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1 
Abstract—Limited-angle CT is an effective way for practical 

scenario due to its flexibility in various complex scanning 
conditions. However, incomplete projection data will lead to 
severe wedge artifacts and degraded images, which significantly 
lower the diagnostic values. To overcome this problem, we 
propose a novel method termed Cross-domain 
Residual-Optimization Based Structure Strengthening (CROSS) 
Reconstruction for limited-angle CT. The proposed CROSS 
framework consists of three steps, which are conducted on the 
image domain and measurement domain alternatively. Differing 
from traditional dual-domain-based algorithms, our CROSS 
method not only regularizes the reconstruction results on the 
image space but also the residual-error space, which boosts organ 
recovery where the area has a larger attenuation coefficient. 
Besides, the structure-strengthening network is adopted to 
enhance tissue preservation. Simulated and preclinical datasets 
are conducted to evaluate the proposed CROSS method. 
Experiments show that the proposed framework could produce a  
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better performance in artifact removal and edge preservation. 

Index Terms—Cross-domain based processing, residual-error 
space regularization, structure enhancement network, data 
consistency, limited-angle CT reconstruction. 

I. INTRODUCTION 
-RAY Computed Tomography (CT) has been widely used 
in medical diagnosis, industrial non-destructive detection, 

and security checks [1]. However, CT images will encounter 
severe noise and artifacts in non-ideal environments. 
Particularly, in the practical scenarios [2-4], the measurements 
cannot be collected from the full-angle range. For example, in 
radiation therapy (RT), cone-beam computed tomography 
(CBCT) can be used for patient setup and dose calculation [5]. 
However, CBCT takes a long time (usually 60s) to rotate one 
circle, which may lead to motion artifacts caused by patient or 
organ movements. Limited-angle scanning mode can accelerate 
the acquisition time and proportionally reduce the radiation 
dose. Consequently, the obtained limited-angle projection data 
will result in degraded images with severe wedge artifacts and 
significantly lower practical values. To tackle this problem, 
many advanced reconstruction methods have been proposed, 
which can be divided into four categories: analytical methods, 
iterative (IR) optimization methods, deep learning (DL)-based 
methods, and deep iterative methods. 

Filtered Back Projection (FBP) is a classical analytical 
method and has been commonly employed in CT 
reconstruction. FBP can fast provide high-quality images when 
the projection data is complete and noiseless. Nevertheless, for 
limited-angle CT, FBP will introduce shadow artifacts and lose 
tissue details. 

To guarantee the consistency between reconstruction images 
and projection data and further improve the performance of 
FBP, numerous IR methods have been proposed for 
limited-angle CT [6]. Later, various prior regularizations were 
introduced into CT imaging to improve the performance in 
artifact removal and tissue restoration [7, 8]. Considering the 
sparse property of image gradients, Sidky et al. applied the total 
variation (TV) minimization to limited-angle CT and 
demonstrated improvements compared to the algebraic 
reconstruction technique (ART) [9]. Further, noticing the 
isotropic in TV was unfit for limited-angle CT, Chen et al. 
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developed an anisotropic TV (TV) based IR method [10] for 
better edge preservation and wedge artifact reduction. To more 
effectively utilize image sparsity, Wang et al. incorporated the 
reweighted technique into ATV (RwATV) [11]. Experiments 
showed that RwATV could generate better reconstructions with 
clearer structures, sharper edges, and fewer artifacts. However, 
RwATV maybe fail to eliminate large streaks because it was 
scale-dependent. Therefore, the scale-space ATV was 
researched to reduce the streak artifacts at different scales [12]. 
L0-norm was another important prior constraint in medical 
imaging and it can provide a more sparse solution than TV [13]. 
For example, to overcome the weakness of TV in 
over-smoothing low-contrast structures, Sun et al. attempted to 
introduce L0-norm optimization into the IR method and 
achieved obvious promotion [14]. Then, Wang et al. paid 
attention to punishing the wavelet coefficients based on the 
L0-norm and outperformed classical CT reconstruction in metal 
artifact suppression [15]. To better improve the performance in 
feature restoration, Xu et al. combined the L0-norm and 
dictionary learning (L0DL) for limited-angle CT. Both 
simulated and preclinical datasets claimed the proposed L0DL 
generated high-quality images with more clear structures [16]. 
In addition, non-local similarity [17], low-rank [18], and sparse 
representation [19, 20] were also commonly used as prior 
knowledge in IR algorithms for CT reconstruction and 
achieved competitive results. Although prior-regularized IR 
methods can improve CT images, they had several 
shortcomings, including high computational cost, sensitive 
hyper-parameter settings, and hand-crafted regularization 
terms. 

