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GOPPA–LIKE AG CODES FROM Ca,b CURVES AND THEIR BEHAVIOUR

UNDER SQUARING THEIR DUAL

SABIRA EL KHALFAOUI, MATHIEU LHOTEL, AND JADE NARDI

Abstract. In this paper, we introduce a family of codes that can be used in a McEliece cryp-
tosystem, called Goppa–like AG codes. These codes generalize classical Goppa codes and can be

constructed from any curve of genus g ≥ 0. Focusing on codes from Ca,b curves, we study the

behaviour of the dimension of the square of their dual to determine their resistance to distin-
guisher attacks similar to the one for alternant and Goppa codes developed by Mora and Tillich

[MT23]. We also propose numerical experiments to measure the sharpness of our bound.

Introduction

McEliece crytosystem. The McEliece cryptosystem is one of the last code–based candidates for
standardization of post–quantum cryptographic to the NIST competition since the third round. It
guarantees the smallest ciphertexts among all the candidates, but it suffers from the largest public
keys. Over the past forty years, there were many attempts in replacing the family of binary Goppa
codes by other structured families of codes in order to reduce the key size.

The security of the McEliece cryptosystem is based on two assumptions: (i) in average, it is
hard to decode t errors for codes having the same parameters as the codes used as keys and (ii) it
is difficult to distinguish codes used as public keys from arbitrary ones. When proposing another
family of codes, one must ensure that both of the hardness assumptions are still valid. Algebraic
geometry (AG) codes appear to be good candidates for the McEliece cryptosystem, since they
are evaluation codes built from algebraic curves (GRS codes are a typical example of AG codes
on a genus zero curve). Moreover, they also come with an efficient decoding algorithm (see the
survey of Høholdt and Pellikaan [HP95]). In 1996, Janwa and Moreno [JM96] proposed to use
AG codes, concatenation or subfield subcode of these codes in the McEliece cryptosystem. As
for concatenated ones, they were broken by Sendrier [Sen94]. For AG codes, Faure and Minder
proposed an attack in [FM08, Min07, Fau09] for codes of genus at most 2. The scheme based on
AG codes has been completely broken by Couvreur, Marquez-Corbella and Pellikaan [CMCP17],
who proposed a filtration–based attack on AG codes for any genus, enabling decoding just by
handling the public key and without knowledge of the curve and/or the divisor. However, the
authors underlined that subfield subcodes of AG codes (SSAG codes in short) are resistant to this
filtration attack. Moreover, some of these codes have a good designed minimum distance, such
as Cartier codes [Cou14]. This resistance to structural attacks, as well as their good parameters,
motivated several works on SSAG codes. Barelli [Bar18] studied the security of quasi–cyclic SSAG
codes designed from cyclic covers of the projective line and of plane curves. Recently, Zhao and
Chen [ZC22] analysed the parameters and the decoding performance of one–point elliptic subfield
subcodes, showing that in the binary case, decoding results on these codes outperform the similar
rate in the case of BCH codes. Also, the authors in [PJ14, KN21] focus on one–point Hermitian
codes, and manage to compute the exact dimension of their subfield subcodes, in order to get a
better estimate for the key size when using them in the McEliece cryptosystem.

Subfield subcodes of AG codes. Let Fqm be a finite extension of Fq. Let C be an AG code,
i.e. C := CL(X ,P, G) ⊆ Fn

qm where X is an algebraic curve defined over Fqm , P ⊆ X (Fqm) and
G ∈ Div(X ). The subfield subcode of C over Fq is defined by

CL(X ,P, G)|Fq
:= C ∩ Fn

q .

In this paper, we introduce a specific class of SSAG codes, namely Goppa–like AG codes. The
idea of this construction is to introduce some randomness into the family of SSAG codes drawn as
private key by mimicking the role of the Goppa polynomial in the case of classical Goppa codes.
Given an effective divisor D ∈ Div(X ) on the curve, we consider SSAG codes associated to divisors
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of the form D + (g), for a large family of functions g ∈ Fqm(X ) on the curve. A Goppa–like AG
code is then defined as the subfield subcode over Fq of CL(X ,P, D+(g))⊥. In the genus zero case,
this construction gives codes which are Hamming equivalent to classical Goppa codes. With a good
choice of the curve and divisor, it is possible to encode and decode these codes in a timely manner;
this generalization has the potential to significantly improve on the original McEliece proposal.
This encourages the present study of structural attacks on Goppa–like AG codes.

Distinguisher attack. Our starting point is the paper by Mora and Tillich [MT23], which ben-
efited from the trace structure of the dual code of a subfield subcode to provide a sharp bound
for the dimension of the square of the dual of alternant codes. This gives a distinguisher for these
codes: whoever with a generator matrix (or a parity check matrix) of such a code can calculate this
dimension in polynomial time and notice that it is significantly smaller than expected. Informally
they give a bound of the form

dim
((

GRSr(x,y)|Fq

)⊥)⋆2 ≤ D − δ

where D = dimFq

((
C|Fq

)⊥)⋆2
=
(
mr+1

2

)
is the expected value for a random r-dimensional code C

and δ > 0 (see §1.1 for formal definitions). Mora and Tillich’s techniques rely on two features of
GRS codes. First, their behaviour with respect to the Schur product is well known. In the particular
case of Goppa codes, where the multiplicator has the form y = (g(x1)

−1, g(x2)
−1, . . . , g(xn)

−1)
for some degree r polynomial g, they managed to get an even sharper upper bound by performing
Euclidean division by powers of g.

As Goppa–like AG codes extend Goppa codes, it is natural to wonder if one can derive a
structural attack on these codes from Mora and Tillich’s attack. The genus g of the curve plays
a significant role in the parameters of AG codes. The greater the genus, the more Fq–points the
curve X may have and so the longer the code can be. But the parameters [n, k, d] of an AG code
satisfy n− g+1 ≤ k+d ≤ n+1, which means that an AG code is g–far from optimality. Also, the
correction capacity naturally suffers from a big genus: the naive correction algorithm can correct
up to d−1−g

2 errors. Only refined techniques, based on error locating arrays [CP20], manage to
remove the term related to the genus. Therefore, caution should be exercised when it comes to
the impact of the genus on the properties of AG codes. Even if Mora and Tillich’s attack does
not threaten the Goppa codes used in the NIST competition, SSAG–based propositions may be
vulnerable to a similar structural attack.

Contributions of this paper. In the present work, we are interested in the case of one–point
Goppa–like AG codes from Ca,b curves, a class of curves introduced in [Miu93]. These curves
have been extensively studied and they are especially interesting to design AG codes. As we know
explicit monomial basis of the AG code associated to any multiple of its unique point at infinity, it
allows us to efficiently encode one–point codes [BRS21]. Furthermore, they remain quite general:
for examples, elliptic curves, Kummer or Artin-Schreier curves are Ca,b curves. It is also natural
to wonder how the genus affects the distinguisher: in particular, we give a sufficient condition in
terms of the minimal degree our divisor has to satisfy in order to mount the distinguisher. This
bound is increasing with the genus of the curve, and coincides with the one given in [MT23] in
the case of classical Goppa codes. Consequently, when the genus gets higher, we are not able to
distinguish codes associated to low degree divisors. In the worst cases, we might not be able to
distinguish anything.

AG codes, as generalizations of GRS codes, have exactly the same behaviour with respect to the
Schur product. Moreover, some well–chosen AG codes are defined by the evaluation of multivariate
polynomials. In this case, we prove that performing division algorithms via Gröbner bases enables
us to estimate the dimension of the square of the dual of Goppa–like AG codes. Even better,
computations tend to show that the bound we obtain on the dimension is sharp whenever the
one–point Goppa–like AG code seems random (i.e the function g is sufficiently random). The
counterpart is, as it was the case in [MT23] for classical Goppa codes, that we can only distinguish
high rate codes. More precisely, our maximum distinguishable rate is roughly the same as in
[MT23]. A comparison of their results and ours is carried out in the case of Goppa–like AG
codes defined over an elliptic curve. However, as previously discussed, if the genus becomes too
large, the distinguisher may become ineffective: in particular, we show that Goppa–like AG codes
constructed from the Hermitian curve resist our distinguisher, which is encouraging if we intend
to base the McEliece cryptosystem on such class of codes.

However, as it is already the case for the distinguisher of classical Goppa codes [MT23], it seems
complicated to turn this distinguisher into an efficient structural attack. But, having an algebraic
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explanation of the structure of the square of the dual of one–point Goppa–like AG codes is still
desirable if we want to perform an attack using square code considerations. It also provides a
rigorous method for selecting initial parameters that ensure the security of our cryptosystem.

Application of Goppa-like AG codes to the McEliece cryptosystem. For a McEliece
cryptosystem based on a family of [n, k]q linear codes, the public key has size k(n − k)⌈log2(q)⌉,
whenever the generator matrix G of the public code is given in systematic form. The choice of
such codes should not be limited to the binary case: Peters [Pet09] showed that for q > 2, the
subfield subcode construction over Fq can improve the key size while maintaining the same level
of security against a decoding attack.

Information–set decoding (ISD) algorithm, introduced by Prange [Pra62], is the best known
algorithm for decoding a random–looking code without any knowledge of its structure. Let us
denote by t the error capability of the family of codes we consider. Given a (n − k) × n parity
check matrix H and a column vector s of length n− k obtained through H, the total complexity
of finding the row vector e ∈ Fn

q of weight t and satisfying s = HeT is given by

CPrange =

(
n
t

)(
n−k
t

)Cpartial Gauss

where Cpartial Gauss is the cost of the partial Gauss–Jordan elimination. We neglect it since the
Gaussian elimination is exponentially faster than the collision search.

