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I. INTRODUCTION

-RAY Computed Tomography (CT) has been widely used in medical diagnosis, industrial non-destructive detection, and security checks [START_REF] Wang | An outlook on x-ray CT research and development[END_REF]. However, CT images will encounter severe noise and artifacts in non-ideal environments. Particularly, in the practical scenarios [START_REF] Bachar | Image quality and localization accuracy in C-arm tomosynthesis-guided head and neck surgery[END_REF][START_REF] Gao | Direct filtered-backprojection-type reconstruction from a straight-line trajectory[END_REF][START_REF] Tingberg | X-ray tomosynthesis: a review of its use for breast and chest imaging[END_REF], the measurements cannot be collected from the full-angle range. For example, in radiation therapy (RT), cone-beam computed tomography (CBCT) can be used for patient setup and dose calculation [START_REF] Jaffray | Flat-panel cone-beam computed tomography for image-guided radiation therapy[END_REF]. However, CBCT takes a long time (usually 60s) to rotate one circle, which may lead to motion artifacts caused by patient or organ movements. Limited-angle scanning mode can accelerate the acquisition time and proportionally reduce the radiation dose. Consequently, the obtained limited-angle projection data will result in degraded images with severe wedge artifacts and significantly lower practical values. To tackle this problem, many advanced reconstruction methods have been proposed, which can be divided into four categories: analytical methods, iterative (IR) optimization methods, deep learning (DL)-based methods, and deep iterative methods.

Filtered Back Projection (FBP) is a classical analytical method and has been commonly employed in CT reconstruction. FBP can fast provide high-quality images when the projection data is complete and noiseless. Nevertheless, for limited-angle CT, FBP will introduce shadow artifacts and lose tissue details.

To guarantee the consistency between reconstruction images and projection data and further improve the performance of FBP, numerous IR methods have been proposed for limited-angle CT [START_REF] Van De Sompel | A systematic performance analysis of the simultaneous algebraic reconstruction technique (SART) for limited angle tomography[END_REF]. Later, various prior regularizations were introduced into CT imaging to improve the performance in artifact removal and tissue restoration [START_REF] Hu | SISTER: Spectral-Image Similarity-Based Tensor With Enhanced-Sparsity Reconstruction for Sparse-View Multi-Energy CT[END_REF][START_REF] Wu | A High-Quality Photon-Counting CT Technique Based on Weight Adaptive Total-Variation and Image-Spectral Tensor Factorization for Small Animals Imaging[END_REF]. Considering the sparse property of image gradients, Sidky et al. applied the total variation (TV) minimization to limited-angle CT and demonstrated improvements compared to the algebraic reconstruction technique (ART) [START_REF] Sidky | Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[END_REF]. Further, noticing the isotropic in TV was unfit for limited-angle CT, Chen et 
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ACCEPTED MANUSCRIPT / CLEAN COPY developed an anisotropic TV (TV) based IR method [START_REF] Chen | A limited-angle CT reconstruction method based on anisotropic TV minimization[END_REF] for better edge preservation and wedge artifact reduction. To more effectively utilize image sparsity, Wang et al. incorporated the reweighted technique into ATV (RwATV) [START_REF] Wang | Reweighted Anisotropic Total Variation Minimization for Limited-Angle CT Reconstruction[END_REF]. Experiments showed that RwATV could generate better reconstructions with clearer structures, sharper edges, and fewer artifacts. However, RwATV maybe fail to eliminate large streaks because it was scale-dependent. Therefore, the scale-space ATV was researched to reduce the streak artifacts at different scales [START_REF] Huang | Scale-Space Anisotropic Total Variation for Limited Angle Tomography[END_REF]. L0-norm was another important prior constraint in medical imaging and it can provide a more sparse solution than TV [START_REF] Wu | Low-dose spectral CT reconstruction using image gradient ℓ0-norm and tensor dictionary[END_REF].

For example, to overcome the weakness of TV in over-smoothing low-contrast structures, Sun et al. attempted to introduce L0-norm optimization into the IR method and achieved obvious promotion [START_REF] Sun | Image reconstruction from few views by ℓ0-norm optimization[END_REF]. Then, Wang et al. paid attention to punishing the wavelet coefficients based on the L0-norm and outperformed classical CT reconstruction in metal artifact suppression [START_REF] Wang | Error bounds and stability in the L0 regularized for CT reconstruction from small projections[END_REF]. To better improve the performance in feature restoration, Xu et al. combined the L0-norm and dictionary learning (L0DL) for limited-angle CT. Both simulated and preclinical datasets claimed the proposed L0DL generated high-quality images with more clear structures [START_REF] Xu | Limited-Angle X-Ray CT Reconstruction Using Image Gradient ℓ₀-Norm With Dictionary Learning[END_REF].

In addition, non-local similarity [START_REF] Wu | Block matching frame based material reconstruction for spectral CT[END_REF], low-rank [START_REF] Wu | Non-Local Low-Rank Cube-Based Tensor Factorization for Spectral CT Reconstruction[END_REF], and sparse representation [START_REF] Liu | Discriminative feature representation to improve projection data inconsistency for low dose CT imaging[END_REF][START_REF] Wang | Spectral-Image Decomposition With Energy-Fusion Sensing for Spectral CT Reconstruction[END_REF] were also commonly used as prior knowledge in IR algorithms for CT reconstruction and achieved competitive results. Although prior-regularized IR methods can improve CT images, they had several shortcomings, including high computational cost, sensitive hyper-parameter settings, and hand-crafted regularization terms.