Recently, DL-based methods have been successfully applied 
to the field of medical imaging [21-23]. Especially, 
convolutional neural network (CNN)-based methods brought 
more promising results than traditional reconstruction images 
[24-27]. Aided by the powerful feature extraction ability of the 
CNN model, Gu et al. directly predict the artifacts in the 
wavelet domain from the degraded images and performed well 
in artifact reduction [28]. Similarly, Li et al. proposed an 
inpainting network to restore the missing projection data for 
limited-angle scanning. Then, the classical FBP or IR methods 
were employed to reconstruct CT images from the recovered 
projection data. Experiments stated that serious artifacts can be 
effectively reduced [29]. Unlike the above 
single-domain-based methods, Anirudh et al. adopted the 
generative adversarial network to directly map the incomplete 
fan-beam sinogram data into the CT images and obtained 
impressive results [30]. Meanwhile, Würfl et al. explored an 
FBP-type algorithm with a novel back-projection layer for 
cone-beam geometry to improve the calculating efficiency. 
Evaluations demonstrated this scheme outperformed analytical 
methods [31]. Innovatively, Huang et al. introduced a 
data-consistent artifact reduction (DCAR) method based on the 
deep learning prior, which first inpainted the missing projection 
data and then iteratively improve the reconstruction images [32] 
with IR methods. To strengthen edge preservation, Hu et al. 
proposed a multi-stage reconstruction framework (SPECIAL) 
for limited-angle CT. Simulated and real experiments 

suggested that the SPECIAL method outperformed existing 
competitive algorithms in artifact removal and detail recovery 
[33]. 

Further, dual-domain-based methods have attracted great 
attention because of their superior performance. By jointly 
constraining the projection data and image data, these methods 
outperform single-domain-based methods. For example, to 
make full use of complementary correlations between the 
image domain and projection domain, a hybrid domain network 
(hdNet) was developed for limited-angle CT. Experiments 
suggested that the hdNet works well in eliminating artifacts 
[34]. Besides, Jiao et al. developed an intelligent 
back-projection network (iBP-Net) for CT reconstruction and 
could provide visually improved results [35]. And Zhou et al. 
employed the dual-domain method for metal artifact reduction 
in low-dose CT [36]. Considering the instabilities of deep 
learning methods in medical imaging, Wu et al. specifically 
designed an Analytic compressed iterative deep (ACID) 
method to stabilize the deep tomography reconstruction [37, 
38]. Based on ACID, Wu et al. integrated the residual-domain 
processing technique into the dual-domain method for 
sparse-view CT and works well in artifact reduction and detail 
preservation [39, 40].  

According to mentioned works, both IR methods and 
DL-based methods were effective to improve image quality. 
Therefore, deep iterative reconstruction algorithms, which 
combined IR optimization and deep learning prior, have been 
researched for image restoration [41, 42]. By implementing the 
differentiable forward-backward operator, Cheng et al. 
developed an unrolled method (FSR-Net) to jointly reconstruct 
a high-quality CT image and its corresponding full-view 
projection data. FSR-Net deployed the regularization both on 
the image domain and projection domain and outperformed 
existing variational and DL-based methods [43]. Next, to 
improve the regularization capacity of deep prior and enhance 
data consistency, Zhou et al. employed the dense 
spatial-attention network with a specialized data fidelity layer 
for limited-angle CT reconstruction. Experiments implied that 
[44] was able to generate promising results for major lesions. 
Based on [44], Sam’s Net was further investigated to utilize the 
hybrid-domain-based method as the backbone and lead to 
improvements in stability and robustness [45]. Even though 
[43-45] represented state-of-the-art methods, they cannot 
directly be applied to cone-beam CT due to memory limitations. 
Hence, some deep iterative methods with an offline scheme 
have been proposed. To accelerate the convergence speed of IR 
methods, Wang et al. adopted several DL models as 
regularization functions to improve the intermediate 
reconstruction results [46]. As a result, [46] performed better in 
edge preservation and artifact reduction. Besides, to solve the 
generalization of deep priors in the iterative process, Hu et al. 
designed a residual-space-based CNN model embedded in the 
IR method and make a significant promotion in detail 
restoration [47]. 

Nevertheless, [46, 47] needed a much longer time than other 
competitive methods due to the complex computational 
iterative procedure. Consequently, this paper proposes a 

 

ACCEPTED MANUSCRIPT / CLEAN COPY



 
Fig. 1. The flowchart of the CROSS framework. 

Cross-domain Residual-Optimization based Structure 
Strengthening (CROSS) framework for limited-angle CT 
reconstruction. The proposed CROSS method consists of three 
steps, which alternatively perform the CNN model on the 
image domain and projection domain. Specifically, in the first 
step, the structure strengthening network (SS-Net) is adopted to 
remove the artifacts and preserve the textures. Next, the 
missing projection data can be obtained from the results in the 
first step according to [32]. For the purpose of data consistency 
improvement, a residual network (ResNet) is applied to boost 
restored projection data. Different from the last step in [33], the 
proposed CROSS utilizes the SS-Net on the residual error map 
rather than the CT images, which could improve the restoration 
accuracy in the areas that have the larger attenuation 
coefficients. Compared to deep iterative methods [44, 47], the 
CROSS method can be applied to cone-beam CT 
reconstruction with less computational cost and provides 
competitive results simultaneously. Experiments based on the 
simulated and real datasets validate that the proposed CROSS 
method performs well in edge preservation, detail restoration, 
and artifact removal. 

