 2×4P 2

,

J1 = IP ⊗
[
IP 0P

]
∈ RP 2×2P 2

,

J2 = IP ⊗
[
0P IP

]
∈ RP 2×2P 2

,

where 0P and IP are the all-zero matrix and identity matrix
of dimension P × P , respectively. Then we can obtain

z̃ = Jz = H̃p+ Jvec(Γ), (24)

with H̃ = [h̃ (θ1, φ1) , · · · , h̃ (θK , φK)]. According to (24),
we can divide H̃ into four parts H1,H2,H3,H4 ∈ CP 2×K ,
i.e., H̃ = [H1;H2;H3;H4], and

H1 = [a∗ (θ1)⊗ a (θ1) , · · · ,a∗ (θK)⊗ a (θK)] ,

H2 = [a∗ (θ1)⊗ a∗ (θ1) , · · · ,a∗ (θK)⊗ a∗ (θK)]Φ−2,

H3 = [a (θ1)⊗ a (θ1) , · · · ,a (θK)⊗ a (θK)]Φ2,

H4 = (a (θ1)⊗ a∗ (θ1) , · · · ,a (θK)⊗ a∗ (θK)) .

In order to remove the redundant items and select the virtual
continuous ULA information in (24), we introduce a selection
matrix as follows

F1,(lD+M1+1,i+(j−1)P ) =

{
1

ω(lD) lD = li − lj ,

0 otherwise,

lD = −M1, · · · , 0, · · · ,M1, and F1 ∈ C(2M1+1)×P 2

,

(25)

F2,(l−S +M2+1,i+(j−1)P ) =

{
1

ω(l−S )
l−S = −li − lj

0 otherwise,

l−S = −M2, · · · ,−1, 0, and F2 ∈ C(M2+1)×P 2

,

(26)

F3,(l+S+1,i+(j−1)P ) =

{
1

ω(l+S )
l+S = li + lj

0 otherwise,

l+S = 0, 1, · · · ,M2, and F3 ∈ C(M2+1)×P 2

,

(27)

F4,(lD+M1+1,i+(j−1)P ) =

{
1

ω(lD) lD = lj − li

0 otherwise,

lD = −M1, · · · , 0, · · · ,M1, and F4 ∈ C(2M1+1)×P 2

,

(28)

where Fi,(s,t) is the (s, t)-th element of the i-th selection
matrix Fi, i = 1, 2, 3, 4, ω(m) stands for the cardinality of
m defined as

ω(m) = |D (m)| ,
∣∣S+ (m)

∣∣ or
∣∣S− (m)

∣∣
with

D (m) =
{(

l̄i, l̄j
) ∣∣l̄i − l̄j = m, l̄i, l̄j ∈ L̄

}
,

S+ (m) =
{(

l̄i, l̄j
) ∣∣l̄i + l̄j = m, l̄i, l̄j ∈ L̄

}
,

S− (m) =
{(

l̄i, l̄j
) ∣∣−l̄i − l̄j = m, l̄i, l̄j ∈ L̄

}
,

where |X| denotes the cardinality of a set X.

ACCEPTED MANUSCRIPT / CLEAN COPY



SUBMIT TO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 5

Then we have

z̃ULA = Fz̃

= blkdiag {F1,F2,F3,F4} z̃
= [F1H1;F2H2;F3H3;F4H4]p+ FJvec (Γ)

=


H̃1

H̃2

H̃3

H̃4

p+


γ1
γ2
γ3
γ4

 =


z̃1
z̃2
z̃3
z̃4


(29)

with

H̃1 =
[
h̃1 (θ1) , · · · , h̃1 (θK)

]
∈ C(2M1+1)×K (29a)

H̃2 =
[
h̃2 (θ1, φ1) , · · · , h̃2 (θK , φK)

]
∈ C(M2+1)×K (29b)

H̃3 =
[
h̃3 (θ1, φ1) , · · · , h̃3 (θK , φK)

]
∈ C(M2+1)×K (29c)

H̃4 =
[
h̃4 (θ1) , · · · , h̃4 (θK)

]
∈ C(2M1+1)×K (29d)

h̃1 (θk) =
[
ejπM1 sin θk , · · · 1, · · · , e−jπM1 sin θk

]T
(29e)

h̃2 (θk, φk) = e2jφk
[
ejπM2 sin θk , · · · , 1

]T
(29f)

h̃3 (θk, φk) = e−2jφk
[
1, · · · , e−jπM2 sin θk

]T
(29g)

h̃4 (θk) =
[
ejπM1 sin θk , · · · 1, · · · , e−jπM1 sin θk

]T
, (29h)

where blkdiag{·} is a matrix block diagonal operation. γ2,γ3

and γ1,γ4 are the noise vector corresponding to the sum co-
array and difference co-array, respectively.