Recently, DL-based methods have been successfully applied to the field of medical imaging [START_REF] Hu | TRANS-Net: Transformer-enhanced Residual-error AlterNative Suppression Network for MRI Reconstruction[END_REF][START_REF] Huang | DU-GAN: Generative Adversarial Networks With Dual-Domain U-Net-Based Discriminators for Low-Dose CT Denoising[END_REF][START_REF] Zhang | TIME-Net: Transformer-Integrated Multi-Encoder Network for limited-angle artifact removal in dual-energy CBCT[END_REF]. Especially, convolutional neural network (CNN)-based methods brought more promising results than traditional reconstruction images [START_REF] Zhang | CLEAR: Comprehensive Learning Enabled Adversarial Reconstruction for Subtle Structure Enhanced Low-Dose CT Imaging[END_REF][START_REF] Hu | PRIOR: Prior-Regularized Iterative Optimization Reconstruction for 4D CBCT[END_REF][START_REF] Zhang | CD-Net: Comprehensive Domain Network With Spectral Complementary for DECT Sparse-View Reconstruction[END_REF][START_REF] Zhang | DREAM-Net: Deep Residual Error Iterative Minimization Network for Sparse-View CT Reconstruction[END_REF]. Aided by the powerful feature extraction ability of the CNN model, Gu et al. directly predict the artifacts in the wavelet domain from the degraded images and performed well in artifact reduction [START_REF] Gu | Multi-Scale Wavelet Domain Residual Learning for Limited-Angle CT Reconstruction[END_REF]. Similarly, Li et al. proposed an inpainting network to restore the missing projection data for limited-angle scanning. Then, the classical FBP or IR methods were employed to reconstruct CT images from the recovered projection data. Experiments stated that serious artifacts can be effectively reduced [START_REF] Ziheng | A sinogram inpainting method based on generative adversarial network for limited-angle computed tomography[END_REF]. Unlike the above single-domain-based methods, Anirudh et al. adopted the generative adversarial network to directly map the incomplete fan-beam sinogram data into the CT images and obtained impressive results [START_REF] Anirudh | Lose the views: Limited angle CT reconstruction via implicit sinogram completion[END_REF]. Meanwhile, Würfl et al. explored an FBP-type algorithm with a novel back-projection layer for cone-beam geometry to improve the calculating efficiency. Evaluations demonstrated this scheme outperformed analytical methods [START_REF] Würfl | Deep Learning Computed Tomography: Learning Projection-Domain Weights From Image Domain in Limited Angle Problems[END_REF]. Innovatively, Huang et al. introduced a data-consistent artifact reduction (DCAR) method based on the deep learning prior, which first inpainted the missing projection data and then iteratively improve the reconstruction images [START_REF] Huang | Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior[END_REF] with IR methods. To strengthen edge preservation, Hu et al. proposed a multi-stage reconstruction framework (SPECIAL) for limited-angle CT. Simulated and real experiments suggested that the SPECIAL method outperformed existing competitive algorithms in artifact removal and detail recovery [START_REF] Hu | SPECIAL: Single-Shot Projection Error Correction Integrated Adversarial Learning for Limited-Angle CT[END_REF].

Further, dual-domain-based methods have attracted great attention because of their superior performance. By jointly constraining the projection data and image data, these methods outperform single-domain-based methods. For example, to make full use of complementary correlations between the image domain and projection domain, a hybrid domain network (hdNet) was developed for limited-angle CT. Experiments suggested that the hdNet works well in eliminating artifacts [START_REF] Zhang | Artifact removal using a hybrid-domain convolutional neural network for limited-angle computed tomography imaging[END_REF]. Besides, Jiao et al. developed an intelligent back-projection network (iBP-Net) for CT reconstruction and could provide visually improved results [START_REF] Jiao | A Dual-Domain CNN-Based Network for CT Reconstruction[END_REF]. And Zhou et al. employed the dual-domain method for metal artifact reduction in low-dose CT [START_REF] Zhou | DuDoUFNet: Dual-Domain Under-to-Fully-Complete Progressive Restoration Network for Simultaneous Metal Artifact Reduction and Low-Dose CT Reconstruction[END_REF]. Considering the instabilities of deep learning methods in medical imaging, Wu et al. specifically designed an Analytic compressed iterative deep (ACID) method to stabilize the deep tomography reconstruction [START_REF] Wu | Stabilizing deep tomographic reconstruction: Part A. Hybrid framework and experimental results[END_REF][START_REF] Wu | Stabilizing deep tomographic reconstruction: Part B. Convergence analysis and adversarial attacks[END_REF]. Based on ACID, Wu et al. integrated the residual-domain processing technique into the dual-domain method for sparse-view CT and works well in artifact reduction and detail preservation [START_REF] Wu | DRONE: Dual-Domain Residual-based Optimization NEtwork for Sparse-View CT Reconstruction[END_REF][START_REF] Wu | Deep Embedding-Attention-Refinement for Sparse-view CT Reconstruction[END_REF].

According to mentioned works, both IR methods and DL-based methods were effective to improve image quality. Therefore, deep iterative reconstruction algorithms, which combined IR optimization and deep learning prior, have been researched for image restoration [START_REF] Zhang | Plug-and-Play Image Restoration with Deep Denoiser Prior[END_REF][START_REF] Sun | Deep ADMM-Net for compressive sensing MRI[END_REF]. By implementing the differentiable forward-backward operator, Cheng et al. developed an unrolled method (FSR-Net) to jointly reconstruct a high-quality CT image and its corresponding full-view projection data. FSR-Net deployed the regularization both on the image domain and projection domain and outperformed existing variational and DL-based methods [START_REF] Cheng | Learned Full-Sampling Reconstruction From Incomplete Data[END_REF]. Next, to improve the regularization capacity of deep prior and enhance data consistency, Zhou et al. employed the dense spatial-attention network with a specialized data fidelity layer for limited-angle CT reconstruction. Experiments implied that [START_REF] Zhou | Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer[END_REF] was able to generate promising results for major lesions. Based on [START_REF] Zhou | Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer[END_REF], Sam's Net was further investigated to utilize the hybrid-domain-based method as the backbone and lead to improvements in stability and robustness [START_REF] Chen | Sam's Net: A Self-Augmented Multi-Stage Deep-Learning Network for End-to-End Reconstruction of Limited Angle CT[END_REF]. Even though [START_REF] Cheng | Learned Full-Sampling Reconstruction From Incomplete Data[END_REF][START_REF] Zhou | Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer[END_REF][START_REF] Chen | Sam's Net: A Self-Augmented Multi-Stage Deep-Learning Network for End-to-End Reconstruction of Limited Angle CT[END_REF] represented state-of-the-art methods, they cannot directly be applied to cone-beam CT due to memory limitations. Hence, some deep iterative methods with an offline scheme have been proposed. To accelerate the convergence speed of IR methods, Wang et al. adopted several DL models as regularization functions to improve the intermediate reconstruction results [START_REF] Wang | ADMM-based deep reconstruction for limited-angle CT[END_REF]. As a result, [START_REF] Wang | ADMM-based deep reconstruction for limited-angle CT[END_REF] performed better in edge preservation and artifact reduction. Besides, to solve the generalization of deep priors in the iterative process, Hu et al. designed a residual-space-based CNN model embedded in the IR method and make a significant promotion in detail restoration [START_REF] Hu | DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction[END_REF].