The rest of this paper is organized as follows. Section II 
introduces the workflow of the proposed CROSS framework 
and the details of the neural network used in this work. Section 
III gives the experimental results and analysis of the different 
components in CROSS. In section IV, we will discuss some 
related issues and make a plan for the next work. 

II. METHODOLOGY 

A. CROSS Framework 
To reconstruct high-quality images similar to deep iterative 

methods [43, 44, 47], but with lower computational cost, a 
multi-step method termed CROSS is proposed. The CROSS 

framework consists of three steps (as shown in Fig. 1), which 
alternatively employ the CNN models on the image space and 
projection space to gradually boost the CT images. 

In the first step, a novel structure-strengthening network 
(SS-Net) is adopted in the image domain to remove the artifacts 
and restore most of the tissue details. Specifically, SS-Net takes 
the degraded images reconstructed from limited-angle 
projection data 𝒚𝒚  using the FDK algorithm as input and 
generates high-quality images 𝑺𝑺𝟏𝟏. Unlike [28, 33, 48], SS-Net 
designs a structure-enhanced branch, which can lead to 
impressive results in detail restoration. 

Although the 𝑺𝑺𝟏𝟏  obtained at the first step has satisfactory 
visual results, but it may fail to accurately reconstruct the areas 
that have larger attenuation coefficients. Therefore, the data 
consistency operation is employed to further improve 𝑺𝑺𝟏𝟏. In 
particular, the projection data 𝒚𝒚𝟏𝟏  reprojected from the 𝑺𝑺𝟏𝟏  is 
input into a normal ResNet and produces an improved full-view 
projection data 𝒚𝒚𝟐𝟐. Next, the residual data consistency (RDC) is 
utilized to evaluate the difference 𝒚𝒚𝟑𝟑  between 𝑺𝑺𝟏𝟏  and the 
available projection 𝒚𝒚 . Differing from traditional data 
consistency [32, 44], RDC focuses on the assessment of error 
maps on the projection domain and can provide superior 
results. 

In the last step, an error image 𝑺𝑺𝟐𝟐 is first reconstructed from 
the error sinogram 𝒚𝒚𝟑𝟑. Despite the wedge artifacts, it contains 
high-frequency information between the 𝑺𝑺𝟏𝟏  and the ground 
truth, which can be easily restored for 𝑺𝑺𝟏𝟏. Hence, the SS-Net is 
used again to correct the 𝑺𝑺𝟐𝟐. Then the final results 𝑺𝑺𝟒𝟒 can be got 
by adding 𝑺𝑺𝟑𝟑 and 𝑺𝑺𝟏𝟏. 

In general, the key point of the CROSS method is to 
respectively promote the reconstructed result in the residual 
image space and projection space, which is beneficial to 
recover bigger organs with high Hounsfield units (HU). 
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B. Structure Strengthening Network 
To better reconstruct images for limited-angle CT, the 

SS-Net is employed in the image domain, whose architecture is 
shown in Fig. 2. SS-Net has three branches, which are the 
image restoration sub-network, structure-enhanced 
sub-network [49-51], and feature fusion sub-network, 
respectively. 

 
Fig. 2. The proposed SS-Net architecture. 

The image restoration sub-network (IRS-Net) (as shown in 
Fig. 2(a)) adopts the FED-INet as the backbone [47], which 
employs the asymmetric convolutional module (ACM) to 
improve the feature extraction and has been effectively 
validated for tissue restoration. IRS-Net is a classical 
image-domain-based method that takes the FDK reconstruction 
images as input and generates high-quality images 𝑩𝑩𝟏𝟏  with 
most structures and less artifacts. So, IRS-Net holds the 
low-frequency information of CT images. 

Dissimilarly, the structure enhancement sub-network 
(SES-Net) (as illustrated in Fig.2 (b)) attempts to preserve the 
texture information contained in the CT images. SES-Net also 
uses the FED-INet as the backbone and inputs the FDK results 
but outputs the structure details 𝑩𝑩𝟐𝟐 . Consequently, the 
high-frequency information of the CT images is stored in the 
feature maps of the SES-Net. 

Since IRS-Net and SES-Net separately possess the low- and 
high-frequency components of the CT images, they can be 
further improved by fusing their feature maps. As depicted in 
Fig. 2(c), the feature fusion module (FFM) concatenates the 
feature maps together, which are extracted from the IRS-Net 
and SES-Net respectively, and brings improvements over 𝑺𝑺𝟏𝟏 in 
edge preservation. 

 
Fig. 3. The proposed ResNet architecture. 

C. ResNet 
For better reconstructing high-resolution projection data, the 

ResNet is utilized, whose architecture is demonstrated in Fig. 3. 
It consists of eight ResBlocks and each ResBlock has a residual 
connection to avoid vanishing or exploding gradients [52]. 
Besides, ResNet also adopts the global residual connection to 
accelerate convergence and stable training [53]. 

 

D. Residual Data Consistency 
Data consistency is a widely used constraint in medical 

imaging [44, 54], which can guarantee the worst-case 
performance of reconstruction methods [55]. The classical data 
consistency can be rewritten as follows [32]. 