In this work, we also investigate Goppa–like AG codes over finite fields with different char-
acteristics by analysing the computational cost of the ISD algorithm for parameters relevant to
post–quantum cryptography. In Table 1, we provide parameters of Goppa–like AG codes from the
Hermitian curve (for g random) that resist the distinguisher given in this paper and that improve
key sizes compared to binary Goppa codes. We also compare to the subfield subcodes of one–point
Hermitian codes (HSS) [NEK21, Tables 2 and 3], which corresponds to the case where the function
g is zero. In this table, s denotes the degree of the one–point divisor D = sP∞.

Variant q m n s k t
Security

log2(CPrange)
Key size

(Megabytes)

C
a
te
g
o
ry

1 Classical 2 12 3 488 – 2 720 64 143 261

HSS

11
2

1 331 1 174 927 78 142 140

GLH

1 331 242 955 67 128 155

1 289 248 901 70 128 151

13 1 366† 426 668 136 142 216

C
a
te
g
o
ry

3 Classical 2 13 4 608 – 3 360 96 185 524

HSS

13 2

2 197 2 039 1 735 79 185 401

GLH
2 197 346 1 659 96 204 413

1 731† 438 1 009 142 192 337

C
a
te
g
o
ry

5

Classical 2 13 6 688 – 5 024 128 263 1 045

HSS 13

2

2 197 1 861 1 398 168 263 559

GLH
13 2 197 506 1 339 176 256 531

16 2 467† 570 1 565 166 256 706

Classical 2 13 8 192 – 6 528 128 300 1 358

HSS

16 2

4 096 3 874 3 422 111 300 1 153

GLH
4 096 478 3 378 120 314 1 213

2 704† 674 1 594 218 300 885

Table 1. Comparison between binary Goppa codes (Classical [BCC+22]), one–
point Hermitian subfield subcodes (HSS [NEK21]) and Goppa–like Hermitian
codes (GLH ) in the McEliece cryptosystem.

Note that the Goppa–like Hermitian codes given in Table 1 have length at most q3. By consid-
ering shorter codes, we get smaller keys and better correction capability t, at the expense of the
security. For practical use in the McEliece cryptosystem, we need to ensure that for each function
g selected, we are able to construct the associated Goppa-like AG code. This is why we must
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choose q3 − n larger than s, so that we can always select n Fq–points P outside the zero locus
of g and define the evaluation code CL(X ,P, D + (g)) properly. If this condition is fulfilled, the
length given in Table 1 is followed by a symbol †. At each level of security, we can guarantee this
property, sometimes by working over larger alphabets and thus deteriorating the parameters.

In general, Goppa-like Hermitian codes offer significant advantages over classical binary Goppa
codes in terms of key size optimization, error correction capability, and potential post-quantum
security.

Outline of the paper. The paper is organized as follows. Section 1 is dedicated to basic defini-
tions about linear codes, subfield subcodes and trace codes, AG codes and Ca,b curves. In Section
2, we introduce the notion of Goppa–like AG codes and we give a first bound for the dimension
of the square of their dual. In Section 3, we refine the bound for Goppa–like AG codes from Ca,b

curves, associated to one–point divisors. Section 4 concludes this paper with a discussion about
this bound on elliptic curves and on the Hermitian curve.

1. Preliminaries

1.1. Linear codes, subfield subcodes and trace codes. In this section, we briefly introduce
some notation and basic definitions for linear codes, subfield subcodes, and trace codes. Further-
more, we present significant results that employ component–wise product and the trace map. For
further details about linear codes, we refer the reader to [MS86].
Let Fqm be a finite extension of the field Fq with q elements, where m ≥ 1. A linear code C over Fqm

is a vector subspace of Fn
qm . The integer n is called its length and we denote by k its dimension and

by d its minimum distance. We say that C is a [n, k, d]qm code or that it has parameters [n, k, d]qm

(we may omit the minimum distance in this notation). Given a linear code of length n, its dual
code C⊥ is defined by

C⊥ =
{
x ∈ Fn

qm | c · x = 0, for all c ∈ C
}
,

where · denotes the usual scalar product. It is easy to verify that if C is an [n, k]qm code, then C⊥

is a [n, n − k]qm code. A generator matrix G of an [n, k]qm linear code C is a k × n matrix over
Fqm whose rows are a basis of C as a vector space, while a parity check matrix H of C is a any
generator matrix of its dual. For a linear code with length n and dimension k, its rate is defined
by the ratio R := k

n . The Schur product of two vectors a,b ∈ Fn
qm is defined as

a ⋆ b := (a1b1, · · · , anbn).

It can be extended to codes in the following way: If C and D are two codes over Fqm with same
length n, their Schur product is defined as the following component–wise product:

C ⋆D := Span (c ⋆ d | c ∈ C,d ∈ D) .

Moreover, if C = D, we call C⋆2 := C ⋆ C the square of C. The following lemma gives a first
estimation of the dimension of Schur product of codes.

Lemma 1.1 ([MT23, Proposition 10]). Let C and D be two linear codes over Fqm with same length
n and respective dimension kC and kD. We have

(1) dimFqm
(C ⋆D) ≤ min{kCkD, n};

(2) dimFqm
(C⋆2) ≤ min

(
n,

(
kC + 1

2

))
.

In particular, by [CCMZ15, Theorem 2.3], if C is sufficiently random and C⋆2 does not fill the
full space, we expect to have

dimFqm
(C⋆2) =

(
kC + 1

2

)
.

Given a linear code C over Fqm , there exist two constructions of codes on the subfield Fq, namely
its subfield subcode and its trace code. The subfield subcode of C, denoted by C|Fq , is the linear
code over Fq defined by

C|Fq
= C ∩ Fn

q .

Again, if C is a [n, k, d]qm code, then C|Fq
is a [n,≥ n−m(n− k),≥ d]q code. Let TrFqm/Fq

be the
trace operator on Fqm with respect to Fq, i.e. defined by

TrFqm/Fq
(x) = x+ xq + ...+ xqm−1

,

for any x ∈ Fqm . We can extend this definition to any vector c ∈ Fn
qm by

TrFqm/Fq
(c) = (TrFqm/Fq

(c1) , · · · ,TrFqm/Fq
(cn)).
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To make the notation less cumbersome, we shall write Tr(·) instead of TrFqm/Fq
(·) in the follow-

ing.
Given a linear code C of length n and dimension k over Fqm , its trace code over Fq is the image

under the trace operator, that is Tr(C). It is a linear code of length n over Fq, whose dimension
satisfies

(1) dimFq
Tr(C) ≤ min{mk, n}.

Subfield subcodes and trace codes are related by the duality operator, as stated by Delsarte’s
theorem.

Theorem 1.2 ([Del75, Delsarte’s theorem]). Let C be a linear code of length n over Fqm . Then(
C ∩ Fn

q

)⊥
= Tr

(
C⊥) .

1.2. AG and SSAG codes.

1.2.1. Definitions. Let X be a smooth and irreducible projective curve over Fqm of genus g. A
divisor on X over Fqm is a formal sum of places over Fqm , i.e. of the form G =

∑
νP (G)P , where

νP (G) are integers which are all zero except for a finite number of places P . We denote by Div(X )
the set of Fqm–divisors on X (we omit the dependence on Fqm). Given G ∈ Div(X ), we define
its support Supp(G) as the finite set of places P such that νP (G) is non–zero and its degree as
deg(G) =

∑
νP (G) deg(P ). We say that a divisor G ∈ Div(X ) is effective if for all P ∈ Supp(G),

we have νP (G) ≥ 0, in which case we write G ≥ 0. This permits to define an order on the group
of divisors by setting G1 ≥ G2 if and only if G1 −G2 ≥ 0.

A non–zero function f ∈ Fqm(X ) defines a divisor, called principal, denoted by (f) =
∑

νP (f)P .
The Riemann–Roch space of a divisor G is defined as the Fqm vector space

L(G) := {f ∈ Fqm(X ) | (f) +G ≥ 0} ∪ {0},

of dimension ℓ(G). Let P ⊆ Fqm(X ) be a set of n distinct rational points such that Supp(G)∩P =
∅. By numbering the points in P = {P1, . . . , Pn}, we define an evaluation map

(2) evP :

{
L(G) → Fn

qm

f 7→ (f(P1), . . . , f(Pn))

We can consider the AG code

C := CL(X ,P, G) := {evP(f) | f ∈ L(G)},

which is a [n, k ≥ ℓ(G)]Fqm
code. If n > deg(G), then its dimension is exactly equal to ℓ(G) and

its minimum distance is bounded from below by the designed distance d∗ = n− deg(G).
From the Riemann–Roch theorem, we have

ℓ(G) ≥ deg(G) + 1− g,

with equality if deg(G) ≥ 2g− 1.

The dual of an AG code can be described as a residue code (see [Sti09] for more details), i.e.

CL(X ,P, G)⊥ = CΩ(X ,P, G).

Residue and evaluation codes are connected by the following result.

Proposition 1.3 ([Sti09, Proposition 2.2.10]). Let CL(X ,P, G) be an AG code defined on a curve
X . Then

CΩ(X ,P, G) = CL(X ,P, G⊥),

with G⊥ = DP −G+W , where DP =
∑

P∈P
P and W = (ω) is a canonical divisor such that for all

P ∈ P, νP (ω) = −1 and Resω(P ) = 1.

In general, it is hard to find the true dimension of the subfield subcode of an AG code, but a
trivial estimate can be derived from Delsarte’s theorem (Theorem 1.2):

(3) dimFq
CL(X ,P, G)|Fq

≥ n−mdimFqm
CΩ(X ,P, G).

