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Abstract 

Genome-wide polygenic risk scores (GW-PRS) have been reported to have better 

predictive ability than PRS based on genome-wide significance thresholds across 

numerous traits. We compared the predictive ability of several GW-PRS approaches to 

a recently developed PRS of 269 established prostate cancer risk variants from multi-

ancestry GWAS and fine-mapping studies (PRS269). GW-PRS models were trained 

using a large and diverse prostate cancer GWAS of 107,247 cases and 127,006 

controls used to develop the multi-ancestry PRS269. Resulting models were 

independently tested in 1,586 cases and 1,047 controls of African ancestry from the 

California/Uganda Study and 8,046 cases and 191,825 controls of European ancestry 

from the UK Biobank and further validated in 13,643 cases and 210,214 controls of 

European ancestry and 6,353 cases and 53,362 controls of African ancestry from the 

Million Veteran Program. In the testing data, the best performing GW-PRS approach 

had AUCs of 0.656 (95% CI=0.635-0.677) in African and 0.844 (95% CI=0.840-0.848) in 

European ancestry men and corresponding prostate cancer OR of 1.83 (95% CI=1.67-

2.00) and 2.19 (95% CI=2.14-2.25), respectively, for each SD unit increase in the GW-

PRS. However, compared to the GW-PRS, in African and European ancestry men, the 

PRS269 had larger or similar AUCs (AUC=0.679, 95% CI=0.659-0.700 and AUC=0.845, 

95% CI=0.841-0.849, respectively) and comparable prostate cancer OR (OR=2.05, 95% 

CI=1.87-2.26 and OR=2.21, 95% CI=2.16-2.26, respectively). Findings were similar in 

the validation data. This investigation suggests that current GW-PRS approaches may 

not improve the ability to predict prostate cancer risk compared to the multi-ancestry 

PRS269 constructed with fine-mapping. 
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Main Text 

Prostate cancer is the second leading cause of cancer deaths among men in the US, 

with incidence rates being highest in men of African ancestry1,2. Earlier identification of 

men with increased risk of prostate cancer across diverse populations has the potential 

to reduce the stark health disparities of this disease. We recently performed a large and 

diverse genome-wide association (GWAS) of prostate cancer in men from African, 

European, East Asian, and Hispanic populations3. By performing ancestry-specific and 

multi-ancestry GWAS and fine-mapping analyses, this investigation revealed 269 

GWAS-defined prostate cancer risk variants used to develop a multi-ancestry polygenic 

risk score (PRS269). The PRS269 was highly predictive of prostate cancer risk across 

populations3 and has since been validated in additional independent multi-ancestry 

studies4. However, genome-wide PRS (GW-PRS) approaches, which include variants 

across the genome that do not reach genome-wide statistical significance thresholds, 

have been reported to have better predictive performance than standard pruning and 

thresholding PRS of known variants across numerous complex traits, including 

schizophrenia, coronary artery disease, atrial fibrillation, type 2 diabetes, inflammatory 

bowel disease, breast cancer, and colorectal cancer5-9.  

In this investigation, we compared the predictive ability of GW-PRS for prostate 

cancer to the multi-ancestry PRS269 of established prostate cancer risk variants. GW-

PRS models were trained using summary statistics from the studies used to construct 

the multi-ancestry PRS269, which included 107,247 cases and 127,006 controls from 

European (85,554 cases and 91,972 controls), African (10,368 cases and 10,986 

controls), East Asian (8,611 cases and 18,809 controls), and Hispanic (2,714 cases and 
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5,239 controls) populations3. Three recent GW-PRS approaches were evaluated: 

LDpred210, PRS-CSx11, and EB-PRS12, using the 1.1 million HapMap3 panel variants13 

recommended by these approaches, which included 44 of the 269 variants, with all 

other autosomal prostate cancer risk variants being within 800 kb and correlated with a 

median r=0.99 (ranging from 0.31-1.00 in any given population) of at least one of the 1.1 

million HapMap3 variants (Supplemental Methods and Tables S1-S2). For 

comparison, each model was trained using previously estimated multi-ancestry weights 

and population-specific weights from the GWAS summary statistics3. GW-PRS models 

were tested in African ancestry men from the California/Uganda Study (CA/UG Study; 

1,586 cases and 1,047 controls) and European ancestry men from the UK Biobank 

(8,046 cases and 191,825 controls; Supplemental Methods). Additional validation was 

performed in 6,353 cases and 53,362 controls of African ancestry and 13,643 cases 

and 210,214 controls of European ancestry from the Million Veteran Program14 (MVP; 

Supplemental Methods).  