D. Spatial smoothing technique for SD co-array
Actually, by calculating (25)-(28), we find that z̃1 and

z̃4 incorporate the same difference co-array information.
Since z̃1, z̃2 and z̃3 is a single snapshot vector, the spatial
smoothing (SS) algorithm should be used for decoherence
[7]. We separate z̃1 into M1 + 1 overlapping subarrays,
z̃D,m,m = 1, · · · ,M1 + 1, each with M1 + 1 virtual array
elements, i.e.,

Z̃D = [z̃D,1, · · · , z̃D,M1+1] (30)

with

z̃D,m = z̃1 (M1 + 2−m : 2M1 + 2−m, :)

= HDΨm−1p+ γD,m,m = 1, · · · ,M1 + 1
(30a)

HD = [hD (θ1) , · · · ,hD (θK)] (30b)

hD (θk) =


1

e−jπ sin θk

...
e−jM1π sin θk

 (30c)

Ψ =

 ejπ sin θ1

. . .
ejπ sin θK

 (30d)

γD,m = γ1 (M1 + 2−m : 2M1 + 2−m, :) , (30e)

where HD is the directional matrix and Ψ is a rotation matrix.

Similar to Eq. (30), we also divide z̃2 into M1 + 1
overlapping subarrays z̃S−,m,m = 1, · · · ,M1 + 1, each with
M2−M1+1 array elements (actually, M2−M1+1 = N1+1),
i.e.,

Z̃S− =
[
z̃S−,1, · · · , z̃S−,M1+1

]
(31)

with

z̃S−,m = z̃2 (M1 + 2−m : M2 + 2−m, :)

= HS−Ψm−1p+ γS−,m,m = 1, · · · ,M1 + 1
(31a)

HS− = [hS− (θ1, φ1) , · · · ,hS− (θK , φK)] (31b)

hS− (θk, φk) =

 e−j(M1−M2)π sin θke2jφk

...
e2jφk

 (31c)

γS−,m = γ2 (M1 + 2−m : M2 + 2−m, :) . (31d)

Also, for the the positive sum co-array information z̃2, we
have

Z̃S+ =
[
z̃S+,1, · · · , z̃S+,M1+1

]
(32)

with

z̃S+,m = z̃3 (M1 + 2−m : M2 + 2−m, :)

= HS+Ψm−1p+ γS+,m,m = 1, · · · ,M1 + 1
(32a)

HS+ = [hS+ (θ1, φ1) , · · · ,hS+ (θK , φK)] (32b)

hS+ (θk, φk) =


e−jM1π sin θke−2jφk

e−j(M1+1)π sin θke−2jφk

...
e−jM2π sin θke−2jφk

 (32c)

γS+,m = γ3 (M1 + 2−m : M2 + 2−m, :) . (32d)

According to Eq.(30)-(32), the reconstructed sum-difference
(SD) co-arrays spatial smoothing matrix is

Z =
[
Z̃S− ; Z̃D; Z̃S+

]
∈ C(2M2−M1+3)×(M1+1)

= [z1, · · · , zm, · · · , zM1+1]
(33)

zm =
↔
HΨm−1p+

↔
γm,m = 1, · · · ,M1 + 1 (34)

where
↔
H =

[
↔
h (θ1, φ1) , · · · ,

↔
h (θK , φK)

]
(35)

↔
h (θk, φk) =

 hS− (θk, φk)
hD (θk)

hS+ (θk, φk)

 (36)

↔
γm =

[
γS−,m;γD,m;γS+,m

]
. (37)

Remark 3: Fig. 2 depicts the corresponding spatial smooth-
ing co-array of the nested array, where N1 = N2 = 3.
From Fig. 2, the following conclusions can be drawn: a) The
spatial smoothing subarrays of difference set D with virtual
sensor number M1 + 1, which corresponds to the directional
vector hD (θk). b) The number of virtual array elements of
the spatial smoothing subarray of the positive-sum co-array
S+ and the negative-sum co-array S− is M2 − M1 + 1,
corresponding to the directional vectors hS+ (θk, φk) and
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hS− (θk, φk), respectively. Notice that the purpose of this
smoothing technique is that the smoothed sub-arrays Z̃S− , Z̃D

and Z̃S+ are the same number of columns, so that the matrix
(33) can be considered as a received data with multi-snapshot
(snapshot of M1 + 1).