The minimum distance of the SSAG code CL(X ,P, G)|Fq
is at least the one of the AG code

CL(X ,P, G) above. It is thus bounded from below by the designed distance d∗ = n− deg(G).
In particular cases, the structure of AG codes may provide sharper bounds on the dimension of

their subfield subcodes and trace codes.
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Theorem 1.4 ([Sti09, Theorem 9.1.6]). With notation as above, let G1 be any divisor such that

(4) G ≥ qG1 and G ≥ G1.

Then

dimFq
Tr(CL(X ,P, G)) ≤

{
m (ℓ(G)− ℓ(G1)) + 1 if G1 ≥ 0,

m (ℓ(G)− ℓ(G1)) if G1 ̸≥ 0,

and

dimFq CΩ(X ,P, G)|Fq ≥

{
n− 1−m (ℓ(G)− ℓ(G1)) if G1 ≥ 0,

n−m (ℓ(G)− ℓ(G1)) if G1 ̸≥ 0.

Remark 1.5. The biggest divisor (with respect to the degree) satisfying the conditions in Equation
(4) is given by

(5)

[
G

q

]
:=

∑
P∈Supp(G+)

⌊
νP (G

+)

q

⌋
P +

∑
P∈Supp(G−)

νP (G
−)P,

where G+ and G− are effective divisors such that G = G+ −G−.

With additional hypotheses on G and

[
G

q

]
, [LC16, Theorem 1] gives an exact formula for such

a code.
Regarding the parameters of subfield subcodes of differential codes, Wirtz [Wir88] improved the

bound on their the minimum distance.

Theorem 1.6 ([Wir88, Theorem 2]). Take the same notation as in Theorem 1.4 and assume
deg(G1) > 2g − 2. Set U := {P ∈ Supp(G) | νP (G) ≥ 0 and νP (G) = q − 1 mod q} and
GU =

∑
P∈U P . Then

dimFq CΩ(X ,P, G)|Fq = dimFq CΩ(X ,P, G+GU )|Fq ,

hence the minimum distance of CΩ(X ,P, G)|Fq
satisfies

d
(
CΩ(X ,P, G)|Fq

)
≥ deg(G) + deg(GU )− 2g+ 2.

1.2.2. First estimation of the dimension of the square of the trace of an AG code. In this paper, we
aim to bound the dimension of the square of the dual of an SSAG code. From Delsarte’s theorem,
this is equivalent to study the square of the trace of the corresponding AG code. This is possible
thanks to the following result from [MT23], which is valid for any linear code.

Proposition 1.7 ([MT23, Proposition 15]). Let C be a linear code over Fqm . Then we have

(6) Tr(C)⋆2 := ((C⊥|Fq )
⊥)⋆2 ⊆

⌊m/2⌋∑
i=0

Tr
(
C ⋆ Cqi

)
,

where Cqi =
{(

cq
i

1 , . . . , cq
i

n

)
| c ∈ C

}
. Moreover, if m is even,

(7) dimFq Tr
(
C ⋆ Cq

m
2
)
≤ m

2
(dimFqm

C)2.

From this result, we can deduce an upper bound for the dimension of the square of the dual of
any linear code.

Corollary 1.8 ([MT23, Corollary 16]). Let C be any Fqm-linear code. Then

(8) dimFq Tr(C)
⋆2 ≤ m · dimFqm

(C⋆2) +

(
m

2

)
(dimFqm

(C))2.

Furthermore, if dimFq
Tr(C) = m · dimFqm

(C), then

dimFq
Tr(C)⋆2 −

(
dimFq

Tr(C) + 1

2

)
≤ m

(
dimFqm

C⋆2 −
(
dimFqm

(C) + 1

2

))
.

The above corollary implies that if the dimension of a square code is smaller than that of a
random code, namely

dimFqm
(C⋆2) <

(
dimFqm

(C) + 1

2

)
,

then this property is retained for the trace code, i.e.

dimFq Tr(C)
⋆2

<

(
dimFq

Tr(C) + 1

2

)
.
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This is especially true for Reed–Solomon codes (see [MT23, Proposition 11]) and more generally
for AG codes.

Proposition 1.9 ([Mum70, Theorem 6]). Let F,G be two divisors on X such that deg(G) ≥ 2g+1
and deg(F ) ≥ 2g. Then

L(F ) · L(G) = L(F +G),

where L(F ) · L(G) := Span (f · g : (f, g) ∈ L(F )× L(G)).

If Supp(F )∩P = Supp(G)∩P = ∅, then denoting all the evaluation maps defined in Equation
(2) by evP (regardless of their domain), we have

(9) ∀ (f, g) ∈ L(F )× L(G), evP(f) ⋆ evP(g) = evP(f · g).

As a consequence, for associated AG codes, we have

CL(X ,P, F ) ⋆ CL(X ,P, G) ⊆ CL(X ,P, F +G).

Regarding the Schur square, it implies that

CL(X ,P, G)⋆2 ⊆ CL(X ,P, 2G),

with equality if deg(G) ≥ 2g + 1. If deg(G) ≥ g, applying the Riemann–Roch theorem to the
divisors G and 2G thus gives

(10)

dimFqm
CL(X ,P, G)⋆2 ≤ dimFqm

CL(X ,P, 2G)

= 2 deg(G) + 1− g

≤ deg(G) + dimFqm
CL(X ,P, G),

which is much smaller than the expected dimension given in Lemma 1.1 (2). Combined with
Equation (6), we get a first upper bound on the dimension of the square of the trace of an AG
code.

Corollary 1.10. Let C := CL(X ,P, G) be a k–dimensional AG code on X associated with a degree
s ≥ g divisor. Then

dimFq Tr(C)
⋆2

= dimFq

(
(C⊥|Fq )

⊥)⋆2 ≤
(
mk + 1

2

)
− m

2
(k(k − 1)− 2s).

Proof. From Proposition 1.9 and Equation (10), we have dimFqm
C⋆2 ≤ 2s+ 1− g ≤ k + s. Thus,

Equation (8) leads to

dimFq
Tr(C)⋆2 ≤ m(k + s) +

(
m

2

)
k2 = (2k + 2s+mk2 − k2)

m

2

= (k(mk + 1)− k2 + k + 2s)
m

2

=

(
mk + 1

2

)
− m

2
(k(k − 1)− 2s).

□

Remark 1.11. For X = P1, we recover [MT23, Theorem 17].

According to the above corollary, the dimension of the square of the dual of an SSAG code is
less than the expected value for random codes (which is

(
mk+1

2

)
), due to the algebraic structure

of AG codes. However, this bound does not fully benefit from this rich structure, notably the
following property.

Lemma 1.12. Let C := CL(X ,P, G) be a k–dimensional AG code on X . For every i ≥ 0, we have

C ⋆ Cqi ⊆ CL(X ,P, (qi + 1)G)

Proof. Fix i ≥ 0 and let f1, f2 ∈ L(G). Then the product f1f
qi

2 belongs to L((qi + 1)G) as

(f1f
qi

2 ) + (qi + 1)G = ((f1) +G) + qi ((f2) +G) ≥ 0.

This proves the inclusion of spaces

L(G) · L(G)q
i

⊆ L((qi + 1)G),

hence the inclusion of the associated codes. □
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Remark 1.13. The property above for i = 0 follows from Proposition 1.9. To the best of our
knowledge, there is no sufficient criterion for the equality when i ≥ 1 in the literature. Given a

basis {f1, . . . , fk} of the Riemann–Roch space L(G), the vector space L(G) · L(G)q
i

is spanned by

the set
{
fuf

qi

v | 1 ≤ u ≤ v ≤ k
}
. From our experiments, it may happen that the cardinality of this

family is larger than ℓ((qi +1)G) without the equality holding, which means that these generators

may be linearly dependent in L((qi + 1)G) and do not form a basis of L(G) · L(G)q
i

.

Thanks to Lemma 1.12, it will be possible to better handle the terms Tr
(
C ⋆ Cqi

)
in Equation

(6). Our aim for the rest of the paper is to improve the bound of Corollary 1.10 in some specific
cases.

1.3. Ca,b curves. Throughout this paper, we will be dealing with algebraic geometry codes defined
over a Ca,b curve. This section is dedicated to some properties on this well–studied class of curves.
For further details, we refer to [Miu93].

Definition 1.14. Let a, b be coprime positive integers. A Ca,b curve over Fqm is a curve Xa,b

having an irreducible, affine and non–singular plane model with equation

(11) fa,b(x, y) = α0ay
a + αb0x

b +
∑

αijx
iyj = 0,

where fa,b ∈ Fqm [X,Y ] with α0a, αb0 ̸= 0, and the sum is taken over all couples (i, j) ∈ {0, · · · , b}×
{0, · · · , a} such that ai+ bj < ab.

Any curve Xa,b defined as in Equation (11) has a unique point at infinity, denoted by P∞.
Moreover, as a plane curve, its genus is given by

ga,b :=
(a− 1)(b− 1)

2
.

1.3.1. The point at infinity P∞ and the ring S. We will consider codes obtained by evaluating
functions on Xa,b which are regular everywhere, except maybe at the unique point at infinity P∞.
These functions then belong to the coordinate ring of the affine curve Xa,b\{P∞}, which we denote
by S. We have

(12) S =
⋃
s≥0

L(sP∞),

where each Riemann–Roch space L(sP∞) has an explicit basis as follows:

(13) L(sP∞) = Span
(
xiyj | 0 ≤ i, 0 ≤ j ≤ a− 1 and ai+ bj ≤ s

)
.