Nevertheless, [START_REF] Wang | ADMM-based deep reconstruction for limited-angle CT[END_REF][START_REF] Hu | DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction[END_REF] needed a much longer time than other competitive methods due to the complex computational iterative procedure. Consequently, this paper proposes a ACCEPTED MANUSCRIPT / CLEAN COPY 

Cross-domain

Residual-Optimization based Structure Strengthening (CROSS) framework for limited-angle CT reconstruction. The proposed CROSS method consists of three steps, which alternatively perform the CNN model on the image domain and projection domain. Specifically, in the first step, the structure strengthening network (SS-Net) is adopted to remove the artifacts and preserve the textures. Next, the missing projection data can be obtained from the results in the first step according to [START_REF] Huang | Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior[END_REF]. For the purpose of data consistency improvement, a residual network (ResNet) is applied to boost restored projection data. Different from the last step in [START_REF] Hu | SPECIAL: Single-Shot Projection Error Correction Integrated Adversarial Learning for Limited-Angle CT[END_REF], the proposed CROSS utilizes the SS-Net on the residual error map rather than the CT images, which could improve the restoration accuracy in the areas that have the larger attenuation coefficients. Compared to deep iterative methods [START_REF] Zhou | Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer[END_REF][START_REF] Hu | DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction[END_REF], the CROSS method can be applied to cone-beam CT reconstruction with less computational cost and provides competitive results simultaneously. Experiments based on the simulated and real datasets validate that the proposed CROSS method performs well in edge preservation, detail restoration, and artifact removal.

The rest of this paper is organized as follows. Section II introduces the workflow of the proposed CROSS framework and the details of the neural network used in this work. Section III gives the experimental results and analysis of the different components in CROSS. In section IV, we will discuss some related issues and make a plan for the next work.

II. METHODOLOGY

A. CROSS Framework

To reconstruct high-quality images similar to deep iterative methods [START_REF] Cheng | Learned Full-Sampling Reconstruction From Incomplete Data[END_REF][START_REF] Zhou | Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer[END_REF][START_REF] Hu | DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction[END_REF], but with lower computational cost, a multi-step method termed CROSS is proposed. The CROSS framework consists of three steps (as shown in Fig. 1), which alternatively employ the CNN models on the image space and projection space to gradually boost the CT images.

In the first step, a novel structure-strengthening network (SS-Net) is adopted in the image domain to remove the artifacts and restore most of the tissue details. Specifically, SS-Net takes the degraded images reconstructed from limited-angle projection data 𝒚𝒚 using the FDK algorithm as input and generates high-quality images 𝑺𝑺 𝟏𝟏 . Unlike [START_REF] Gu | Multi-Scale Wavelet Domain Residual Learning for Limited-Angle CT Reconstruction[END_REF][START_REF] Hu | SPECIAL: Single-Shot Projection Error Correction Integrated Adversarial Learning for Limited-Angle CT[END_REF][START_REF] Zhang | A Sparse-View CT Reconstruction Method Based on Combination of DenseNet and Deconvolution[END_REF], SS-Net designs a structure-enhanced branch, which can lead to impressive results in detail restoration.

Although the 𝑺𝑺 𝟏𝟏 obtained at the first step has satisfactory visual results, but it may fail to accurately reconstruct the areas that have larger attenuation coefficients. Therefore, the data consistency operation is employed to further improve 𝑺𝑺 𝟏𝟏 . In particular, the projection data 𝒚𝒚 𝟏𝟏 reprojected from the 𝑺𝑺 𝟏𝟏 is input into a normal ResNet and produces an improved full-view projection data 𝒚𝒚 𝟐𝟐 . Next, the residual data consistency (RDC) is utilized to evaluate the difference 𝒚𝒚 𝟑𝟑 between 𝑺𝑺 𝟏𝟏 and the available projection 𝒚𝒚 . Differing from traditional data consistency [START_REF] Huang | Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior[END_REF][START_REF] Zhou | Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer[END_REF], RDC focuses on the assessment of error maps on the projection domain and can provide superior results.

In the last step, an error image 𝑺𝑺 𝟐𝟐 is first reconstructed from the error sinogram 𝒚𝒚 𝟑𝟑 . Despite the wedge artifacts, it contains high-frequency information between the 𝑺𝑺 𝟏𝟏 and the ground truth, which can be easily restored for 𝑺𝑺 𝟏𝟏 . Hence, the SS-Net is used again to correct the 𝑺𝑺 𝟐𝟐 . Then the final results 𝑺𝑺 𝟒𝟒 can be got by adding 𝑺𝑺 𝟑𝟑 and 𝑺𝑺 𝟏𝟏 .