𝑦𝑦3 = 𝑦𝑦 ⊕ 𝑦𝑦2                                     (1) 
where 𝒚𝒚  is the available limited-angle projection data, 𝒚𝒚𝟐𝟐 
represents improved high-resolution projection data processed 
by the ResNet (as indicated in Fig. 1) and ⊕ stands for the 
replacement operation which copies the 𝒚𝒚  and replaces the 
corresponding part of 𝒚𝒚𝟐𝟐  with 𝒚𝒚 . Then a more accurate 
projection data 𝒚𝒚𝟑𝟑 can be used for subsequent operations [32, 
44]. 

To improve tissue preservation, the RDC is investigated and 
its formulation is as follows. 

𝑦𝑦3 = 𝑦𝑦 ⊕ 𝑦𝑦2 − 𝑦𝑦1                               (2) 
where 𝑦𝑦1 = 𝑨𝑨𝑆𝑆1, 𝐴𝐴 is the projection operation. Unlike Eq. (1), 
RDC aims to evaluate the difference between the 𝑺𝑺𝟏𝟏 and the 
ground truth in the projection domain, which can improve the 
performance of 𝑺𝑺𝟏𝟏 in high-attenuation regions. 

E. Perceptual Loss 
Perceptual loss (PL) is the widely used tool to minimize the 

distance between two images in feature space rather than 
pixel-wise similarity. In the application of medical imaging, PL 
can generate more tissue details and a better visual appearance 
[56]. The definition of PL is given as: 

𝐿𝐿𝑃𝑃𝑃𝑃(𝐼𝐼,𝑔𝑔𝑔𝑔) = ∑ ‖Ψ𝑖𝑖(𝐼𝐼) −Ψ𝑖𝑖(𝑔𝑔𝑔𝑔)‖𝐹𝐹2𝑁𝑁
𝑖𝑖=1                 (3) 

where 𝐼𝐼 is the reconstructed image and 𝑔𝑔𝑔𝑔 indicates the ground 
truth. Ψ𝑖𝑖 represents the feature projector [47]. In this work, the 
output of the 2nd, 4th, 6th, 9th, and 12th convolutional layer of 
VGG-16 [57] as the feature extractor Ψ𝑖𝑖. 
 

F. Texture Extraction 
CNN-based models tend to blur images [33], therefore, to 

enhance the CNN models in edge preservation, texture 
extraction (TE) is utilized in the CROSS framework. The TE 
can be expressed as follows. 

𝐻𝐻(𝐼𝐼) = 𝐼𝐼 − 𝐹𝐹(𝐼𝐼,𝑔𝑔)                               (4) 
where 𝑔𝑔~𝑁𝑁(𝜇𝜇,𝜎𝜎2) follows the gaussian distribution with the 
mean value 𝜇𝜇 and standard variation 𝜎𝜎, and 𝐹𝐹 is the filtering 
operation. Using Eq. (4), the textures and details of the image 𝐼𝐼 
can be obtained (as observed in 𝑩𝑩𝟐𝟐  of Fig. 2(b)). Texture 
extraction was also used in [33, 47], and these texture 
extractions directly perform on reconstructed images to 
explicitly enhance detail preservation. However, in our method, 
the texture extraction is to extract high-frequency feature maps 
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with an implicit approach and then feed them into the final 
results. 
 

G. Loss Function 
There are three neural networks Φ1, Φ2 and Φ3 for the three 

steps in CROSS, respectively. 
In the first stage of CROSS, the cost function of Φ1  is 

described as: 

Φ1 = argmin
Φ1

�Φ1b1(𝐼𝐼𝐷𝐷) − 𝐼𝐼𝑁𝑁𝐷𝐷�𝐹𝐹
2 + �Φ1b2(𝐼𝐼𝐷𝐷) − 𝐻𝐻(𝐼𝐼𝑁𝑁𝐷𝐷)�

𝐹𝐹

2
          

+�Φ1b3(𝐼𝐼𝐷𝐷) − 𝐼𝐼𝑁𝑁𝐷𝐷�𝐹𝐹
2 + 𝜆𝜆1 · 𝐿𝐿𝑃𝑃𝑃𝑃(Φ1b3(𝐼𝐼𝐷𝐷), 𝐼𝐼𝑁𝑁𝐷𝐷)  (5) 

where 𝐼𝐼𝐷𝐷  is the limited-angle reconstructed image, 𝐼𝐼𝑁𝑁𝐷𝐷 
indicates the reference image reconstructed from the full-view 
projection data. Φ1b1 , Φ1b2 , and Φ1b3  stands for the three 
sub-networks in Fig. 2, λ1  represents the hyperparameter to 
balance different terms in Eq. (5). 

In the second stage, the objective function of Φ2 is: 

Φ2 = argmin
Φ2

‖Φ2(𝑦𝑦1) − 𝑦𝑦𝑁𝑁𝐷𝐷‖𝐹𝐹2                    (6) 

where 𝑦𝑦𝑁𝑁𝐷𝐷 is the full-view projection data. 
For the Φ3, it has the same optimization function with Φ1 

but with different input and reference images. 