In summary, any function that is regular on all Xa,b except maybe at P∞ is a bivariate polynomial
in the functions x and y.

Definition 1.15 (Weighted degree). Given a monomial of the form xiyj ∈ S, we define its weighted
degree by

dega,b
(
xiyj

)
:= ai+ bj.

From this degree, we can define a monomial order ≺ over S ≃ Fqm [x, y] as follows: xuyv ≺ xu′
yv

′

if

(14) dega,b (x
uyv) < dega,b

(
xu′

yv
′
)

or
(
dega,b (x

uyv) = dega,b

(
xu′

yv
′
)

and u < u′
)
.

Any function f ∈ S can be written in the form

f = c · xβyα + f ′(x, y),

with c ̸= 0, α ≤ a−1 and f ′ ∈ S such that any monomial xiyj of f ′ satisfies ai+bj < dega,b
(
xβyα

)
and j ≤ a − 1. The leading monomial of f with respect to the monomial order ≺ is thus defined
by LM(f) := xβyα. This extends the definition of weighted degree to any such function by setting

dega,b (f) := dega,b (LM(f)) .

It is easy to check that for any f ∈ S, its weighted degree dega,b (f) is equal to the smallest
integer s such that f belongs to the Riemann–Roch space L(sP∞). This way, any function in
L(sP∞) can be seen as a polynomial in x and y such that dega,b (f) ≤ s.

Remark 1.16. For every f ∈ S, we have dega,b (f) = −vP∞(f).
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2. Goppa–like AG codes

2.1. Definition, parameters and context in the literature. Let D be an effective divisor
of positive degree s on a smooth and irreducible projective curve X over Fqm . Take a rational
function g ∈ Fqm(X ) such that g /∈ L(D). Given a set of Fqm–points P ∈ X (Fqm) such that
P ∩ Supp(g) = ∅ and P ∩ Supp(D) = ∅, we consider the AG code

C := CL(X ,P, D + (g)) =
{
evP(fg

−1) | f ∈ L(D)
}
.

From now on, we set G = D + (g). Note that we have deg(G) = deg(D).

Definition 2.1. The Goppa–like AG code associated to C is defined as the subfield subcode of its
dual code, i.e.

Γ(P, D, g) := C⊥|Fq
.

Such a code has length n = #P. As stated in [JM96, Theorem 1], its dimension satisfies

dimFq
Γ(P, D, g) ≥ n−mdimFqm

CL(X ,P, D + (g)) = n−m(deg(D)− g+ 1)

if 2g− 2 < deg(D) < n. Its minimum distance is bounded from below by deg(D)− 2g+ 2.

Remark 2.2. These estimations on the dimension and the minimum distance may be improved
by Theorems 1.4 and 1.6. Regarding the dimension, it is worth noting that, since g /∈ L(D), the
divisor G is not effective. Hence, any divisor G1 satisfying the conditions of Equation (4) is also
non–effective, which means that

dimFq Γ(P, D, g) ≥ n−m (ℓ(G)− ℓ(G1)) .

Without additional conditions on the divisor D and the function g, the divisor GU for G = D+(g)
defined in Theorem 1.6 is zero. Generally, we cannot expect for a better bound for the minimum
distance.

2.1.1. Why the terminology Goppa–like? In [JM96], Janwa and Moreno define Goppa codes on
smooth and irreducible projective curves. Compared to their definition, Definition 2.1 introduces
a function g which defines a multiplicator for the AG code over Fqm that is algebraically related
to the support P.

Introducing this function g facilitates the use of SSAG codes as public keys for the McEliece
cryptosystem. Given a correcting error capability t, we can fix a divisor D whose degree satisfies
deg(D) ≥ 2t + 2g + 1. Then the family of codes in which the public key is picked can be defined
by running a family of functions g outside L(D).

We prefer the terminology Goppa–like AG codes instead of simply Goppa codes for two reasons.
First, AG codes were historically called geometric Goppa codes. Our terminology involving both the
words “Goppa” and “AG” removes this possible ambiguity. Second, we want to emphasize the use
of a different curve than the projective line P1, like we differentiate AG codes from Reed–Solomon
codes.

This denomination is obviously motivated by the fact that here, the rational function g plays
the role of the Goppa polynomial. As described in [Sti09, Example 9.1.8], Goppa codes are nothing
but Goppa–like AG codes from the projective line X = P1. In fact, given r ≥ 0, the Generalized
Reed–Solomon (GRS) code of degree r, support x ∈ Fn

qm and multiplier y ∈ (F∗
qm)n is defined as

GRSr(x,y) = {(y1f(x1), y2f(x2), . . . , ynf(xn)) | f ∈ Fqm [X] such that deg(f) < r}.
Take a univariate polynomial g of degree r such that g(xi) ̸= 0 for every i ∈ {1, . . . , n}. Then the
Goppa code of order r and support x ∈ Fn

qm is defined as

(15) Γr(x, g) = GRSr(x,y)
⊥|Fq

,

where y = (g(x1)
−1, g(x2)

−1, . . . , g(xn)
−1). Represent the Fqm–points of P1 by the couples

P1(Fqm) = {[1 : x] | x ∈ Fqm}∪{P∞} for P∞ = [0 : 1]. Take P = {[1 : x1], [1 : x2], . . . , [1 : xn]} and
D = (r − 1)P∞. Finally, the polynomial g can be seen as a function on P1 which lies in L(rP∞)
but not in L((r − 1)P∞). Then both constructions match: Γr(x, g) = Γ(P, D, g).

2.1.2. Relation with Cartier codes. Cartier codes [Cou14] are also defined as a geometric realiza-
tion of Goppa codes, since well–known properties of Goppa codes naturally extend to them. For
instance, Theorem 1.6 holds for Cartier code without assumption on the degree of the divisor.

The link with Goppa–like AG codes is the following: by definition, a Cartier code is a subcode
of the subfield subcode of a residue code (see [Cou14, Proposition 4.3]), which actually means that
for an appropriate choice of divisor, a Cartier code is a subcode of the corresponding Goppa–like
AG code. Moreover, [Cou14, Theorem 5.1] provides a sufficient condition for both constructions to
be equal. More precisely, let us consider a Goppa–like AG code Γ(P, D, g) and set G := D + (g).
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Then the Cartier code Carq(P, G) (see [Cou14, Definition 4.2]) satisfies Carq(P, G) ⊆ Γ(P, D, g),
and

dimFq
(Γ(P, D, g)/Carq(P, G)) ≤ m · i(G1),

where G1 is any divisor such that

(4) G ≥ qG1 and G ≥ G1.

Here i(G1) stands for the index of speciality of G1 (see [Sti09, Definition 1.6.10]). By the Riemann–
Roch theorem, if deg(G1) > 2g − 2, then i(G1) = 0. Thus, using Remark 1.5, the Cartier code

Carq(P, G) coincides with the Goppa–like AG code Γ(P, D, g) whenever deg

([
G

q

])
> 2g− 2.

Example 2.3. Let q = 3 and m = 4. We consider the elliptic curve defined over Fqm by the
equation

E : y2 = x3 + 2x+ 1.

As usual, we denote by P∞ the unique point at infinity on E. We take D as a one–point divisor
supported by P∞, i.e D = 7P∞. We consider two choices of function g ∈ L(8P∞) \ L(7P∞):

(1) First, let g1 = x4. In this case, g has 2 zeroes (say P1 and P2), which are those of x. More
precisely, the divisor of g1 is given by

(g1) = 4(P1 + P2)− 8P∞.

Hence, if we set G = D+(g1), the divisor
[
G
q

]
= P1+P2−P∞ has degree 1 > 2g(E)−2 = 0,

meaning that the codes Γ(P, D, g1) and Car3(P, G) are equal over F3.
(2) Second, take g2 = x4+xy. This time, we can verify that g2 has 8 distincts rational zeroes,

say R1, . . . , R8, i.e
(g2) = R1 + · · ·+R8 − 8P∞.

Consequently, we easily check that deg
([

G
q

])
= −1 ≤ 2g(E) − 2. Some computations

realized on Magma show that the codes Γ(P, D, g2) and Car3(P, G) are not equal in this
case.

Magma results are summarized in Table 2, where P = E(Fqm) \ Supp(g).

n deg(D) Choice of g deg
([

D+(g)
q

])
dimF3

(Γ(P, D, g)) dimF3
(Car3(P, G))

88
7

g = x4 1 64

82 g = x4 + xy −1 50 54

Table 2. Comparison of Cartier and Goppa–like constructions

2.2. On the dimension of the square of the dual of a Goppa–like AG code. In this section,
we aim to generalize the properties found by the authors of [MT23] in Section 6, in the context of
Goppa–like AG codes. Let us consider the AG code

C := CL(X ,P, D + (g))

as defined in Section 2.1. Applying Equation (6) yields

(16) Tr(C)⋆2 = (Γ(P, D, g)⊥)⋆2 ⊆
⌊m/2⌋∑
i=0

Tr
(
C ⋆ Cqi

)
.

Below, we discuss how to improve the upper bound given in Corollary 1.10, which is valid for
all subfield subcodes of AG codes. The idea is to use the specific algebraic structure of our code
inherited from the choice of its divisor. In fact, notice that the code C is monomially equivalent
to CL(X ,P, D). More precisely, using the equality L(D+ (g)) = g−1 · L(D), we can easily deduce
the following result.

Lemma 2.4. Suppose s ≥ g. Then for all i ≥ 0, we have

dimFq Tr
(
C ⋆ Cqi

)
≤ m

(
s
(
qi + 1

)
+ 1− g

)
.