In general, the key point of the CROSS method is to respectively promote the reconstructed result in the residual image space and projection space, which is beneficial to recover bigger organs with high Hounsfield units (HU).

ACCEPTED MANUSCRIPT / CLEAN COPY B. Structure Strengthening Network

To better reconstruct images for limited-angle CT, the SS-Net is employed in the image domain, whose architecture is shown in Fig. 2. SS-Net has three branches, which are the image restoration sub-network, structure-enhanced sub-network [START_REF] Ma | Structure-Preserving Image Super-Resolution[END_REF][START_REF] Wang | EAA-Net: A novel edge assisted attention network for single image dehazing[END_REF][START_REF] Cai | TDPN: Texture and Detail-Preserving Network for Single Image Super-Resolution[END_REF], and feature fusion sub-network, respectively. The image restoration sub-network (IRS-Net) (as shown in Fig. 2(a)) adopts the FED-INet as the backbone [START_REF] Hu | DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction[END_REF], which employs the asymmetric convolutional module (ACM) to improve the feature extraction and has been effectively validated for tissue restoration. IRS-Net is a classical image-domain-based method that takes the FDK reconstruction images as input and generates high-quality images 𝑩𝑩 𝟏𝟏 with most structures and less artifacts. So, IRS-Net holds the low-frequency information of CT images.

Dissimilarly, the structure enhancement sub-network (SES-Net) (as illustrated in Fig. 2 (b)) attempts to preserve the texture information contained in the CT images. SES-Net also uses the FED-INet as the backbone and inputs the FDK results but outputs the structure details 𝑩𝑩 𝟐𝟐 . Consequently, the high-frequency information of the CT images is stored in the feature maps of the SES-Net.

Since IRS-Net and SES-Net separately possess the low-and high-frequency components of the CT images, they can be further improved by fusing their feature maps. As depicted in Fig. 2(c), the feature fusion module (FFM) concatenates the feature maps together, which are extracted from the IRS-Net and SES-Net respectively, and brings improvements over 𝑺𝑺 𝟏𝟏 in edge preservation. 

C. ResNet

For better reconstructing high-resolution projection data, the ResNet is utilized, whose architecture is demonstrated in Fig. 3. It consists of eight ResBlocks and each ResBlock has a residual connection to avoid vanishing or exploding gradients [START_REF] He | Deep residual learning for image recognition[END_REF].

Besides, ResNet also adopts the global residual connection to accelerate convergence and stable training [START_REF] Zhang | Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising[END_REF].

D. Residual Data Consistency

Data consistency is a widely used constraint in medical imaging [START_REF] Zhou | Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer[END_REF][START_REF] Schlemper | A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction[END_REF], which can guarantee the worst-case performance of reconstruction methods [START_REF] Gupta | CNN-Based Projected Gradient Descent for Consistent CT Image Reconstruction[END_REF]. The classical data consistency can be rewritten as follows [START_REF] Huang | Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior[END_REF].

𝑦𝑦 3 = 𝑦𝑦 ⊕ 𝑦𝑦 2 (1)
where 𝒚𝒚 is the available limited-angle projection data, 𝒚𝒚 𝟐𝟐 represents improved high-resolution projection data processed by the ResNet (as indicated in Fig. 1) and ⊕ stands for the replacement operation which copies the 𝒚𝒚 and replaces the corresponding part of 𝒚𝒚 𝟐𝟐 with 𝒚𝒚 . Then a more accurate projection data 𝒚𝒚 𝟑𝟑 can be used for subsequent operations [START_REF] Huang | Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior[END_REF][START_REF] Zhou | Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer[END_REF].

To improve tissue preservation, the RDC is investigated and its formulation is as follows.

𝑦𝑦 3 = 𝑦𝑦 ⊕ 𝑦𝑦 2 -𝑦𝑦 1 (2)
where 𝑦𝑦 1 = 𝑨𝑨𝑆𝑆 1 , 𝐴𝐴 is the projection operation. Unlike Eq. ( 1), RDC aims to evaluate the difference between the 𝑺𝑺 𝟏𝟏 and the ground truth in the projection domain, which can improve the performance of 𝑺𝑺 𝟏𝟏 in high-attenuation regions.

E. Perceptual Loss

Perceptual loss (PL) is the widely used tool to minimize the distance between two images in feature space rather than pixel-wise similarity. In the application of medical imaging, PL can generate more tissue details and a better visual appearance [START_REF] Yang | Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss[END_REF]. The definition of PL is given as:

𝐿𝐿 𝑃𝑃𝑃𝑃 (𝐼𝐼, 𝑔𝑔𝑔𝑔) = ∑ ‖Ψ 𝑖𝑖 (𝐼𝐼) -Ψ 𝑖𝑖 (𝑔𝑔𝑔𝑔)‖ 𝐹𝐹 2 𝑁𝑁 𝑖𝑖=1 (3)
where 𝐼𝐼 is the reconstructed image and 𝑔𝑔𝑔𝑔 indicates the ground truth. Ψ 𝑖𝑖 represents the feature projector [START_REF] Hu | DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction[END_REF]. In this work, the output of the 2 nd , 4 th , 6 th , 9 th , and 12 th convolutional layer of VGG-16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] as the feature extractor Ψ 𝑖𝑖 .

F. Texture Extraction

CNN-based models tend to blur images [START_REF] Hu | SPECIAL: Single-Shot Projection Error Correction Integrated Adversarial Learning for Limited-Angle CT[END_REF], therefore, to enhance the CNN models in edge preservation, texture extraction (TE) is utilized in the CROSS framework. The TE can be expressed as follows.