Φ3 = argmin
Φ3

�Φ3b1(𝑆𝑆2) − 𝑅𝑅𝑁𝑁𝐷𝐷�𝐹𝐹
2 + �Φ3b2(𝑆𝑆2) − 𝐻𝐻(𝑅𝑅𝑁𝑁𝐷𝐷)�

𝐹𝐹

2
  

        +�Φ3b3(𝑆𝑆2) − 𝑅𝑅𝑁𝑁𝐷𝐷�𝐹𝐹
2 + 𝜆𝜆2 · 𝐿𝐿𝑃𝑃𝑃𝑃(Φ3b3(𝑆𝑆2),𝑅𝑅𝑁𝑁𝐷𝐷)  (7) 

where 𝑆𝑆2 = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑦𝑦3) , 𝑅𝑅𝑁𝑁𝐷𝐷 = 𝐼𝐼𝑁𝑁𝐷𝐷 − 𝑆𝑆1 , and 𝜆𝜆2  is another 
hyperparameter to control the trade-off in all terms. After 
training the Φ1 , Φ2  and Φ3 , the proposed CROSS can 
gradually improve the images with alternative image domain 
and projection domain processing. 

III. EXPERIMENTS 
In this work, all the experiments were conducted on a PC 

with CPU Inter(R) Xeon E5-2683 and GPU NIVIDA GTX 
TITAN. The hyper-parameters 𝜆𝜆1  and 𝜆𝜆2  in Eqs. (5) and (7) 
were set to 0.001 and 0.001, respectively. All the parameters of 
the three networks Φ1 , Φ2  and Φ3  were updated using the 
Adam algorithm [58]. Noting that these three networks were 
dependent and needed to be trained one by one. The learning 
rate was initially set to 10-3 and linearly decreased to 1e-5 within 
50 epochs. To evaluate the proposed CROSS framework, five 
reconstruction methods were treated as comparisons, including 
the FDK algorithm (Ramp-filter), TV [59], DDNet [48], 
MSWDNet [28], and DCAR[32]. Specifically, DDNet, 
MSWDNet, and DCAR were implemented in the TensorFlow 
framework with Python language. FDK and TV were 
conducted by MATLAB 2018a. Besides,  we choose the peak 
single-to-noise ratio (PSNR), and structural similarity index 
(SSIM) [60] as the quantitative evaluations. 

 

A.  Simulated Data Results 
The images of simulated experiments were downloaded from 

The Cancer Imaging Archive (TCIA). In this work, we adopted 

cone-beam geometry to evaluate different reconstruction 
methods for limited-angle CT. The geometry parameters were 
as follows. The source-to-detector distance was 100 cm and the 
source-to-axial distance was 50 cm, respectively. The detector 
size was 900×400 and each element covered an area of 1.5×1.5 
mm2. For one circle, there were 960 views were collected. The 
volume was reconstructed with 512×512×200 and each voxel 
was 0.9×0.9×0.9 mm3. It was worth noting that FDK will lead 
to cone-beam artifacts when the reconstructed slice is far away 
from the central slice. To overcome this issue, we only selected 
the middle 120 slices in the entire volume. That means each 3D 
volume in the following experiments only has a size of 
512×512×120. Particularly, there were 9200 2D images with 
the size of 512×512 selected from twenty-one patients in the 
TCIA dataset to simulate the cone-beam geometry as described 
in this section to generate the training dataset. Then, another 
1000 2D images of the same size from different three patients 
were used to generate the validation dataset. Last, 1200 2D 
images selected from another three patients were utilized to 
generate the testing dataset. Specifically, the images from 
training, validation, and testing datasets belonged to different 
patients. The FDK algorithm was used to reconstruct the 
reference images from the full-sampled projection data. Two 
scanning angular ranges [0, 90°] and [0, 110°] were performed 
to assess different methods. For the DL-based methods, the 
input and output were 2D slices extracted from the 3D volumes. 
During the training phase, the patch-based scheme was adopted. 
Each patch had a size of 128×128 extracted from the 2D slices 
with the stride step of 64 and the batch size was 16. In the 
testing phase, the image with the size of 512×512 was directly 
inputted into the trained model and outputted generated result. 

Table I lists the average quantitative results of reconstructed 
images with the scanning angular ranges of [0,90°] and 
[0,110°]. In Table I, it can be noticed that the analytical 
algorithm FDK produces the worst scores, which claims that 
the performance of the analytical algorithm can be affected 
greatly in all methods when the projection data is incomplete. 
Aided by the image gradient minimization and iterative 
forward-backword correction, TV achieves better assessments 
than FDK but still fails to provide competitive results, which 
implies that traditional methods cannot reconstruct satisfactory 
results with incomplete measurement data. Because of the 
powerful feature extraction ability, DL-based methods get 
better evaluation scores than traditional methods in all scanning 
angular ranges. Compared to MSWDNet, DDNet brings at least 
0.7 dB promotion in terms of PSNR, which claims that the 
network with a more complex architecture may improve 
reconstructed results. Although DCAR gets worse scores in 
PSNR than DDNet, it performs well in SSIM, which means the 
image content provided by the DCAR is closer to the reference 
image due to the data consistency constraint. Notably, the 
proposed CROSS framework gains the best evaluations of all 
methods, which states the effectiveness of the 
multi-domain-based processing. 