Proof. From Lemma 1.12, we deduce that

dimFqm
C ⋆ Cqi ≤ dimFqm

L((qi + 1)G) = dimFqm
L((qi + 1)D) = s(qi + 1) + 1− g,

the last equality coming from the Riemann–Roch theorem (since deg
(
(qi + 1)D

)
= (qi + 1)s ≥

2g−1). The result follows from the usual upper bound on the dimension of the trace of a code. □
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Remark 2.5. At first glance, it seems that we could have benefited from Theorem 1.4 to get a
sharper bound in the previous lemma. Indeed, for every i ≥ 1, we have[

(qi + 1)G

q

]
= qi−1G+ − (qi + 1)G−,

writing G = G+ − G− with G+, G− ≥ 0. However, in the context of Goppa–like AG codes, we
have G = D + (g) where g /∈ L(D), hence G− ̸= 0. Without further hypotheses on the divisor D

and the function g, the degree of the divisor
[
(qi+1)G

q

]
may be too low to bound the dimension of

its Riemman–Roch space from below via the Riemann–Roch theorem.

This simple lemma yields an upper bound on the dimension of the square of the dual of Goppa–
like codes.

Proposition 2.6. Let C := CL(X ,P, D + (g)) be an AG code as above, and suppose s ≥ g. Set

k := dimFqm
C and e0 := min

(⌊
m
2

⌋
,
⌊
logq

(
k2

s

)⌋)
. Then

dimFq (Γ(P, D, g)⊥)⋆2 ≤
(
mk + 1

2

)
− m

2

(
k(k − 1)(2e0 + 1)− 2s

(
qe0+1 − 1

q − 1

))
.

Proof. For any e ∈
{
0, . . . , ⌊m

2 ⌋
}
, Proposition 1.7 implies that

dimFq
(Γ(P, D, g)⊥)⋆2 ≤

⌊m/2⌋∑
i=0

dimFq
Tr
(
C ⋆ Cqi

)

≤
e∑

i=0

m(s(qi + 1) + 1− g) +

⌊m/2⌋∑
i=e+1

dimFq
Tr
(
C ⋆ Cqi

)
(by Lemma 2.4)

≤
e∑

i=0

m(sqi + k) +

(
m− 1

2
− e

)
mk2 (by the Riemann–Roch theorem)

≤ m

2

(
2k(e+ 1) + 2s

(
qe+1 − 1

q − 1

)
+ k2(m− 1)− 2ek2

)
≤
(
mk + 1

2

)
− m

2

(
k(k − 1)(2e+ 1)− 2s

(
qe+1 − 1

q − 1

))
.

Notice that at the third line, we can replace ⌊m
2 ⌋ with m−1

2 while bounding the second part of the
sum thanks to Equation (7). To get the best bound, we maximize the expression

m

2

(
k(k − 1)(2e+ 1)− 2s

(
qe+1 − 1

q − 1

))
with respect to e. Removing the constant parts, this is equivalent to find the maximum of the
function

F (e) = ek2 − s
qe+1

q − 1

over
{
0, . . . , ⌊m

2 ⌋
}
in the discrete domain of non-negative integers. We compute the discrete de-

rivative:

∆F (e) = F (e+ 1)− F (e) = (e+ 1)k2 − s
qe+2

q − 1
−
(
ek2 − s

qe+1

q − 1

)
= k2 − sqe+1.

This function is decreasing with e, and the smallest value for which ∆F (e) ≤ 0 corresponds to its
maximum. It is the smallest value of e such that k2 ≤ sqe+1, i.e.

e0 :=

⌊
logq

(
k2

s

)⌋
.

□

Remark 2.7. For X = P1, Proposition 2.6 boils down to [MT23, Theorem 19] with k = s+ 1.
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2.2.1. Sharpness of the bound. Definition 2.1 of a Goppa–like AG code Γ(P, D, g) := C⊥|Fq requires
very few hypotheses. Besides the conditions on the supports of D and (g), which guarantee that
the code is well–defined, we only ask for the function g not to belong to the Riemann–Roch space
L(D). This assumption is enforced to make sure that the dimension of Tr(C)⋆2 is not abnormally
small compared to the expected value given in Corollary 1.8, and thus to make Goppa–like AG
codes resistant to a distinguisher based on the square of their dual.

First, if the function g lied in L(D) (or more generally if the vector of the evaluations (g(P ))P∈P
belonged to CL(X ,P, D)), then the code C = CL(X ,P, D + (g)) would contain the evaluation of
the constant function 1 = g

g , i.e. the unit vector (1, . . . , 1). In this case, the vector (1, . . . , 1)

would belong to Cqi for every i ∈ {0, . . . , ⌊m/2⌋} and each term in the sum on the right hand–side

would contain a copy of Tr(C). This non–trivial intersection between the codes Tr
(
C ⋆ Cqi

)
would

contribute with a negative term in the above bound. Secondly, if g belonged to L(D), then D+(g)
would be effective. This would imply the inclusion L((qi +1)D) ⊂ L((qi+1 +1)D) for every i ≥ 0.
Therefore, in the proof of Proposition 2.6, when bounding from above the dimension of the sum
by the sum of the dimensions of the trace codes, we would have no chance to get a sharp bound.

Unfortunately, the condition g /∈ L(D) does not guarantee that the bound given in Proposition
2.6 is reached. In the following proposition, we detail one situation in which we cannot hope for
equality.

Proposition 2.8. Using the same notation as above, set C1 = CL

(
X ,P,

[
D+(g)

q

])
(see Equation

(5) for the definition of
[
G
q

]
, given G). If dim C1 ≥ 1, then the bound given in Proposition 2.6 is

not reached.

Proof. Any non–zero codeword c ∈ C1 ⊂ C satisfies cq ∈ C. As c lies in Fn
qm , we have cq

m

=

c ∈ Cqm−1

. Therefore, we have C1 ⊆ Cq ∩ Cqm−1

, and for every i ∈
{
1, . . . , ⌊m

2 ⌋
}
, we have

Cqi

1 ⊆ Cqi ∩ Cqi−1

. By taking the star product with C, we have C ⋆ Cqi

1 ⊆
(
C ⋆ Cqi

)
∩
(
C ⋆ Cqi−1

)
,

hence

Tr
(
C ⋆ Cqi

1

)
⊆ Tr

(
C ⋆ Cqi

)
∩ Tr

(
C ⋆ Cqi−1

)
.

As a result, each pair of consecutive terms in the sum
⌊m/2⌋∑
i=0

Tr
(
C ⋆ Cqi

)
has non–trivial intersection.

However, using [Tia19, Theorem 2], equality with the upper bound only occurs if

⋂
0≤j≤⌊m/2⌋

 ∑
0≤i≤⌊m/2⌋

i ̸=j

Tr
(
C ⋆ Cqi

) = {0}.

□

Remark 2.9. In [FGO+13], the authors predict that the bound given in Proposition 2.6 is sharp
for ”generic” alternant codes (i.e Goppa–like AG codes constructed on the projective line). A
consequence of Proposition 2.8 is that a way to be “non–generic” is to have C1 ̸= {0}. We illustrate
this in Example 2.10.

As noted in Remark 2.5, when picking the function g at random, the code C1 is likely to be
reduced to zero. Regarding classical Goppa codes (defined in Equation (15)) used for the McEliece
cryptosystem, it is common to ask for the degree r polynomial g to have only simple roots. In this

case, we have
[
(r−1)P∞+(g)

q

]
= −P∞ and the code C1 defined in Proposition 2.8 is always zero.

The situation of Example 2.10 thus never occurs.
As recalled in Section 2.1, Goppa–like AG codes coincide with Cartier code as soon as

deg

([
D + (g)

q

])
> 2g− 2.

In this case, the code C1 has dimension at least g. This means that when the Goppa–like code is
also a Cartier code on a curve X with positive genus g > 0, the dimension of the square of its dual
cannot meet the bound given in Proposition 2.6.

Example 2.10. Let q = 5 and m = 4. Let P∞ be the point at infinity on the projective line
X = P1 over Fqm . Using Magma, we compare the bound given in Proposition 2.6 with the true
dimension of the corresponding code. In Table 3 below, we take P = P1(Fqm) \Supp(g), D = sP∞
and P0 stands for the zero of x in the rational function field Fqm(x).
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n s = deg(D) Choice of g
[
D+(g)

q

]
dimFqm

C1 dimFq
(Γ(P, D, g)⊥)⋆2 Bound in Prop 2.6

624
9 g = x10

2P0 − P∞ 2
255 496

10 g = x11 295 570

Table 3. Illustration of Proposition 2.6

3. One–point Goppa–like AG code on Ca,b–curves

Example 2.10 illustrates how far the bound provided by Proposition 2.6 can be from the actual
dimension when dealing with one–point AG codes. This phenomenon has been carefully studied
on X = P1 by Mora and Tillich [MT23]. In this section, we will generalize their results. We give
a whole framework in which we can improve this bound on Ca,b curves.

3.1. Framework: one–point Goppa–like AG codes on Ca,b curves. Below, we define a
specific class of Goppa–like AG codes on a Ca,b curve, associated to a divisor which is equivalent to
the one–point divisor sP∞. Throughout the rest of the paper, we fix a Ca,b curve Xa,b as defined
in Definition 1.14.

Definition 3.1. Let s′ > s be two integers such that there exists a function g ∈ L(s′P∞) with
dega,b (g) = s′. Given a set of points P ⊂ Xa,b(Fqm) such that P ∩ Supp(g) = ∅, we define the
one–point Goppa–like AG code associated to P, s and g as

Γ(P, sP∞, g) := CL(Xa,b,P, (sP∞ + (g))⊥)|Fq
.