𝐻𝐻(𝐼𝐼) = 𝐼𝐼 -𝐹𝐹(𝐼𝐼, 𝑔𝑔) (4) where 𝑔𝑔~𝑁𝑁(𝜇𝜇, 𝜎𝜎 2 ) follows the gaussian distribution with the mean value 𝜇𝜇 and standard variation 𝜎𝜎, and 𝐹𝐹 is the filtering operation. Using Eq. ( 4), the textures and details of the image 𝐼𝐼 can be obtained (as observed in 𝑩𝑩 𝟐𝟐 of Fig. 2(b)). Texture extraction was also used in [START_REF] Hu | SPECIAL: Single-Shot Projection Error Correction Integrated Adversarial Learning for Limited-Angle CT[END_REF][START_REF] Hu | DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction[END_REF], and these texture extractions directly perform on reconstructed images to explicitly enhance detail preservation. However, in our method, the texture extraction is to extract high-frequency feature maps ACCEPTED MANUSCRIPT / CLEAN COPY with an implicit approach and then feed them into the final results.

G. Loss Function

There are three neural networks Φ 1 , Φ 2 and Φ 3 for the three steps in CROSS, respectively.

In the first stage of CROSS, the cost function of Φ 1 is described as:

Φ 1 = argmin Φ 1 �Φ 1 b1 (𝐼𝐼 𝐷𝐷 ) -𝐼𝐼 𝑁𝑁𝐷𝐷 � 𝐹𝐹 2 + �Φ 1 b2 (𝐼𝐼 𝐷𝐷 ) -𝐻𝐻(𝐼𝐼 𝑁𝑁𝐷𝐷 )� 𝐹𝐹 2 +�Φ 1 b3 (𝐼𝐼 𝐷𝐷 ) -𝐼𝐼 𝑁𝑁𝐷𝐷 � 𝐹𝐹 2 + 𝜆𝜆 1 • 𝐿𝐿 𝑃𝑃𝑃𝑃 (Φ 1 b3 (𝐼𝐼 𝐷𝐷 ), 𝐼𝐼 𝑁𝑁𝐷𝐷 ) (5)
where 𝐼𝐼 𝐷𝐷 is the limited-angle reconstructed image, 𝐼𝐼 𝑁𝑁𝐷𝐷 indicates the reference image reconstructed from the full-view projection data. Φ 1 b1 , Φ 1 b2 , and Φ 1 b3 stands for the three sub-networks in Fig. 2, λ 1 represents the hyperparameter to balance different terms in Eq. ( 5).

In the second stage, the objective function of Φ 2 is:

Φ 2 = argmin Φ 2 ‖Φ 2 (𝑦𝑦 1 ) -𝑦𝑦 𝑁𝑁𝐷𝐷 ‖ 𝐹𝐹 2 (6) 
where 𝑦𝑦 𝑁𝑁𝐷𝐷 is the full-view projection data.

For the Φ 3 , it has the same optimization function with Φ 1 but with different input and reference images.

Φ 3 = argmin Φ 3 �Φ 3 b1 (𝑆𝑆 2 ) -𝑅𝑅 𝑁𝑁𝐷𝐷 � 𝐹𝐹 2 + �Φ 3 b2 (𝑆𝑆 2 ) -𝐻𝐻(𝑅𝑅 𝑁𝑁𝐷𝐷 )� 𝐹𝐹 2 +�Φ 3 b3 (𝑆𝑆 2 ) -𝑅𝑅 𝑁𝑁𝐷𝐷 � 𝐹𝐹 2 + 𝜆𝜆 2 • 𝐿𝐿 𝑃𝑃𝑃𝑃 (Φ 3 b3 (𝑆𝑆 2 ), 𝑅𝑅 𝑁𝑁𝐷𝐷 ) (7)
where 𝑆𝑆 2 = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑦𝑦 3 ) , 𝑅𝑅 𝑁𝑁𝐷𝐷 = 𝐼𝐼 𝑁𝑁𝐷𝐷 -𝑆𝑆 1 , and 𝜆𝜆 2 is another hyperparameter to control the trade-off in all terms. After training the Φ 1 , Φ 2 and Φ 3 , the proposed CROSS can gradually improve the images with alternative image domain and projection domain processing.

III. EXPERIMENTS

In this work, all the experiments were conducted on a PC with CPU Inter(R) Xeon E5-2683 and GPU NIVIDA GTX TITAN. The hyper-parameters 𝜆𝜆 1 and 𝜆𝜆 2 in Eqs. ( 5) and [START_REF] Hu | SISTER: Spectral-Image Similarity-Based Tensor With Enhanced-Sparsity Reconstruction for Sparse-View Multi-Energy CT[END_REF] were set to 0.001 and 0.001, respectively. All the parameters of the three networks Φ 1 , Φ 2 and Φ 3 were updated using the Adam algorithm [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. Noting that these three networks were dependent and needed to be trained one by one. The learning rate was initially set to 10 -3 and linearly decreased to 1e -5 within 50 epochs. To evaluate the proposed CROSS framework, five reconstruction methods were treated as comparisons, including the FDK algorithm (Ramp-filter), TV [START_REF] Biguri | TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction[END_REF], DDNet [START_REF] Zhang | A Sparse-View CT Reconstruction Method Based on Combination of DenseNet and Deconvolution[END_REF], MSWDNet [START_REF] Gu | Multi-Scale Wavelet Domain Residual Learning for Limited-Angle CT Reconstruction[END_REF], and DCAR [START_REF] Huang | Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior[END_REF]. Specifically, DDNet, MSWDNet, and DCAR were implemented in the TensorFlow framework with Python language. FDK and TV were conducted by MATLAB 2018a. Besides, we choose the peak single-to-noise ratio (PSNR), and structural similarity index (SSIM) [START_REF] Zhou | Image quality assessment: from error visibility to structural similarity[END_REF] as the quantitative evaluations.