M1-M2

(a)

0 14d0
(b)

0-14d0
(c)

0-11d0 11d0
M1

M2
-3d0

-3d0 0 11d0 14d0
(d)

Fig. 2: spatial smoothing co-array with N1 = N2 = 3. (a) difference co-array, (b)
positive sum co-array, (c) negative sum co-array, (d) sum-difference (SD) co-arrays.

E. Reduced-dimension MUSIC method

According to (33), the covariance matrix RZ can be ex-
pressed as

RZ =
1

M1 + 1
ZZH (38)

With the eigenvalue decomposition (EVD) of Eq. (38), we
can obtain the noise subspace En, and the two-dimensional
MUSIC spectrum [2] is denoted as

P2D - MUSIC =
1

cH (θ, φ)EnEH
n c (θ, φ)

(39)

where c (θ, φ) =
↔
h (θ, φ). Notice that Eq. (39) requires to

search for both DOA and non-circular phases, which increases
the complexity of the calculation. According to [45], [46], we
introduce the expression for the reduced dimensional MUSIC
(RD-MUSIC) method for the SD co-array. The directional
vector c (θk, φk) can be restructured as

c (θk, φk) = C (θk)ν (φk)

=

 cS− (θk) 0M ′×1 0M ′×1

0(M1+1)×1 cD (θk) 0(M1+1)×1

0M ′×1 0M ′×1 cS+ (θk)

 e2jφk

1
e−2jφk

 (40)

with

cS− (θk) =

 e−j(M1−M2)π sin θk

...
1

 (41)

cD (θk) =


1

e−jπ sin θk

...
e−jM1π sin θk

 (42)

cS+ (θk) =


e−jM1π sin θk

e−j(M1+1)π sin θk

...
e−jM2π sin θk

 (43)

where M ′ = M2 −M1 + 1, Let

Θ(θ, φ) =
1

P2D−MUSIC

= cH (θ, φ)EnE
H
n c (θ, φ)

= νH (φ)CH (θ)EnE
H
n C (θ)ν (φ)

= νH (φ)G (θ)ν (φ)

(44)

where G (θ) = CH (θ)EnE
H
n C (θ). Inspired by our previous

work [45], the spectrum function of RD-MUSIC method can
be written as

PRD−MUSIC = eH
(
CH (θ)EnE

H
n C (θ)

)−1
e (45)

where e = [0, 1, 0]
T such that eHν (φ) = 1.

The main difference between the NA-NC-EBNC method
and the NA-NC-BNC method is that the BNC matrix RBNC

is replaced by the EBNC matrix REBNC. The specific pro-
cesses of the two methods are given in Algorithm 1 and 2,
respectively.

Algorithm 1 NA-NC-BNC DOA estimation method.
Input: y(t) .
1: Calculate the BNC matrix RBNC according to Eq. (20).
2: Vectorize and rearrange RBNC by Eqs. (21)-(29), we can obtain:

z̃ULA = Fz̃ = [z̃1; z̃2; z̃3; z̃4], where z̃ = Jz = H̃p+ Jvec(Γ)
and z = vec

(
RBNC) = (B∗ ⊙B)p+ vec (Γ).

3: Calculate the spatial smoothing matrix:
Z =

[
Z̃S− ; Z̃D; Z̃S+

]
∈ C(2M2−M1+3)×(M1+1), where Z̃D ,

Z̃S− and Z̃S+ can be calculated by Eqs. (30)-(32).
4: Calculate the spatial smoothing covariance matrix RZ of Z:

RZ = 1
M1+1

ZZH .
5: By applying EVD to RZ , we can get the noise subspace En.
6: Perform RD-MUSIC method with Eq. (45) for DOA estimation.

Algorithm 2 NA-NC-EBNC DOA estimation method.
Input: y(t) .
1: Calculate the EBNC matrix REBNC according to Eq. (18).
2: Vectorize and rearrange the REBNC are similar to Algorithm 1.
3: Calculate the spatial smoothing matrix is similar to Eqs. (30)-

(33).
4: Assuming that the spatial smoothing matrix constructed in step

3 can be expressed as Z′, then the new covariance matrix RZ′

of the SD co-array: RZ′ = 1
M1+1

Z′Z′H .
5: The remaining EVD and RD-MUSIC methods are the same as

in Algorithm 1.