This definition might be restrictive, but it is reasonable as these codes can be encoded quickly
thanks to the nice basis of L(sP∞) (see Equation (13)), which is desirable if we aim to build a
McEliece cryptosystem based on this family of codes. Moreover, this property will be key in the
upcoming sections as it allows a better understanding of the square of the dual of any one–point
Goppa–like AG code, under some condition on s and s′.

In the next sections, we generalize the result given in [MT23] in the case of classical Goppa codes,
by defining a weighted Euclidean division on the ring S (see Equation (12)), whose elements are
seen as bivariate polynomials.

3.2. Weighted Euclidean division. The following proposition generalizes the classical Euclidean
division of univariate polynomials in the case of functions in S with respect to the weighted degree
dega,b. Before that, we need the following definition.

Definition 3.2. For any function h ∈ S with leading monomial LM (h) = xβyα and α < a, we
define over Fqm the space

R(h) := Span (xuyv | u ≤ β + b− 1 and v ≤ a− 1 not both u ≥ β and v ≥ α) .

Note that the dimension of R(h) is equal to dega,b (h).

Proposition 3.3. Fix a nonzero function g ∈ S. Then for any function f ∈ S, there exist
f1, f2 ∈ S such that

f = f1g + f2 with f2 ∈ R(g).

Moreover, we have dega,b (f2) ≤ dega,b (f).

Proof. Since f ∈ S, we can see f as a bivariate polynomial in x and y (see Equation 12). In the
polynomial ring Fqm [x, y], we perform the division of f by a Gröbner basis of the ideal generated
by the equation fa,b of the curve Xa,b and the polynomial g with respect to the monomial order ≺
defined in Equation (14). The fact that f2 lies in R(g) follows from [GH00, Proposition 4].

Finally, if we had dega,b (f) < dega,b (f2) with f = f1g + f2, this would mean that LM(f2) =
−LM(f1g) = λxuyv for some λ ∈ F∗

qm with both u ≥ β and v ≥ α, which is not possible by
definition of R (g). □

3.3. Study of the codes Tr
(
C ⋆ Cqi

)
. In this paragraph, we will use the weighted Euclidean

division above to better control the elements in Tr
(
C ⋆ Cqi

)
for C = CL(Xa,b,P, sP∞ + (g)), where

we fixed s′ > s ≥ 0, g ∈ S with dega,b (g) = s′ and a set of points P ⊂ Xa,b(Fqm) such that
P ∩ Supp(g) = ∅.
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Before diving into technical proofs, let us fix some notation that we will use in the rest of the
paper. We extend the evaluation map defined in Equation (2) on all the ring S:

evP :

{
S → Fn

qm

f 7→ (f(P1), . . . , f(Pn))

Now, evP is an algebra homomorphism, where Fn
q is endowed with the product ⋆, i.e. evP(f) ⋆

evP(f
′) := evP(f · f ′) for any f, f ′ ∈ S.

For two functions f, f ′ ∈ S, we will write f ≡P f ′ if evP(f) = evP(f
′).

We also extend the trace operator on S by defining Tr(f) = f+fq+ · · ·+fqm−1

for every f ∈ S.
Since the map evP is an algebra homomorphism, we have evP (Tr(f)) = Tr(evP(f)). Moreover,
for any function f ∈ S, we have

(17) Tr(fq) ≡P Tr(f) .

Lemma 3.4. Take i ≥ 1. Let f ∈ S such that dega,b (f) < s′(qi + 1). Then there exists f ′ ∈
R
(
gq

i−qi−1+1
)
such that the vectors Tr

(
f

gqi+1

)
≡P Tr

(
f ′

gqi+1

)
.

Proof. By Proposition 3.3, we can write f = f1g
qi−qi−1+1 + f2 with f2 ∈ R

(
gq

i−qi−1+1
)

and

dega,b (f2) ≤ dega,b (f). Therefore, using Equation (17), we get

Tr

(
f

gqi+1

)
= Tr

(
f1g

qi−qi−1+1

gqi+1

)
+Tr

(
f2

gqi+1

)
≡P Tr

(
fq
1 g

gqi+1

)
+Tr

(
f2

gqi+1

)
.

By definition, the second term has the expected form. Let us examine the first term. If f1 = 0,
we are done. Otherwise, the definition of f1 gives dega,b (f1) = dega,b (f)− s′(qi − qi−1 + 1), and

dega,b (f
q
1 g) = q dega,b (f1) + s′

= q dega,b (f)− s′(q − 1)(qi + 1).

Then dega,b (f
q
1 g) < dega,b (f) if and only if dega,b (f) < s′(qi +1), which holds by definition of f .

Repeating the division process on fq
1 g, as the weighted degree decreases, we can find a function

f ′ ∈ R
(
gq

i−qi−1+1
)
such that Tr

(
f

gqi+1

)
≡P Tr

(
f ′

gqi+1

)
. □

Definition 3.5. For any 1 ≤ i ≤ ⌊m
2 ⌋, we define

Ti(s, g) :=
{
evP

(
Tr

(
f

gqi+1

))
| f ∈ R

(
gq

i−qi−1+1
)
∩ L(s(qi + 1)P∞)

}
and we set

T0(s, g) :=
{
evP

(
Tr

(
f

g2

))
| f ∈ L(2sP∞)

}
.

The vector spaces Ti(s, g) have been designed so that we have

(18) Tr
(
C ⋆ Cqi

)
⊆ Ti(s, g)

for all i ∈
{
0, . . . ,

⌊
m
2

⌋}
. Indeed, it is straightforward for i = 0 and it follows from Lemma 3.4 for

i ≥ 1, noticing that f ∈ L(sP∞) · L(sP∞)q
i ⊆ L(s(qi + 1)P∞).

We will benefit from these inclusions to improve the bound given in Proposition 2.6, provided
that we can efficiently compute the dimension of the trace codes Ti(s, g). This is studied in the
next section.

3.4. Upper bound in Goppa–like case. In the proposition below, we study the intersection

(19) Mi(s, g) := R
(
gq

i−qi−1+1
)
∩ L(s(qi + 1)P∞)

for every i ∈ {1, . . . , ⌊m/2⌋} in order to better grasp the trace codes Ti(s, g)’s introduced in
Definition 3.5. First we set some notation: fix i ∈ {1, . . . , ⌊m/2⌋} and write LM(g) = xβyα with

aβ + bα = s′. By reducing modulo the equation fa,b of Xa,b, we can write gq
i−qi−1+1 such that its

leading monomial with respect to the monomial order ≺ is

(20) LM
(
gq

i−qi−1+1
)
= xβiyαi
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where αi ∈ {0, . . . , a− 1} is the remainder of the Euclidean division of α(qi − qi−1 + 1) by a and

(21) βi = β(qi − qi−1 + 1) + b
α(qi − qi−1 + 1)− αi

a
=

s′(qi − qi−1 + 1)− bαi

a
.

Depending on the weighted degree s′ of g, we can compute the exact dimension of the vector space
Mi(s, g) defined in Equation (19).

Proposition 3.6. (1) If s′(qi − qi−1 + 1) > s(qi + 1) + a, then Mi(s, g) = L(s(qi + 1)P∞);

(2) If s′(qi − qi−1 + 1) ≤ s(qi + 1) + 1− 2ga,b, then Mi(s, g) = R(gq
i−qi−1+1);

(3) If there exists v∗ ∈ {1, . . . , αi − 1} such that

s(qi + 1) + a− b(a+ v∗ − αi) < s′(qi − qi−1 + 1) ≤ s(qi + 1) + a− b(a+ v∗ − 1− αi),

we have

dimFqm
(Mi(s, g)) =

a−1∑
v=v∗

⌊
s(qi + 1)− bv

a

⌋
+ v∗(βi + b) + a− v∗.

(4) Otherwise, there exists v∗ ∈ {αi + 1, . . . , a} such that

s(qi + 1) + a− b(v∗ − αi) < s′(qi − qi−1 + 1) ≤ s(qi + 1) + a− b(v∗ − 1− αi),

in which case

dimFqm
(Mi(s, g)) =

a−1∑
v=v∗

⌊
s(qi + 1)− bv

a

⌋
+ v∗βi + αib+ a− v∗.

Proof. Using the notation above, we can write

R
(
gq

i−qi−1+1
)
:= SpanFqm

{xuyv | u ≤ βi + b− 1, v ≤ a− 1 not both u ≥ βi and v ≥ αi}

= Span



1, x, . . . , xβi+b−1,

· · ·
yαi−1, yαi−1x, . . . , yαi−1xβi+b−1,

yαi , yαix, . . . , yαixβi−1,

· · ·
ya−1, ya−1x, . . . , ya−1xβi−1


Next, we define for any v ∈ {0, . . . , a− 1}:

ℓiv := max
{
u ≥ 0 | xuyv ∈ L(s(qi + 1)P∞)

}
=

⌊
s(qi + 1)− bv

a

⌋
,

implying

L(s(qi + 1)P∞) = Span


1, x, . . . , xℓi0 ,

y, yx, . . . , yxℓi1 ,

· · ·
ya−1, ya−1x, . . . , ya−1xℓia−1

 .

We thus have a description of a basis of both spaces R(gq
i−qi−1+1) and L(s(qi + 1)P∞), leading

to an exact formula for the dimension of their intersection Mi(s, g) for any value of i:

(22) dimFqm
Mi(s, g) =

αi−1∑
v=0

min(βi + b, ℓiv + 1) +

a−1∑
v=αi

min(βi, ℓ
i
v + 1).