A. Simulated Data Results

The images of simulated experiments were downloaded from The Cancer Imaging Archive (TCIA). In this work, we adopted cone-beam geometry to evaluate different reconstruction methods for limited-angle CT. The geometry parameters were as follows. The source-to-detector distance was 100 cm and the source-to-axial distance was 50 cm, respectively. The detector size was 900×400 and each element covered an area of 1.5×1.5 mm 2 . For one circle, there were 960 views were collected. The volume was reconstructed with 512×512×200 and each voxel was 0.9×0.9×0.9 mm 3 . It was worth noting that FDK will lead to cone-beam artifacts when the reconstructed slice is far away from the central slice. To overcome this issue, we only selected the middle 120 slices in the entire volume. That means each 3D volume in the following experiments only has a size of 512×512×120. Particularly, there were 9200 2D images with the size of 512×512 selected from twenty-one patients in the TCIA dataset to simulate the cone-beam geometry as described in this section to generate the training dataset. Then, another 1000 2D images of the same size from different three patients were used to generate the validation dataset. Last, 1200 2D images selected from another three patients were utilized to generate the testing dataset. Specifically, the images from training, validation, and testing datasets belonged to different patients. The FDK algorithm was used to reconstruct the reference images from the full-sampled projection data. Two scanning angular ranges [0, 90°] and [0, 110°] were performed to assess different methods. For the DL-based methods, the input and output were 2D slices extracted from the 3D volumes. During the training phase, the patch-based scheme was adopted. Each patch had a size of 128×128 extracted from the 2D slices with the stride step of 64 and the batch size was 16. In the testing phase, the image with the size of 512×512 was directly inputted into the trained model and outputted generated result.

Table I lists the average quantitative results of reconstructed images with the scanning angular ranges of [0,90°] and [0,110°]. In Table I, it can be noticed that the analytical algorithm FDK produces the worst scores, which claims that the performance of the analytical algorithm can be affected greatly in all methods when the projection data is incomplete. Aided by the image gradient minimization and iterative forward-backword correction, TV achieves better assessments than FDK but still fails to provide competitive results, which implies that traditional methods cannot reconstruct satisfactory results with incomplete measurement data. Because of the powerful feature extraction ability, DL-based methods get better evaluation scores than traditional methods in all scanning angular ranges. Compared to MSWDNet, DDNet brings at least 0.7 dB promotion in terms of PSNR, which claims that the network with a more complex architecture may improve reconstructed results. Although DCAR gets worse scores in PSNR than DDNet, it performs well in SSIM, which means the image content provided by the DCAR is closer to the reference image due to the data consistency constraint. Notably, the proposed CROSS framework gains the best evaluations of all methods, which states the effectiveness of the multi-domain-based processing.

To further evaluate the performance visually of various algorithms, Fig. 4 illustrates the reconstruction results and the corresponding regions-of-interests (ROIs) of FDK, TV, c4)). These imply that the performance of traditional methods is significantly influenced by the completeness of projection data. From Fig. 5(d1)-(g4), it can be noted that DL-based methods promote the FDK and TV in artifact removal and tissue restoration. Similar to Fig. 4, MSWDNet and DDNet successfully recover most details and reduce artifacts. Moreover, they can produce more clear tissues than DCAR (as illustrated by the yellow arrows in Fig. 5(d3)(e2)), which is opposite to the phenomena in Fig. 4. This states that DCAR relies on the projection data, and the smaller the scanning angular range, the worse the performance. In contrast to the DCAR method, the proposed CROSS is quite robust to different scanning angular ranges and still provides ACCEPTED MANUSCRIPT / CLEAN COPY high-quality images with clear edges (as implied by the red arrows in Fig. 5(g2)(g3)) and accurate features (as marked by the red circle and arrow in Fig. 5(g1)(g4)).
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Fig. 6 illustrates the selected coronal and sagittal views from the reconstructed CT volumes of the simulated dataset to further evaluate the visual performance of different reconstruction methods. As shown in Fig. 6, all the DL-based methods can reduce most artifacts and preserve the most of tissue features. More specifically, our proposed CROSS framework works well in detail restoration (as suggested by the red arrows in Fig. 6(e1)(e2)). However, the proposed method leads to obvious horizontal artifacts at different slices (as pointed by the yellow arrow and circle in Fig. 6(e1)(e2)). This is because all the reconstructed results are 3D images but the proposed method processes them slice by slice, which ignores the relationship between adjacent slices in the z-axis direction. To solve this problem, the proposed CROSS method is extended to a 3D version (3D-CROSS) that takes the 3D images as input. As observed in Fig. 6(f1)(f2), the 3D-CROSS successfully suppresses the horizontal artifacts. More results of 3D-CROSS can be found in the supplementary material.

B. Real Dataset Results

To further investigate different reconstruction methods for limited-angle CT, real mice dataset experiments were conducted. Again, the cone-beam scanning model was adopted and its configuration is as follows. The tube was Hamamatsu L9421-02 and the detector was Dexela 1512, respectively. The tube voltage was 60 kV and the current was 130 μA. The size of the detector was 944 × 768 and each element represented 0.072×0.072 mm 2 . The distance between the source and the detector was 44 cm and the distance between the source and the object was 22 cm, respectively. 1000 projections were collected via 360° as the full-sampled measurement data. The reconstructed 3D volume was 872×872×600 and each voxel covered the area of 0.072×0.072×0.072 mm 3 . There were four mice performed for this work. Specifically, two mice (1200 images) were used as the training dataset, one mouse (600 images) was used as the validation dataset and the rest (600 images) was used as the training dataset. Similar to the previous section, we only reconstruct the central 600 slices for each mouse to alleviate the cone-beam artifacts. The FDK algorithm was adopted to reconstruct the reference images from the full-sampled projection data. One scanning angular range ACCEPTED MANUSCRIPT / CLEAN COPY [0,110°] was performed to assess various methods. Fig. 7 shows the selected reconstruction images between different algorithms. For better visual observation, all the images in Fig. 7 were cropped to the size of 448×448. All the DL-based methods can generate high-quality images with fewer artifacts than the FDK algorithm. Moreover, in comparison approaches, DDNet produces better results in edge preservation (as indicated by the yellow arrow in Fig. 7(d2)). From the red arrows in Fig. 7 

C. Comparison Between CROSS and DIOR

Deep iterative reconstruction methods have been applied for limited-angle CT and achieved superior performance to traditional DL-based methods [START_REF] Cheng | Learned Full-Sampling Reconstruction From Incomplete Data[END_REF][START_REF] Zhou | Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer[END_REF][START_REF] Hu | DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction[END_REF]. To compare the deep iterative method and the proposed method, additional experiments were conducted from the simulated dataset with the scanning angular range of 90°. The DIOR [START_REF] Hu | DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction[END_REF] was employed as the representative deep iterative method, which adopted the CNN model as the regularization function in the residual space to improve the image quality via the iterative process.