IV. NUMERICAL RESULT

A. Evaluation and Measurement

The root mean square error (RMSE) can be defined as

RMSE =

√√√√ 1

MC

MC∑
j=1

1

K

K∑
k=1

(
θ̃kj − θk

)2

(46)

where θ̃kj is the DOA estimate value at j-th Monte Carlo (MC)
simulation. and the generalized signal to noise ratio (GSNR)
[41] for non-circular signals can be expressed as:

GSNR = 10 log
(
E
{
|s(t)|2

}
/γ

)
(47)
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TABLE I: Experimental conditions for Cases 1 to 3

Conditions Case 1 Case 2 Case 3
α 1.5 0.5 α ∈ [0.1, 2]
p p = 1.2 p = 0.9 p = 1.1

P = 9 N1 = 4, N2 = 5 N1 = 4, N2 = 5 N1 = 4, N2 = 5

where s(t) = Φs0(t) and γ is the dispersion parameter.

B. Complexity analysis

Throughout this section, the number of multiplications
of real (or complex) values is considered as a complex-
ity criterion. Calculate BNC and EBNC matrices costs
O
{(

4P 2 + 8P
)
T
}

and O
{(

4P 2 + 9P
)
T
}

, respectively.
Compute the covariance matrix RZ is O

{
M2

0 (M1 + 1)
}

,
and the eigenvalue decomposition (EVD) costs M0

3, where
M0 = 2M2 −M1 +3. The RD-MUSIC method needs a com-
plexity of O

{
M2

0 (M0 −K) + ns

(
3M2

0 + 9M0

)}
, where ns

is the search times. Then the total complexity of the
proposed NA-NC-BNC algorithm is O{

(
4P 2 + 8P

)
T +

M2
0 (M1 + 1) + M3

0 + M2
0 (M0 −K) + ns

(
3M2

0 + 9M0

)
},

and the proposed NA-NC-EBNC method with complexity of
O{

(
4P 2 + 9P

)
T +M2

0 (M1 + 1) +M3
0 +M2

0 (M0 −K) +
ns

(
3M2

0 + 9M0

)
}.

C. Selection of parameter p

In the proposed method, the EBNC matrix in Eq. (18) is
used to replace the BNC matrix in Eq. (12), which involves
the choice of parameter p. The value of p can be determined
by experimental studies and the estimation performance is
evaluated based on the RMSE with more than 1000 MC runs.
The experimental results of the preliminary study for the case
of different values of p are given in Fig. 3, where α = 0.5 or
α = 1.5.

Cases 1 and 2 give detailed simulation results according to
the different choices of parameter p. (Case 1 considers the
algorithm performance in α = 1.5 environment and Case 2
elaborates the scenario with α = 0.5). It can be seen that
the proposed NC-NA-EBNC method has a better estimation
performance when p is set to 1.2 and 0.9 in Cases 1 and 2,
respectively. Therefore, we take p = 1.2 in Case 1 and choose
p = 0.9 in Case 2. It can also be observed that the estimation
performance does not change significantly for p ∈ [0.8, 1.2].
In Cases 3, we analyse the performance of the algorithm for
different values of impulsive characteristic exponent α when
p = 1.1. The specific experimental conditions for the three
cases are given in TABLE I.

D. Simulation results

We perform three simulations for discussing the RMSE per-
formance of the proposed NC-NA-BNC and NC-NA-EBNC
methods. We also give some simulation examples to demon-
strate the performance of the various methods: the proposed
methods, the PFLOM-MUSIC method [29], a correntropy-
based covariance matrix MUSIC (CBCM-MUSIC) method
[34], one correntropy-based correlation MUSIC (CRCO-
MUSIC) method [30], an extended covariant non-circular

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

order moment parameter p

0.05

0.1

0.15

R
M

S
E

/(
0
)

Case 1  =1.5 GSNR=5

Case 1 =1.5 GSNR=10

Case 2 =0.5 GSNR=5

Case 2 =0.5 GSNR=10

Fig. 3: RMSE versus parameter p, T = 500.

MUSIC method (EX-NC-MUSIC, [41]), a non-circular gen-
eralized covariance MUSIC (NC-GC-MUSIC) [47] method, a
non-circular BNC MUSIC method (NC-BNC-MUSIC) [43],
SBL [26] method and lp-MUSIC method [27]. Also the
Cramer-Rao Bound (CRB) in [26], [27] for impulsive noise is
added for a comparison. However, for other α (except α = 1 or
α = 2), the related PDF of impulsive noise hasn’t closed-form
expression. In this case, [47] states that linear interpolation can
determine the coefficients between α = 1 and α = 2. Some
key parameters of the above methods are given in TABLE II.