It remains to compute the corresponding minima with respect to v:

(i) If 0 ≤ v ≤ αi − 1, by using Equation (21), we get

βi + b ≤ ℓiv + 1 ⇐⇒ s′(qi − qi−1 + 1) ≤ F (v) := s(qi + 1) + a− b(a+ v − αi).

(ii) Otherwise, αi ≤ v ≤ a− 1 and

βi ≤ ℓiv + 1 ⇐⇒ s′(qi − qi−1 + 1) ≤ G(v) := s(qi + 1) + a− b(v − αi).

Note that both F and G are decreasing with v, and we easily check that F (0) = G(a). Thus, we
have the following sequence of integers

F (αi − 1) ≤ · · · ≤ F (0) = G(a) ≤ G(a− 1) ≤ · · · ≤ G(αi).

Depending on the value of s′, there are a few cases to consider:

• s′(qi − qi−1 + 1) > G(αi), in which case Mi(s, g) = L(s(qi + 1)P∞);

• s′(qi − qi−1 + 1) ≤ F (αi − 1), and Mi(s, g) = R(gq
i−qi−1+1);
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• There exists v∗ ∈ {1, ..., αi − 1} such that F (v∗) < s′(qi − qi−1 + 1) ≤ F (v∗ − 1);
• There exists v∗ ∈ {αi, ..., a} such that G(v∗) < s′(qi − qi−1 + 1) ≤ G(v∗ − 1).

The formulas for the dimension of Mi(s, g) follows from the above computations and (22). □

Note that (1) corresponds to the case where Ti(s, g) = Tr
(
g−(qi+1) · L(s(qi + 1)P∞)

)
, which

will produce the same bound as the one given in Proposition 2.6. Instead, we focus on (2), since
in this case, we can show some inclusion relations between the Ti(s, g)’s.

Proposition 3.7. Let i∗ ∈
{
0, . . . , ⌊m

2 ⌋ − 1
}
be the smallest integer such that

(23) sqi
∗
≥ (s′ − s)(qi

∗+1 − qi
∗
+ 1) + 2ga,b − 1.

Then

Ti∗(s, g) ⊆ Ti∗+1(s, g) ⊆ · · · ⊆ T⌊m
2 ⌋(s, g).

Proof. From Proposition 3.6 (2), we know that (23) implies

Mi∗+1(s, g) = R(gq
i∗+1−qi

∗+1−1+1).

Since the function

i 7→ s(qi + 1) + 1− 2ga,b
qi − qi−1 + 1

is increasing with i, we also have

(24) Mi(s, g) = R(gq
i−qi−1+1), ∀ i ∈

{
i∗, . . . ,

⌊m
2

⌋
+ 1
}
.

We now prove the inclusions between the T ′
i s, assuming first that i∗ ̸= 0 (since the definition of

T0 is a bit different). Let i ∈
{
i∗, . . . , ⌊m

2 − 1⌋
}
, and recall that

Ti(s, g) :=
{
evP

(
Tr

(
f

gqi+1

))
| f ∈ R

(
gq

i−qi−1+1
)
∩ L(s(qi + 1)P∞)

}
.

Given evP

(
Tr
(

f

gqi+1

))
in Ti(s, g), we want to show that it belongs to Ti+1(s, g). Applying Propo-

sition 3.3 by replacing f with fgq
i+1−qi and g by gq

i+1−qi+1, we obtain

(25) fgq
i+1−qi = f1g

qi+1−qi+1 + f2,

with f2 ∈ R(gq
i+1−qi+1) = Mi(s, g) (using (24)) and dega,b (f2) ≤ dega,b

(
fgq

i+1−qi
)
. Next, we

write

Tr

(
f

gqi+1

)
= Tr

(
fgq

i+1−qi

gqi+1+1

)

= Tr

(
f1g

qi+1−qi+1

gqi+1+1

)
+Tr

(
f2

gqi+1+1

)
≡P Tr

(
fq
1 g

gqi+1+1

)
+Tr

(
f2

gqi+1+1

)
.

By assumption, we immediately have that evP

(
Tr
(

f2
gqi+1+1

))
∈ Ti+1(s, g). If f1 = 0, we are done.

Otherwise, we have from (25):

dega,b (f1) = dega,b

(
fgq

i+1−qi
)
− dega,b

(
gq

i+1−qi+1
)
= dega,b (f)− s′.

Thus

dega,b (f
q
1 g) < dega,b

(
fgq

i+1−qi
)

⇐⇒ q dega,b (f) + (1− q)s′ < dega,b (f) + s′(qi+1 − qi)

⇐⇒ dega,b (f) < s′(qi + 1),

which is true since in particular f ∈ L(s(qi+1)P∞) and s < s′. Since the weighted degree decreases,
we can repeat the division process until eventually we obtain a quotient f1 equal to zero, which
proves that Ti(s, g) ⊆ Ti+1(s, g).

In the case i∗ = 0, we also have to prove that T0(s, g) ⊆ T1(s, g), which differs from the other

cases due to the definition of T0. Let evP

(
Tr
(

f
g2

))
∈ T0(s, g), for some f ∈ L(2sP∞). Using

Proposition 3.3, this time replacing f with fgq−1 and g with gq+1 yields

fgq−1 = f1g
q + f2,
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with f2 ∈ R(gq) = M1(s, g) (using (24) again). Thus, we can write

Tr

(
f

g2

)
= Tr

(
fq
1 g

gq+1

)
+Tr

(
f2

gq+1

)
,

with evP

(
Tr
(

f2
gq+1

))
∈ T1(s, g). Since dega,b (f1) = dega,b

(
fgq−1

)
− dega,b (g

q) = dega,b (f)− s′,

we have

dega,b (f
q
1 g) < dega,b

(
fgq−1

)
⇐⇒ q dega,b (f) + (1− q)s′ < dega,b (f) + s′(q − 1)

⇐⇒ (q − 1) dega,b (f) < 2s′(q − 1)

⇐⇒ dega,b (f) < 2s′,

which holds since s < s′ and f ∈ L(2sP∞). Repeating the division process until we find a quotient
equal to zero shows that T0(s, g) ⊆ T1(s, g). The other inclusions hold as in the case i∗ ≥ 1. □

Combining (18) with both the above propositions lead to a better understanding of the dimension
of the square of the dual of one–point Goppa–like AG codes.

Corollary 3.8. With the same notation as in Proposition 3.7, set k := dimFqm
CL(Xa,b,P, sP∞+

(g)). Then, for all e ∈
{
0, . . . , ⌊m

2 ⌋
}
, the dimension of Γ(P, sP∞, g)⊥)⋆2 is bounded from above by

dimFq

(
Γ(P, sP∞, g)⊥

)⋆2 ≤
(
m− 1

2
− e

)
mk2 + dimFq

(
e∑

i=0

Ti(s, g)

)
.

Moreover, if i∗ ≤ e ≤ ⌊m
2 ⌋ is the integer satisfying Equation (23) , we have

dimFq
Γ(P, sP∞, g)⊥)⋆2 ≤

(
m− 1

2
− e

)
mk2 +ms′(qe − qe−1 + 1)

+ dimFq

(
i∗−1∑
i=0

Ti(s, g)

)
− dimFq

(
Te(s, g) ∩

i∗−1∑
i=0

Ti(s, g)

)
.

Proof. From (6) and under the assumption on s and s′, we have

dimFq

(
Γ(P, sP∞, g)⊥

)⋆2 ≤
⌊m/2⌋∑
i=0

dimFq
Tr
(
C ⋆ Cqi

)

≤ dimFq

e∑
i=0

Ti(s, g) +
⌊m/2⌋∑
i=e+1

Tr
(
C ⋆ Cqi

)
≤ dimFq

e∑
i=0

Ti(s, g) +
(
m− 1

2
− e

)
mk2,

for all e ∈
{
0, . . . , ⌊m

2 ⌋
}
. If i∗ ≤ e ≤ ⌊m

2 ⌋, Proposition 3.7 gives

e∑
i=i∗

Ti(s, g) = Te(s, g),

Consequently, we can write

dimFq

(
e∑

i=0

Ti(s, g)

)
= dimFq

(
i∗−1∑
i=0

Ti(s, g)

)
+ dimFq

Te(s, g)− dimFq

(
Te(s, g) ∩

i∗−1∑
i=0

Ti(s, g)

)
.

To finish the proof, we use the fact that Me(s, g) = R
(
gq

e−qe−1+1
)

(see. Proposition 3.6, 2),

hence we have

dimFq Te(s, g) ≤ m · dimFqm
R
(
gq

e−qe−1+1
)
= ms′(qe − qe−1 + 1).

□

Despite the fact that the upper bound given in Corollary 3.8 can be numerically computed
with the knowledge of the degree s and the function g, it is hard to give a close formula for any
parameter, since the intersections of the trace codes Ti(s, g)’s are hard to manipulate. However, if
we suppose that i∗ = 0, we can sharpen the above result.
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Theorem 3.9. Suppose that s ≥ (s′−s)q+2ga,b−1 and let e∗ := min
(⌊

m
2

⌋
,
⌈
logq

(
k2

s′(q−1)2

)⌉
+ 1
)
.

Then

dimFq (Γ(P, sP∞, g)⊥)⋆2 ≤
(
mk + 1

2

)
− m

2
(k2(2e∗ + 1) + k − 2s′(qe

∗
− qe

∗−1 + 1)).