In the CA/UG and UK Biobank testing datasets, the best performing GW-PRS 

approach was PRS-CSx with multi-ancestry weights, with an area under the curve 

(AUC) of 0.656 (95% CI=0.635-0.677) in African and 0.844 (95% CI=0.840-0.848) in 

European ancestry men (Supplemental Methods, Figure 1, and Table S3). Each SD 

unit increase in PRS was associated with 1.83-fold higher odds of prostate cancer (95% 

CI=1.67-2.00) in men of African ancestry and 2.19-fold higher odds of prostate cancer 

(95% CI=2.14-2.25) in men of European ancestry (Supplemental Methods, Figure 1, 

and Table S4). However, compared to PRS-CSx, the PRS269 had higher or nearly 

identical AUCs in both African (0.679, 95% CI=0.659-0.700) and European (0.845, 95% 
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CI=0.841-0.849) ancestry men, and the PRS269 was associated with 2.05-fold higher 

odds (95% CI=1.87-2.26) and 2.21-fold higher odds (95% CI=2.16-2.26) of prostate 

cancer in African and European ancestry men, respectively (Figure 1, Table S3, and 

Table S4). Findings were consistent when investigating extreme PRS distributions, with 

similar prostate cancer OR observed for the PRS269 and the best performing GW-PRS 

(PRS-CSx) when comparing African and European ancestry men in the highest PRS 

decile (90-100%) to those in the average 40-60% PRS category (Supplemental 

Methods, Figure S1, and Table S5). 

Similarly, in the validation MVP study, the best performing GW-PRS approach 

was PRS-CSx with multi-ancestry weights; however, the PRS269 performed either better 

or similarly with regards to AUC (AUC=0.656 [95% CI=0.649-0.663] versus AUC=0.624 

[95% CI=0.617-0.632] in African ancestry men; AUC=0.694 [95% CI=0.690-0.699] 

versus AUC=0.692 [95% CI=0.687-0.696] in European ancestry men; Figure 2 and 

Table S3). Likewise, the PRS269 was associated with prostate cancer OR that were 

comparable or larger than OR estimated with PRS-CSx (OR=1.77, 95% CI=1.72-1.82 

versus OR=1.59, 95% CI=1.54-1.63 in African ancestry men; OR=1.99, 95% CI=1.95-

2.02 versus OR=1.97, 95% CI=1.93-2.01 in European ancestry men; Figure 2 and 

Table S4). OR calculated for African and European men in the top PRS decile were 

also comparable across the PRS269 and PRS-CSx (Figure S2 and Table S5). In the 

testing and validation datasets, model performance was similar for both PRS269 and 

GW-PRS approaches when using either multi-ancestry or population-specific weights 

(Figures 1-2, Figures S1-S2, and Tables S3-S5). 
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Findings from this investigation suggest that current GW-PRS approaches do not 

outperform the multi-ancestry PRS269 for overall prostate cancer risk prediction. For 

several other disease examples, GW-PRS have been shown to perform better than 

PRS of known variants5-9; however, these PRS are typically constructed from a pruning 

and thresholding approach within European ancestry individuals rather than a fine-

mapping approach across diverse populations. As such, the performance observed for 

our prostate cancer PRS269 may be due to identifying GWAS risk variants from a multi-

ancestry GWAS and fine-mapping study, along with the use of the same multi-ancestry 

GWAS to construct the GW-PRS3. It is also possible that the unique genetic architecture 

of prostate cancer contributes to the high performance of the PRS269 across 

populations, as prostate cancer is one of the most heritable cancers15,16 and has been 

estimated to display a greater distribution of variants with larger effect sizes than other 

cancers with similar GWAS sample sizes9.  

We have previously shown that GW-PRS including variants with weaker 

statistical evidence of association in both European and African ancestry men (based 

on lenient P-value thresholds down to 1.0x10-5) resulted in lower PRS performance3. 

Likewise, it was recently reported that a GW-PRS constructing from 1 million variants 

most strongly associated with prostate cancer risk led to comparable results as a GW-

PRS based on HapMap3 variants17, further suggesting that GW-PRS approaches may 

not be improved by selecting a large number of variants weakly associated with prostate 

cancer risk. Last, a European-ancestry derived PRS of 110 established literature-

curated prostate cancer risk variants was previously found to perform better than a GW-

PRS in addition to a standard pruning and thresholding PRS18. These findings in 
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conjunction with the present study suggest that the current multi-ancestry and fine-

mapped PRS269 is optimal, which has important clinical implications. While genotyping a 

few hundred versus millions of variants to construct PRS is currently logistically easier 

and more cost-effective, genome-wide genotyping may be optimal in the future to 

enable the evaluation of PRS across many traits. However, our findings do not imply 

that the multi-ancestry PRS269 has reached optimal performance; increasing the sample 

size of non-European ancestry men in the discovery GWAS, particularly African 

ancestry men, where we and others have observed that the PRS has lower 

performance than in other populations3,4, will be important to improve genetic risk 

prediction of prostate cancer. The multi-ancestry PRS269 is an effective risk stratification 

tool for prostate cancer, and its clinical utility in screening and early detection warrants 

investigation. 
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Figure 1. Comparison of PRS performance in the CA UG Study and the UK Biobank testing data. PRS performance is 

evaluated using area under the curve (AUC) estimated in men of A) African and C) European ancestry and OR of prostate 

cancer for each SD increase in PRS in men of B) African and D) European ancestry. 
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Figure 2. Comparison of PRS performance in the MVP validation data. PRS performance is evaluated using area under 

the curve (AUC) estimated in men of A) African and C) European ancestry and OR of prostate cancer for each SD 

increase in PRS in men of B) African and D) European ancestry. 
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