To further evaluate the performance visually of various 
algorithms, Fig. 4 illustrates the reconstruction results and the 
corresponding regions-of-interests (ROIs) of FDK, TV, 
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Table I 
QUANTITATIVE EVALUATIONS FOR THE SIMULATED DATASET 

Range Metric FDK TV MSWDNet DDNet DCAR CROSS 

[0,90°] PSNR 15.98 24.00 35.70 36.40 36.34 37.45 
SSIM 0.5135 0.7795 0.9535 0.9565 0.9589 0.9679 

[0,110°] PSNR 17.22 25.74 36.56 37.52 37.37 38.50 
SSIM 0.5368 0.8144 0.9587 0.9610 0.9613 0.9738 

 
Fig. 4. Simulated dataset reconstruction results with scanning angular angle 110°. And different rows represent different slices. The display window is [-160, 240]. 
 
MSWDNet, DDNet, DCAR, and CROSS methods with the 
scanning angular range of 110°. From Fig. 4(b1)-(b4), it can be 
seen that FDK introduces severe wedge artifacts, and the tissue 
and lesion become hard to be recognized. Benefiting from the 
minimization of image gradients, TV outperforms FDK in 
artifact removal (as shown in Fig. 4(c1)-(c4)). Nevertheless, 
most diagnostic information in TV reconstructions is still 
missing, which exposes the defects of traditional methods when 
the projection data is incomplete. Assisted by a large number of 
pairs of training samples and deep convolutional layers, the 
CNN-based model could exploit the essential features 
contained in the CT images. Certainly, DL-based algorithms 
achieve superior performance over traditional methods. 
Specifically, the image-domain-based methods MSWDNet and 
DDNet can suppress wedge artifacts and restore tissues and 
details as demonstrated in Fig. 4(d1)-(e4). This confirms the 
effectiveness of image-domain-based methods for medical 
imaging. Further, DCAR could boost post-processing methods 
in tissue restoration (as pointed out by the yellow arrow in Fig.4 
(f4)). Also, it can eliminate the fake structure induced by the 
DDNet (as indicated by the green arrow in Fig. 4(e3)). This is 
because that DCAR is an IR-based method and can promote 
reconstructed results via iterative optimization. It is worth 

noting that the proposed CROSS method generates more 
visually improved images than other competitive DL-based 
methods. Particularly, CROSS is able to preserve subtle details 
(as observed by the red arrows in Fig. 4(g1)(g3)) and clear 
organ boundaries (as shown by the red arrow in Fig. 4(g2)). 

Fig. 5 exhibits the reconstruction results with the scanning 
angular range of 90° to probe the performance of different 
methods with a smaller scanning angular range. Compared to 
Fig. 4(b1)-(c4), FDK and TV lead to worse reconstruction 
results with the scanning angular range of 90° (as depicted in 
Fig. 5(b1)-(c4)). These imply that the performance of 
traditional methods is significantly influenced by the 
completeness of projection data. From Fig. 5(d1)-(g4), it can be 
noted that DL-based methods promote the FDK and TV in 
artifact removal and tissue restoration. Similar to Fig. 4, 
MSWDNet and DDNet successfully recover most details and 
reduce artifacts. Moreover, they can produce more clear tissues 
than DCAR (as illustrated by the yellow arrows in Fig. 
5(d3)(e2)), which is opposite to the phenomena in Fig. 4. This 
states that DCAR relies on the projection data, and the smaller 
the scanning angular range, the worse the performance. In 
contrast to the DCAR method, the proposed CROSS is quite 
robust to different scanning angular ranges and still provides 
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Fig. 5. Simulated dataset reconstruction results with scanning angular angle 90°. And different rows represent different slices. The display window is [-160, 240]. 
 

 
Fig. 6. Selected coronal views and sagittal from the simulated dataset with 
scanning angular range of 90°. (a1)-(f1) Coronal views of reference, 
MSWDNet, DDNet, DCAR, CROSS, and 3D-CROSS methods. (a2)-(f2) 
Sagittal views of reference, MSWDNet, DDNet, DCAR, CROSS, and 
3D-CROSS methods. The display window is [-140, 240] HU. 

high-quality images with clear edges (as implied by the red 
arrows in Fig. 5(g2)(g3)) and accurate features (as marked by 
the red circle and arrow in Fig. 5(g1)(g4)). 