Fig. 8 demonstrates the reconstructed results of the DIOR and CROSS methods. Both the DIOR and CROSS perform well in artifact removal and tissue restoration (as pointed out by the yellow arrows in Fig. 8(b2)(c2)). In addition, the CROSS framework can restore accurate structural features (as marked by the red circle in Fig. 8(c1)). To sum up, the proposed method can obtain competitive results with DIOR, which proves that the multi-domain-based strategy in CROSS is effective for limited-angle CT.

D. Computational Cost

Table II lists the computational cost of various methods. All the time was computed based on the simulated dataset with 200 images and a scanning angular range of 110°. MSWDNet and ACCEPTED MANUSCRIPT / CLEAN COPY DDNet are single-domain-based methods that take the least time. IR-based methods (DCAR and DIOR) consume much longer time than other algorithms. Because of three networks and one forward-backward operation, the proposed method spends more time than MSWDNet and DDNet. However, compared to DIOR, CROSS can bring similar results within an appropriate time. 

E. Ablation Study

In this section, an ablation study was performed to probe the effects of different modules of the proposed CROSS framework based on the simulated data with the scanning angular range of 90°.

The FED-INet [START_REF] Hu | DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction[END_REF] was taken as the baseline model. Then the structure enhancement module was added to the baseline to establish the first comparison model (SS-Net). Next, the data consistency (DC) with 𝑦𝑦 3 = 𝑦𝑦 ⊕ 𝑦𝑦 1 and the image-domain network (ID-Net) was introduced to the first comparison model to build the second comparison model. Moreover, unlike the second comparison, the learned data consistency (LDC) in Eq. ( 1) with ResNet was employed to create the third comparison model. Last, the residual data consistency in Eq. ( 2) and the residual-space-based network were adopted to construct the fourth comparison model, i.e., CROSS.

Table III gives the quantitative evaluations of the progressive ablation study. It can be observed that the SS-Net brings higher scores than the baseline model in terms of PSNR, and SSIM because the structure enhancement sub-network could strengthen tissue preservation. Meanwhile, with the assistance of DC and ID-Net, the third model further promotes the reconstructed results both in CT values and image features. Replacing the DC with the learned DC, the fourth model can enhance the data consistency constraint and lead to improvements in all assessments. Notably, the proposed CROSS method gains the best evaluations in all comparison models, claiming the validity of the RDC and residual-space processing.

Besides, to explore the mechanism of different components in CROSS, the reconstructed results of various comparison models are demonstrated. The baseline model can restore most tissue features and remove artifacts, which has been validated in [START_REF] Hu | DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction[END_REF]. With the aid of the structure enhancement module, SS-Net performs better in detail restoration (as indicated by the red circle in Fig. 9(c)). However, the third model introduces some uneven artifacts into the reconstructed images (as shown by the blue arrows in Fig. 9(d)), which may be caused by the inaccuracy of DC. After applying an additional ResNet in the projection domain, the fourth model can overcome the drawback of the previous model and lead to better results in edge preservation (as pointed out by the green arrow in Fig. 9(e)). Last, CROSS generates the most impressive images, specifically for the area with larger attenuation coefficients (as demonstrated by the yellow ellipse in Fig. 9(f)). 

IV. CONCLUSION AND DISCUSSION

Deep iterative reconstruction methods have shown remarkable superiority over existing methods [START_REF] Cheng | Learned Full-Sampling Reconstruction From Incomplete Data[END_REF][START_REF] Zhou | Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer[END_REF][START_REF] Hu | DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction[END_REF]. However, these methods often encounter two issues when being applied to practical cone-beam CT imaging, which is memory limitations [START_REF] Cheng | Learned Full-Sampling Reconstruction From Incomplete Data[END_REF][START_REF] Zhou | Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer[END_REF] and longer running time [START_REF] Hu | DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction[END_REF]. Meanwhile, hybrid-domain-based methods can also produce high-quality results [START_REF] Hu | SPECIAL: Single-Shot Projection Error Correction Integrated Adversarial Learning for Limited-Angle CT[END_REF][START_REF] Yin | Domain Progressive 3D Residual Convolution Network to Improve Low-Dose CT Imaging[END_REF] and be easily used for 3D imaging within an appropriate time. Therefore, based on the hybrid-domain methods, we develop a cross-domain residual-optimization-based structure strengthening reconstruction for limited-angle CT to generate similar results with deep iterative methods. Different from [START_REF] Hu | SPECIAL: Single-Shot Projection Error Correction Integrated Adversarial Learning for Limited-Angle CT[END_REF], our CROSS framework alternatively utilizes the networks to improve CT images on the image domain and projection domain. Besides, the residual-space-based processings can further improve CROSS in tissue restoration. In addition, the utilization of the structure enhancement module also results in the promotion of the reconstructed images. Both the simulated and real datasets are performed with different scanning angular ranges to validate the proposed method. Compared to existing methods, the CROSS framework performs well in artifact reduction and edge preservation.