1) MUSIC spectrum for 1 MC: We first describe the
MUSIC spectrum of a non-circular signal using nested or ULA
with comparison methods EX-NC-MUSIC, NC-GC-MUSIC,
NC-BNC-MUSIC, NC-NA-BNC and NC-NA-EBNC. The pa-
rameters of the experiment are: N1 = 3, N2 = 4, T = 1000,
GSNR = 10 dB, α = 1.5, the number of signals K = 11 and
DOA = −60◦+12(k−1)(k = 1, 2, · · · ,K), non-circular phase
−30◦ +6(k− 1)(k = 1, 2, · · · ,K). From Figs. 4(d) and 4(e),
the proposed NA-NC-BNC and NA-NC-EBNC algorithms can
detect all 11 NC signals. As can be seen from Figs. 4(a)-4(c),
for the ULA array, the NC characteristics also increase the
number of detectable signals (the number of physical array
elements is only 7). However, because of the impulsive noise
interference, these five algorithms all eliminate the impulsive
noise by proposing equivalent replaceable covariance matrices,
where the proposed NA-NC-EBNC method results in spectral
peaks closer to the real DOA. Furthermore, we compare the
proposed NA-NC-EBNC method in Fig. 4 with the recently
reported methods in cases 1-3.

2) Case 1: There are three incoherent sources impinging
on the nested array with DOA [0◦, 10◦, 20◦] and non-circular
phase [10◦, 20◦, 30◦]. The impulsive noise characteristic expo-
nent α = 1.5, p = 1.2 and N1 = 4, N2 = 5.

Fig. 5(a) demonstrates the RMSE performance with dif-
ferent GSNR and the RMSE results versus the number of
snapshots are illustrated in Fig. 5(b). It can be seen from
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TABLE II: Parameter settings for different methods

Algorithms Array structure and signal model correlation theories Mapping functions parameter enactment
PFLOM-MUSIC [29] ULA and circular signals FLOS PFLOM b = 0.05
CBCM-MUSIC [34] ULA and circular signals Correntropy-based Guassian function µ = 0.7, σ = 10
CRCO-MUSIC [30] ULA and circular signals Correntropy-based Guassian function σ = 1.4σs, µ = 0.5

EXC-NC-MUSIC [41] ULA and non-circular signals FLOS FLOM p = 1.2

NC-GC-MUSIC [47] ULA and non-circular signals GC Cauchy Score, Gaussian covariance λs as in [47] and σβ = 10
NC-BNC-MUSIC [43] ULA and non-circular signals BNC Cauchy Score λ3 = 0.4, λ4 = 0.58

lp-MUSIC [27] ULA and circular signals Norm property no p = 1.6
SBL method [26] ULA and circular signals Sparse bayesian learning no the same as [26]

NC-NA-BNC NA and non-circular signals BNC Cauchy Score λ3 = 0.4, λ4 = 0.58
NC-NA-EBNC NA and non-circular signals proposed EBNC Cauchy Score λ3 = 0.4, λ4 = 0.58

-80 -60 -40 -20 0 20 40 60 80

DOA

-30

-20

-10

0

N
o

rm
a

liz
e

d
 s

p
e

c
tr

u
m

EX-NC-MUSIC

(a)

-80 -60 -40 -20 0 20 40 60 80

DOA

-30

-20

-10

0

N
o

rm
a

liz
e

d
 s

p
e

c
tr

u
m

NC-BNC-MUSIC

(b)

-80 -60 -40 -20 0 20 40 60 80

DOA

-30

-20

-10

0

N
o

rm
a

liz
e

d
 s

p
e

c
tr

u
m

NC-GC-MUSIC

(c)

-80 -60 -40 -20 0 20 40 60 80

DOA

-30

-20

-10

0

N
o

rm
a

liz
e

d
 s

p
e

c
tr

u
m

NA-NC-BNC

(d)

-80 -60 -40 -20 0 20 40 60 80

DOA

-30

-20

-10

0

N
o

rm
a

liz
e

d
 s

p
e

c
tr

u
m

NA-NC-EBNC

(e)

Fig. 4: Spectrum of the proposed NA-NC-BNC and NA-NC-EBNC methods, EX-NC-
MUSIC method, NC-BNC-MUSIC method and NC-GC-MUSIC method, where N1 =
3, N2 = 4, α = 1.5, T = 1000, GSNR = 10 dB, MC = 1. (a) EX-NC-MUSIC
method; (b) NC-BNC-MUSIC method; (c) NC-GC-MUSIC method; (d)NA-NC-BNC
method; (e) NA-NC-EBNC method.