Fig. 6 illustrates the selected coronal and sagittal views from 
the reconstructed CT volumes of the simulated dataset to 
further evaluate the visual performance of different 
reconstruction methods. As shown in Fig. 6, all the DL-based 
methods can reduce most artifacts and preserve the most of 
tissue features. More specifically, our proposed CROSS 
framework works well in detail restoration (as suggested by the 
red arrows in Fig. 6(e1)(e2)). However, the proposed method 
leads to obvious horizontal artifacts at different slices (as 
pointed by the yellow arrow and circle in Fig. 6(e1)(e2)). This 
is because all the reconstructed results are 3D images but the 

proposed method processes them slice by slice, which ignores 
the relationship between adjacent slices in the z-axis direction. 
To solve this problem, the proposed CROSS method is 
extended to a 3D version (3D-CROSS) that takes the 3D 
images as input. As observed in Fig. 6(f1)(f2), the 3D-CROSS 
successfully suppresses the horizontal artifacts. More results of 
3D-CROSS can be found in the supplementary material. 

 
B. Real Dataset Results 

To further investigate different reconstruction methods for 
limited-angle CT, real mice dataset experiments were 
conducted. Again, the cone-beam scanning model was adopted 
and its configuration is as follows. The tube was Hamamatsu 
L9421-02 and the detector was Dexela 1512, respectively. The 
tube voltage was 60 kV and the current was 130 μA. The size of 
the detector was 944 × 768 and each element represented 
0.072×0.072 mm2. The distance between the source and the 
detector was 44 cm and the distance between the source and the 
object was 22 cm, respectively. 1000 projections were collected 
via 360° as the full-sampled measurement data. The 
reconstructed 3D volume was 872×872×600 and each voxel 
covered the area of  0.072×0.072×0.072 mm3. There were four 
mice performed for this work. Specifically, two mice (1200 
images) were used as the training dataset, one mouse (600 
images) was used as the validation dataset and the rest (600 
images) was used as the training dataset. Similar to the previous 
section, we only reconstruct the central 600 slices for each 
mouse to alleviate the cone-beam artifacts. The FDK algorithm 
was adopted to reconstruct the reference images from the 
full-sampled projection data. One scanning angular range 
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Fig. 7. Real mice dataset reconstruction images with a scanning angular angle of 110°. And different rows represent different slices. The display window is [-600, 
600]. 

 
Fig. 8. Reconstruction results from the simulated dataset with the scanning 
angular range of 90°. The display window is [-160, 240] HU. 

[0,110°] was performed to assess various methods. 
Fig. 7 shows the selected reconstruction images between 

different algorithms. For better visual observation, all the 
images in Fig. 7 were cropped to the size of 448×448. All the 
DL-based methods can generate high-quality images with 
fewer artifacts than the FDK algorithm. Moreover, in 
comparison approaches, DDNet produces better results in edge 
preservation (as indicated by the yellow arrow in Fig. 7(d2)). 
From the red arrows in Fig. 7(f1)-(f4), the proposed CROSS 
framework outperforms other DL-based methods in tissue 

restoration and detail preservation. 
 

C. Comparison Between CROSS and DIOR 
Deep iterative reconstruction methods have been applied for 

limited-angle CT and achieved superior performance to 
traditional DL-based methods [43, 44, 47]. To compare the 
deep iterative method and the proposed method, additional 
experiments were conducted from the simulated dataset with 
the scanning angular range of 90°. The DIOR [47] was 
employed as the representative deep iterative method, which 
adopted the CNN model as the regularization function in the 
residual space to improve the image quality via the iterative 
process. 

Fig. 8 demonstrates the reconstructed results of the DIOR 
and CROSS methods. Both the DIOR and CROSS perform 
well in artifact removal and tissue restoration (as pointed out by 
the yellow arrows in Fig. 8(b2)(c2)). In addition, the CROSS 
framework can restore accurate structural features (as marked 
by the red circle in Fig. 8(c1)). To sum up, the proposed method 
can obtain competitive results with DIOR, which proves that 
the multi-domain-based strategy in CROSS is effective for 
limited-angle CT. 
 
 
D. Computational Cost 

Table II lists the computational cost of various methods. All 
the time was computed based on the simulated dataset with 200 
images and a scanning angular range of 110°. MSWDNet and 
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DDNet are single-domain-based methods that take the least 
time. IR-based methods (DCAR and DIOR) consume much 
longer time than other algorithms. Because of three networks 
and one forward-backward operation, the proposed method 
spends more time than MSWDNet and DDNet. However, 
compared to DIOR, CROSS can bring similar results within an 
appropriate time. 

Table II 
COMPUTATIONAL COST BETWEEN THE MSWDNET, DDNET, DIOR AND 

CROSS METHODS (UNIT: SECOND) 

Method MSWDNet DDNet DCAR DIOR CROSS 
Time 8.2 6.9 140.0 2667.0 39.1 

Table III 
QUANTITATIVE EVALUATIONS FOR THE ABLATION STUDY 

Metric Baseline SS-Net +DC+ID-Net +LDC+ID-Net CROSS 
PSNR 
SSIM 

337.37 
0.9500 

37.63 
0.9522 

38.06 
0.9646 

38.73 
0.9661 

39.40 
0.9683 

 

E. Ablation Study 
In this section, an ablation study was performed to probe the 

effects of different modules of the proposed CROSS 
framework based on the simulated data with the scanning 
angular range of 90°. 