Proof. The condition s ≥ (s′ − s)q + 2ga,b − 1 exactly implies that i∗ = 0 and

T0(s, g) ⊆ T1(s, g) ⊆ · · · ⊆ T⌊m
2 ⌋(s, g),

by Proposition 3.7. Thus, using Corollary 3.8 and the inequality dimFq
Te(s, g) ≤ mdimFqm

R(gq
e−qe−1+1),

we get

dimFq (Γ(P, sP∞, g)⊥)⋆2 ≤ min

(
ms′(qe − qe−1 + 1) +

(
m− 1

2
− e

)
mk2

)
≤ min

(m
2

(
2s′(qe − qe−1 + 1) + k2(m− 1)− 2k2e

))
≤ min

((
mk + 1

2

)
− m

2

(
k2(2e+ 1) + k − 2s′(qe − qe−1 + 1)

))
.

the minimum being taking over e ∈
{
1, . . . , ⌊m

2 ⌋
}
. To get the best bound, we need to maximize

the function

F (e) = ek2 − s′(qe − qe−1 + 1)

over
{
1, . . . , ⌊m

2 ⌋
}
. We compute the discrete derivative:

∆F (e) = F (e+ 1)− F (e) = (e+ 1)k2 − s′(qe+1 − qe + 1)− ek2 + s′(qe − qe−1 + 1)

= k2 − s′qe−1(q − 1)2.

This function is decreasing with e, and the smallest value for which ∆F (e) ≤ 0 corresponds to its
maximum. It is the smallest value of e such that k2 ≤ s′qe−1(q − 1)2, i.e.

e =

⌈
logq

(
k2

s′(q − 1)2

)⌉
+ 1.

□

This theorem generalizes [MT23, Corollary 27]. Several computational experiments showed that
when the code C := CL(Xa,b,P, sP∞ + (g)) is sufficiently random, the bound given in Theorem
3.9 is sharp, as claimed by Mora and Tillich [MT23, Remark 28] on X = P1. Let us examine the
sharpness of the bound in the following examples.

Example 3.10. The codes studied in Example 2.10 are one–point Goppa–like AG codes on
X = P1. The bound of Theorem 3.9 for s = 9 and s = 10 respectively gives 400 and 462, in-
stead of 496 and 570. It is worth noting that this new upper bound is still far from the actual
dimensions, namely 255 and 295. This comes for the fact that the functions g chosen in Example
2.10 are powers of x, hence their associated principal divisors (g) are supported only by P0 and
P∞.

Example 3.11. Set q = 3 and m = 3. We consider the curve X over Fqm = F729 defined by

y2 + y = x3 + x+ 2.

This elliptic curve X is a particular case of C2,3 curve with genus g = 1. Set s′ = s+ 1 for s ≥ 0,
and g ∈ Fqm(X ) such that g = xβyα + g′, where aβ + bα = s + 1; and g′ is sampled at random
in L(sP∞). For each such g, consider Pg := X (Fqm)\ Supp(g). Using Magma, we then compare
the true dimension of the square of the dual of Cg := Γ(Pg, sP∞, g) with the upper bound given in
Theorem 3.9 for s ∈ {4, . . . , 10}. Results can be found in Table 4.

In our computing experiments, we can check that g always has simple zeroes, hence
[
sP∞+(g)

3

]
=

−P∞. This example illustrates how the bound can be sharp when we are outside the scope of
Proposition 2.8.

In the last section, we will discuss how to efficiently choose the parameters of a one–point
Goppa–like AG code in order to resist this distinguisher.
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n s dimFq
Cg dimFq

(Cg)⋆2 dimFq
(C⊥

g )⋆2 Upper bound in Theorem 3.9

781 4 757 781 234 234

783 5 753 783 327 327

782 6 746 782 402 402

783 7 741 783 483 483

782 8 734 782 570 570

782 9 728 782 663 663

781 10 721 781 762 762

Table 4. Sharpness of the bound.

4. Analysis of the distinguisher

In the previous section, we provided an (experimentally) sharp upper bound on the dimension of
the square of the dual of a one–point Goppa–like code, which could lead to a distinguisher for the
corresponding code. More precisely, let C := CL(Xa,b,P, sP∞+(g)) be an AG code as above, with
dega,b (g) = s′ > s ≥ 2ga,b − 1. We showed that if s and s′ are such that s ≥ (s′ − s)q + 2ga,b − 1,
then

(26) dimFq
(Γ(P, sP∞, g)⊥)⋆2 ≤ min

(m
2

(
2s′(qe

∗
− qe

∗−1 + 1) + k2(m− 1− 2e∗)
)
, n
)
,

where e∗ :=

⌈
logq

(
k2

s′(q − 1)2

)⌉
+ 1. Thus, the code is distinguishable from a random one if the

right hand–side of (26) is smaller than the lenght n of the code. It is possible to study when this
case occurs, by starting to bound from above the maximal possible lenght: since P ∩Supp(g) = ∅,
this maximum is reached when P = Xa,b(Fqm)\{P∞} and g has no rational zero that is

n = #P = |Xa,b(Fqm)| − 1 ≤ qm + 2ga,b
√
qm,

using the Hasse–Weil bound. In order to protect the code against the distinguisher, the parameters
have to be chosen such that

(27)
m

2

(
2s′(qe

∗
− qe

∗−1 + 1) + k2(m− 1− 2e∗)
)
≥ qm + 2ga,b

√
qm.

In what follows, we focus on two specific classes of Ca,b curves. First, we determine the maximal
(with respect to the dimension) codes we can distinguish in the case where Xa,b is an elliptic curve.
This case is relevant since it is the closest to the case of classical Goppa codes, and we will see that
our results are very similar to the one given in [MT23]. Next up, we focus on the particular case
of the Hermitian curve, which also turns out to be a Xa,b curve. It is well–known to be a good
candidate to construct efficient codes as it is a maximal curve. Due to its high genus, we then
show that any one–point Goppa–like code defined on it cannot be distinguished.

4.1. High rate distinguishable codes in the case of elliptic curves. Let Xa,b be an elliptic
curve, i.e. a = 2 and b = 3. For some set of parameters which produces codes of cryptographic
size, we compute the maximal distinguishable value of s. To get close to the case of classical Goppa
codes, we also fix s′ = s+ 1.

As it was noticed in [MT23] and as we can see above, we are only able to distinguish high rate
codes. The smallest distinguishable rates are roughtly the same as the one given in [MT23].

4.2. Codes on the Hermitian curve. As the Hermitian curve is a particular case of Ca,b curve,
we investigate the behaviour of one–point Goppa–like AG codes constructed on it with respect to
our distinguisher. In particular, we show that all these codes resist to it, since (27) always holds
in this setting, essentially because the genus of the Hermitian curve is too high with respect to the
size of the field. Let us first recall some known results about the Hermitian curve ([Sti09]).

Let m ≥ 1 be an even integer and denote by q0 := qm/2, so that Fqm = Fq20
. The Hermitian

curve H over Fq20
is defined by the equation

H : yq0 + y = xq0+1.

Its genus is given by gH = q0(q0−1)
2 and it is a maximal curve, i.e. #H(Fq20

) = q30 + 1.

Proposition 4.1. Suppose s ≥ (s′−s)q+2gH−1. Then for any choice of g and P, the one–point
Goppa–like code Γ(P, sP∞, g) resists the distinguisher given in Theorem 3.9.
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q m n Largest distinguishable s Corresponding rate

2 12 4218 14 0, 963

2 13 6688 18 0, 982

3 7 2186 15 0, 962

3 8 6393 24 0, 977

5 5 3043 27 0, 961

5 6 4500 22 0, 971

5 6 6688 30 0, 976

7 4 2395 27 0, 957

7 5 4650 26 0, 971

7 5 8192 37 0, 979

17 3 4820 92 0, 943

Table 5. Largest distinguishable Goppa–like AG code in elliptic case.

Proof. As discussed at the beginning of the section, the code cannot be distinguished whenever
(27) holds. In this case, we know exactly the number of rational points, and thus the length n of
the Goppa–like code is at most q30 . Since m is even, we are left to prove that

(28) B(e∗) := ms′(qe
∗
− qe

∗−1 + 1) +
(m
2

− e∗
)
mk2 ≥ q30 ,

where k := dimFqm
CL(H,P, sP∞ + (g)) = s+ 1− gH.

- If e∗ < m
2 , then B(e∗) > mk2. Using the assumption on s and s′, we know that s ≥

2gH + q − 1. This yields k ≥ gH + q and thus

B(e∗)− q30 > m(g2H + 2gHq + q2)− q30

>
m

4
(q40 − 2q30 + q20) +mq(q20 − q0 + q)− q30

≥ 1

2
(q40 − 2q30 + q20) + 4(q20 − q0 + 2)− q30 (m ≥ 2 and q ≥ 2)

>
q0
2
(q30 − 4q20 + 9q0 − 8) > 0,

since q0 ≥ 2. Inequality (28) holds in this case.
- If e∗ = m

2 , then since q0 = qm/2, we have B
(
m
2

)
= ms′(q0 − q0q

−1 + 1). Moreover, s′ > s
implies s′ ≥ 2gH + q, and

B
(m
2

)
− q30 ≥ m(2gH + q)(q0 − q0q

−1 + 1)− q30

≥ 2

(
q20(q0 − 1)

(
q − 1

q

)
+ q0(q0 − 1) + q0(q − 1) + q

)
− q30

≥ q30

(
2

(
q − 1

q

)
− 1

)
+ 2q20

(
1−

(
q − 1

q

))
+ 2(q0(q − 2) + q).

Clearly, the last expression is minimal for q = 2, so we finally gets

B
(m
2

)
≥ q20 + 4 > 0,

which proves Inequality (28) in this case and conclude the proof.

□

Consequently, in the light of Table 1, it is still reasonable to consider the Hermitian curve to
build efficient SSAG code–based cryptosystem.
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