Fig. 5(a) that the RMSE curves of PFLOM-MUSIC, CRCO-
MUSIC, NC-BNC-MUSIC, EXC-NC-MUSIC and NC-GC-
MUSIC methods become relatively flat when the GSNR is
larger than 4 dB. The reason lies in their limited ability of
combating the impulsive noise. In contrast, since the sparse
array based methods can improve the estimation accuracy
compared to the classical ULA, the two algorithms proposed
in this paper are more robust in comparison. In addition, it
can be seen from Fig. 5(a) that the estimation performance of
the proposed two methods is better than the existing methods
(iclude lp-MUSIC and SBL methods) under the same GSNR
condition. In addition, the performance of the lp-MUSIC
method performs poorly, but the SBL method shows good
performance at GSNR > 0 dB. However, its performance is
weaker than the NA-NC-BNC and NA-NC-EBNC methods
because its grid is not off-grid. Compared with the proposed
NA-NC-BNC method, the proposed NA-NC-EBNC method
has better performance, which also indicates that EBNC matrix
has stronger ability to fight against the impulsive interference
than BNC matrix. Similar performance results can be observed
in Fig. 5(b) , where the number of snapshots is variable.

3) Case 2: Since the lp-MUSIC, CBCM-MUSIC, CRCO-
MUSIC and EXC-NC-MUSIC methods only deal with 1 <
α < 2, therefore, in this simulation, PFLOM-MUSIC
method, NC-BNC-MUSIC method, NC-GC-MUSIC method,
SBL method and the proposed two methods are considered for
comparison.

Fig. 6(a) illustrates the RMSE performance for different
GSNR scenarios and Fig. 6(b) shows the RMSE results for
different number of snapshots. The results show that the
performance of all five methods improves with the increase
of GSNR and snapshots. Compared with the PFLOM-MUSIC
method, NC-BNC-MUSIC method, SBL and NC-GC-MUSIC
methods, the NA-based methods have better RMSE perfor-
mance. However, the performance of the proposed NA-NC-
BNC method is poor when GSNR < 1 dB, while the RMSE
performance of the proposed NA-NC-EBNC method is always
optimal, highlighting the ability of EBNC to combat the im-
pulsive noise in highly impulsive scenarios (0 < α < 1). The
RMSE performance versus the number of snapshots shown in
Fig. 6(b) also verifies the superiority of the proposed methods.

4) Case 3: The RMSE results in terms of characteristic
exponent α ranges from 0.1 to 2 are provided in Fig. 7(a)
and α from 0.1 to 1 is provided in Fig. 7(b), where MC
= 1000, GSNR = 10 dB, T = 500. Other parameters are
the same as case 1. It can be seen from Fig. 7(a), the

ACCEPTED MANUSCRIPT / CLEAN COPY



SUBMIT TO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 9

-2 0 2 4 6 8 10

GSNR/dB

10-3

10-2

10-1

100

101

102
R

M
S

E
/(

0
)

PFLOM-MUSIC

CRCO-MUSIC

NC-BNC-MUSIC

EXC-NC-MUSIC

NC-GC-MUSIC

NA-NC-BNC

NA-NC-EBNC

CBCM-MUSIC

CRB

l
p
 MUSIC

SBL

(a)

50 100 150 200 250 300 350 400 450 500

Snapshots

10-2

10-1

100

R
M

S
E

/(
0
)

PFLOM-MUSIC

CRCO-MUSIC

NC-BNC-MUSIC

EXC-NC-MUSIC

NC-GC-MUSIC

NA-NC-BNC

NA-NC-EBNC

CBCM-MUSIC

CRB

SBL

(b)

Fig. 5: RMSE of DOA estimation versus (a) GSNR, where α = 1.5, T = 500, MC =
1000. (b) Snapshots, where α = 1.5, GSNR = 10 dB, MC = 1000.

performance of these methods, except for the CBCM-MUSIC
and EXC-NC-MUSIC algorithms, remains almost stable as
the value of α increases continuously. Compared to other
methods, the proposed NA-NC-EBNC method has the best
RMSE performance. In addition, in highly impulsive scenario
(shown in Fig. 7(b)), only the proposed method shows good
performance. Comparing Fig. 7(a) and 7(b), it is found that
the performance improvement of the proposed method in this
paper is obvious in the highly impulsive environment, which
also indicates that EBNC has a good ability to fight against
the highly impulsive noise.