The FED-INet [47] was taken as the baseline model. Then 
the structure enhancement module was added to the baseline to 
establish the first comparison model (SS-Net). Next, the data 
consistency (DC) with 𝑦𝑦3 = 𝑦𝑦 ⊕ 𝑦𝑦1  and the image-domain 
network (ID-Net) was introduced to the first comparison model 
to build the second comparison model. Moreover, unlike the 
second comparison, the learned data consistency (LDC) in Eq. 
(1) with ResNet was employed to create the third comparison 
model. Last, the residual data consistency in Eq. (2) and the 
residual-space-based network were adopted to construct the 
fourth comparison model, i.e., CROSS. 

Table III gives the quantitative evaluations of the progressive 
ablation study. It can be observed that the SS-Net brings higher 
scores than the baseline model in terms of PSNR, and SSIM 
because the structure enhancement sub-network could 
strengthen tissue preservation. Meanwhile, with the assistance 
of DC and ID-Net, the third model further promotes the 
reconstructed results both in CT values and image features. 
Replacing the DC with the learned DC, the fourth model can 
enhance the data consistency constraint and lead to 
improvements in all assessments. Notably, the proposed 
CROSS method gains the best evaluations in all comparison 
models, claiming the validity of the RDC and residual-space 
processing. 

Besides, to explore the mechanism of different components 
in CROSS, the reconstructed results of various comparison 
models are demonstrated. The baseline model can restore most 
tissue features and remove artifacts, which has been validated 
in [47]. With the aid of the structure enhancement module, 
SS-Net performs better in detail restoration (as indicated by the 
red circle in Fig. 9(c)). However, the third model introduces 
some uneven artifacts into the reconstructed images (as shown 
by the blue arrows in Fig. 9(d)), which may be caused by the 
inaccuracy of DC. After applying an additional ResNet in the 

projection domain, the fourth model can overcome the 
drawback of the previous model and lead to better results in 
edge preservation (as pointed out by the green arrow in Fig. 
9(e)). Last, CROSS generates the most impressive images, 
specifically for the area with larger attenuation coefficients (as 
demonstrated by the yellow ellipse in Fig. 9(f)). 

 
Fig. 9. Simulated dataset reconstruction results of different modules with the 
scanning angular range of 90°. (a) Reference (b) Baseline model (c) SS-Net. (d) 
+DC+ID-Net. (e) +LDC+ID-Net. (f) CROSS. The display window is [-240, 
160] HU. 

IV. CONCLUSION AND DISCUSSION 
Deep iterative reconstruction methods have shown 

remarkable superiority over existing methods [43, 44, 47]. 
However, these methods often encounter two issues when 
being applied to practical cone-beam CT imaging, which is 
memory limitations [43, 44] and longer running time [47]. 
Meanwhile, hybrid-domain-based methods can also produce 
high-quality results [33, 61] and be easily used for 3D imaging 
within an appropriate time. Therefore, based on the 
hybrid-domain methods, we develop a cross-domain 
residual-optimization-based structure strengthening 
reconstruction for limited-angle CT to generate similar results 
with deep iterative methods. Different from [33], our CROSS 
framework alternatively utilizes the networks to improve CT 
images on the image domain and projection domain. Besides, 
the residual-space-based processings can further improve 
CROSS in tissue restoration. In addition, the utilization of the 
structure enhancement module also results in the promotion of 
the reconstructed images. Both the simulated and real datasets 
are performed with different scanning angular ranges to 
validate the proposed method. Compared to existing methods, 
the CROSS framework performs well in artifact reduction and 
edge preservation. 

There are some similar works to the proposed method. For 
instance, to overcome the instabilities of deep learning, Wu et 
al. proposed an ACID framework with a combination of deep 
learning and compressed sensing theory [37, 38]. The key idea 
of ACID is to employ the pre-trained network to constrain the 
residual image. Inspired by it, more advanced works have been 
developed for sparse-view CT [39, 40]. The RDC used in the 
proposed method was also inspired by ACID and applied to 
limited-angle CT. However, to further improve edge 
preservation, our proposed method adopts a more effective 
structure-strengthening network. 
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Although the CROSS method demonstrates encouraging 
improvement in limited-angle CT reconstruction, some issues 
are still to be noticed. First, the texture extraction used in 
SS-Net is might not the optimal scheme. Therefore, how 
constructing the texture and detail map of CT images is still an 
opening problem. Second, the residual data consistency brings 
improvements for CROSS. However, it still exists some errors 
to evaluate the distance between reconstructed images and the 
ground truth in the projection domain. It remains a challenging 
problem to effectively ensure data consistency. Last, the noise 
will be enlarged in SS-Net due to the structure extraction, 
which may negatively affect the performance of the proposed 
method. So, how to avoid noise amplification in CROSS should 
be noticed. 

Deep-learning-based methods have demonstrated superior 
performance than traditional reconstruction methods in the 
limited-angle CT problem. Nevertheless, most of these 
methods focus on simulated data or preclinical data, which 
cannot convincingly validate their practicability in real cases. 
Therefore, it still has a long way to apply deep learning 
methods to clinical limited-angle imaging. 
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