There are some similar works to the proposed method. For instance, to overcome the instabilities of deep learning, Wu et al. proposed an ACID framework with a combination of deep learning and compressed sensing theory [START_REF] Wu | Stabilizing deep tomographic reconstruction: Part A. Hybrid framework and experimental results[END_REF][START_REF] Wu | Stabilizing deep tomographic reconstruction: Part B. Convergence analysis and adversarial attacks[END_REF]. The key idea of ACID is to employ the pre-trained network to constrain the residual image. Inspired by it, more advanced works have been developed for sparse-view CT [START_REF] Wu | DRONE: Dual-Domain Residual-based Optimization NEtwork for Sparse-View CT Reconstruction[END_REF][START_REF] Wu | Deep Embedding-Attention-Refinement for Sparse-view CT Reconstruction[END_REF]. The RDC used in the proposed method was also inspired by ACID and applied to limited-angle CT. However, to further improve edge preservation, our proposed method adopts a more effective structure-strengthening network.
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Although the CROSS method demonstrates encouraging improvement in limited-angle CT reconstruction, some issues are still to be noticed. First, the texture extraction used in SS-Net is might not the optimal scheme. Therefore, how constructing the texture and detail map of CT images is still an opening problem. Second, the residual data consistency brings improvements for CROSS. However, it still exists some errors to evaluate the distance between reconstructed images and the ground truth in the projection domain. It remains a challenging problem to effectively ensure data consistency. Last, the noise will be enlarged in SS-Net due to the structure extraction, which may negatively affect the performance of the proposed method. So, how to avoid noise amplification in CROSS should be noticed.

Deep-learning-based methods have demonstrated superior performance than traditional reconstruction methods in the limited-angle CT problem. Nevertheless, most of these methods focus on simulated data or preclinical data, which cannot convincingly validate their practicability in real cases. Therefore, it still has a long way to apply deep learning methods to clinical limited-angle imaging.
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 1 Fig. 1. The flowchart of the CROSS framework.
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 2 Fig. 2. The proposed SS-Net architecture.
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 3 Fig. 3. The proposed ResNet architecture.
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 4 Fig. 4. Simulated dataset reconstruction results with scanning angular angle 110°. And different rows represent different slices. The display window is [-160, 240]. MSWDNet, DDNet, DCAR, and CROSS methods with the scanning angular range of 110°. From Fig. 4(b1)-(b4), it can be seen that FDK introduces severe wedge artifacts, and the tissue and lesion become hard to be recognized. Benefiting from the minimization of image gradients, TV outperforms FDK in artifact removal (as shown in Fig. 4(c1)-(c4)). Nevertheless, most diagnostic information in TV reconstructions is still missing, which exposes the defects of traditional methods when the projection data is incomplete. Assisted by a large number of pairs of training samples and deep convolutional layers, the CNN-based model could exploit the essential features contained in the CT images. Certainly, DL-based algorithms achieve superior performance over traditional methods. Specifically, the image-domain-based methods MSWDNet and DDNet can suppress wedge artifacts and restore tissues and details as demonstrated in Fig. 4(d1)-(e4). This confirms the effectiveness of image-domain-based methods for medical imaging. Further, DCAR could boost post-processing methods in tissue restoration (as pointed out by the yellow arrow in Fig.4 (f4)). Also, it can eliminate the fake structure induced by the DDNet (as indicated by the green arrow in Fig. 4(e3)). This is because that DCAR is an IR-based method and can promote reconstructed results via iterative optimization. It is worth noting that the proposed CROSS method generates more visually improved images than other competitive DL-based methods. Particularly, CROSS is able to preserve subtle details (as observed by the red arrows in Fig. 4(g1)(g3)) and clear organ boundaries (as shown by the red arrow in Fig. 4(g2)).Fig.5exhibits the reconstruction results with the scanning angular range of 90° to probe the performance of different methods with a smaller scanning angular range. Compared to Fig.4(b1)-(c4), FDK and TV lead to worse reconstruction results with the scanning angular range of 90° (as depicted in Fig.5(b1)-(c4)). These imply that the performance of traditional methods is significantly influenced by the completeness of projection data. From Fig.5(d1)-(g4), it can be noted that DL-based methods promote the FDK and TV in artifact removal and tissue restoration. Similar to Fig.4, MSWDNet and DDNet successfully recover most details and reduce artifacts. Moreover, they can produce more clear tissues than DCAR (as illustrated by the yellow arrows in Fig.5(d3)(e2)), which is opposite to the phenomena in Fig.4. This states that DCAR relies on the projection data, and the smaller the scanning angular range, the worse the performance. In contrast to the DCAR method, the proposed CROSS is quite robust to different scanning angular ranges and still provides
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 5 Fig. 5. Simulated dataset reconstruction results with scanning angular angle 90°. And different rows represent different slices. The display window is [-160, 240].

Fig. 6 .

 6 Fig. 6. Selected coronal views and sagittal from the simulated dataset with scanning angular range of 90°. (a1)-(f1) Coronal views of reference, MSWDNet, DDNet, DCAR, CROSS, and 3D-CROSS methods. (a2)-(f2) Sagittal views of reference, MSWDNet, DDNet, DCAR, CROSS, and 3D-CROSS methods. The display window is [-140, 240] HU.
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 7 Fig. 7. Real mice dataset reconstruction images with a scanning angular angle of 110°. And different rows represent different slices. The display window is [-600, 600].
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 8 Fig. 8. Reconstruction results from the simulated dataset with the scanning angular range of 90°. The display window is [-160, 240] HU.

  (f1)-(f4), the proposed CROSS framework outperforms other DL-based methods in tissue restoration and detail preservation.
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 9 Fig. 9. Simulated dataset reconstruction results of different modules with the scanning angular range of 90°. (a) Reference (b) Baseline model (c) SS-Net. (d) +DC+ID-Net. (e) +LDC+ID-Net. (f) CROSS. The display window is [-240, 160] HU.
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