5) Comparison of ESPRIT and RD-MUSIC methods: In
this section, the performance of RD-MUSIC is tested com-
pared with the total least square ESPRIT (TLS-ESPRIT) [3]
method when 0 < α < 1. The simulation parameters: two
independent sources with DOA [10◦, 20◦] and non-circular
phase [20◦, 30◦]. α = 0.5, p = 1.2 and N1 = 4, N2 = 5,
T = 500, MC = 1000. Fig. 8 depicts the RMSE of the
TLS-ESPRIT and RD-MUSIC methods for different GSNR
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Fig. 6: RMSE of DOA estimation versus (a) GSNR, where α = 0.5, T = 500, MC =
1000. (b) Snapshots, where α = 0.5, GSNR = 10 dB, MC = 1000.

scenarios. It is shown that the performance of both methods
improves with the increase of GSNR. Compared with the
BNC-based method, the EBNC-based method has a better
estimation performance, highlighting the resistance to highly
impulsive noise of the EBNC method. It can be found that
although the TLS-ESPRIT method avoids the spectral peak
search and reduces the computational complexity, its perfor-
mance is still weaker than that of the RD-MUSIC method.

V. CONCLUSION

In this paper, we present an EBNC-based method, called
NA-NC-EBNC, for DOA estimation of non-circular signals
with nested arrays of impulsive noise. Moreover, the RD-
MUSIC method is applied to DOA estimation to avoid the
time-consuming two-dimensional search. Compared with the
existing noise-resistance methods (such as CBCM-MUSIC,
CRCO-MUSIC, EX-NC-MUSIC, NC-GC-MUSIC and NC-
BNC-MUSIC methods), the proposed EBNC-based method
is more robust to impulsive noise in DOA estimation. Sim-
ulations indicate that the proposed method provides better
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Fig. 7: RMSE performance (a) α ∈ ⟨1.1, 2⟩, (b) α ∈ ⟨0.1, 1⟩.

performance in the case of impulsive noise, especially at low
GSNRs and smaller parameter α.

APPENDIX

A. Proof of Eq. (14)

Firstly, we analyse the sub-matrix R1
BNC. In order to

accurately extract DOAs from the received signal, the intensity
of impulsive noise interference needs to be reduced. The BNC
function can effectively combat the highly impulsive noise
interference and the BNC function is almost linear. According
to Eq. (2) and Eq. (11), the (i, j) element of R1

BNC is

r1ij = BNC (xi (t) ,xj (t))

= BNC [Ais (t) + ni (t) ,Ajs (t) + nj (t)]

= E
{
g (Ais (t) + ni (t)) g

H (Ajs (t) + nj (t))
} (48)

Since the uncorrelated properties of the sources and the

0 1 2 3 4 5 6 7 8 9 10
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R
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E

/(
0
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NA-NC-BNC for TLS-ESPRIT

Fig. 8: RMSE versus GSNRs, α = 0.5, and T = 500, MC = 1000.

noise. From [43], Eq. (48) can be rewritten as

r1ij = E
{
g (Ais (t) + ni (t)) g

H (Ajs (t) + nj (t))
}

= E
{
g (Ais (t)) g

H (Ajs (t))
}
+ E

{
g (ni (t)) g

H (nj (t))
}

= BNC [Ais (t) ,Ajs (t)] + E
{
g (ni (t)) g

H (nj (t))
}

= BNC [Ais (t) ,Ajs (t)] + σ2
nδij

(49)
where σ2

n is the approximate variance of impulsive noise
(according to [24], its exact form cannot be given, σ2

n can
be seen as an approximation of the dispersion parameter γ)
and δij is the Kronecker delta function.

By the independence property of BNC (see [42] for a
specific proof), we can obtain

BNC [Ais (t) ,Ajs (t)]

= BNC

[
K∑

k=1

ai (θk) e
−jφks0k (t),

K∑
p=1

aj (θp) e
−jφps0p (t)

]

=

K∑
k=1

ai (θk) e
−jφkBNC (s0k (t) , s0k (t))

(
ai (θk) e

−jφk
)H

=

K∑
k=1

ai (θk) e
−jφkBNC (s0k (t) , s0k (t)) e

jφka∗i (θk)

= AiΦRBNC
s0 ΦHAH

j
(50)

where RBNC
s0 = diag (κ01, · · · , κ0k, · · · , κ0K) and κ0k =

BNC [s0k (t) , s0k (t)]. Then (48) can be expressed as

r1ij = AiΦRBNC
s0 ΦHAH

j + σ2
nδij (51)

In the same way, we have

r2ij = AiΦRBNC
s0 ΦTAT

j (52)

r3ij = A∗
iΦ

∗RBNC
s0 ΦHAH

j (53)

r4ij = A∗
iΦ

∗RBNC
s0 ΦTAT

j + σ2
nδij (54)
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According to Eq. (49), we obtain

R1
BNC

=

 A1ΦRBNC
s0 ΦHAH

1 · · · A1ΦRBNC
s0 ΦHAH

P
...

. . .
...

APΦRBNC
s0 ΦHAH

1 · · · APΦRBNC
s0 ΦHAH

P

+ σ2
nIP

=

 A1

...
AP

ΦRBNC
s0 ΦH

[
AH

1 , · · · , AH
P

]
+ σ2

nIP

= AΦRBNC
s0 ΦHAH + σ2

nIP
(55)

Similarly,
R2

BNC = AΦRBNC
s0 ΦTAT (56)

R3
BNC = A∗Φ∗RBNC

s0 ΦHAH (57)

R4
BNC = A∗Φ∗RBNC

s0 ΦTAT + σ2
nIP (58)

Then, Eq. (12) can be rewritten as

RBNC = BNC (X (t) ,X (t)) =

[
R1

BNC R2
BNC

R3
BNC R4

BNC

]
=

[
AΦRBNC

s0 ΦHAH AΦRBNC
s0 ΦTAT

A∗Φ∗RBNC
s0 ΦHAH A∗Φ∗RBNC

s0 ΦTAT

]
+ σ2

nI2P

=

[
AΦ
A∗Φ∗

]
RBNC

s0

[
ΦHAH ,ΦTAT

]
+ Γ

= ÂRBNC
s0 ÂH + Γ

(59)
where Â = [AΦ;A∗Φ∗] and Γ = σ2

nI2P is a scalar matrix,
thus we have RBNC shown in (14).

Remark 4: The proof of r1ij in [43] eliminates the non-
circular phase Φ, and it considers (50) as follows

BNC [Ais (t) ,Ajs (t)]

=

K∑
k=1

ai (θk) e
−jφkBNC (s0k (t) , s0k (t))

(
ai (θk) e

−jφk
)H

=

K∑
k=1

ai (θk) e
−jφkBNC (s0k (t) , s0k (t)) e

jφka∗i (θk)

=

K∑
k=1

ai (θk) e
−jφkejφka∗i (θk)BNC (s0k (t) , s0k (t))

=

K∑
k=1

ai (θk)a
∗
i (θk)BNC (s0k (t) , s0k (t))

(60)

Thus, it obtains the result of

RBNC =

[
A

A∗Φ∗

]
RBNC

s0

[
A

A∗Φ∗

]H
+ Γ (61)

From Eq. (8), it can be seen that the above covariance matrix
(61) loses the phase information, which is in contradiction with
the extended directional matrix B. Therefore, the non-circular
phase in (50) cannot be eliminated.

B. Boundedness proof of Eq. (15)

In Eq. (13), we have

∃f0 > 0, s.t. max |f (x)| ⩽ f0

∀x ∈ R/ (−x0, x0)
(62)

i.e., g(x) is bounded, and then we prove G(x) is also bounded.
Generally, the impulsive disturbance values are particularly

large, so we consider x0 ≫ 1. Then when x ⩾ x0, we have

∃x′ > x0 ≫ 1, s.t.f (x′) = f0 (63)

According to Eq. (15), we can obtain

|x′|p−2
x′ ⩽ x′, 0 < p ⩽ 2 (64)

where |x′|p−2 ⩽ 1. According to (63), then

f
(
|x′|p−2

x′
)
⩽ f (x′) = f0,∀x ⩾ x0 (65)

Similarly, when x ⩽ −x0 we have f
(
|x|p−2

x
)
⩾ −f0. So

that max
∣∣∣f (

|x|p−2
x
)∣∣∣ ⩽ f0, and l

(
|x|p−2

x
)
≈ |x|p−2

x <

x0, so G(x) is bounded.

C. Convergence of rEBNC

Property: According to [43], if X is a real stochastic
variable and it obeys SαS distribution, its BNC matrix rBNC

converges.
Similarly, we assume that the probability density function of

stochastic variable X can be expressed as hX(x), then rEBNC

satisfies

rEBNC (X,X) = E
{
G (X)GH (X)

}
=

∫
|G (x)|2hX (x) dx ⩽

∫
f2
0hX (x) dx = f2

0

Therefore, in this case, it can be concluded that rEBNC

converges.
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